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Abstract: We give an improved lower bound for max|T−t|6H |ζ( 1
2 + it)|when 26αH6log log T−

c , 16α < π . Our theorem slightly refines the result in [11]. We also prove a theorem about an
upper bound for the multiplicities of zeros of ζ(s) conditionally, assuming some lower bound for
max|s−s1|6∆ |ζ(s)| .
Keywords: Riemann zeta-function, zero multiplicity.

1. Introduction

One of the interesting problems in the theory of the function ζ(s) is the question
of multiple zeros of ζ(s). There are several conjectures about how large the mul-
tiplicity of such a zero may be: zeros may be simple, of bounded multiplicity, of
unbounded multiplicity. Let κ(T ) be the largest multiplicity of a zero of ζ(s) in
the rectangle 0 < Re s < 1, 0 < Im s 6 T . Then the above-mentioned conjectures
may be stated as:

Conjecture 1. κ(T ) = 1 , T > 0 .

Conjecture 2. κ(T ) 6 c , c being a constant, T > 0 .

Conjecture 3. κ(T )→ +∞ as T → +∞ .

A simple theorem about nontrivial zeros ρ of ζ(s), namely the relationship
∑
ρ

1
1 + (T − Im ρ)2 = O(log T ), T > 2,

implies that κ(T ) = O(log T ) (cf. [7, p. 39], or [12, p. 209], or [8, p. 24]). The
Riemann Hypothesis implies that

κ(T ) = O
(

log T
log log T

)
,
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cf. [12, pp. 209 and 346]. Finally, the weaker Mertens hypothesis, i.e. the relation-
ship

∫ X

1


 1
x

∑

n6x
µ(n)




2

dx = O(logX),

implies that κ(T ) = 1, T > 0 (cf. [12, p. 374]).
The universality of ζ(s) (cf. [13], [14]) should include the inequality κ(T ) > 1

and, moreover, the property κ(T ) → +∞ as T → +∞ . However, all these are
merely surmises (cf. also [8, p. 137]).

The problems related to the multiplicity of a zero of ζ(s) were considered
by A. Ivič [5], [6]. In particular, these papers provided new upper bounds for the
multiplicity of a zero in point s in the left neighbourhood of the line Re s = 1.

Lower bounds for |ζ(s)| in small regions of the critical strip allow for the
upper bound estimation of κ(T ). Such lower bounds are also interesting in their
own right. Therefore in Section 2 we show results about lower bound estimates
of |ζ(s)| on short intervals of the critical line, in Section 3 we show results about
lower bound estimates of |ζ(s)| in small regions of the critical strip, and finally,
in Section 4 we prove a theorem about an upper bound for κ(T ).

Everywhere below A , c , c1 , c2 , . . . , T1 denote positive absolute constants,
generally different in different furmulae; ζ(s) — the Riemann zeta function; RH
— the Riemann Hypothesis about zeros of ζ(s); T > T1 ; coshα = 1

2 (eα + e−α),
sinhα = 1

2 (eα − e−α); µ(n) — the Möbius function; τ(n) — the number of divi-
sors of a natural number n ; Γ(s) — Euler’s gamma function; s = σ+ it , i2 = −1,
σ = Re s , t = Im s .

2. Lower bounds for the Riemann zeta function on short intervals of
the critical line

We have satisfactory knowledge about the behaviour of ζ(s) and the related qu-
antities when s = σ + it and t varies along a large interval, i.e.

T < t < T +H,

H = H(T ) → +∞ as T → +∞ . It is described by the theorems about the
behaviour of max |ζ(s)| , the mean values of |ζ(s)|2k , 0 < k 6 2, arg ζ(s), theorems
about the number of zeros of ζ( 1

2 + it) and others. At the same time little is
known about the answers to similar questions when t varies in a short intervals,
for example when H = H(T ) = const, or when H(T )→ 0, T → +∞ . Of course
we assume 0 < σ < 1, i.e. the points s are inside the critical strip. Define the
function F (T ;H) as:

F (T ;H) = max
|T−t|6H

|ζ(
1
2

+ it)|.
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If H = H(T ) is large, more precisely if

c log log T 6 H 6 1
10
T,

then the following estimate due to Balasubramanian [1] holds for F (T ;H):

F (T ;H) > exp

(
3
4

√
logH

log logH

)
.

If H is small, 0 < H = ∆ < 1, then the theorem of Valiron-Landau-Hoheisel [12,
p. 217] leads to the estimate:

F (T ; ∆) = F (T ;H) > exp
(
−A 1

∆
log T

)
(1)

It was also noted there that small values of F (T ; ∆) are located in the neighbo-
urhoods of zeros of ζ(s). Moreover, a theorem shown in [12, pp. 355–358] implies
that if RH is true, then the inequality

F (T ; ∆) > exp
(
−A 1

∆
log T

log log log T
log log T

)
(2)

holds for 0 < ∆ < 1. Since RH also implies that the mean distance between
subsequent zeros of ζ( 1

2 + it) on the interval T < t < 2T is of the order (log T )−1 ,
it is interesting, first of all, what is the lower bound for F (T ; ∆) for ∆ 6 (log T )−1 .
In 2001 the author [10] has shown that for 0 < ∆ 6 (log T )−1 the following
inequality holds:

F (T ; ∆) > exp
(
−A(log

1
∆

) log T
)
. (3)

If ∆ = (log T )−1 , the exponents in the right-hand sides of (1), (2), and (3) equal,
respectively:

−A log2 T, −A(log2 T )
(

log log log T
log log T

)
, −A(log T )(log log T ).

The discrepancy in the estimates (1) – (3) is even greater when ∆ = T−1 , as the
corresponding exponents are equal to

−AT log T, −AT log T
log log T

log log log T, −A log2 T

respectively in that case. Three conjectures were stated in [10] (each subsequent
one stronger than the previous).
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Conjecture 1F. There exists a function ∆ = ∆(T )→ 0 as T → +∞ such that
the following estimate holds:

F (T ; ∆) > exp(−A log T ).

Conjecture 2F. Conjecture 1F is true with

∆ = (log log T )−1.

Conjecture 3F. Conjecture 1F is true with

∆ = (log T )−1.

We note that (2) implies Conjecture 1F with

∆ =
log log log T

log log T
.

During the last three years new results were obtained in this direction. M.Z. Garaev
[4] has shown (3) for

(log T )−1 6 ∆ 6 1
3
,

and has proved Conjecture 3F assuming RH.
Shao-Ji Feng [3] has proved Conjecture 1F assuming the Lindelöf hypothesis.

M.E. Changa [2] has obtained the new proof of (3) for 0 < ∆ 6 1
3 .

We note that for slightly higher values of H = H(T ), namely for

10 6 H 6 c log log T,

where c > 100 is the constant in the theorem of Balasubramanian, little is known
about lower bound estimates of F (T ;H). Of course, trivially we have

exp(−A log T ) 6 F (T ;
1
3

) 6 F (T ; 10) 6 F (T ;H).

Moreover, the following unpublished estimate was proved by the author about
1980:

F (T ;H) > exp
(
− 1
H2 log T

)
.

Finally, in [11] the author has shown that there exists an absolute constant c > 0
such that for T > T1 > 0 and 2 6 H 6 log log T − c the following inequality is
satisfied:

F (T ;H) > 1
8

exp
(
− 1

2(coshH − 1)
log T

)
. (4)

This implies, in particular, that for H > log log T the following estimate holds:

F (T ;H) > c1 > 0.
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A similar result based on the principle of maximum was obtained by M.E. Changa
[2]:

F (T ;H) > exp
(
− 1

exp( 1
10H)

log T
)
,

where 40 6 H 6 log log T . We note that it is an interesting unsolved problem to
prove, for example, an inequality like this:

F (T ; 10) > exp(−ε(T ) log T ),

where ε(T )→ 0 as T → +∞ . It would be just as interesting to prove the inequ-
ality:

F (T ;H) > 1, H > log log log T.

Below we show a theorem that slightly refines (4).

Theorem 1. For every α such that 1 6 α < π there exist absolute positive
constants c and T1 such that for T > T1 and

2 6 αH 6 log log T − c

the following estimate holds:

F (T ;H) > 1
16

exp
(
− 5 log T

6(πα − 1)(coshαH − 1)

)
.

Proof. We follow the argument in [11].
1. We use a simple approximation of ζ(s) (cf. [12, p. 80]): for πx > t > 2π ,

1
10 6 σ 6 2, s = σ + it we have:

ζ(s) =
∑

n6x
n−s +

x1−s

s− 1
+ O(x−σ).

Taking 1
2T 6 t 6 T , T > 10, x = T , σ = 1

2 , s = 1
2 + it , we obtain:

ζ(s) =
∑

n6T
n−s + O(T−0.5).

Let 1 6 X 6
√
T , s = 1

2 + it ,

MX(s) =
∑

n6X
µ(n)n−s.

Obviously
|MX(s)| 6

∑

n6X
n−0.5 6 2

√
X.
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Consequently the product ζ(s)MX(s) satisfies the formula:

ζ(s)MX(s) =
∑

n6XT
a(n)n−s + O(T−0.25), (5)

where
a(n) =

∑

d|n

′
µ(d),

and the ′ in the sum means that d 6 X and n 6 dT . If n = 1 then a(n) = a(1) =
1. If 1 < n 6 X , then by the well known property of the Möbius function we have

a(n) =
∑

d|n
µ(d) = 0.

Moreover we always have |a(n)| 6 τ(n). Consequently the equality (5) may be
written like this:

ζ(s)MX(s) = 1 +
∑

X<n6XT
a(n)n−s + O(T−0.25). (6)

2. Consider the integral j ,

j =
∫ H

−H
e−z coshαtζ(s+ it)MX(s+ it) dt, (7)

where s = 1
2 + iT , 1 6 α < π , z > 1. We put

j(z) =
∫ ∞
−∞

e−z cosh t dt,

and find, by (7),

|j| 6 2F (T ;H)
√
X

∫ ∞
−∞

e−z coshαt dt = 4α−1F (T ;H)
√
Xj(z). (8)

3. On the other hand the integral j satisfies the following equality:

j =
∫ ∞
−∞

e−z coshαtζ(s+ it)MX(s+ it) dt+R, (9)

where

|R| 6
∫ ∞
H

e−z coshαt|ζ(s+ it)||MX(s+ it)| dt

+
∫ ∞
H

e−z coshαt|ζ(s− it)||MX(s− it)| dt.
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Since
MX(s± it) = O(

√
X), ζ(s± it) = O((T + t)

1
6 ),

we obtain an estimate for R :

R = O
(√

X

∫ ∞
H

e−z coshαt(T + t)
1
6 dt

)

= O
(√

XT
1
6

∫ ∞
H

e−z coshαt dt

)

= O
(√

XT
1
6 e−z coshαH(z sinhαH)−1

)
.

(10)

Therefore, by (6), (9), and (10) we find:

j =
∫ ∞
−∞

e−z coshαt dt+
∑

X<n6XT
a(n)n−s

∫ ∞
−∞

e−z coshαte−it log n dt

+ O(j(z)T−0.25) + O
(√

XT
1
6 e−z coshαH(z sinhαH)−1

)

= α−1j(z) + α−1
∑

X<n6XT
a(n)n−s

∫ ∞
−∞

e−z cosh te−it
logn
α dt

+ O(j(z)T−0.25) + O
(
T

5
12 e−z coshαH(z sinhH)−1

)
.

(11)

4. We estimate the integral in (11) using Basset’s formula:

Kν(z) =
∫ ∞

0
e−z cosh t cosh(νt) dt =

Γ(ν + 1
2 )(2z)ν√
π

∫ ∞
0

cos t dt

(t2 + z2)ν+ 1
2
,

where z > 0, ν is a complex number, Re ν > − 1
2 (cf. [15, p. 191]). In our case

ν = i logn
α , hence
∣∣∣∣
∫ ∞
−∞

e−z cosh te−it
logn
α dt

∣∣∣∣ = 2
∣∣∣∣
∫ ∞

0
e−z cosh t cos

(
logn
α

t

)
dt

∣∣∣∣

6
2
∣∣∣Γ(i logn

α + 1
2 )
∣∣∣

√
π

∣∣∣∣
∫ ∞

0

cos t dt

(t2 + z2)ν+ 1
2

∣∣∣∣.

Then, integrating once by parts we obtain:
∣∣∣∣
∫ ∞

0

cos t dt

(t2 + z2)ν+ 1
2

∣∣∣∣ =
∣∣∣∣
∫ ∞

0

d sin t

(t2 + z2)ν+ 1
2

∣∣∣∣

=
∣∣∣∣(ν +

1
2

)
∫ ∞

0

2t sin t dt

(t2 + z2)ν+ 3
2

∣∣∣∣

6

√
1
4

+
log2 n

α2

∫ ∞
0

du

(u+ z2)
3
2

6 z−1
√

1 + 4 log2 n.
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The following asymptotic formula holds for Γ(σ + it):

Γ(σ + it) = tσ−
1
2 +ite−

π
2 t−it+iπ2 (σ− 1

2 )
√

2π
(
1 + O

(
1
t

))
,

where −10 6 σ 6 10, t > 2. In our case we have:
∣∣∣∣Γ
(

1
2

+ i
logn
α

)∣∣∣∣ = O
(
e−

π
2

logn
α

)
= O

(
n−

π
2α
)
.

This way we obtain:

z

∫ ∞
−∞

e−z cosh te−it
logn
α dt = O

(
n−

π
2α log n

)
.

5. We bring together the estimates found so far and obtain the following for
the sum over n in (11):

∣∣∣∣∣∣
∑

X<n6XT
a(n)n−s

∫ ∞
−∞

e−z cosh te−it
logn
α dt

∣∣∣∣∣∣

= O


z−1

∑

X<n6XT
τ(n)n−

1
2− π

2α log n




= O
(
z−1X

1
2− π

2α log2X
)
.

Therefore the integral j satisfies the following asymptotic formula:

j = α−1j(z) + O
(
z−1X

1
2− π

2α log2X
)

+ O
(
j(z)T−0.25)+ O

(
T

5
12 e−z coshαH(z sinhH)−1

)
.

(12)

6. Using (8) and (12) we find:

4F (T ;H)
√
X > 1−O

(
(j(z))−1z−1X

1
2− π

2α log2X
)
−O

(
T−0.25)

−O
(

(j(z))−1T
5
12 e−z coshαH(z sinhH)−1

) (13)

The lower bound for j(z) may be found easily:

j(z) =
∫ ∞
−∞

e−z cosh t dt = 2
∫ ∞

0
e−z cosh t dt = 2

∫ ∞
1

e−zu
du√
u2 − 1

= 2e−z
∫ ∞

0

e−zw dw√
w(w + 2)

> 2e−z
∫ z−1

0

e−zw dw√
w(w + 2)

> 2√
3
e−z−1

∫ z−1

0

dw√
w

=
4√
3
z−

1
2 e−z−1.
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Therefore by (13) we obtain:

4F (T ;H)
√
X > 1− c1z− 1

2 ezX
1
2− π

2α log2X − c2T−0.25

− c3z− 1
2T

5
12 ez−z coshαH(sinhH)−1.

(14)

7. Now we can fix the parameters z and X with equations:

z =
5 log T

12(coshαH − 1)
=

1
4

(π
α
− 1
)

logX. (15)

By (14) and (15) we have:

4F (T ;H) > 1− c1z− 1
2X−

1
4 ( πα−1) log2X − c2T−0.25

− c3z− 1
2 (sinhH)−1.

Since H satisfies the inequalities

2 6 αH 6 log log T − c,

we have
coshαH 6 eαH 6 e−c log T,

i.e., the following lower bound holds for z :

z > 5
12
ec.

We choose c = c(α) > 1 large enough, so that for z > 5
12e

c the following inequ-
alities hold:

c1z
− 1

2X−
1
4 ( πα−1) log2X 6 1

4
,

c3z
− 1

2 (sinhH)−1 6 1
4
.

Next we choose T1 = T1(α) > 0 large enough, so that for T > T1 the following
inequalities hold:

2 6 log log T − c,

c2T
−0.25 6 1

4
.

This way, with the selected c and T1 , and for T > T1 , 2 6 αH 6 log log T − c ,
we obtain the inequality:

4F (T ;H) > 1
4
X−

1
2 ,

i.e.

F (T ;H) > 1
16

exp
(
− 5 log T

6(πα − 1)(coshαH − 1)

)
.
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Corollary 1. Taking αH = log log T − c in the theorem we have

F (T ;H) > 1
16

exp
(
− 5

6(πα − 1)
ec
)

= c4 > 0.

Hence, for any α in the interval 1 6 α < π there exists T1 = T1(α) > 0 such that
for T > T1 and H > 1

α log log T we have:

F (T ;H) > c4(α) > 0.

3. Lower bounds for |ζ(s)||ζ(s)||ζ(s)| in small regions of the critical strip

A more general problem than that of estimating F (T ; ∆) from below is to estimate
G(s1; ∆) from below, where, by definition,

G(s1; ∆) = max
|s−s1|6∆

|ζ(s)|,

s1 = σ1 + it1 , 1
2 6 σ1 6 1, t1 > 4, 0 < ∆ 6 1

3 . Obviously, for σ1 = 1
2 , t1 = T ,

we have
G(s1; ∆) > F (T ; ∆).

In [9] the author has shown that for t1 > c1 > 0

G(s1; ∆) > exp
(
−6
(

log
1
∆

)
(log |s1|)

)
.

The same paper proposes three conjectures about lower bounds for G(s1; ∆), equal
to those in Conjectures 1F–3F.

Conjecture 1G. There exists a function ∆ = ∆(s1) → 0 as |s1| → +∞ such
that the following estimate holds:

G(s1; ∆) > exp(−A log |s1|).

Conjecture 2G. Conjecture 1G is true with

∆ = (log log |s1|)−1.

Conjecture 3G. Conjecture 1G is true with

∆ = (log |s1|)−1.

The above-mentioned works of M.Z. Garaev [4] and M.E. Changa [2] es-
tablish a link between the bounds of F (T ; ∆) and G(s1; ∆) and, in particular,
demonstrate the equivalence of the F and G conjectures, s1 = 1

2 + iT .
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4. The multiplicity of a zero of ζ(s)ζ(s)ζ(s) and lower bounds for G(s1; ∆)G(s1; ∆)G(s1; ∆)

Lower bounds for G(s1; ∆) make it possible to obtain upper bounds for κ(T ).

Theorem 2. Suppose for some ∆ and A such that 0 < ∆ 6 1
3 , A > 1 , we have

G(s1; ∆) > exp (−A log |s1|).

Then the following upper bound holds for κ(T ) :

κ(T ) 6 1 +
A+ 4
log 1

∆

log T.

Proof. Let s1 = σ1 + iT , T > T1 , 1
2 6 σ1 6 1, K + 1 = κ(T ), and

ζ(s1) = ζ(1)(s1) = . . . = ζ(K)(s1) = 0. (16)

Further let s2 be such that |s2 − s1| = ∆ and

|ζ(s2)| = max
|s−s1|6∆

|ζ(s)|.

We have the equality:

ζ(s2) =
1

2πi

∫

|s−s2|=2

ζ(s)
s− s2

ds. (17)

Moreover we find:

1
s− s2

=
1

s− s1 + s1 − s2
=

1
s− s1

(
1 +

s1 − s2

s− s1

)−1

=
1

s− s1

∞∑
ν=0

(−1)ν
(
s1 − s2

s− s1

)ν
.

(18)

Substituting (18) in (17) and using (16) we subsequently obtain

ζ(s2) =
∞∑
ν=0

(−1)ν(s1 − s2)ν
1

2πi

∫

|s−s2|=2

ζ(s)

(s− s1)ν+1 ds

=
∞∑

ν=K+1

(−1)ν(s1 − s2)ν
1

2πi

∫

|s−s2|=2

ζ(s)

(s− s1)ν+1 ds.

(19)

Obviously:

2 = |s− s2| = |s− s1 + s1 − s2| 6 |s− s1|+ |s1 − s2| = |s− s1|+ ∆,
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|s− s1| > 2−∆ > 5
3
.

By assumption we have

|ζ(s2)| > exp
(
−A log

√
T 2 + 1

)
. (20)

Moreover, the functional equation

π−
s
2 Γ
(s

2

)
ζ(s) = π−

1−s
2 Γ
(

1− s
2

)
ζ(1− s)

leads to the following inequality for |s− s2| = 2:

|ζ(s)| 6 T 3. (21)

Using the relations (19), (20), and (21) we obtain

exp
(
−A log

√
T 2 + 1

)
6 2

∞∑

ν=K+1

∆νT 3
(

3
5

)ν

= T 3
(

3∆
5

)K+1

· 5
2

6 T 3
(

3∆
5

)K
,

(
5

3∆

)K
6 T 3 exp

(
A log

√
T 2 + 1

)
,

K 6 1
log 5

3∆

(
A log

√
T 2 + 1 + 3 log T

)
.

The assertion follows.
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