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HYPERBOLIC ALEXANDROV-FENCHEL

QUERMASSINTEGRAL INEQUALITIES II

Yuxin Ge, Guofang Wang & Jie Wu

Abstract

In this paper we first establish an optimal Sobolev-type inequal-
ity for hypersurfaces in H

n(see Theorem 1.1). As an application
we obtain hyperbolic Alexandrov–Fenchel inequalities for curva-
ture integrals and quermassintegrals. More precisely, we prove a
geometric inequality in the hyperbolic space Hn, which is a hyper-
bolic Alexandrov–Fenchel inequality,

∫

Σ

σ2k ≥ C2k
n−1ωn−1

{(
|Σ|

ωn−1

) 1
k

+

(
|Σ|

ωn−1

) 1
k

n−1−2k
n−1

}k

,

when Σ is a horospherical convex and 2k ≤ n− 1. Equality holds
if and only if Σ is a geodesic sphere in H

n. Here σj = σj(κ)
is the jth mean curvature and κ = (κ1, κ2, · · · , κn−1) is the set
of the principal curvatures of Σ. Also, an optimal inequality for
quermassintegral in H

n is

W2k+1(Ω) ≥
ωn−1

n

k∑

i=0

n− 1− 2k

n− 1− 2k + 2i
Ci

k

(
nW1(Ω)

ωn−1

)n−1−2k+2i
n−1

,

provided that Ω ⊂ H
n is a domain with Σ = ∂Ω horospherical

convex, where 2k ≤ n − 1. Equality holds if and only if Σ is a
geodesic sphere in H

n. HereWr(Ω) is quermassintegrals in integral
geometry.

1. Introduction

In this paper we first establish Sobolev type inequalities for hyper-
surfaces in the hyperbolic space H

n. Let g be a Riemannian metric on
a Riemannian manifold. Its kth Gauss–Bonnet curvature (or Lovelock
curvature) Lk is defined by (see [13], for example)

(1.1) Lk :=
1

2k
δ
i1i2···i2k−1i2k
j1j2···j2k−1j2k

Ri1i2
j1j2 · · ·Ri2k−1i2k

j2k−1j2k .
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Here Rij
kl is the Riemannian curvature tensor in the local coordinates

with respect to g, and the generalized Kronecker delta is defined by

δj1j2...jri1i2...ir
= det




δj1i1 δj2i1 · · · δjri1
δj1i2 δj2i2 · · · δjri2
...

...
...

...

δj1ir δj2ir · · · δjrir


 .

When k = 1, L1 is just the scalar curvature R. When k = 2, it is the
so-called (second) Gauss-Bonnet curvature

L2 = ‖Rm‖2 − 4‖Ric‖2 +R2,

where Rm, Ric are the Riemannian curvature tensor and the Ricci ten-
sor with respect to g, respectively. The Gauss–Bonnet curvature Lk is a
very natural generalization of the scalar curvature. When the underly-
ing manifold is local conformally flat, Lk equals the σk-scalar curvature
up to a constant multiple; more precisely (cf. [14])

Lk = 2kk!(n − 1− k)(n − 2− k) · · · (n− 2k)σk(g).(1.2)

Here the σk-scalar curvature was introduced in Viaclovsky [30] by

σk(g) := σk(Λg),(1.3)

and Λg is the set of the eigenvalues of the Schouten tensor Ag defined
by

(1.4) Ag =
1

n− 3

(
Ricg −

Rg

2(n− 2)
g

)
.

Here we consider the (n−1)-dimensional manifold M with metric g. The
σk-scalar curvature is also a very natural generalization of the scalar cur-
vature R (in fact, σ1(g) = 1

2(n−2)R) and has been intensively studied

in the fully non-linear Yamabe problem. The fully non-linear Yamabe
problem for σk is a generalization of ordinary Yamabe problem for the
scalar curvature R. In the ordinary Yamabe problem, the following func-
tional, the so-called Yamabe functional, plays a crucial role:

F1(g) = (vol(g))−
n−3
n−1

∫
Rgdµ(g).(1.5)

For a given conformal class [g] = {e−2ug |u ∈ C∞(M)}, the Yamabe
constant is defined by

Y1([g]) = inf
g̃∈[g]

F1(g̃).

By the resolution of the Yamabe problem, Aubin and Schoen [2, 25]
proved that for any metric g on M ,

Y1([g]) ≤ Y1([gSn−1 ])(1.6)



HYPERBOLIC ALEXANDROV-FENCHEL INEQUALITIES II 239

and

Y1([g]) < Y1([gSn−1 ]) for any (M, [g]) other than [gSn−1 ],

where [gSn−1 ] is the conformal class of the standard round metric on
the sphere S

n−1. From this, one can see the importance of the constant
Y1([gSn−1 ]). In fact, one can prove that

Y1([gSn−1 ]) = (n− 1)(n − 2)ω
2

n−1

n−1 ,(1.7)

where ωn−1 is the volume of gSn−1 . It is easy to see that (1.6), together
with (1.7), is equivalent to

∫

M

L1dµ(g) =

∫

M

Rgdµ(g) ≥ (n− 1)(n − 2)ω
2

n−1

n−1vol(g)
n−3
n−1 ,(1.8)

for any g ∈ [gSn−1 ], which is in fact an optimal Sobolev inequality. See
[20]. As a natural generalization, we proved in [19] a generalized Sobolev
inequality for σk-scalar curvature σk(g), which states

∫

M

σk(g)dµ(g) ≥
Ck
n−1

2k
ω

2k
n−1

n−1vol(g)
n−1−2k

n−1 ,(1.9)

for any g ∈ Ck([gSn−1 ]), where Ck([gSn−1 ]) = [gSn−1 ] ∩ Γ+
k

and Γ+
k

=

{g |σj(g) > 0,∀j ≤ k}. In this paper, we denote Ck
n−1 = (n−1)!

k!(n−1−k)! . By

(1.2), inequality (1.9) can be written in the form
∫

Σ
Lkdµ(g) ≥ C2k

n−1(2k)! ω
2k

n−1

n−1(vol(g))
n−1−2k

n−1 ,(1.10)

for any g ∈ Ck−1([gSn−1 ]). We call both inequalities (1.8) and (1.10)
optimal Sobolev inequalities and would like to investigate which classes of
metrics satisfy the optimal Sobolev inequalities. (1.8) and (1.10) imply
that a suitable subclass of the conformal class of the standard round
metric satisfies the optimal Sobolev inequalities. From (1.6) we know
in any conformal class other than the conformal class of the standard
round metric that there exist many metrics which do not satisfy the
optimal Sobolev inequality. Hence it is natural to ask if there are other
interesting classes of metrics that satisfy the optimal Sobolev inequality.
Observe that for a closed hypersurface Σ in R

n,

Lk = (2k)! σ2k,(1.11)

where σ2k is the 2k-mean curvature of Σ, which is defined by

σj = σj(κ),

where κ = (κ1, κ2, · · · , κn−1), κj (1 ≤ j ≤ n − 1) is the principal cur-
vature of B and B is the second fundamental form of Σ induced by the
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standard Euclidean metric. The classical Alexandrov–Fenchel inequality
(see [27] for instance) implies for convex hypersurfaces in R

n that
∫

Σ
Lk(g)dµ(g) = (2k)!

∫

Σ
σ2kdµ(g) ≥ C2k

n−1(2k)! ω
2k

n−1

n−1 |Σ|
n−1−2k

n−1 .(1.12)

In this paper we use |Σ| to denote the area of Σ with respect to the
induced metric. Inequality (1.12) implies that the induced metric of any
convex hypersurfaces in R

n satisfy the optimal Sobolev inequalities. The
convexity can be weakened. See the work of Guan and Li [18], Huisken
[21] and Chang and Wang [6].

In this paper we prove that the induced metric of horospherical convex
hypersurfaces in H

n also satisfies the optimal Sobolev inequalities.

Theorem 1.1. Let 2k < n − 1. Any horospherical convex hypersur-
faces Σ in H

n satisfies
∫

Σ
Lkdµ(g) ≥ C2k

n−1(2k)! ω
2k

n−1

n−1 |Σ|
n−1−2k

n−1 ,(1.13)

and equality holds if and only if Σ is a geodesic sphere.

A hypersurface inH
n is horospherical convex if all principal curvatures

are larger than or equal to 1. The horospherical convexity is a natural
geometric concept. For any hypersurface in H

n, the Gauss-Bonnet cur-
vature Lk of the induced metric of the hypersurface can be expressed in
terms of the curvature integrals by (see also Lemma 3.1 below)

Lk = C2k
n−1(2k)!

k∑

j=0

(−1)j
Cj
k

C2k−2j
n−1

σ2k−2j.(1.14)

Comparing (1.12) for Rn with (1.13) for Hn and (1.11) with (1.14), we
obtain the same inequality for Lk, though Lk has different expression in
terms of the curvature integrals. We remark that when 2k = n−1, (1.13)
becomes an equality for any hypersurface diffeomorphic to a sphere, i.e.,

∫

Σ
Ln−1

2
dv(g) = (n− 1)!ωn−1.

This follows from the Gauss–Bonnet–Chern theorem.
As a first direct application, we establish Alexandrov–Fenchel type

inequalities for curvature integrals.

Theorem 1.2. Let 2k ≤ n−1. Any horospherical convex hypersurface
Σ ⊂ H

n satisfies

(1.15)

∫

Σ
σ2k ≥ C2k

n−1ωn−1

{(
|Σ|

ωn−1

) 1
k

+

(
|Σ|

ωn−1

) 1
k

n−1−2k
n−1

}k

,

and equality holds if and only if Σ is a geodesic sphere.
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When k = 1, Theorem 1.1 (and hence Theorem 1.2) are true even
for any star-shaped and two-convex hypersurfaces in H

n, ie., σ1 ≥ 0
and σ2 ≥ 0, which were proved by Li-Wei-Xiong in a recent work [22].
Theorem 1.1 was proved for k = 2 in our recent paper [15]. Due to
the complication of the variational structure of

∫
σk in the hyperbolic

space, the case k ≥ 2 is quite different from the case k = 1. For the
case k ≥ 2, the horospherical convexity of the hypersurface Σ plays an
essential role.

At the end of this paper we show that a similar inequality holds for
σ1 and propose a conjecture for general odd σ2k+1.

Another application is an optimal inequality for quermassintegrals
in H

n. For a (geodesically) convex domain Ω ⊂ H
n with Σ = ∂Ω,

quermassintegrals are defined by

Wr(Ω) :=
(n − r)ωr−1 · · ·ω0

nωn−2 · · ·ωn−r−1

∫

Lr

χ(L ∩ Ω)dL,(1.16)

where Lr is the space of r-dimensional totally geodesic subspaces L in
H

n, ωr is the area of the r-dimensional standard round sphere, and
dL is the natural (invariant) measure on Lr (cf. [[24, 28]). As in the
Euclidean case we take W0(Ω) = V ol(Ω). With these definitions, unlike
the euclidean case, the quermassintegral in H

n do not coincide with the
mean curvature integrals, but they are closely related (cf. [28]):

(1.17)
1

Cr
n−1

∫

Σ
σr = n

(
Wr+1(Ω) +

r

n− r + 1
Wr−1(Ω)

)
,

with

W0(Ω) = V ol(Ω), W1(Ω) =
1

n
|Σ|.

The relationship between W0 and W1, the hyperbolic isoperimetric in-
equality, was established by Schmidt [26] 70 years ago. When n = 2,
the hyperbolic isoperimetric inequality is

L2 ≥ 4πA+A2,

where L is the length of a curve γ in H
2 and A is the area of the enclosed

domain by γ. In general, this hyperbolic isoperimetric inequality has no
explicit form. There have been many attempts to establish a relationship
between Wk(Ω) in the hyperbolic space H

n. See, for example, [24] and
[29]. In [11], Gallego and Solanes proved by using integral geometry the
following interesting inequality for convex domains in Hn:

Wr(Ω) >
n− r

n− s
Ws(Ω), r > s,(1.18)

which implies
∫

Σ
σkdµ > cCk

n−1|Σ|,(1.19)
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where c = 1 if k > 1 and c = (n− 2)/(n− 1) if k = 1 and |Σ| is the area
of Σ. Here dµ is the area element of the induced metric. The constants
in (1.18) and (1.19) are optimal in the sense that one cannot replace
them by bigger constants. However, for fixed |Σ| these inequalities are
far from sharp.

As another application of Theorem 1.1, we have the following optimal
inequalities of Wk(Ω) for general odd k in terms of W1 =

1
n
|Σ|.

Theorem 1.3. Let 2k ≤ n− 1. If Ω ⊂ H
n is a domain with Σ = ∂Ω

horospherical convex, then

(1.20) W2k+1(Ω) ≥
ωn−1

n

k∑

i=0

n− 1− 2k

n− 1− 2k + 2i
Ci
k

(
nW1(Ω)

ωn−1

)n−1−2k+2i
n−1

,

where ωn−1 is the area of the unit sphere S
n−1. Equality holds if and

only if Σ is a geodesic sphere.

As a direct corollary, we solve an isoperimetric problem for horospher-
ical convex surfaces with fixed W1.

Corollary 1.4. Let 2k ≤ n− 1. In the class of horospherical convex
hypersurfaces in H

n with fixed W1, the minimum of W2k+1 is achieved
by and only by the geodesic spheres.

Corollary 1.4 answers a question asked in the paper of Gao, Hug, and
Schneider [12] in this case.

In order to prove Theorem 1.1, motivated by [15] and [22] (see also
[4] and [9]), we consider the following functional:

(1.21) Q(Σ) := |Σ|−
n−1−2k

n−1

∫

Σ
Lk.

Here Lk is the Gauss–Bonnet curvature with respect to the induced
metric g on Σ. This is a Yamabe type functional. One of crucial points
of this paper is to show that functional Q is non-increasing under the
inverse curvature flow

(1.22)
∂Σt

∂t
=

n− 2k

2k

σ2k−1

σ2k
ν,

where ν is the outer normal of Σt, provided that the initial hypersurface
is horospherical convex. One can show that horospherical convexity is
preserved by flow (1.22). By the convergence results of Gerhardt [16]
on the inverse curvature flow (1.22), we show that the flow approaches
surfaces whose induced metrics belong to the conformal class of the
standard round sphere metric. Therefore, we can use the result (1.10)
to show that

Q(Σ) ≥ lim
t→∞

Q(Σt) ≥ C2k
n−1(2k)!ω

2k
n−1

n−1 .
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The rest of this paper is organized as follows. In Section 2, we present
some basic facts about the elementary functions σk and recall the gen-
eralized Sobolev inequality (2.9) from [19]. In Section 3, we present the
relationship between various geometric quantities, including the intrin-
sic geometric quantities

∫
Σ Lk, the curvature integrals

∫
Σ σk, and the

quermassintegrals Wr(Ω). In Section 4, we prove the crucial monotonic-
ity of Q and analyze its asymptotic behavior under flow (1.22). The
proof of our main theorems are given in Section 5. In Section 6, we
show that a similar inequality holds for σ1 and propose a conjecture for
integral integrals σ2k+1.

Acknowledgments. We would like to thank Wei Wang for his impor-
tant help in the proof of the monotonicity of functional Q.

The first author was partly supported by ANR project ANR-08-
BLAN-0335-01. The second and third authors were partly supported
by SFB/TR71 “Geometric partial differential equations” of DFG.

2. Preliminaries

Let σk be the kth elementary symmetry function σk : R
n−1 → R

defined by

σk(Λ) =
∑

i1<···<ik

λi1 · · ·λik for Λ = (λ1, · · · , λn−1) ∈ R
n−1.

For a symmetric matrix B, denote λ(B) = (λ1(B), · · · , λn(B)) the
eigenvalues of B. We set

σk(B) := σk(λ(B)).

The Garding cone Γ+
k is defined as

Γ+
k = {Λ ∈ R

n−1 |σj(Λ) > 0, ∀j ≤ k}.

A symmetric matrix B is said to belong to Γ+
k if λ(B) ∈ Γ+

k . We collect
the basic facts about σk, which will be directly used in this paper. For
other related facts, see a survey by Guan [17, 22].

(2.1) σk(B) =
1

k!
δi1···ikj1···jk

bj1i1 · · · b
jk
ik
,

where B = (bij). In the following, for simplicity of notation we denote

pk =
σk

Ck
n−1

.
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Lemma 2.1. For Λ ∈ Γ+
k , we have the following Newton–MacLaurin

inequalities
pk−1pk+1

p2k
≤ 1,(2.2)

p1pk−1

pk
≥ 1.(2.3)

Moreover, equality holds in (2.2) or (2.3) at Λ if and only if Λ =
c(1, 1, · · · , 1).

The Newton–MacLaurin inequalities play a very important role in
proving the geometric inequalities mentioned above. However, we will
see that these inequalities are not precise enough to show our inequality
(1.13).

Let Hn = R
+ × S

n−1 with the hyperbolic metric

ḡ = dr2 + sinh2 rgSn−1 ,

where gSn−1 is the standard round metric on the unit sphere S
n−1

and Σ ⊂ H
n a smooth closed hypersurface in H

n with a unit out-
ward normal ν. Let h be the second fundamental form of Σ, and let
κ = (κ1, · · · , κn−1) be the set of principal curvatures of Σ in H

n with
respect to ν. The kth mean curvature of Σ is defined by

σk = σk(κ).

We now consider the curvature evolution equation

(2.4)
d

dt
X = Fν,

where Σt = X(t, ·) is a family of hypersurfaces in H
n, ν is the unit

outward normal to Σt = X(t, ·), and F is a speed function which may
depend on the position vector X and principal curvatures of Σt. How-
ever, for simplicity of notation, we will omit the subscript t if there is
no confusion. One can check that [23] along the flow

d

dt

∫

Σ
σkdµ =(k + 1)

∫

Σ
Fσk+1dµ+ (n− k)

∫

Σ
Fσk−1dµ,(2.5)

and thus

(2.6)
d

dt

∫

Σ
pkdµ =

∫

Σ

(
(n− k − 1)pk+1 + kpk−1

)
Fdµ.

If one compares flow (2.4) in H
n with a similar flow of hypersurfaces in

R
n, the last term in (2.5) is an extra term. This extra term comes from

−1, the sectional curvature of Hn, and makes the phenomenon of Hn

quite different from the one of Rn.
As mentioned above, we use the following inverse flow

(2.7)
d

dt
X =

p2k−1

p2k
ν.
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By using the result of Gerhardt [16] we obtain the following propo-
sition.

Proposition 2.2. If the initial hypersurface Σ is horospherical con-
vex, then the solution for the flow (2.7) exists for all time t > 0 and
preserves the condition of horospherical convexity. Moreover, the hyper-
surfaces Σt become more and more umbilical in the sense of

|hi
j − δi

j| ≤ Ce−
t

n−1 , t > 0,

i.e., the principal curvatures are uniformly bounded and converge expo-
nentially fast to one. Here hi

j = gikhkj, where g is the induced metric
and h is the second fundamental form.

Proof. For the long-time existence of the inverse curvature flow, see
the work of Gerhardt [16]. The preservation of the horospherical con-
vexity along flow (2.7) was proved in [15] with the help of a maximum
principle for tensors of Andrews [1]. q.e.d.

Let g be a Riemannian metric onMn−1. Denote Ricg and Rg the Ricci
tensor and the scalar curvature of g, respectively. The Schouten tensor
Ag is defined by (1.4).The σk-scalar curvature, which was introduced by
Viaclovsky [30], is defined by

σk(g) := σk(Ag).

This is a natural generalization of the scalar curvature R. In fact,
σ1(g) = 1

2(n−2)R. Recall that M is of dimension n − 1. We now con-

sider the conformal class [gSn−1 ] of the standard sphere S
n−1 and the

following functionals defined by

(2.8) Fk(g) = vol(g)−
n−1−2k

n−1

∫

Sn−1

σk(g) dµ, k = 0, 1, . . . , n− 1.

If a metric g satisfies σj(g) > 0 for any j ≤ k, we call it k-positive and
denote g ∈ Γ+

k . From Theorem 1.A in [19], we have the following.

Proposition 2.3. Let 0 < k < n−1
2 and g ∈ [gSn−1 ] k-positive. We

have

(2.9) Fk(g) ≥ Fk(gSn−1) =
Ck
n−1

2k
ω

2k
n−1

n−1 .

Inequality (2.9) is a generalized Sobolev inequality, since when k = 1
inequality (2.9) is just the optimal Sobolev inequality. See, for example,
[20]. For another Sobolev inequalities, see also [3] and [7].

3. Relationship between various geometric quantities

The Gauss–Bonnet curvatures Lk, and hence
∫
Σ Lk, are intrinsic geo-

metric quantities, which depend only on the induced metric g on Σ and
do not depend on the embeddings of (Σ, g). Lemma 3.2 and Lemma



246 Y. GE, G. WANG & J. WU

3.3 below imply that σ2k,
∫
Σ σ2k and W2k+1 are also intrinsic. σ2k+1,∫

Σ σ2k+1, and W2k are extrinsic. The functionals
∫
Σ Lk are new geo-

metric quantities for the study of the integral geometry in H
n. In this

section we present the relationship between these geometric quantities.
We first have a relation between Lk and σk.

Lemma 3.1. For a hypersurface (Σ, g) in H
n, its Gauss–Bonnet cur-

vature Lk can be expressed by higher-order mean curvatures

Lk = C2k
n−1(2k)!

∑k
i=0 C

i
k(−1)ip2k−2i.(3.1)

Hence we have
∫

Σ
Lk = C2k

n−1(2k)!
k∑

i=0

Ci
k(−1)i

∫

Σ
p2k−2i

= C2k
n−1(2k)!

k∑

i=0

(−1)i
Ci
k

C2k−2i
n−1

∫

Σ
σ2k−2i.

(3.2)

Proof. First recall the Gauss formula

Rij
sl = (hsih

l
j − hlih

s
j)− (δsi δ

l
j − δliδ

s
j ),

where hji := gishsj and h is the second fundamental form. Then substi-
tuting the Gauss formula above into (1.1) and recalling (2.1), we have
by a straightforward calculation

Lk =
1

2k
δ
i1i2···i2k−1i2k
j1j2···j2k−1j2k

Ri1i2
j1j2 · · ·Ri2k−1i2k

j2k−1j2k

= δ
i1i2···i2k−1i2k
j1j2···j2k−1j2k

(hj1i1h
j2
i2
− δj1i1 δ

j2
i2
) · · · (h

j2k−1

i2k−1
hj2ki2k

− δ
j2k−1

i2k−1
δj2ki2k

)

=
k∑

i=0

Ci
k(−1)i(n−2k)(n−2k+1) · · · (n−1−2k+2i)

(
(2k−2i)!σ2k−2i

)

= C2k
n−1(2k)!

k∑

i=0

Ci
k(−1)ip2k−2i.

Here in the second equality we use the symmetry of generalized Kro-
necker delta, and in the third equality we use (2.1) and the basic prop-
erty of the generalized Kronecker delta

δ
i1i2···ip−1ip
j1j2···jp−1jp

δj1i1 = (n− p)δ
i2i3···ip
j2j3···jp

,(3.3)

which follows from the Laplace expansion of determinant. q.e.d.

Motivated by the expression (3.1), we introduce the following nota-
tions:

(3.4) L̃k =

k∑

i=0

Ci
k(−1)ip2k−2i, Ñk =

k∑

i=0

Ci
k(−1)ip2k−2i+1.
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It is clear that

Lk = (2k)!C2k
n−1L̃k, Nk = (2k)!C2k

n−1Ñk.

Lemma 3.2. We have

(3.5) σ2k = C2k
n−1p2k = C2k

n−1

( k∑

i=0

Ci
kL̃i

)
,

and hence
∫

Σ
σ2k = C2k

n−1

k∑

i=0

Ci
k

∫

Σ
L̃i =

1

(2k)!

k∑

i=0

Ci
k

∫

Σ
Li.

To show Theorem 1.3 below, we need the following lemma.

Lemma 3.3. The quermassintegral W2k+1 can be expressed in terms

of the integral of L̃i:

(3.6) W2k+1(Ω) =
1

n

k∑

i=0

Ci
k

n− 1− 2k

n− 1− 2k + 2i

∫

Σ
L̃k−i.

Proof. We use the induction argument to show (3.6). When k = 0,
we have by (1.17) that W1(Q) = 1

n
|Σ|. We then assume that (3.6) holds

for k − 1, i.e.,

W2k−1(Ω) =
1

n

k−1∑

j=0

Cj
k−1

n+ 1− 2k

n+ 1− 2k + 2j
L̃k−1−j

=
1

n

∫

Σ

k∑

i=1

Ci−1
k−1

n+ 1− 2k

n− 1− 2k + 2i
L̃k−i.(3.7)

By (1.17) and (3.5), we have

W2k+1(Ω) =
1

n

∫

Σ
p2k −

2k

n− 2k + 1
W2k−1(Ω)

=
1

n

∫

Σ

k∑

i=0

Ci
kL̃i −

2k

n− 2k + 1
W2k−1(Ω).

Substituting (3.7) into the above, one immediately obtains (3.6) for k.
q.e.d.

One can also show the following relation between the quermassinte-
grals and the curvature integrals.

Lemma 3.4.

W2k+1(Ω) =
1

n

k∑

j=0

(−1)j
(2k)!!(n − 2k − 1)!!

(2k−2j)!!(n−2k−1+2j)!!

1

C2k−2j
n−1

∫

Σ
σ2k−2j ,

(3.8)
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where

(2k − 1)!! := (2k − 1)(2k − 3) · · · 1 and (2k)!! := (2k)(2k − 2) · · · 2.

Proof. One can show this relation by a direct computation. See also
[24] or [29]. q.e.d.

4. Monotonicity

In this section we prove the monotonicity of functional Q under in-

verse curvature flow. First, we have the variational formula for
∫
L̃k.

Lemma 4.1. Along the inverse flow (2.7), we have

(4.1)
d

dt

∫

Σ
L̃k = (n−1−2k)

∫

Σ
L̃k + (n−1−2k)

∫

Σ

(
Ñk

p2k−1

p2k
− L̃k

)
.

Proof. It follows from (2.6) that along the inverse flow (2.4), we have

d

dt

∫

Σ
L̃k

(4.2)

=

∫

Σ

k∑

i=0

Ci
k(−1)i

((
n− 1− 2k + 2i

)
p2k−2i+1 + 2(k − i)p2k−2i−1

)
F

=

∫

Σ

k∑

i=0

Ci
k(−1)i

(
n− 1− 2k + 2i

)
p2k−2i+1F

+

∫

Σ

k∑

j=1

Cj−1
k

(−1)j−12(k − j + 1)p2k−2j+1F

=

∫

Σ

k∑

i=0

Ci
k(−1)i

(
n− 1− 2k

)
p2k−2i+1F

+

∫

Σ

k∑

j=1

2(−1)j
(
Cj
kj − Cj−1

k (k − j + 1)
)
p2k−2j+1F

=(n − 1− 2k)

∫

Σ

k∑

i=0

Ci
k(−1)ip2k−2i+1

=(n − 1− 2k)

∫

Σ
ÑkF

=(n − 1− 2k)

∫

Σ
L̃k + (n− 1− 2k)

∫

Σ

(
ÑkF − L̃k

)
.

Substituting F =
p2k−1

p2k
into above, we get the desired result. q.e.d.
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In order to show the monotonicity of the functional Q defined in
(1.21) under the inverse flow (2.7), we need to show the non-positivity
of the last term in (4.1). That is,

p2k−1

p2k
Ñk − L̃k ≤ 0.(4.3)

When k = 1, (4.3) is just

p1
p2

(p3 − p1)− (p2 − 1) ≤ 0,

which follows from the Newton–Maclaurin inequalities in Lemma 2.1.
In fact, it is clear that

p1
p2

(p3 − p1)− (p2 − 1) = (
p1p3
p2

− p2) + (1−
p21
p2

).

Hence the non-positivity follows, for both terms are non-positive, by
Lemma 2.1. This was used in [22]. When k ≥ 2, the proof of (4.3)
becomes more complicated. When k = 2, one needs to show the non-
positivity of
(4.4)
p3
p4

(p5−2p3+p1)−(p4−2p2+1) =

(
p3
p4

p5−p4

)
+2

(
p2−

p23
p4

)
+

(
p3
p4

p1−1

)
.

By Lemma 2.1, the first two terms are non-positive, but the last term is
non-negative. It was showed in [15] that (4.4) is non-positive if κ ∈ R

n−1

satisfying

(4.5) κ ∈ {κ = (κ1, κ2, · · · , κn−1) ∈ R
n−1 |κi ≥ 1}.

We want to show that (4.3) is true for general k ≤ 1
2 (n− 1). This is one

of the key points of this paper. This case is more complicated than the
case k = 2.

Proposition 4.2. For any κ satisfying (4.5), we have

p2k−1

p2k
Ñk − L̃k ≤ 0.(4.6)

Equality holds if and only if one of the following two cases holds:

either (i)κi = κj ∀ i, j or (ii)∃ i with κi < 1&κj = 1 ∀j 6= i.

We sketch the proof in several steps. Before the proof, we introduce
the notation of

∑
cyc

to simplify notation. Precisely, given n − 1 numbers

(κ1, κ2, · · · , κn−1), we denote
∑
cyc

f(κ1, · · · , κn−1) the cyclic summation
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that takes over all different terms of the type f(κ1, · · · , κn−1). For in-
stance,

∑

cyc

κ1 = κ1 + κ2 + · · ·+ κn−1,
∑

cyc

κ21κ2 =

n−1∑

i=1

(
κ2i
∑

j 6=i

κj

)
,

∑

cyc

κ1(κ2 − κ3)
2 =

n−1∑

i=1

(
κi

∑

1≤j<k≤n−1
j,k 6=i

(κj − κk)
2

)
,

= (n− 3)
∑

cyc

κ1κ
2
2 − 6

∑

cyc

κ1κ2κ3.

Lemma 4.3. For any κ satisfying (4.5), we have

(4.7) Ñk − p1L̃k ≤ 0.

Equality holds if and only if one of the following two cases holds:

either (i)κi = κj ∀ i, j or (ii)∃ i with κi > 1&κj = 1 ∀j 6= i.

Proof. It is crucial to observe that (4.7) is indeed equivalent to the
following inequality:

∑

1≤ im≤n−1,
ij 6= il(j 6= l)

κi1(κi2κi3−1)(κi4κi5−1) · · · (κi2k−2κi2k−1−1)(κi2k−κi2k+1)
2≥0,

(4.8)

where the summation takes over all the (2k + 1)-elements permutation
of {1, 2, · · · , n − 1}. For the convenience of the reader, we sketch the
proof of (4.8) briefly. First, note that from (3.4) that

(p1L̃k − Ñk) = p1

k∑

i=0

Ck−i
k (−1)k−ip2i −

k∑

i=0

Ck−i
k (−1)k−ip2i+1

=

k∑

i=0

(−1)k−iCi
k(p1p2i − p2i+1).

Next, we calculate each term p1p2i − p2i+1 carefully. By using

(n− 1)Cj
n−1 = (j + 1)Cj+1

n−1 + (n− 1)Cj−1
n−1),

we have

σjσ1 =

(∑

cyc

κi1κi2 · · · κij

)(∑

cyc

κij+1

)

= (j + 1)

(∑

cyc

κi1κi2 · · · κijκij+1

)
+
∑

cyc

κ2i1κi2 · · · κij ,
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and

p1p2j − p2j+1

=
1

(n− 1)C2j
n−1

(∑

cyc

κi1κi2 · · · κi2j

)(∑

cyc

κi2j+1

)

−
1

C2j+1
n−1

∑

cyc

κi1κi2 · · · κi2j+1

=
1

(n− 1)C2j
n−1C

2j+1
n−1

(
C2j+1
n−1 (2j + 1)

∑

cyc

κi1κi2 · · · κi2jκi2j+1

+C2j+1
n−1

∑

cyc

κ2i1κi2 · · · κi2j−(n−1)C2j
n−1

∑

cyc

κi1κi2 · · · κi2j+1

)

=
1

(n− 1)C2j
n−1C

2j+1
n−1

·
C2j+1
n−1

n− 2j

∑

cyc

κi1κi2 · · · κi2j−1(κi2j − κi2j+1)
2

=
(2j)!(n − 2j − 2)!

(n− 1) · (n− 1)!

∑

cyc

κi1κi2 · · · κi2j−1(κi2j − κi2j+1)
2.

In (4.8), the coefficient of κ1κ2 · · · κ2j−1(κ2j − κ2j+1)
2 is

2(−1)k−jCj−1
k−1(2j−1)!C2k−2j

n−2j−2[2(k−j)]! =
(−1)k−j

k
Cj
k
(2j)!(n−2j−2)!

= (−1)k−jCj
k

(2j)!(n − 2j − 2)!

(n − 1) · (n− 1)!
·
(n− 1) · (n− 1)!

k
.

Therefore, we have

0≤
∑

1≤ im≤n−1,
ij 6= il(j 6= l)

κi1(κi2κi3−1)(κi4κi5−1) · · · (κi2k−2
κi2k−1

−1)
(
κi2k−κi2k+1

)2

=
(n− 1) · (n− 1)!

k

k∑

j=0

(−1)k−jCj
k
(p1p2j − p2j+1)

=
(n− 1) · (n− 1)!

k
(p1L̃k − Ñk).

This finishes the proof. q.e.d.

In view of (4.8), we have the following remark that will be used later.

Remark 4.4. For any κ = (κ1, · · · , κn−1) satisfying 0 < κi ≤

1, (i = 1, · · · , n− 1), then (−1)k−1
(
Ñk − p1L̃k

)
≤ 0.

Lemma 4.5. For any κ satisfying (4.5), we have

Ñk ≥ 0, L̃k ≥ 0.
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Proof. They are equivalent to the following inequalities, respectively:

∑

1≤ im≤n−1,
ij 6= il(j 6= l)

κi1(κi2κi3−1)(κi4κi5−1) · · ·

(4.9)

(κi2k−2
κi2k−1

−1)(κi2kκi2k+1
−1) ≥ 0,

(4.10)

∑

1≤ im≤n−1,
ij 6= il(j 6= l)

(κi2κi3−1)(κi4κi5−1) · · · (κi2k−2
κi2k−1

−1)(κi2kκi2k+1
−1) ≥ 0.

(4.11)

where the summation takes over all the (2k+1)-elements permutation of
{1, 2, · · · , n− 1}. The proof to show the equivalence of (4.9) and (4.11)
is exactly the same as the one of (4.8). Hence we omit it here. q.e.d.

Remark 4.6. For any κ = (κ1, · · · , κn−1) satisfying 0 < κi ≤ 1, (i =

1, · · · , n− 1), then (−1)kÑk ≥ 0, (−1)kL̃k ≥ 0.

Making use of Lemma 4.3 and Remark 4.4, we can show the following
result, which is stronger than Proposition 4.2.

Lemma 4.7. For any κ satisfying (4.5), we have

p2kÑk − p2k+1L̃k ≤ 0.

Proof. According to the induction argument proved in [15, p.8], we
only need to prove it for n− 1 = 2k + 1. Let zi =

1
κi

≤ 1, and let

p̂i = pi(z1, z2, · · · , z2k+1).

It is clear that

p̂j =
p2k+1−j

p2k+1
.(4.12)

By Remark 4.4, we have

(−1)k−1
k∑

i=0

Ci
k(−1)ip̂2k−2i+1 − (−1)k−1p̂1

k∑

i=0

Ci
k(−1)ip̂2k−2i ≤ 0,

(4.13)

which is equivalent to

(−1)k−1
k∑

i=0

Ci
k(−1)i

p2i
p2k+1

− (−1)k−1 p2k
p2k+1

k∑

i=0

Ci
k(−1)i

p2i+1

p2k+1
≤ 0.

(4.14)

Thus we have
k∑

i=0

Ci
k(−1)k−ip2i −

p2k
p2k+1

k∑

i=0

Ci
k(−1)k−ip2i+1 ≥ 0,(4.15)
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which implies p2k
p2k+1

Ñk − L̃k ≤ 0. q.e.d.

Proof of Proposition 4.2. Then by the Newton–MacLaurin inequality
p2k−1p2k+1 ≤ p22k, we obtain

p2k−1

p2k
Ñk − L̃k ≤

p2k
p2k+1

Ñk − L̃k ≤ 0,

which is exactly (4.6). Here we have used Lemma 4.5. q.e.d.

Remark 4.8. Proposition 4.2 holds for κ ∈ R
n−1 with κiκj ≥ 1 for

any i, j. This is equivalent to the condition that the sectional curvature
of Σ is non-negative.

Remark 4.9. From the proof of Proposition 4.2, it is easy to see that
(4.6) has an inverse inequality for κ ∈ Rn−1 with 0 ≤ κi ≤ 1.

Now we have a monotonicity of Q(Σt) defined by (1.21) under the
flow (2.7).

Theorem 4.10. Functional Q is non-increasing under the flow (2.7),
provided that the initial surface is horospherical convex.

Proof. It follows from (3.1), (3.4), and Proposition 4.2 that

(4.16)
d

dt

∫

Σ
Lk ≤ (n− 1− 2k)

∫

Σ
Lk.

On the other hand, by (2.6) and (2.3), we also have

(4.17)
d

dt
|Σt| =

∫

Σt

p2k−1

p2k
(n− 1)p1dµ ≥ (n − 1)|Σt|.

Combining (4.16) and (4.17) together, we complete the proof.
q.e.d.

Remark 4.11. From the above proof, one can check that to obtain a
monotonicity of Q it is enough to choose F = 1

p1
. Then from (4.1) and

(4.7), it holds for all k

d

dt

∫

Σ
L̃k =(n− 2k − 1)

∫

Σ
L̃k +

∫

Σ
(n− 2k − 1)

( 1

p1
Ñk − L̃k

)

≤(n− 2k − 1)

∫

Σ
L̃k.

5. Proof of main theorems

Now we are ready to show our main theorems.

Proof of Theorem 1.1. First, recall the definition (1.21) of the functional
Q. By (1.21), (1.13) is equivalent to

(5.1) Q(Σ) ≥ C2k
n−1(2k)! ω

2k
n−1

n−1 .
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Let Σ(t) be a solution of flow (2.7) obtained by the work of Gerhardt
[16]. This flow preserves the horospherical convexity and non-increases
for the functional Q. Hence, to show (5.1) we only need to show

(5.2) lim
t→∞

Q(Σt) ≥ C2k
n−1(2k)! ω

2k
n−1

n−1 .

Since Σ is a horospherical convex hypersurface in (Hn, ḡ), it is written
as graph of function r(θ), θ ∈ S

n−1. We denote X(t) as graphs r(t, θ)
on S

n−1 with the standard metric ĝ. We set λ(r) = sinh(r) and we have
λ′(r) = cosh(r). It is clear that

(λ′)2 = (λ)2 + 1.

We define ϕ(θ) = Φ(r(θ)). Here Φ verifies

Φ′ =
1

λ
.

We define another function

v =
√

1 + |∇ϕ|2
ĝ
.

By [16], we have the following results.

Lemma 5.1.

λ = O(e
t

n−1 ), |∇ϕ|+ |∇2ϕ| = O(e−
t

n−1 ).

From Lemma (5.1), we have the following expansions:

λ′ = λ(1 +
1

2
λ−2) +O(e−

4t
n−1 ),(5.3)

and

1

v
= 1−

1

2
|∇ϕ|2ĝ +O(e−

4t
n−1 ).(5.4)

We have also

∇λ = λλ′∇ϕ.(5.5)

The second fundamental form of Σ is written in an orthogonal basis
(see [10], for example)

hji =
λ′

vλ

(
δji −

ϕj
i

λ′
+

ϕiϕlϕ
jl

v2λ′

)

= δji + (
1

2λ2
−

1

2
|∇ϕ|2)δji −

ϕj
i

λ
+O(e−

4t
n−1 ),

where the second equality follows from (5.3) and (5.4). We set

T j
i = (

1

2λ2
−

1

2
|∇ϕ|2)δji −

ϕj
i

λ
;(5.6)
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then from the Gauss equations we obtain

Rij
kl = −(δki δ

l
j − δliδ

k
j ) + (hki h

l
j − hlih

k
j )

= δki T
l
j + T k

i δ
l
j − T l

i δ
k
j − δliT

k
j +O(e−

4t
n−1 ).

It follows from (1.1) that

Lk = 1
2k
δ
i1i2···i2k−1i2k
j1j2···j2k−1j2k

Ri1i2
j1j2 · · ·Ri2k−1i2k

j2k−1j2k

= 2kδ
i1i2···i2k−1i2k
j1j2···j2k−1j2k

T j1
i1
δj2i2 · · · T

j2k−1

i2k−1
δj2ki2k

+O(e−
(2k+2)t
n−1 )

= 2k(n−1−k) · · · (n−2k)δ
i1i3···i2k−1

j1j3···j2k−1
T j1
i1
T j3
i3

· · ·T
j2k−1

i2k−1

+O(e−
(2k+2)t
n−1 )

= 2kk!(n− 1− k) · · · (n− 2k)σk(T ) +O(e−
(2k+2)t
n−1 ).

Here in the second equality we use the fact

δ
i1i2···i2k−1i2k
j1j2···j2k−1j2k

T j1
i1
δi2

j2 = δ
i1i2···i2k−1i2k
j1j2···j2k−1j2k

δj1i1 T
j2
i2

= −δ
i1i2···i2k−1i2k
j1j2···j2k−1j2k

T j2
i1
δj1i2 = −δ

i1i2···i2k−1i2k
j1j2···j2k−1j2k

δj2i1 T
j1
i2
,

and in the third equality we use (2.1) and (3.3).
Recall ϕi = λi/λλ

′; then by (5.3) we have

ϕij =
λij

λ2
−

2λiλj

λ3
+O(e−

3t
n−1 ).(5.7)

By the definition of the Schouten tensor,

Aĝ =
1

n− 3

(
Ricĝ −

Rĝ

2(n − 2)
ĝ

)
=

1

2
ĝ.

Its conformal transformation formula is well known (see, for example,
[30])

Aλ2ĝ = −
∇2λ

λ
+

2∇λ⊗∇λ

λ2
−

1

2

|∇λ|2

λ2
ĝ +Aĝ

= −
∇2λ

λ
+

2∇λ⊗∇λ

λ2
−

1

2

|∇λ|2

λ2
ĝ +

1

2
ĝ.(5.8)

Substituting (5.5) and (5.7) into (5.6), together with (5.8), we have

T j
i = ((λ2ĝ)−1Aλ2ĝ)

j
i +O(e−

4t
n−1 ),

which implies

(5.9) Lk = 2kk!(n− 1− k) · · · (n − 2k)σk(Aλ2ĝ) +O(e−
(2k+2)t
n−1 ).

As before, Σ(t) is a horospherical convex hypersurface. As a conse-

quence, Σ has non-negative sectional curvature so that T +O(e−
4t

n−1 ) is
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positive definite. We consider λ̃ := λ1−e
−

t
n−1

and the conformal metric
λ̃2ĝ. We have

λ̃2(λ̃2ĝ)−1A
λ̃2ĝ

=
1

2
e−

t
n−1 I +

1

2
e−

t
n−1 (1− e−

t
n−1 )

|∇λ|2

λ2
I

−e−
t

n−1 (1− e−
t

n−1 )ĝ−1∇λ⊗∇λ

λ2

+λ2(1− e−
t

n−1 )(λ2ĝ)−1Aλ2ĝ.

Recall 1
2e

− t
n−1 I+λ2(1−e−

t
n−1 )(λ2ĝ)−1Aλ2ĝ ∈ Γ+

n−1 for sufficiently large

t and 1
2e

− t
n−1 (1− e−

t
n−1 ) |∇λ|2

λ2 I − e−
t

n−1 (1− e−
t

n−1 )ĝ−1∇λ⊗∇λ
λ2 ∈ Γ+

k
for

any k ≤ n−1
2 . Therefore, we infer λ̃2ĝ ∈ Γ+

k for any k ≤ n−1
2 . The

Sobolev inequality (2.9) for the σk operator gives

(vol(λ̃2ĝ))−
n−1−2k

n−1

∫

Sn−1

σk(Aλ̃2ĝ
)dvol

λ̃2 ĝ
≥

(n− 1) · · · (n− k)

2kk!
ω

2k
n−1

n−1 .

(5.10)

On the other hand, we have

(vol(λ̃2ĝ))−
n−1−2k

n−1
∫
Sn−1 σk(Aλ̃2ĝ

)dvol
λ̃2 ĝ

= (1 + o(1))(vol(λ2 ĝ))−
n−1−2k

n−1
∫
Sn−1 σk(Aλ2ĝ)dvolλ2 ĝ,

(5.11)

since

λ−e
−

t
n−1

= 1 + o(1).

As a consequence of (5.9),(5.10) and (5.11), we deduce

lim
t→+∞

(vol(Σ(t)))−
n−1−2k

n−1

∫

Σ(t)
Lk ≥ (n− 1)(n − 2) · · · (n− 2k)ω

2k
n−1

n−1 .

When (5.1) is an equality, then Q is constant along the flow. Then (4.17)
is an equality, which implies that equality in the inequality

p2k−1

p2k
p1 ≥ 1,

holds. Therefore, Σ is a geodesic sphere. q.e.d.

Proof of Theorem 1.2. It follows from (3.1), (3.4), and Theorem 1.1 that
when n− 1 > 2k

(5.12)

∫

Σ
L̃k ≥ ω

2k
n−1

n−1 (|Σ|)
n−1−2k

n−1 .

Using the expression (3.5) of
∫
Σ σk in terms of

∫
Σ L̃j, we get the desired

result:
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∫

Σ
σ2k ≥ C2k

n−1ωn−1

{(
|Σ|

ωn−1

) 1
k

+

(
|Σ|

ωn−1

) 1
k

n−1−2k
n−1

}k

.

By Theorem 1.1, equality holds if and only if Σ is a geodesic sphere.
When n− 1 = 2k, since the hypersurface Σ is convex, we know that

(1.13) is an equality when n − 1 = 2k by the Gauss–Bonnet–Chern
theorem, even for any hypersurface diffeomorphic to a sphere. Hence, in
this case, we also have all the above inequalities with equality, which in
turn implies by [22] or [15] that Σ is a geodesic sphere. q.e.d.
Proof of Theorem 1.3. When n− 1 > 2k, the proof follows directly from
(5.12) and Lemma 3.3. When n− 1 = 2k, the proof follows by the same
reason as in Theorem 1.2. q.e.d.

From (1.17), it is easy to see that Theorem 1.3 implies Theorem 1.2;
meanwhile, Theorem 1.2 may not directly imply Theorem 1.3, since
there are negative coefficients in (3.8) above.

6. Alexandrov–Fenchel inequality for odd k

In this section, we show an Alexandrov–Fenchel inequality for σ1,
which follows from the result of Cheng and Zhou [8] and Theorem 1.2
(or more precisely from [22]).

Theorem 6.1. Let n ≥ 2. Any horospherical convex hypersurface
Σ ⊂ H

n satisfies

(6.1)

∫

Σ
σ1 ≥ (n− 1)ωn−1

{(
|Σ|

ωn−1

)2

+

(
|Σ|

ωn−1

) 2(n−2)
n−1

} 1
2

,

where ωn−1 is the area of the unit sphere S
n−1 and |Σ| is the area of Σ.

Equality holds if and only if Σ is a geodesic sphere.

Proof. Notice that the horospherical convex condition implies that
the Ricci curvature of Σ is non-negative. We observe first that by a
direct computation (1.4) in [8],

∫

Σ
|H −H|2 ≤

n− 1

n− 2

∫

Σ
|B −

H

n− 1
g|2

is equivalent to ∫

Σ
σ2

∫

Σ
σ0 ≤

n− 2

2(n − 1)

( ∫

Σ
σ1
)2
.(6.2)

Then we use the optimal inequality for σ2 proved in [22] (see also The-
orem 1.2),

∫

Σ
σ2 ≥

(n− 1)(n − 2)

2

(
ω

2
n−1

n−1 |Σ|
n−3
n−1 + |Σ|

)
,(6.3)
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to obtain the desired inequality for σ1,

∫

Σ
σ1 ≥ (n − 1)ωn−1

{(
|Σ|

ωn−1

)2

+

(
|Σ|

ωn−1

) 2(n−2)
n−1

} 1
2

.

When (6.1) is an equality, in turn, (6.3) is also a equality, and then it
follows from [22] that the hypersurface is a geodesic sphere. q.e.d.

Motivated by Theorem 1.2 and (6.2), we would like propose the fol-
lowing conjecture

Conjecture 6.2. Let n − 1 ≥ 2k + 1. Any horospherical convex hy-
persurface Σ ⊂ H

n satisfies

∫

Σ
σ2k+1 ≥ C2k+1

n−1 ωn−1

{(
|Σ|

ωn−1

) 2
2k+1

+

(
|Σ|

ωn−1

) 2
2k+1

(n−2k−2)
n−1

} 2k+1
2

.

Equality holds if and only if Σ is a geodesic sphere.

The conjecture follows from Theorem 1.2 and the following conjec-
ture:

(6.4)

(
C2k+1
n−1

)2

C2k+2
n−1 C2k

n−1

∫

Σ
σ2k+2

∫

Σ
σ2k ≤

(∫

Σ
σ2k+1

)2

.

Note added in proof: Conjecture 6.2 was proved in [31].
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cernant la courbure scalaire, J. Math. Pures Appl. 55 (1976), 269–296, MR
0431287, Zbl 0336.53033.

[3] W. Beckner, Sharp Sobolev inequalities on the sphere and the Moser-

Trudinger inequality, Ann. of Math. 138(1993), 213–242, MR 1230930, Zbl
0826.58042.

[4] S. Brendle, P.-K. Hung, and M.-T. Wang, A Minkowski-type inequality for

hypersurfaces in the Anti-deSitter-Schwarzschild manifold, arXiv: 1209.0669.

[5] Y.D. Burago & V.A. Zalgaller, Geometric Inequalities, Springer, Berlin, 1988,
MR 0936419, Zbl 0633.53002.

[6] S.-Y. A. Chang & Y.Wang, On Aleksandrov–Fenchel inequalities for k-

convex domains, Milan J. Math., 79 (2011), no. 1, 13–38, MR 2831436, Zbl
1229.52002.

[7] S.-Y. A. Chang & P. C. Yang, The inequality of Moser and Trudinger and

applications to conformal geometry, Comm. Pure Appl. Math. 56 (2003),
1135–1150, MR 1989228, Zbl 1049.53025.

[8] X. Cheng & D. Zhou, Rigidity for nearly umbilical hypersurfaces in space

forms, arXiv:1208.1786.



HYPERBOLIC ALEXANDROV-FENCHEL INEQUALITIES II 259

[9] L.L. de lima & F. Girão, An Alexandrov–Fenchel-type inequality in hyperbolic

space with an application to a Penrose inequality, arXiv:1209.0438v2.

[10] Q. Ding, The inverse mean curvature flow in rotationally symmetric spaces,
Chinese Annals of Mathematics, Series B, 1–18 (2010), MR 2772224, Zbl
1211.53084.

[11] E. Gallego & G. Solanes, Integral geometry and geometric inequalities in

hyperbolic space, Differential Geom. Appl. 22 (2005), 315–32, MR 2166125,
Zbl 1077.52010.

[12] F. Gao, D. Hug & R. Schneider, Intrinsic volumes and polar sets in spherical
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61 avenue du Général de Gaulle
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