ZERO MULTIPLICITY AND LOWER BOUND ESTIMATES OF $|\zeta(S)|$

Anatolij A. Karatsuba
Dedicated to Professor Eduard Wirsing on the occasion of his 75th birthday

Abstract

We give an improved lower bound for $\max _{|T-t| \leqslant H}\left|\zeta\left(\frac{1}{2}+i t\right)\right|$ when $2 \leqslant \alpha H \leqslant \log \log T-$ $c, 1 \leqslant \alpha<\pi$. Our theorem slightly refines the result in [11]. We also prove a theorem about an upper bound for the multiplicities of zeros of $\zeta(s)$ conditionally, assuming some lower bound for $\max _{\left|s-s_{1}\right| \leqslant \Delta}|\zeta(s)|$.

Keywords: Riemann zeta-function, zero multiplicity.

1. Introduction

One of the interesting problems in the theory of the function $\zeta(s)$ is the question of multiple zeros of $\zeta(s)$. There are several conjectures about how large the multiplicity of such a zero may be: zeros may be simple, of bounded multiplicity, of unbounded multiplicity. Let $\varkappa(T)$ be the largest multiplicity of a zero of $\zeta(s)$ in the rectangle $0<\operatorname{Re} s<1,0<\operatorname{Im} s \leqslant T$. Then the above-mentioned conjectures may be stated as:
Conjecture 1. $\varkappa(T)=1, T>0$.
Conjecture 2. $\varkappa(T) \leqslant c, c$ being a constant, $T>0$.
Conjecture 3. $\varkappa(T) \rightarrow+\infty$ as $T \rightarrow+\infty$.
A simple theorem about nontrivial zeros ρ of $\zeta(s)$, namely the relationship

$$
\sum_{\rho} \frac{1}{1+(T-\operatorname{Im} \rho)^{2}}=\mathrm{O}(\log T), \quad T \geqslant 2
$$

implies that $\varkappa(T)=\mathrm{O}(\log T)$ (cf. [7, p. 39], or [12, p. 209], or [8, p. 24]). The Riemann Hypothesis implies that

$$
\varkappa(T)=\mathrm{O}\left(\frac{\log T}{\log \log T}\right)
$$

cf. [12, pp. 209 and 346]. Finally, the weaker Mertens hypothesis, i.e. the relationship

$$
\int_{1}^{X}\left(\frac{1}{x} \sum_{n \leqslant x} \mu(n)\right)^{2} d x=\mathrm{O}(\log X)
$$

implies that $\varkappa(T)=1, T>0$ (cf. [12, p. 374]).
The universality of $\zeta(s)$ (cf. [13], [14]) should include the inequality $\varkappa(T)>1$ and, moreover, the property $\varkappa(T) \rightarrow+\infty$ as $T \rightarrow+\infty$. However, all these are merely surmises (cf. also [8, p. 137]).

The problems related to the multiplicity of a zero of $\zeta(s)$ were considered by A. Ivič [5], [6]. In particular, these papers provided new upper bounds for the multiplicity of a zero in point s in the left neighbourhood of the line $\operatorname{Re} s=1$.

Lower bounds for $|\zeta(s)|$ in small regions of the critical strip allow for the upper bound estimation of $\varkappa(T)$. Such lower bounds are also interesting in their own right. Therefore in Section 2 we show results about lower bound estimates of $|\zeta(s)|$ on short intervals of the critical line, in Section 3 we show results about lower bound estimates of $|\zeta(s)|$ in small regions of the critical strip, and finally, in Section 4 we prove a theorem about an upper bound for $\varkappa(T)$.

Everywhere below $A, c, c_{1}, c_{2}, \ldots, T_{1}$ denote positive absolute constants, generally different in different furmulae; $\zeta(s)$ - the Riemann zeta function; RH - the Riemann Hypothesis about zeros of $\zeta(s) ; T \geqslant T_{1} ; \cosh \alpha=\frac{1}{2}\left(e^{\alpha}+e^{-\alpha}\right)$, $\sinh \alpha=\frac{1}{2}\left(e^{\alpha}-e^{-\alpha}\right) ; \mu(n)$ - the Möbius function; $\tau(n)$ - the number of divisors of a natural number $n ; \Gamma(s)$ - Euler's gamma function; $s=\sigma+i t, i^{2}=-1$, $\sigma=\operatorname{Re} s, t=\operatorname{Im} s$.

2. Lower bounds for the Riemann zeta function on short intervals of the critical line

We have satisfactory knowledge about the behaviour of $\zeta(s)$ and the related quantities when $s=\sigma+i t$ and t varies along a large interval, i.e.

$$
T<t<T+H
$$

$H=H(T) \rightarrow+\infty$ as $T \rightarrow+\infty$. It is described by the theorems about the behaviour of $\max |\zeta(s)|$, the mean values of $|\zeta(s)|^{2 k}, 0<k \leqslant 2$, $\arg \zeta(s)$, theorems about the number of zeros of $\zeta\left(\frac{1}{2}+i t\right)$ and others. At the same time little is known about the answers to similar questions when t varies in a short intervals, for example when $H=H(T)=$ const, or when $H(T) \rightarrow 0, T \rightarrow+\infty$. Of course we assume $0<\sigma<1$, i.e. the points s are inside the critical strip. Define the function $F(T ; H)$ as:

$$
F(T ; H)=\max _{|T-t| \leqslant H}\left|\zeta\left(\frac{1}{2}+i t\right)\right|
$$

If $H=H(T)$ is large, more precisely if

$$
c \log \log T \leqslant H \leqslant \frac{1}{10} T
$$

then the following estimate due to Balasubramanian [1] holds for $F(T ; H)$:

$$
F(T ; H) \geqslant \exp \left(\frac{3}{4} \sqrt{\frac{\log H}{\log \log H}}\right)
$$

If H is small, $0<H=\Delta<1$, then the theorem of Valiron-Landau-Hoheisel [12, p. 217] leads to the estimate:

$$
\begin{equation*}
F(T ; \Delta)=F(T ; H) \geqslant \exp \left(-A \frac{1}{\Delta} \log T\right) \tag{1}
\end{equation*}
$$

It was also noted there that small values of $F(T ; \Delta)$ are located in the neighbourhoods of zeros of $\zeta(s)$. Moreover, a theorem shown in [12, pp. 355-358] implies that if RH is true, then the inequality

$$
\begin{equation*}
F(T ; \Delta) \geqslant \exp \left(-A \frac{1}{\Delta} \log T \frac{\log \log \log T}{\log \log T}\right) \tag{2}
\end{equation*}
$$

holds for $0<\Delta<1$. Since RH also implies that the mean distance between subsequent zeros of $\zeta\left(\frac{1}{2}+i t\right)$ on the interval $T<t<2 T$ is of the order $(\log T)^{-1}$, it is interesting, first of all, what is the lower bound for $F(T ; \Delta)$ for $\Delta \leqslant(\log T)^{-1}$. In 2001 the author [10] has shown that for $0<\Delta \leqslant(\log T)^{-1}$ the following inequality holds:

$$
\begin{equation*}
F(T ; \Delta) \geqslant \exp \left(-A\left(\log \frac{1}{\Delta}\right) \log T\right) \tag{3}
\end{equation*}
$$

If $\Delta=(\log T)^{-1}$, the exponents in the right-hand sides of (1), (2), and (3) equal, respectively:

$$
-A \log ^{2} T, \quad-A\left(\log ^{2} T\right)\left(\frac{\log \log \log T}{\log \log T}\right), \quad-A(\log T)(\log \log T)
$$

The discrepancy in the estimates $(1)-(3)$ is even greater when $\Delta=T^{-1}$, as the corresponding exponents are equal to

$$
-A T \log T, \quad-A T \frac{\log T}{\log \log T} \log \log \log T, \quad-A \log ^{2} T
$$

respectively in that case. Three conjectures were stated in [10] (each subsequent one stronger than the previous).

Conjecture 1F. There exists a function $\Delta=\Delta(T) \rightarrow 0$ as $T \rightarrow+\infty$ such that the following estimate holds:

$$
F(T ; \Delta) \geqslant \exp (-A \log T)
$$

Conjecture 2F. Conjecture $1 F$ is true with

$$
\Delta=(\log \log T)^{-1}
$$

Conjecture 3F. Conjecture $1 F$ is true with

$$
\Delta=(\log T)^{-1}
$$

We note that (2) implies Conjecture 1F with

$$
\Delta=\frac{\log \log \log T}{\log \log T}
$$

During the last three years new results were obtained in this direction. M.Z. Garaev [4] has shown (3) for

$$
(\log T)^{-1} \leqslant \Delta \leqslant \frac{1}{3}
$$

and has proved Conjecture 3 F assuming RH.
Shao-Ji Feng [3] has proved Conjecture 1F assuming the Lindelöf hypothesis.
M.E. Changa [2] has obtained the new proof of (3) for $0<\Delta \leqslant \frac{1}{3}$.

We note that for slightly higher values of $H=H(T)$, namely for

$$
10 \leqslant H \leqslant c \log \log T
$$

where $c \geqslant 100$ is the constant in the theorem of Balasubramanian, little is known about lower bound estimates of $F(T ; H)$. Of course, trivially we have

$$
\exp (-A \log T) \leqslant F\left(T ; \frac{1}{3}\right) \leqslant F(T ; 10) \leqslant F(T ; H)
$$

Moreover, the following unpublished estimate was proved by the author about 1980:

$$
F(T ; H) \geqslant \exp \left(-\frac{1}{H^{2}} \log T\right)
$$

Finally, in [11] the author has shown that there exists an absolute constant $c>0$ such that for $T \geqslant T_{1}>0$ and $2 \leqslant H \leqslant \log \log T-c$ the following inequality is satisfied:

$$
\begin{equation*}
F(T ; H) \geqslant \frac{1}{8} \exp \left(-\frac{1}{2(\cosh H-1)} \log T\right) \tag{4}
\end{equation*}
$$

This implies, in particular, that for $H \geqslant \log \log T$ the following estimate holds:

$$
F(T ; H) \geqslant c_{1}>0
$$

A similar result based on the principle of maximum was obtained by M.E. Changa [2]:

$$
F(T ; H) \geqslant \exp \left(-\frac{1}{\exp \left(\frac{1}{10} H\right)} \log T\right)
$$

where $40 \leqslant H \leqslant \log \log T$. We note that it is an interesting unsolved problem to prove, for example, an inequality like this:

$$
F(T ; 10) \geqslant \exp (-\epsilon(T) \log T)
$$

where $\epsilon(T) \rightarrow 0$ as $T \rightarrow+\infty$. It would be just as interesting to prove the inequality:

$$
F(T ; H) \geqslant 1, \quad H \geqslant \log \log \log T .
$$

Below we show a theorem that slightly refines (4).
Theorem 1. For every α such that $1 \leqslant \alpha<\pi$ there exist absolute positive constants c and T_{1} such that for $T \geqslant T_{1}$ and

$$
2 \leqslant \alpha H \leqslant \log \log T-c
$$

the following estimate holds:

$$
F(T ; H) \geqslant \frac{1}{16} \exp \left(-\frac{5 \log T}{6\left(\frac{\pi}{\alpha}-1\right)(\cosh \alpha H-1)}\right)
$$

Proof. We follow the argument in [11].

1. We use a simple approximation of $\zeta(s)$ (cf. [12, p. 80]): for $\pi x \geqslant t \geqslant 2 \pi$, $\frac{1}{10} \leqslant \sigma \leqslant 2, s=\sigma+i t$ we have:

$$
\zeta(s)=\sum_{n \leqslant x} n^{-s}+\frac{x^{1-s}}{s-1}+\mathrm{O}\left(x^{-\sigma}\right) .
$$

Taking $\frac{1}{2} T \leqslant t \leqslant T, T \geqslant 10, x=T, \sigma=\frac{1}{2}, s=\frac{1}{2}+i t$, we obtain:

$$
\zeta(s)=\sum_{n \leqslant T} n^{-s}+\mathrm{O}\left(T^{-0.5}\right) .
$$

Let $1 \leqslant X \leqslant \sqrt{T}, s=\frac{1}{2}+i t$,

$$
M_{X}(s)=\sum_{n \leqslant X} \mu(n) n^{-s} .
$$

Obviously

$$
\left|M_{X}(s)\right| \leqslant \sum_{n \leqslant X} n^{-0.5} \leqslant 2 \sqrt{X} .
$$

Consequently the product $\zeta(s) M_{X}(s)$ satisfies the formula:

$$
\begin{equation*}
\zeta(s) M_{X}(s)=\sum_{n \leqslant X T} a(n) n^{-s}+\mathrm{O}\left(T^{-0.25}\right) \tag{5}
\end{equation*}
$$

where

$$
a(n)=\sum_{d \mid n}^{\prime} \mu(d)
$$

and the ' in the sum means that $d \leqslant X$ and $n \leqslant d T$. If $n=1$ then $a(n)=a(1)=$ 1. If $1<n \leqslant X$, then by the well known property of the Möbius function we have

$$
a(n)=\sum_{d \mid n} \mu(d)=0
$$

Moreover we always have $|a(n)| \leqslant \tau(n)$. Consequently the equality (5) may be written like this:

$$
\begin{equation*}
\zeta(s) M_{X}(s)=1+\sum_{X<n \leqslant X T} a(n) n^{-s}+\mathrm{O}\left(T^{-0.25}\right) \tag{6}
\end{equation*}
$$

2. Consider the integral j,

$$
\begin{equation*}
j=\int_{-H}^{H} e^{-z \cosh \alpha t} \zeta(s+i t) M_{X}(s+i t) d t \tag{7}
\end{equation*}
$$

where $s=\frac{1}{2}+i T, 1 \leqslant \alpha<\pi, z \geqslant 1$. We put

$$
j(z)=\int_{-\infty}^{\infty} e^{-z \cosh t} d t
$$

and find, by (7),

$$
\begin{equation*}
|j| \leqslant 2 F(T ; H) \sqrt{X} \int_{-\infty}^{\infty} e^{-z \cosh \alpha t} d t=4 \alpha^{-1} F(T ; H) \sqrt{X} j(z) \tag{8}
\end{equation*}
$$

3. On the other hand the integral j satisfies the following equality:

$$
\begin{equation*}
j=\int_{-\infty}^{\infty} e^{-z \cosh \alpha t} \zeta(s+i t) M_{X}(s+i t) d t+R \tag{9}
\end{equation*}
$$

where

$$
\begin{aligned}
|R| \leqslant & \int_{H}^{\infty} e^{-z \cosh \alpha t}|\zeta(s+i t)|\left|M_{X}(s+i t)\right| d t \\
& +\int_{H}^{\infty} e^{-z \cosh \alpha t}|\zeta(s-i t)|\left|M_{X}(s-i t)\right| d t
\end{aligned}
$$

Since

$$
M_{X}(s \pm i t)=\mathrm{O}(\sqrt{X}), \quad \zeta(s \pm i t)=\mathrm{O}\left((T+t)^{\frac{1}{6}}\right)
$$

we obtain an estimate for R :

$$
\begin{align*}
R & =\mathrm{O}\left(\sqrt{X} \int_{H}^{\infty} e^{-z \cosh \alpha t}(T+t)^{\frac{1}{6}} d t\right) \\
& =\mathrm{O}\left(\sqrt{X} T^{\frac{1}{6}} \int_{H}^{\infty} e^{-z \cosh \alpha t} d t\right) \tag{10}\\
& =\mathrm{O}\left(\sqrt{X} T^{\frac{1}{6}} e^{-z \cosh \alpha H}(z \sinh \alpha H)^{-1}\right)
\end{align*}
$$

Therefore, by (6), (9), and (10) we find:

$$
\begin{align*}
j= & \int_{-\infty}^{\infty} e^{-z \cosh \alpha t} d t+\sum_{X<n \leqslant X T} a(n) n^{-s} \int_{-\infty}^{\infty} e^{-z \cosh \alpha t} e^{-i t \log n} d t \\
& +\mathrm{O}\left(j(z) T^{-0.25}\right)+\mathrm{O}\left(\sqrt{X} T^{\frac{1}{6}} e^{-z \cosh \alpha H}(z \sinh \alpha H)^{-1}\right) \\
= & \alpha^{-1} j(z)+\alpha^{-1} \sum_{X<n \leqslant X T} a(n) n^{-s} \int_{-\infty}^{\infty} e^{-z \cosh t} e^{-i t \frac{\log n}{\alpha}} d t \tag{11}\\
& +\mathrm{O}\left(j(z) T^{-0.25}\right)+\mathrm{O}\left(T^{\frac{5}{12}} e^{-z \cosh \alpha H}(z \sinh H)^{-1}\right) .
\end{align*}
$$

4. We estimate the integral in (11) using Basset's formula:

$$
K_{\nu}(z)=\int_{0}^{\infty} e^{-z \cosh t} \cosh (\nu t) d t=\frac{\Gamma\left(\nu+\frac{1}{2}\right)(2 z)^{\nu}}{\sqrt{\pi}} \int_{0}^{\infty} \frac{\cos t d t}{\left(t^{2}+z^{2}\right)^{\nu+\frac{1}{2}}},
$$

where $z>0, \nu$ is a complex number, $\operatorname{Re} \nu>-\frac{1}{2}$ (cf. [15, p. 191]). In our case $\nu=i \frac{\log n}{\alpha}$, hence

$$
\begin{aligned}
\left|\int_{-\infty}^{\infty} e^{-z \cosh t} e^{-i t \frac{\log n}{\alpha}} d t\right| & =2\left|\int_{0}^{\infty} e^{-z \cosh t} \cos \left(\frac{\log n}{\alpha} t\right) d t\right| \\
& \leqslant \frac{2\left|\Gamma\left(i \frac{\log n}{\alpha}+\frac{1}{2}\right)\right|}{\sqrt{\pi}}\left|\int_{0}^{\infty} \frac{\cos t d t}{\left(t^{2}+z^{2}\right)^{\nu+\frac{1}{2}}}\right|
\end{aligned}
$$

Then, integrating once by parts we obtain:

$$
\begin{aligned}
\left|\int_{0}^{\infty} \frac{\cos t d t}{\left(t^{2}+z^{2}\right)^{\nu+\frac{1}{2}}}\right| & =\left|\int_{0}^{\infty} \frac{d \sin t}{\left(t^{2}+z^{2}\right)^{\nu+\frac{1}{2}}}\right| \\
& =\left|\left(\nu+\frac{1}{2}\right) \int_{0}^{\infty} \frac{2 t \sin t d t}{\left(t^{2}+z^{2}\right)^{\nu+\frac{3}{2}}}\right| \\
& \leqslant \sqrt{\frac{1}{4}+\frac{\log ^{2} n}{\alpha^{2}} \int_{0}^{\infty} \frac{d u}{\left(u+z^{2}\right)^{\frac{3}{2}}}} \\
& \leqslant z^{-1} \sqrt{1+4 \log ^{2} n}
\end{aligned}
$$

The following asymptotic formula holds for $\Gamma(\sigma+i t)$:

$$
\Gamma(\sigma+i t)=t^{\sigma-\frac{1}{2}+i t} e^{-\frac{\pi}{2} t-i t+i \frac{\pi}{2}\left(\sigma-\frac{1}{2}\right)} \sqrt{2 \pi}\left(1+\mathrm{O}\left(\frac{1}{t}\right)\right)
$$

where $-10 \leqslant \sigma \leqslant 10, t \geqslant 2$. In our case we have:

$$
\left|\Gamma\left(\frac{1}{2}+i \frac{\log n}{\alpha}\right)\right|=\mathrm{O}\left(e^{-\frac{\pi}{2} \frac{\log n}{\alpha}}\right)=\mathrm{O}\left(n^{-\frac{\pi}{2 \alpha}}\right)
$$

This way we obtain:

$$
z \int_{-\infty}^{\infty} e^{-z \cosh t} e^{-i t \frac{\log n}{\alpha}} d t=\mathrm{O}\left(n^{-\frac{\pi}{2 \alpha}} \log n\right)
$$

5. We bring together the estimates found so far and obtain the following for the sum over n in (11):

$$
\begin{aligned}
& \left|\sum_{X<n \leqslant X T} a(n) n^{-s} \int_{-\infty}^{\infty} e^{-z \cosh t} e^{-i t \frac{\log n}{\alpha}} d t\right| \\
& =\mathrm{O}\left(z^{-1} \sum_{X<n \leqslant X T} \tau(n) n^{-\frac{1}{2}-\frac{\pi}{2 \alpha}} \log n\right) \\
& =\mathrm{O}\left(z^{-1} X^{\frac{1}{2}-\frac{\pi}{2 \alpha}} \log ^{2} X\right) .
\end{aligned}
$$

Therefore the integral j satisfies the following asymptotic formula:

$$
\begin{align*}
j= & \alpha^{-1} j(z)+\mathrm{O}\left(z^{-1} X^{\frac{1}{2}-\frac{\pi}{2 \alpha}} \log ^{2} X\right) \\
& +\mathrm{O}\left(j(z) T^{-0.25}\right)+\mathrm{O}\left(T^{\frac{5}{12}} e^{-z \cosh \alpha H}(z \sinh H)^{-1}\right) \tag{12}
\end{align*}
$$

6. Using (8) and (12) we find:

$$
\begin{align*}
4 F(T ; H) \sqrt{X} \geqslant & 1-\mathrm{O}\left((j(z))^{-1} z^{-1} X^{\frac{1}{2}-\frac{\pi}{2 \alpha}} \log ^{2} X\right)-\mathrm{O}\left(T^{-0.25}\right) \\
& -\mathrm{O}\left((j(z))^{-1} T^{\frac{5}{12}} e^{-z \cosh \alpha H}(z \sinh H)^{-1}\right) \tag{13}
\end{align*}
$$

The lower bound for $j(z)$ may be found easily:

$$
\begin{aligned}
j(z) & =\int_{-\infty}^{\infty} e^{-z \cosh t} d t=2 \int_{0}^{\infty} e^{-z \cosh t} d t=2 \int_{1}^{\infty} e^{-z u} \frac{d u}{\sqrt{u^{2}-1}} \\
& =2 e^{-z} \int_{0}^{\infty} \frac{e^{-z w} d w}{\sqrt{w(w+2)}} \geqslant 2 e^{-z} \int_{0}^{z^{-1}} \frac{e^{-z w} d w}{\sqrt{w(w+2)}} \\
& \geqslant \frac{2}{\sqrt{3}} e^{-z-1} \int_{0}^{z^{-1}} \frac{d w}{\sqrt{w}}=\frac{4}{\sqrt{3}} z^{-\frac{1}{2}} e^{-z-1}
\end{aligned}
$$

Therefore by (13) we obtain:

$$
\begin{align*}
4 F(T ; H) \sqrt{X} \geqslant & 1-c_{1} z^{-\frac{1}{2}} e^{z} X^{\frac{1}{2}-\frac{\pi}{2 \alpha}} \log ^{2} X-c_{2} T^{-0.25} \\
& -c_{3} z^{-\frac{1}{2}} T^{\frac{5}{12}} e^{z-z \cosh \alpha H}(\sinh H)^{-1} \tag{14}
\end{align*}
$$

7. Now we can fix the parameters z and X with equations:

$$
\begin{equation*}
z=\frac{5 \log T}{12(\cosh \alpha H-1)}=\frac{1}{4}\left(\frac{\pi}{\alpha}-1\right) \log X \tag{15}
\end{equation*}
$$

By (14) and (15) we have:

$$
\begin{aligned}
4 F(T ; H) \geqslant & 1-c_{1} z^{-\frac{1}{2}} X^{-\frac{1}{4}\left(\frac{\pi}{\alpha}-1\right)} \log ^{2} X-c_{2} T^{-0.25} \\
& -c_{3} z^{-\frac{1}{2}}(\sinh H)^{-1} .
\end{aligned}
$$

Since H satisfies the inequalities

$$
2 \leqslant \alpha H \leqslant \log \log T-c
$$

we have

$$
\cosh \alpha H \leqslant e^{\alpha H} \leqslant e^{-c} \log T,
$$

i.e., the following lower bound holds for z :

$$
z \geqslant \frac{5}{12} e^{c} .
$$

We choose $c=c(\alpha) \geqslant 1$ large enough, so that for $z \geqslant \frac{5}{12} e^{c}$ the following inequalities hold:

$$
\begin{aligned}
c_{1} z^{-\frac{1}{2}} X^{-\frac{1}{4}\left(\frac{\pi}{\alpha}-1\right)} \log ^{2} X & \leqslant \frac{1}{4} \\
c_{3} z^{-\frac{1}{2}}(\sinh H)^{-1} & \leqslant \frac{1}{4}
\end{aligned}
$$

Next we choose $T_{1}=T_{1}(\alpha)>0$ large enough, so that for $T \geqslant T_{1}$ the following inequalities hold:

$$
\begin{gathered}
2 \leqslant \log \log T-c \\
c_{2} T^{-0.25} \leqslant \frac{1}{4}
\end{gathered}
$$

This way, with the selected c and T_{1}, and for $T \geqslant T_{1}, 2 \leqslant \alpha H \leqslant \log \log T-c$, we obtain the inequality:

$$
4 F(T ; H) \geqslant \frac{1}{4} X^{-\frac{1}{2}}
$$

i.e.

$$
F(T ; H) \geqslant \frac{1}{16} \exp \left(-\frac{5 \log T}{6\left(\frac{\pi}{\alpha}-1\right)(\cosh \alpha H-1)}\right)
$$

Corollary 1. Taking $\alpha H=\log \log T-c$ in the theorem we have

$$
F(T ; H) \geqslant \frac{1}{16} \exp \left(-\frac{5}{6\left(\frac{\pi}{\alpha}-1\right)} e^{c}\right)=c_{4}>0
$$

Hence, for any α in the interval $1 \leqslant \alpha<\pi$ there exists $T_{1}=T_{1}(\alpha)>0$ such that for $T \geqslant T_{1}$ and $H \geqslant \frac{1}{\alpha} \log \log T$ we have:

$$
F(T ; H) \geqslant c_{4}(\alpha)>0
$$

3. Lower bounds for $|\zeta(s)|$ in small regions of the critical strip

A more general problem than that of estimating $F(T ; \Delta)$ from below is to estimate $G\left(s_{1} ; \Delta\right)$ from below, where, by definition,

$$
G\left(s_{1} ; \Delta\right)=\max _{\left|s-s_{1}\right| \leqslant \Delta}|\zeta(s)|
$$

$s_{1}=\sigma_{1}+i t_{1}, \frac{1}{2} \leqslant \sigma_{1} \leqslant 1, t_{1} \geqslant 4,0<\Delta \leqslant \frac{1}{3}$. Obviously, for $\sigma_{1}=\frac{1}{2}, t_{1}=T$, we have

$$
G\left(s_{1} ; \Delta\right) \geqslant F(T ; \Delta)
$$

In [9] the author has shown that for $t_{1} \geqslant c_{1}>0$

$$
G\left(s_{1} ; \Delta\right) \geqslant \exp \left(-6\left(\log \frac{1}{\Delta}\right)\left(\log \left|s_{1}\right|\right)\right)
$$

The same paper proposes three conjectures about lower bounds for $G\left(s_{1} ; \Delta\right)$, equal to those in Conjectures $1 \mathrm{~F}-3 \mathrm{~F}$.
Conjecture 1G. There exists a function $\Delta=\Delta\left(s_{1}\right) \rightarrow 0$ as $\left|s_{1}\right| \rightarrow+\infty$ such that the following estimate holds:

$$
G\left(s_{1} ; \Delta\right) \geqslant \exp \left(-A \log \left|s_{1}\right|\right)
$$

Conjecture 2G. Conjecture $1 G$ is true with

$$
\Delta=\left(\log \log \left|s_{1}\right|\right)^{-1}
$$

Conjecture 3G. Conjecture $1 G$ is true with

$$
\Delta=\left(\log \left|s_{1}\right|\right)^{-1}
$$

The above-mentioned works of M.Z. Garaev [4] and M.E. Changa [2] establish a link between the bounds of $F(T ; \Delta)$ and $G\left(s_{1} ; \Delta\right)$ and, in particular, demonstrate the equivalence of the F and G conjectures, $s_{1}=\frac{1}{2}+i T$.

4. The multiplicity of a zero of $\zeta(s)$ and lower bounds for $G\left(s_{1} ; \Delta\right)$

Lower bounds for $G\left(s_{1} ; \Delta\right)$ make it possible to obtain upper bounds for $\varkappa(T)$.
Theorem 2. Suppose for some Δ and A such that $0<\Delta \leqslant \frac{1}{3}, A \geqslant 1$, we have

$$
G\left(s_{1} ; \Delta\right) \geqslant \exp \left(-A \log \left|s_{1}\right|\right)
$$

Then the following upper bound holds for $\varkappa(T)$:

$$
\varkappa(T) \leqslant 1+\frac{A+4}{\log \frac{1}{\Delta}} \log T .
$$

Proof. Let $s_{1}=\sigma_{1}+i T, T \geqslant T_{1}, \frac{1}{2} \leqslant \sigma_{1} \leqslant 1, K+1=\varkappa(T)$, and

$$
\begin{equation*}
\zeta\left(s_{1}\right)=\zeta^{(1)}\left(s_{1}\right)=\ldots=\zeta^{(K)}\left(s_{1}\right)=0 . \tag{16}
\end{equation*}
$$

Further let s_{2} be such that $\left|s_{2}-s_{1}\right|=\Delta$ and

$$
\left|\zeta\left(s_{2}\right)\right|=\max _{\left|s-s_{1}\right| \leqslant \Delta}|\zeta(s)| .
$$

We have the equality:

$$
\begin{equation*}
\zeta\left(s_{2}\right)=\frac{1}{2 \pi i} \int_{\left|s-s_{2}\right|=2} \frac{\zeta(s)}{s-s_{2}} d s \tag{17}
\end{equation*}
$$

Moreover we find:

$$
\begin{align*}
\frac{1}{s-s_{2}} & =\frac{1}{s-s_{1}+s_{1}-s_{2}}=\frac{1}{s-s_{1}}\left(1+\frac{s_{1}-s_{2}}{s-s_{1}}\right)^{-1} \\
& =\frac{1}{s-s_{1}} \sum_{\nu=0}^{\infty}(-1)^{\nu}\left(\frac{s_{1}-s_{2}}{s-s_{1}}\right)^{\nu} \tag{18}
\end{align*}
$$

Substituting (18) in (17) and using (16) we subsequently obtain

$$
\begin{align*}
\zeta\left(s_{2}\right) & =\sum_{\nu=0}^{\infty}(-1)^{\nu}\left(s_{1}-s_{2}\right)^{\nu} \frac{1}{2 \pi i} \int_{\left|s-s_{2}\right|=2} \frac{\zeta(s)}{\left(s-s_{1}\right)^{\nu+1}} d s \\
& =\sum_{\nu=K+1}^{\infty}(-1)^{\nu}\left(s_{1}-s_{2}\right)^{\nu} \frac{1}{2 \pi i} \int_{\left|s-s_{2}\right|=2} \frac{\zeta(s)}{\left(s-s_{1}\right)^{\nu+1}} d s \tag{19}
\end{align*}
$$

Obviously:

$$
2=\left|s-s_{2}\right|=\left|s-s_{1}+s_{1}-s_{2}\right| \leqslant\left|s-s_{1}\right|+\left|s_{1}-s_{2}\right|=\left|s-s_{1}\right|+\Delta,
$$

$$
\left|s-s_{1}\right| \geqslant 2-\Delta \geqslant \frac{5}{3} .
$$

By assumption we have

$$
\begin{equation*}
\left|\zeta\left(s_{2}\right)\right| \geqslant \exp \left(-A \log \sqrt{T^{2}+1}\right) \tag{20}
\end{equation*}
$$

Moreover, the functional equation

$$
\pi^{-\frac{s}{2}} \Gamma\left(\frac{s}{2}\right) \zeta(s)=\pi^{-\frac{1-s}{2}} \Gamma\left(\frac{1-s}{2}\right) \zeta(1-s)
$$

leads to the following inequality for $\left|s-s_{2}\right|=2$:

$$
\begin{equation*}
|\zeta(s)| \leqslant T^{3} \tag{21}
\end{equation*}
$$

Using the relations (19), (20), and (21) we obtain

$$
\begin{aligned}
\exp \left(-A \log \sqrt{T^{2}+1}\right) & \leqslant 2 \sum_{\nu=K+1}^{\infty} \Delta^{\nu} T^{3}\left(\frac{3}{5}\right)^{\nu} \\
& =T^{3}\left(\frac{3 \Delta}{5}\right)^{K+1} \cdot \frac{5}{2} \leqslant T^{3}\left(\frac{3 \Delta}{5}\right)^{K} \\
\left(\frac{5}{3 \Delta}\right)^{K} & \leqslant T^{3} \exp \left(A \log \sqrt{T^{2}+1}\right) \\
K & \leqslant \frac{1}{\log \frac{5}{3 \Delta}}\left(A \log \sqrt{T^{2}+1}+3 \log T\right)
\end{aligned}
$$

The assertion follows.

References

[1] R. Balasubramanian, On the frequency of Titchmarsh's phenomenon for $\zeta(s)$. IV, Hardy-Ramanujan J., 9, (1986), 1-10.
[2] M.E. Changa, On lower bounds for the modulus of the Riemann zeta function on the critical line, Mat. Zametki 76, (2004), no. 6, 922-927.
[3] Shao-Ji Feng, On Karatsuba conjecture and the Lindelöf hypothesis, Acta Arith. 114, (2004), no. 3, 295-300.
[4] M.Z. Garaev, Concerning the Karatsuba conjectures, Taiwanese J. Math. 6, (2002), no. 4, 573-580
[5] A. Ivić, On the multiplicity of zeros of the zeta-function, Bull. Cl. Sci. Math. Nat. Sci. Math., no. 24, (1999), 119-132.
[6] A. Ivić, The distribution of zeros of the zeta-function, Bull. Cl. Sci. Math. Nat. Sci. Math., no. 40,(2003), 77-91.
[7] A.A. Karatsuba, Osnovy analiticheskoi teorii chisel, Izdat. "Nauka", Moscow, 1975.
[8] A.A. Karatsuba, Complex analysis in number theory, CRC Press, Boca Raton, FL, 1995.
[9] A.A. Karatsuba, Lower bounds for the maximum modulus of $\zeta(s)$ in small domains of the critical strip, Mat. Zametki, 70, no. 5, (2001), 796-797.
[10] A.A. Karatsuba, On lower bounds for the Riemann zeta function, Dokl. Akad. Nauk 376, no. 1, (2001), 15-16.
[11] A.A. Karatsuba, On lower bounds for the maximum modulus of the Riemann zeta function on short intervals of the critical line, Izv. Ross. Akad. Nauk Ser. Mat. 68, no. 6, (2004), 99-104.
[12] E.C. Titchmarsh, The Theory of the Riemann Zeta-Function, Oxford, at the Clarendon Press, 1951.
[13] S.M. Voronin, The differential independence of ζ-functions, Dokl. Akad. Nauk SSSR, 209, (1973), 1264-1266.
[14] S.M. Voronin, A theorem on the "universality" of the Riemann zeta-function, Izv. Akad. Nauk SSSR Ser. Mat., 39, (1975), no. 3, 475-486.
[15] G.N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, England, 1944.

Address: Steklov Institute of Mathematics RAS, 8, Gubkina str., 119991, Moscow, Russia
E-mail: karatsuba@mi.ras.ru
Received: 10 July 2005; revised: 15 March 2006

