NODES ON SEXTIC HYPERSURFACES IN \mathbb{P}^{3}

JONATHAN WAHL

In this note we present a coding theory result which, together with Theorem 3.6.1 of [3], gives a short proof of a theorem of D. Jaffe and D. Ruberman:

Theorem [5]. A sextic hypersurface in \mathbb{P}^{3} has at most 65 nodes.
W. Barth [1] has constructed an example with 65 nodes. Following V. Nikulin [7] and A. Beauville [2], one must limit the size of an even set of nodes, and then prove a result about binary linear codes (i.e., linear subspaces of \mathbb{F}^{n}, where \mathbb{F} is the field of two elements). The first step is the aforementioned result of Casnati-Catanese:

Theorem [3]. On a sextic hypersurface, an even set of nodes has cardinality 24, 32 or 40 .

The desired theorem will follow from:
Theorem A. Let $V \subset \mathbb{F}^{66}$ be a code, with weights from among 24, 32 and 40. Then $\operatorname{dim}(V) \leq 12$.

1. Codes from nodal hypersurfaces

(1.1) Let $\Sigma \subset \mathbb{P}^{3}$ be a hypersurface of degree d having only μ ordinary double points as singularities. Let $\pi: S \rightarrow \Sigma$ be the minimal resolution of the singularities, with exceptional (-2)-curves E_{i}. Thus

$$
\begin{equation*}
E_{i} \cdot E_{j}=-2 \delta_{i j} . \tag{1.1.1}
\end{equation*}
$$

S is diffeomorphic to a smooth hypersurface of degree d.

[^0](1.2) The classes $\left[E_{i}\right]$ in $H^{2}(S ; \mathbb{Z})$ span a not necessarily primitive sublattice of rank μ. A subset $I \subset\{1,2, \ldots, \mu\}$ for which $\Sigma\left[E_{i}\right](i \in I)$ is divisible by 2 in $H^{2}(S ; \mathbb{Z})$ (and therefore in $\operatorname{Pic}(S)$) is called even (or strictly even in [4]). More generally, consider for any subset I the homomorphism
$$
\varphi: \mathbb{F}^{I} \rightarrow H^{2}(S, \mathbb{F})
$$
associating to each standard basis vector e_{i} the mod 2 class of $\left[E_{i}\right]$. We define the code
$$
\operatorname{Code}(I) \equiv \operatorname{Ker}(\varphi)
$$

A non-0 element corresponds exactly to an even subset J of I; the weight of such a "word" is its number of non-zero entries, i.e., $|J|$. $\operatorname{Im}(\varphi)$ is totally isotropic by $(1.1 .1)$; thus, $\operatorname{dim}(\operatorname{Im}(\varphi)) \leq \frac{1}{2} b_{2}(S)$, whence

$$
\begin{equation*}
\operatorname{dim} \operatorname{Code}(I) \geq \operatorname{Card}(I)-\frac{1}{2} b_{2}(S) \tag{1.4.1}
\end{equation*}
$$

In particular, when $\mu>\frac{1}{2} b_{2}(S)$ one has a non-trivial code.
(1.5) It is an interesting question to determine for each d the possible cardinality t of an even set of nodes. By studying the corresponding double cover, one finds: For $d=4$, one has $t=8$ or 16 [7]; for $d=$ $5, t=16$ or 20 [2]. The recent Theorem 3.6.1 of [3] proves that for $d=6$, one has $t=24,32$ or 40 . Since b_{2} of a smooth sextic is 106 , the result of [3] becomes

Theorem 1.6. Let $\Sigma \subset \mathbb{P}^{3}$ be a nodal sextic hypersurface with at least μ nodes. Then there is a code $V \subset \mathbb{F}^{\mu}$ of dimension $\geq \mu-53$, all of whose weights are among $\{24,32,40\}$.

Let I be any set of μ nodes. This result plus our Theorem A will imply the 65 -node bound for sextics.

2. Proof of Theorem A

(2.1) The \mathbb{F}-inner product on \mathbb{F}^{n} (counting mod 2 the number of overlaps of two words) makes $V^{*} \subset \mathbb{F}^{n} . V$ is called even if all words have even weight, double even if the weights are divisible by 4 . Every doubly even code is automatically isotropic, i.e., $V \subset V^{*}$ (use (2.8.1) below). Since $\operatorname{dim}(V)=\operatorname{dim}\left(\mathbb{F}^{n} / V^{*}\right)$, a doubly even code satisfies $2 d \leq$ n with equality iff the code is self-dual $\left(V=V^{*}\right)$. The element $\mathbb{1} \in \mathbb{F}^{n}$ has a 1 in every position.
(2.2) Let $V \subset \mathbb{F}^{n}$ be a d-dimensional code with $a_{i}=a_{i}(V)$ words of weight i. We have the simple equations

$$
\begin{align*}
\Sigma a_{i} & =2^{d}-1 \tag{2.2.1}\\
\Sigma i a_{i} & =n^{\prime} \cdot 2^{d-1} \tag{2.2.2}
\end{align*}
$$

where $n^{\prime} \leq n$ is the number of entries containing 1 's from words of V. (2.2.1) is just an enumeration of $V-\{0\}$. For (2.2.2) list all 2^{d} elements of V as rows of a $2^{d} \times n$ matrix of 0 's and 1's. n^{\prime} columns contains at least one 1 ; since V is a subspace, exactly half the entries are 1 's. Now count the total number of 1 's via rows or columns. If $n^{\prime}=n$, we say $V \subset \mathbb{F}^{n}$ is a spanning code.
(2.3) For a striking generalization of (2.2.1) and (2.2.2), define the weight enumerator of the code V as

$$
W_{V}(x, y)=\Sigma a_{i} x^{n-i} y^{i}
$$

with $a_{0}=1 . W$ is homogeneous of degree d. The MacWilliams identity (e.g., [6]) states that the enumerator of the dual code V^{*} is

$$
\begin{equation*}
W_{V^{*}}(x, y)=\left(\frac{1}{2^{d}}\right) W_{V}(x+y, x-y) . \tag{2.3.1}
\end{equation*}
$$

Writing the coefficents of $W_{V^{*}}$ as $a_{i}^{*}=a_{i}^{*}(V),(2.3 .1)$ takes the form

$$
\begin{equation*}
\Sigma a_{i}^{*} x^{n-i} y^{i}=\left(\frac{1}{2^{d}}\right) \cdot\left\{(x+y)^{d}+\Sigma a_{i}(x+y)^{n-i}(x-y)^{i}\right\} . \tag{2.3.2}
\end{equation*}
$$

Equations (2.2.1) and (2.2.2) are respectively the statements $a_{0}^{*}=1$ and a_{1}^{*} (=number of entries not appearing in V) $=n-n^{\prime}$. More generally, we deduce the

Lemma 2.4. Let $V \subset \mathbb{1}^{n}$ be ad-dimensional code. Then

$$
\begin{align*}
\Sigma a_{i} & =2^{d}-1, \tag{2.4.1}\\
\Sigma i a_{i} & =2^{d-1}\left(n-a_{1}^{*}\right) . \tag{2.4.2}
\end{align*}
$$

(2.4.3) If $a_{1}^{*}=0$, then

$$
\Sigma i^{2} a_{i}=2^{d-1}\left\{a_{2}^{*}+n(n+1) / 2\right\} .
$$

(2.4.4) If $a_{1}^{*}=0$, then

$$
\Sigma i^{3} a_{i}=2^{d-2}\left\{3\left(a_{2}^{*} n-a_{3}^{*}\right)+n^{2}(n+3) / 2\right\} .
$$

Proof. Expand the right-hand side of (2.3.2), carefully.
Lemma 2.5. If $V \subset \mathbb{F}^{n}$ is a d-dimensional spanning code with only one weight w, then there is an integer $s>0$, so that $w=s \cdot 2^{d-1}$ and $n=s\left(2^{d}-1\right)$.

Proof. Use (2.2.1) and (2.2.2) and fact that 2^{d-1} and $2^{d}-1$ are relatively prime.

Lemma 2.6. If $V \subset \mathbb{F}^{n}$ is a spanning code with weights 24 and 32, then $n \leq 63$ and $d \leq 9$.

Proof. Solving (2.2.1) and (2.2.2), one finds

$$
\begin{aligned}
& a_{24}=2^{d-4}(64-n)-4, \\
& a_{32}=2^{d-4}(n-48)+3 .
\end{aligned}
$$

Since $a_{24} \geq 0$, one has $n \leq 63$. Next, by (2.4.3), 2^{d-1} divides

$$
24^{2} a_{24}+32^{2} a_{32}=2^{8}\left\{2^{d-6} \cdot 9 \cdot\left(2^{6}-n\right)+2^{d-2} \cdot(n-48)+3\right\} .
$$

So, if $d \geq 8$, then $d \leq 9$. (Of course, there are many more restrictions.)
(2.7) Suppose $V \subset \mathbb{F}^{n}$ is a d-dimensional spanning code with weights among $\{24,32,40\}$. We solve equations (2.4.1)-(2.4.3) for the a_{i} 's; writing $z=n(n+1) / 2+a_{2}^{*}$, we find

$$
\begin{aligned}
& a_{24}=2^{d-8}\left\{z-9 \cdot 2^{3} n+5 \cdot 2^{9}\right\}-10, \\
& a_{32}=2^{d-7}\left\{-z+2^{6} n-15 \cdot 2^{7}\right\}+15, \\
& a_{40}=2^{d-8}\left\{z-7 \cdot 2^{3} n+3 \cdot 2^{9}\right\}-6 .
\end{aligned}
$$

One can thus compute that

$$
\Sigma i^{3} a_{i}=2^{d+4}\left\{3 z-2 \cdot 47 n+3 \cdot 5 \cdot 2^{7}\right\}-2^{11} \cdot 3 \cdot 5
$$

By (2.4.4), this expression is divisible by 2^{d-2}; we conclude that

$$
\begin{equation*}
d \leq 13 \tag{2.7.1}
\end{equation*}
$$

Equating with (2.4.4) and simplifying yield

$$
\begin{align*}
3\left\{a_{2}^{*}\left(2^{6}-n\right)+a_{3}^{*}\right\}= & n^{3} / 2-(189 / 2) n^{2}+2^{5} \cdot 185 n \\
& -3 \cdot 5\left(2^{13}-2^{13-d}\right) \tag{2.7.2}
\end{align*}
$$

We record this equation for special pairs (n, d) :

$$
\begin{array}{ll}
(n, d)=(66,13) & a_{3}^{*}-2 a_{2}^{*}=-13, \tag{2.7.3}\\
(n, d)=(65,13) & a_{3}^{*}-a_{2}^{*}=-5 .
\end{array}
$$

Proposition 2.8. Let $V \subset \mathbb{F}^{n}$ be a code with weights among $\left\{w_{1}, \ldots, w_{t}\right\}$. Let $v \in V$ have weight w. Consider the projection $\pi: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n-w}$ onto the places off the support of v. Then
(a) $\pi(V)=V^{\prime}$ is a code of dimension $=d-\operatorname{dim}\left(V \cap \mathbb{F}^{w}\right)$; in particular, if v is not a sum of two disjoint words in V, then $\operatorname{dim}\left(V^{\prime}\right)=d-1$.
(b) The weights of V^{\prime} are all of the form $\left(\frac{1}{2}\right)\left(w_{i}+w_{j}-w\right)$.

Proof. For (a), the kernel of $\pi \mid V$ consists of words of V in the support of v. If it contained another word v^{\prime}, one could write a disjoint sum $v=v^{\prime}+\left(v-v^{\prime}\right)$. For (b), the weight of $\pi\left(v^{\prime}\right) \in V^{\prime}$ is the number of positions of v^{\prime} not in the support of v; this equals $w^{\prime}-r$, where r is the number of overlaps between v and v^{\prime}. If $v+v^{\prime}=v^{\prime \prime}$, then on the weight level

$$
\begin{equation*}
w+w^{\prime}-2 r=w^{\prime \prime} . \tag{2.8.1}
\end{equation*}
$$

Therefore, $w^{\prime}-r=\left(w^{\prime}+w^{\prime \prime}-w\right) / 2$, as claimed.
Proof of Theorem A. We may assume $V \subset \mathbb{F}^{n}$ is spanning code, where $n \leq 66$. By (2.7.1) it suffices to rule out the case of $d=13$. By Lemma 2.6, V contains a word of length 40 ; we project off it, and apply Proposition 2.8. Since 40 is not the sum of two weights, the projected $V^{\prime} \subset \mathbb{F}^{n-40}$ has dimension 12 ; the weights are among $\{4,8,12,16,20\}$. So, V^{\prime} is a doubly even code, hence $V^{\prime} \subset V^{\prime *}$; as

$$
n-40=\operatorname{dim} V^{\prime}+\operatorname{dim} V^{*} \geq 2 \cdot \operatorname{dim} V^{\prime}=24,
$$

one has $n \geq 64$. But V^{\prime} could not be self-dual, as $\mathbb{1} \in V^{* *}-V^{\prime}$ has weight $n-40>20$. This leaves the cases $n=65$ and 66 .

Return to the projected 12-dimensional doubly even code V^{\prime} in \mathbb{F}^{25} or \mathbb{F}^{26}. We claim $a_{2}^{*}\left(V^{\prime}\right)=0$. Otherwise, there is a weight 2 word f orthogonal to V^{\prime}; the span $V^{\prime \prime}$ of f and V^{\prime} is even (by definition), dimension 13, and orthogonal to itself. In \mathbb{F}^{25} this is impossible for dimension reasons. In \mathbb{F}^{26} the span could not contain $\mathbb{1 1}$ (which is clearly in $V^{\prime *}$), as its weight of 26 is not 2 plus a weight of V^{\prime}. This proves the claim.

On the other hand, (2.7.3) implies that V satisfies $a_{2}^{*}(V)>0$; thus, there exists a word of the form $e_{\alpha}+e_{\beta}$ in the dual of V. A word in V thus contains either both e_{α} and e_{β} or neither. On the other hand, projecting off a word of weight 40 gives a V^{\prime} with no such word of length 2; thus, every word in V of weight 40 must contain both e_{α} and e_{β}.

Intersecting V with the codimension-2 subspace $\mathbb{F}^{n-2} \subset \mathbb{F}^{n}$ of words containing neither e_{α} nor e_{β} gives 12-dimensional space \tilde{V}, but now the only weights can be 24 and 32 . By Lemma 2.6 , this is a contradiction.

Remark 2.9. Note that the inequality $\mu>\frac{1}{2} b_{2}(S)$, needed to assure a non-trivial code, cannot be true for $d=\operatorname{degree}(\Sigma) \geq 18$. For, Miyaoka's inequality implies $\mu \leq\left(\frac{4}{9}\right) d(d-1)^{2}$, while

$$
b_{2}(S)=d^{3}-4 d^{2}+6 d-2 .
$$

References

[1] W. Barth, Two projective surfaces with many nodes, admitting the symmetries of the icosahedron, J. Algebraic Geom. 5 (1996) 173-186.
[2] A. Beauville, Sur le nombre maximum de point doubles d'une surface dans $\mathbb{P}^{3}(\mu(5)=$ 31), J. de Géométrie Algébrique d'Angers (juillet 1979), Algebraic Geometry Angers, 1979, Sijthoff and Noordhoff, 1980, 207-215.
[3] G. Casnati \& F. Catanese, Even sets of nodes are bundle symmetric, J. Differential Geom. 47 (1997).
[4] F. Catanese, Babbage's conjecture, contact of surfaces, symmetric determinantal varieties, and applications, Invent. Math. 63 (1981) 423-465.
[5] D. Jaffe \& D. Ruberman, A sextic surface cannot have 66 nodes, J. Algebraic Geom. 6 (1997) 151-168.
[6] F. J. MacWilliams \& N. J. A. Sloane, The theory of error-correcting codes, NorthHolland, Amsterdam, 1977.
[7] V. Nikulin, On Kummer surfaces, Math. USSR Izv. 9 (1975) 261-275.
University of North Carolina

[^0]: Received June 10, 1997. This research was partially supported by NSF Grant DMS-9302717.

