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T H E Q U A N T U M C O H O M O L O G Y OF B L O W - U P S OF 
P2 A N D E N U M E R A T I V E G E O M E T R Y 

L. GOTTSCHE & R. PANDHARIPANDE 

1. Introduction 

The enumerative geometry of curves in algebraic varieties has taken 
a new direction with the appearance of Gromov-Witten invariants and 
quantum cohomology. Gromov-Witten invariants originate in symplec-
tic geometry and were first defined in terms of pseudo-holomorphic 
curves. In algebraic geometry, these invariants are defined using moduli 
spaces of stable maps. 

Let X be a nonsingular projective variety over C. Let ß G H2(X, Z). 
In [13], the moduli space Mo>n(X, ß) of stable n-pointed genus 0 maps is 
defined. This moduli space parametrizes the data [p : C —> X,pi,... ,p n] 
where C is a connected, reduced, (at worst) nodal curve of genus 0, 
pi,... ,p n are nonsingular points of C, and p is a morphism. Mo>n(X, ß) 
is equipped with n morphisms p\,... , pn to X where 

Pi{[p : C ->• X,pu ... ,p n]) = p{p i). 

X is a convex_variety if H1 (P1, f*(T X)) = 0 for all maps f : P1 -)• 
X. In this case, Mo>n(X,ß) is a projective scheme of pure expected 
dimension equal to 

dim(X)+n-3+ Z c ( T X) 
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with only finite quotient singularities. Given classes 7 1 , . . . , j n in 
H*(X, Z) , the Gromov-Witten invariants I ,3(71. . . 7n) are defined by: 

Ißill • • • In) = _ P*(7l) u • • • u Pniln)-
M0,n(X,ß) 

The intuition behind these invariants is as follows. If the i are the 
cohomology classes of subvarieties Y i C X in general position, then 
Ig(71 . . - n ) should count the (possibly virtual) number of irreducible 
rational curves C in X of homology class ß which intersect all the Y i. In 
case X is a homogeneous space, a correspondence between the Gromov-
Wit ten invariants and the enumerative geometry of rational curves in 
X can be proven by transversality arguments (see [9]). 

One can use the Gromov-Witten invariants to define the big quan
tum cohomology ring QH*(X) of X. The associativity of this ring yields 
relations among the invariants I /3(71. . . n) which often are sufficient to 
determine them all recursively from a few basic ones. The model case 
for this approach is the recursive determination of the numbers N d of 
nodal rational curves of degree d in the projective plane [13], [17]. 

If X is not convex, the moduli space Mo>n(X, ß) in general will not 
have the expected dimension. Recently, Gromov-Witten invariants have 
been defined and proven to satisfy basic geometric properties via the 
construction of virtual fundamental classes of the expected dimension 
[2], [1], [15] and, in the symplectic context, [16], [8], [18]. In partic
ular, these Gromov-Witten invariants have been proven to satisfy the 
axioms of [13], [3]. Therefore, they again define an associative quantum 
cohomology ring QH*(X). 

The aim of this paper is to study the Gromov-Witten invariants of 
the blow-up X r of P 2 in a finite set xi,... x r of points and to give enu
merative applications. X r is a particularly simple example of a noncon-
vex variety, so this study (at least in the context of algebraic geometry) 
necessitates the use of the above constructions. Let S be a nonsingular, 
rational, projective surface. S is either deformation equivalent to P 1 x P 1 

or to X r(S) where r(S) + 1 = rank(Al(S)). Together with the invariants 
of P 1 x P 1 , the Gromov-Witten invariants of X r therefore determine the 
invariants of all these rational surfaces (the invariants are constant in 
flat families of nonsingular varieties). For enumerative applications, it 
is necessary to consider the blow-up X r of P 2 in a finite set of general 
points. 

Let H be the pull-back to X r of the hyperplane class in P 2 , and let 
Ei,... , E r be the exceptional divisors. Our aim is to count the number 
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of irreducible rational curves C in X r of class dH — P r=i a i E i passing 
through 3d — Y^r=i a i ~ ^ general points. By associating to a curve in 
P 2 its strict transform in X r, this number can also be interpreted as the 
number of irreducible rational curves in P 2 having singularities of order 
a i at the (fixed) general points x i and passing through 3d — P r=i a i~^ 
other general points. 

The paper is naturally divided into two parts. First, we use the 
associativity of the quantum product to show that the Gromov-Witten 
invariants of X r can be computed from simple initial values by means 
of explicit recursion relations. There are r + 1 initial values required for 
X r \ 

(i) The number of lines in the plane passing through 2 points, 

N1,(0,... ,0) = 1-

(ii) The number of curves in the exceptional class E i, No,-[i] = 1-

The relations are then used to prove properties of these invariants. 

In the second half of the paper, the enumerative significance of the 
invariants is investigated. Our main tool is a degeneration argument in 
which the points x i are specialized to lie on a nonsingular cubic in P 2 . 
The idea of using such degenerations is due independently to J. Kollar 
and, in joint work, to L. Caporaso and J. Harris [4]. For a general 
blow-up X r, the Gromov-Witten invariants are proven to be a count 
(with possible multiplicities) of the finite number of solutions to the 
corresponding enumerative problem on X r. Let ß = dH — P i=ia i E i 
be a class in H2(X r,Z). If the expected dimension of the moduli space 
Moß(X r, ß) is strictly positive or if there exists a multiplicity a i G {1,2}, 
then the corresponding Gromov-Witten invariant is proven to be an 
actual count of the number of irreducible, degree d, rational plane curves 
of multiplicity aj at the (fixed) general points x i which pass through 
3d— P i=i a i ~ 1 other general points. In the Del Pezzo case (r < 8), all 
invariants are shown to be enumerative (see also [17]). A basic symmetry 
of the Gromov-Witten invariants of the spaces X r obtained from the 
classical Cremona transformation is discussed in Section 5.1. These 
considerations show that for d < 10, the Gromov-Witten invariants 
always coincide with enumerative geometry. Tables of these invariants 
in low degrees are given in Section 5.2. 

In [13], an associativity equation for Del Pezzo surfaces (correspond
ing to our relation R(m)) is derived. The small quantum cohomology 
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ring of Del Pezzo surfaces is studied in [6]. In Section 11 of [6], the as
sociativity of the small quantum product on X r is used to derive some 
relations among the Gromov-Witten invariants of these surfaces. The 
invariants of P 2 blown-up in a point are computed in [5], [10], and [11]. 
In [10], A. Gathmann computes more generally the invariants of the 
blow-up of P n in a point and studies their enumerative significance. In 
[7], the Gromov-Witten invariants of XQ are computed via associativity. 
Our recursive strategy for XQ differs. 

The first author would like to thank K. Hulek for suggesting to 
him the possibility of studying the quantum cohomology of blow-ups, 
and also the University of Chicago and in particular W. Fulton for an 
invitation which made this collaboration possible. The second author 
thanks J. Kollar for many remarkable insights on these questions. In 
particular, the main immersion result (Lemma 4.9) was first observed 
by him. Thanks are due to J. Harris for conversations in which the 
degeneration argument was explained. We also thank B. Fantechi and 
T. Graber for helpful discussions. 

Both authors thank the Mittag-Leffler-Institut for support. 

2. N o t a t i o n and background mater ia l 

Let X be a nonsingular projective variety. Assume for simplicity 
that the Chow and homology rings of X coincide. Let dim(X) be the 
complex dimension. Denote by a u ß the cup product of classes a, ß G 
H*(X,Z) and let (a • ß) = R x a u ß. By definition, (a • ß) is zero if 
a G H2i(X,Z), ß G H 2 j ( X , Z ) , and i+j ^ dim(X). 

We recall the definition of quantum cohomology from [13] in a slightly 
modified form for nonconvex varieties. Let B C H2(X, Z) be the semi
group of non-negative linear combinations of classes of algebraic curves. 
Let ß G H2{X, Z) . Let nß = dim(X) + Rß ci{T X) - 3. Let n > 0. For 

classes i G H 2 j i ( X , Z ) with Yn=ij = nß + n? let Ißili • • -In) be the 
corresponding Gromov-Witten invariant: 

^ ( 7 1 • • -In) = _ PÎ(7l) u • • • u Pn(7n), 
[M0,n(X,ß)] 

where [Mo ;n(X, ß)] is the virtual fundamental class. Note that if nß = 0 
and n = 0, then Iß is just the degree of the fundamental class. Kont-
sevich and Manin introduced a set of axioms for the Gromov-Witten 
invariants which have now been established for nonsingular projective 
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varieties (see Section 1). If Mo>n(X, ß) is empty, then I3(71 .. . 7n) = 0; 
in particular, all invariants vanish for ß 0 B. Let To = l ,T i , . . . ,T m be 
a homogeneous Z-basis for H*(X,Z). We assume that T i , . . . ,T p form 
a basis of H2(X,Z) = Pic(X). We denote by T iv the corresponding 
elements of the dual basis: (T i -Tv) = ij. Denote by (g ij) the matrix of 
intersection numbers (T i -T j) and by {g ij) the inverse matrix. For vari
ables yo, qi? • • • ) q p, y p+i-, • • • iyrn (abbreviated to q, y), define the formal 
power series 

r^y)= E E WÏp?-T m) 
n p+1 + ...+n m>0 ßeB\{0} 

2.0.1 - M U ; 
f T r T p + 1 • • • n m 

.Ig! Jgp y p+l y n 
•ql ••• p — j f 

n p+l- ' ' ' n a 

in t h e r ing 

Q[[q,q~\y]] = Q[[yo,qi,--- ,q p,qï1,... ,<p~\y p + i , . . . ,y m]]. 

In case X is a homogeneous space, the substitution q i = e y i in 
(2.0.1) yields a formal power series which equals the quantum part of the 
potential function of [13] modulo a quadratic polynomial in the variables 
y i , . . . , y m. The form (2.0.1) of the potential function is chosen to avoid 
convergence issues in the nonconvex case. Let 

and denote f ijk = didjdk f for f G Q[[q, q_ 1 ,y]]. Define a Q[[q, q_1 ,y]]-
algebra structure on the free Q[[q, q_1,y]]-module generated by 
T 0 , . . . ,T m by: 

m 

T i * T j =T iuT j+ J2 rije g ef T f. 
e,f=0 

By definition, this is the quantum cohomology ring of X, QH*{X). 
We sketch the proof of the associativity of this quantum product 

following [13] and [9]. First, a formal calculation (using the axiom of 
divisor) yields: 

(2.0.2) Tijk = Y, E n n-TTTfc)q T. . .q Tp 
n>0ßeB\{0} 
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where 7 = y p+1T p+1 + . . . + y m T mj and the Q[[y0, y p+i, • • • , y m]]-linear 
extension of Iß is used. Define the symbol ^ ijk by 

®ijk = Io(T i T j T k) + Tijk. 

In case X is homogeneous, ^ jk is the partial derivative of the full po
tential function. The *-product can be expressed by: 

m 

T i*T j = Y, *ije g ef T f. 
e,f=0 

Let 
m 

F(ij\k,l) = Yl ®ije g ef$fkl-
e,f=0 

Associativity is now equivalent to F(i,j\k,l) = F(j,k\i,l). Following 
[9], we let 

G{i,j\k,l)ß,n 
(2.0.3) 

where the sum runs over all ni,n2 > 0 with n + n ̂  = n and all 
ßufocB with ß!+ß2= ß- As before, 7 = y p+ iT p+i + . . . + y m T m. A 
calculation using equations (2.0.2) and (2.0.3) yields: 

F(i,j\k,l) = YqlßTl •••qßTpY,n G(i>j\k>l)ßn 
ß£B n>0 

On the other hand, we can use the splitting axiom and linear equivalence 
on Mo,4 = P1 to see that G(i,j\k,l)ßin = G(j,k\i,l)ßin, and thus the 
associativity follows. 

3. Quantum cohomology of blow-ups of P2 

Notation 3.1. Let r > 0. Let X r be the blowup of P2 in r general 
points x\,... ,x r. Denote by H G H ̂ iX^Z) the hyperplane class, and 
by E i, for i = 1 , . . . , r, the exceptional divisors. Let m = r + 2, and 
To = 1. Let Ti, T i_|_i (for i = 1, . . . , r), and T m be the Poincare dual 
cohomology classes of H, E i and the class of a point respectively. Let 
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ei = 1 and ei = - 1 for i = 2 , . . . , r + 1. Then, T0
V = T m and T ̂  = 

€i T i for i = 1 , . . . , r + 1. For an r-tuple a = ( a i , . . . , a r) of integers, 
denote by (d,a) the class dH — Y^r=ia i E i- Let M = P i a i-> and let 
n d,a = 3d — |a | — 1 be the expected dimension of the moduli space 
M 0 , 0 ( X r , ( d , a ) ) . I f n d , a > 0 , let 

N d,a = I(d,a) (T m d'a ) 

be the corresponding Gromov-Witten invariant. When writing N da 

for a sequence a of length r, we will always mean the Gromov-Witten 
invariant on X r. 

The components of the finite sequences a, ß, 7 are denoted by the 
corresponding roman letters a i, fi, cj. For any r, we write [i]r for the 
sequence ( j i , . . . ,j r) with j k = öik. We just write [i] if r is understood. 
For a sequence /3 = ( b i , . . . , b r_ i ) , we denote by (ß,k) the sequence 
obtained by adding b r = k. For a permutation CT of { 1 , . . . , r } , denote 
by cta the sequence ( a i ) , . . . ,aatr\). For an integer k, we write a > k 
to mean that a > k for all i. 

The invariants Ni,(o,...,o) and No,-[i]r are n r s t determined. A result 

relating virtual and actual fundmental classes is needed. Let M 0 0(X, ß) 

denote the open locus of automorphism-free maps (M 0 0(X,ß) is a fine 

moduli space). 

Propos i t i on 3 .2 . If M oyo(X,ß) = M0 0(X,ß) and the moduli space 
is of pure expected dimension, then the virtual fundamental class is the 
ordinary scheme theoretic fundamental class [Moß(X,ß)]. 

If, in addition, the expected dimension is 0, then the Gromov-Witten 
invariant Nß equals the (scheme-theoretic) length of MQ${X, ß). This 
result is a direct consequence of the construction in [2]. 

L e m m a 3 .3 . N ̂  /0)...,o) = 1 and No,-[i]r = 1-

Proof. A simple check shows that MQß(X r,H) = MQ2(X r,H). 
Also, the moduli space is irreducible of dimension 4 and (at least) gener-
ically nonsingular. For two general points pi,p2 £ X r, pï (p\) n p ^ (p2) 
consists of one reduced point corresponding to preimage of the unique 
line connecting the images of p\ and p% in P 2 . Hence, N ̂  r0,...,o) = 1 by 
Proposition 3.2. 

The moduli space MQJQ{X r, (0, —[i]) consists of one automorphism-
free map ß : P 1 —> E i C X r. The Zariski tangent space to 
M 0 , 0 ( X r , ( 0 , - [ i ] ) at [/i] is H°(P\N X r) = 0 where N X r = O P l ( - l ) 
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is the normal bundle of the map ß. Hence, M^^(X ri (0, —[i]) is nonsin-
gular and No,-[i] = 1 by Proposition 3.2. q.e.d. 

The invariants N d a will be determined by explicit recursions. In 
addition, these Gromov-Witten invariants will be shown to satisfy the 
following geometric properties. 

(PI) No)0, = 0 unless a = —[i] for some i. 

(P2) N d,a = 0 if d > 0 and any of the aj is negative. 

(P3) N dia = N diaa for any permutation a of { 1 , . . . , r}. 

(P4) N da = N d,(a,o)- In particular N d,(o,...,o) is the number of rational 
curves on P 2 passing through 3d — 1 general points computed by 
recursion in [13]. 

(P5) If n d,a > 0, then N dtU = N d)(a)1). 

R e m a r k 3.4 . Let Y be the blow-up of P 1 x P 1 in a point with 
exceptional divisor E, and let F, G be the pullbacks of the classes of the 
fibres of the two projections to P 1 . There is an isomorphism <f> : X2 —> Y 
with </>*(H) =F + G-E, </>*(E) = F-E, <p*(E2) = G-E. Let (d,a) 
be given with r > 2. If d — a\ — a2 > 0, then pushing down first to 
X2 and then further to P 1 x P 1 gives a bijection between the irreducible 
rational curves in | (d, CK) J on X r passing through n d^a general points and 
the irreducible rational curves of bidegree (d — a\jd — a2) on P 1 x P 1 , 
with points of multiplicities d — a\ — a2,a3,... , a r at r — 1 general points 
and passing through n dj(x other general points. 

We obtain recursion formulas determining the N d>a from the associa
tivity of the quantum product. All effective classes (d, a) on X r satisfy 
a < d. Therefore, we can write 

Y{qiy)=YJN d,aqq a21---q r+i— 
(d,a) 

m 

n d,a-

where the sum runs over all (d, a) 7̂  0 satisfying n dj(x > 0, d > 0, and 
a < d. Let Yijk = didjkY (following the notation of Section 2) . The 
quantum product of T i and T j is given by 

r+1 

T i * T j — (T i • T j)T m + 2_^ CkFijk T k + Tijm T0. 
k = i 
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Lemma 3.5. For i,j,k,l G { 1 , . . . ,m}, there is a relation: 

{R(T k;l T j)^ klm — (T k • T j)Yilm + (T k • T l)Tijm - (T i • T l)Tkjm 

m—l 
= / j e s \\ jksL isl ~ 1 ijs± ksl)-

s=l 

Proof. We write 

(T i * T j) * T k - (T k * T j) *T i = J2 r,jk,l T l 
l=0 

By associativity, we obtain the relation r i^k,l = 0. We show this relation 
is equivalent to (R ij^l)- We compute directly 

m—l 

s=l 

(T i * T j) * T k =(T i • T j)T m *T k+2_^ ^ s ̂  ijs T s * T k + rijm T k 

m 

= 2_^{T i • T j)rklm T 
l=1 

m—l / 

+ / _, esLijs(T s • T k)T m + y ^ sTijsTksl T l 

v 
l 

l=i 
m—l 

V 
l 

s=l l=1 

T 1 ijm T k-

It is easy to see that 

m 

1 ijm T k = / _, 1 ijmxT k ' T l T l T ^ ijm ^ km Ti 
V 
0 ) 

l=1 
m—l 

/ _, es ̂  ijsKT s ' T k)T m = t i j k l 1 — "kmlTQ • 
s=l 

Therefore, the sum of these two terms is just 

m 
/ _, ^ ijm\\T k • T l)T l + Tijk T0 . 
l=i 

Thus 

m / m—l \ 

(T i * Î j) * T k = y2 (T i " T j)Tklm + (T k • T l)Fijm + ^J srijsrksl 7l 

ijk TO ' + 1 ijk TO 
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and the result follows by exchanging the role of i and k and subtracting. 
q.e.d. 

For the recursive determination of the N da, only the following rela
tions are needed: 

m—1 

\Rl,l,m,m) i mmm = / _, £s\)- Ism lls-L smm)i 
s=l 

and for all i = 2 . . . r + 1 

m—1 

lRl, l , i , i 1 iim 1 11m = / _, esv.i lis 1 lls-^ iis)-
s=l 

Note that in case r = 0, only the relation (Ri,i,m)m) occurs and coincides 
with that of [13]. In the summations below, the following notation is 
used. Let the symbol \-(d,a) denote the set of pairs ((di,ß), (d2,^)) 
satisfying: 

(i) ( d 1 , / 3 ) , ( d 2 , 7 ) ^ 0 , 

(ii) (di,ß) + (d2,j) = {d,a), 

(iii) n dltß,n d2il > 0, di,d2 >0,ß< di, and 7 < d2. 

The notation \-(d, a), d i > 0 will be used to denote the subset of \-(d, a) 
satisfying di,d2 > 0. The binomial coefficient (p) is defined to be zero 
if q < 0 or p < q. 

Theorem 3.6. The N d, a are determined by the initial values: 

i) Ni,(Q,...,0) = 1, for allr, 
r 

(ii) NQ_[i]r = 1, for i G { 1 , . . . , r } ; 

and the following recursion relations. 

If n da > 3, then relation R(m) holds: 

N d,a = ^2 N dltßN d2^did2 - ^ftfecfe 
\-(d,a),d i>0 k=l 

•(did2(n d'a-3)-dl(n d>a-
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If n d,a > 0; then for any i G { 1 , . . . , r } relation R(i) holds: 

d2a i N dya = (d2 - (a i - lf)N dì0i_i 
r 

+ 5Z N d1,ßN d2il(did2-^b k c k 
h(d,a-[i]),d i>0 k=l 

• (did2b i c i - d\c2) ( d,a 

Furthermore, the properties (P1)-(P5) hold. 

Proof. From the relation ( R I ; I , i + I , i + I ) above, we get immediately 
(for n d)a > 1) the recursion formula R(i)*: 

(a i - dz)N dy a 

= y ^ N dlißN d,2n(did2 - y^bc k) (did2b i c i - dfc i ) d,a 

\-(d,a) k = 1 ,f 

We now show property (PI ) . If No j a ^ 0, then (0, a) is effective and 
therefore a < 0. If no,a = 0 we get a = —[i] for some i G { 1 , . . . , r}. If 
no,a > 0, we apply R(i)* for an i with a i ^ 0. We see that all summands 
on the right side are divisible by d\ = 0, and thus (PI) follows. 

The relation R(m) is obtained from Ri,i,m,m in two steps. The re
lation Ri,i,m,m immediately yields a recursion relation identical to R(m) 
except for the fact that the sum is over h (d, a) instead of 
\-(d,a),d i > 0. It will be shown that the terms with d\ = 0 or d2 = 0 
vanish. Since all summands are divisible by d\, only the case d2 = 0 
needs be considered. By (PI) , either No,7 = 0 or 7 = — [i]. In the second 
case, both binomal coefficients vanish. Thus, relation R(m) follows. 

Now we show relation R(i) holds. We apply relation R(i)* to N da-[i] • 
All summands on the right side of R(i)* are divisible by d\, thus all non-
vanishing summands have d\ > 0. By (PI) , No,7 can only be nonzero 
if 7 = —[j] for some j G { 1 , . . . , r } . Since the right side of R(i)* is 
divisible by c i, the only nonzero summand on the right side with d2 = 0 
occurs for (d2,j) = (0, — [i]) and is — d?a i N d^a. Bringing this term to 
the left side and bringing ((a i — l ) 2 — d2)N diC(_i to the right side, we 
obtain the relation R(i). Note that n dj(x > 0 implies n dQ_rii > 1. 

We now show that the invariants N di0l are determined recursively by 
the relations R(l),... ,R(r), R(m) and the intial values. By (PI) , all 
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d = 0 invariants are determined. Let d > 0. If n da > 3, then relation 
R(m) determines N dj(x in terms of N ej\ with e < d. Assume now that 
0 < n dia < 3. Either (d,a) = ( 1 , ( 0 , . . . ,0)) (and N d)0i = 1) or there 
exists an io with a i0 ^ 0. By relation R(io), we can determine N d a in 
terms of N e i\ satisfying either e < d or e = d and n dA > n d a . After at 
most 3 applications of a suitable R( i ) , R(m) may be applied. i d ; Q is 
then expressed in terms of the intial values and N e^\ with e < d. This 
completes the recursion. 

Finally, we verify (P2)-(P5). First, (P2) is proven. For d = 0, the 
statement of (P2) is void. Let d > 0, and assume by induction that 
(P2) holds for all do < d. Let (d, a) be given with d > 0, a j < 0. If 
n d,a > 3, we can apply R(m) to express N d>a as a linear combination 
of products N d ß N d-di^-ß with d i , d — d\ > 0. Furthermore a j < 0 
implies b j < 0 or a j — b j < 0. Therefore, N d a = 0 by induction. If 
0 < n d>a < 3, we apply R(j) to express N d a as a linear combination of 
N d a - j ] and terms of the form N dljßN d_dl^a_tji_ß with d\,d — d\ > 0. 
These last terms vanish by induction. Thus N d>a is just a multiple of 
N d,a-[j]- As n da_[j] = n da + 1, we can repeat this process to reduce to 
the case n d a > 3. 

(P3) is obvious, as the initial values and the set R ( l ) , . . . R(r), R(m) 
of relations are symmetric. 

(P4) Let (d,a) be given. We will show that N dj(x = N d,(Qjo)- By 
(PI) and the intial values, the result holds for d = 0. Let d > 0 
and assume by induction that the result holds for all d\ < d. Case 
1 ; n d>a > 3. Apply R(m) to express N d>a as a linear combination of 
terms N dlßN d_dl^a_ß and to express N d,(a,o) as a linear combination of 
terms N dlß0N d_dl^a^_ß0 with di , d—d\ > 0. (P2) implies, for nonzero 
terms, that ßo must be of the form (/?, 0). Furthermore the coefficient 
of N d1;(/3;o)N d2,(7,o) in the expression for N d,(a,o) is the same as that 
of N dlßN d2il in the expression for N d a . Thus the result follows by 
induction on d. 

Case 2: 0 < n d^a < 3. If a < 0, then (d, a) must be (1, ( 0 . . . , 0)) 
and N da = N d,(a,o) = 1- If there exists an i with a i < 0, then 

d,a = N d,(a,o) = 0 by (P2). Assume there exists a j with a j > 0. 
We apply R(j) both to N d>a and N d^aj0y Then i d , « is expressed 
as a linear combination of N d;Q_rji and the N dlßN d_dliC(_tj-i_ß with 
d i , d — d\ > 0. Using (P2), the expression for N d^a^ is obtained by 
replacing N dltßN d2„ by N d l ) ( /9)0)N d2)(7)0) and N d, a_i by N d,(a,0)-[i]- By 
induction on d, it is enough to show the result for N djCe_[iy Iterating the 
argument we reduce to n dj(x > 3 or to a < 0, where we already showed 
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the result. 
(P5) Let (d,a) be given with n d;0, > 0 and a j = 1 for some j . We 

show that N d,a = N d,a-[j]- By (PI)) we can assume d > 0. We apply 
relation R(j) to express N , a as a linear combination of N da-\j] and 
terms i d i ^ N d-di,«-j]-/? with di,d — di > 0. Furthermore, by (P2), 
all nonzero terms have b j = c j = 0. The coefficient of these terms is 
divisible by c j . Therefore, R(j) just reads d 2 N, Q = d2N dj0!_jy q.e.d. 

4. Moduli analysis 

4.1. Results 

As before, let X r be the blow-up of P2 at r general points x\,... , x r. In 
this section, the connection between Gromov-Witten invariants and the 
enumerative geometry of curves in X r is examined. Let a = ( a i , . . . , a r). 
Let (d,a) denote the class dH — P i=ia i E i in H2(X r,Z). Let n d a = 
3d — \a\ — 1 be the expected dimension of the moduli space of maps 
M0fi(X r,(d,a)). If 

n d,a ^ 0) let N da be the corresponding Gromov-
Witten invariant. In this case, the number of genus 0 stable maps of 
class (d, a) passing through n d a general points of X r is proven to be 
finite. N d>a is then shown to be a count with (possible) multiplicities of 
the finite solutions to this enumerative problem. Hence, the Gromov-
Witten invariant id,a is always non-negative. An analysis of the moduli 
space of maps yields a more precise enumerative result. 

Theorem 4.1. Let n d a > 0, d > 0, and a > 0. Let (at least) one 
of the following two conditions hold for the class (d,a): 

(i) n dja > 0. 

(ii) a i G {1,2} for some i. 

Then, N , a equals the number of genus 0 stable maps of class (d, a) 
passing through n da general points in X r. Moreover, in this case, each 
solution map is an immersion ofP1 in X r. 

4.2. Dimension 0 modul i 

Three coarse moduli spaces will be considered: 

M*0(X r,(d,a)) cM0fi(X r,(d,a)) C M0)o(X r, (d,«))• 
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Mj,o (X r ,(d,a)) is the open set of maps with domain P 1 . M* 0 (X r , (d, a ) ) 
is the open set of maps with domain P 1 that are birational onto their 
image. As a first step, these unpointed moduli spaces are shown to be 
empty when their expected dimensions are negative. As always, X r is 
general. 

L e m m a 4 .2 . Let (d, a) ^ 0 satisfy n d a < 0. Then, M$p(X ri (d, a)) 
is empty. 

Proof. If d < 0, Mofi(X r,(d,a)) is clearly empty. Next, the case 
d = 0 is considered. The only classes (0, a) ^ 0 that can be represented 
by a connected curve are the classes (0, — k[i]) for k > 1. Since 3 • 0 + 
k — 1 > 0, these classes are ruled out by the assumption n d a < 0. It 
can now be assumed that d > 0. 

Let B r be the open configuration space of r distinct ordered points on 
P 2 . B r is an open set of P 2 x • • • x P 2 (with r factors). Let ir : X r —> B r 
be the universal family of blown-up P 2 's. The fiber of -K over the 
point b = ( b i , . . . , b r) G B r is simply P 2 blown-up at b\,... ,b r. The 
morphism n is projective. Let r : Moß(-K, (d,a)) —> B r be the relative 
coarse moduli space of stable maps associated to the family n. The 
morphism r is projective. The fiber r _ 1 ( b ) is the corresponding moduli 
space of maps Moß(n~l(b), (d, a)) to the fiber n~l(b). 

Assume that Moß(X r, (d, a)) is nonempty for general X r. It follows 
that r is a dominant projective morphism and thus surjective onto B r. 
Let b = ( b i , . . . ,b r) G B r be r general points on a nonsingular plane 
cubic E c P 2 . Let X b = ix~l{b). Since r is surjective, there exists a 
stable map /z : C —> X b. By the numerical assumption, 

C • n*(cl(T X b)) = d - jaj = n di0l + 1 < 0. 

Since the points b i , . . . ,b r lie on E , the strict transform of E is a rep
resentative of the divisor class c\(T X b) on X b. Moreover, since E is 
elliptic, no component of C surjects upon E. Let C = S C j be the 
decompositon of C into irreducible components. For each C j , ß{C j) is 
either a point or an irreducible curve in X b not equal to E. Hence, 
C j • H*{E) > 0 . Since 

X C j / u * ( E ) = C - ^ ( c 1 ( T X b ) ) < 0 , 
j 

C j • n*{E) = 0 for all components C j . Since d > 0, there exists a 
component C such that n{C l) is of class (d l,a>l) with d > 0. Then, 
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/J,(C l) is curve and ß{C l) fi E = 0. Now consider the image of ß{C l) in 
(using the natural blow-down map X b —> P2). The image of ß(C l) 

is a degree d l > 0 plane curve meeting E only at the points b i , . . . , b r. 
Hence, there is an equality in the Picard group of E: 

r 

i X 

for some non-negative integers m i , . . . , m r. Since b i , . . . , b r were chosen 
to be general points on E, no such equality can hold. A contradiction 
is reached and the Lemma is proven q.e.d. 

A map /z : P1 —> X r is simply incident to a point y G X r if /z_1(y) is 
scheme theoretically a single point in P1. 

Lemma 4.3. Let (d,a) satisfy n da > 0. Then every map 

[Ml €M0fi(X r,(d,a)) 

incident to n da general points in X r is a birational map with domain 
P1 . Morever, every such map is simply incident to the n d a points. 

Proof. Let C be a reducible curve. Assume there exists a genus 0 
(unpointed) stable map /z : C —> X r representing the class (d, a) incident 
to n d^ general points. It is first claimed that at least two irreducible 
components are mapped nontrivially by ß. If no component is mapped 
to a point, the claim is trivial, otherwise, let K be a maximal connected 
component of C that is mapped to a point. K must meet the union 
of the irreducible components mapped nontrivially in at least 3 points. 
Since C is a tree, these 3 points lie on distinct components of C. Let 
C i , . . . , C s be the irreducible components mapped nontrivially by /z. Let 
(di,0!i), . . . ,(d s,as) be the classes represented by these components. 
Let p i be the number of the n d a general points contained in n(C i . 
Since 

s s 

n d,a = s - 1 + X n d i,o.i > X n d>°i ' 

and P i=ip i > n d,ai it follows that for some j , p j > n d.aj. Let 
y i , . . . ,y p j be the general points contained in ß{C j). Let X r+p j be 
the blow-up of X r at these points. Consider the strict transform of the 
map /z to the map /z' : C j —> X r+p j . The class represented by /z' is 
ß = (d j , (oij,mi,... ,m p j)) where m > 1 for all 1 < i < p j . Therefore 
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nß < n d j,aj -p j < 0. By Lemma 4.2, M0j0(X r+p j,ß) is empty. A con
tradiction is reached. Hence, no stable maps in Mofi(X r,(d,a)) with 
reducible domains pass through n d a general points of X r. 

Next, assume there exists a stable map /z : P 1 —> X r passing through 
n d,a general points, which is not birational onto its image. Let /z : P 1 —> 
Im(ß) be a generically k-sheeted cover for k > 2. Let 7 : P 1 ->• Im(p) 
be a desingularization of the image. The map 7 represents the class 
(d/k, a/k) 7̂  (0, 0) and is incident to the n d a general points. Note that 

o d 1 \ I 1 

n d/k,a/k = 3 • - - - | a | - 1 < n d;Q. 

As before, a contradiction is reached. Hence, the stable maps in 
M0,0{X r, (d,a)) passing through n d a general points of X r are bira-
tional. 

Finally, assume there exists a stable map /z : P 1 —> X r passing 
through n d^a general points y i , . . . -,y n da which is not simply incident 
to the point y\. Let X r+n da be the blow-up of X r at the general 
points. Then, the strict transform of /z to X r+n d a represents the class 
ß = (d,( ot,mi,... im n da)) where m i > 1 for all 1 < i < f d a and 
m i > 2. Again, n ̂  < n d a — n d a — 1 < 0 and a contradiction is reached. 
q.e.d. 

Corollary 4 .4 . Let (d,a) satisfy n d a = 0. Then 

M 0 , 0(X r,(d,a)) = M*0(X r,(d,a)). 

A scheme Z is of pure dimension 0 if every irreducible component 
is a (possibly non-reduced) point. Z may be empty. 

L e m m a 4.5 . Let (d ,a) satisfy n d a = 0. Then, M o ; o ( X , (d, a ) ) is 
of pure dimension 0. 

Proof. By Corollary 4.4, M 0 ,o(X r, (d ,a) ) = M*0(X r,{d,a)). Let 

/z : P 1 —> X r correspond to a point [/z] G M * 0 ( X r, (d, a ) ) . Consider the 

normal (sheaf) sequence on P 1 determined by /z: 

0 ->• T Pi ->• /z*T X r - • AX r ->• 0. 

The sheaf i X r has generic rank 1 and degree equal to 

3d — \a\ — 2 = n da — 1 = —1. 



t h e q u a n t u m c o h o m o l o g y o f b l o w - u p s o f P 2 77 

There is a canonical torsion sequence: 

0 -)• T -)• J X r ->• F ->• 0. 

The torsion subsheaf, r , is supported on the locus where /z fails to be 
an immersion. F is a line bundle of degree equal to —1 — dimfr). It 
follows that 

(4.5.1) H°(P1,N X r) = H0(P1,T). 

Let A : C —> M * 0 ( X r, (d, a)) be any morphism of an irreducible 
curve to the moduli space. It will be shown that the image of A is a 
point. It can be assumed that C is nonsingular. Since Mj\Q(X r, (d, a)) is 
contained in the automorphism-free locus, there exist a universal curve 
IT : P —> MQQ{X r, (d,a)) and a universal morphism /j : P —> X r (see 
[9]). Moreover, n is a P1-fibration. Let -K : S —> C be the pull-back of 
P via A and let /J : S —> X r be the induced map. S is a nonsingular 
surface. Let d/j, : T S —> \i*T X r be the differential of /z. Let T V C T S be 
the line bundle of 7r-vertical tangent vectors, and let U C S be the open 
set where d/j, : T V —> T X r is a bundle injection. The torsion result (4.5.1) 
directly implies that the bundle map d/j, : T S —> T X r is of constant rank 
1 on U. Hence, by the complex algebraic version of Sard's theorem, 
/J,(S) is irreducible of dimension 1. The /z-image of S must equal the 
/z-image of each fiber of n. It now follows easily that the image of A is 
a point. q.e.d. 

4.3. The m a p /z over Ej 

The results of the previous section do not show that Moß(X r, (d,a)) 
is a nonsingular collection of points when n d a = 0- Conditions for 
nonsingularity will be established in Section 4.4. Preliminary results 
concerning the the map /z over the exceptional divisors are required. 
First, the injectivity of the differential over E i is established. 

L e m m a 4.6. Let (d,a) satisfy n d a = 0. Let ß : P 1 —> X r cor
respond to a point [/z] G Moß(X r,(d,a)). Then d/j, is injective at all 
points in /j,~1(E i) for all i. 

Proof. Consider again the relative coarse moduli space 

T :M0,o(vr, (d ,a) ) -)• B r 

and the universal family of blown-up P2 ' s , n : X r —> B r. Let U r C B r 
denote the open subset to which the conclusions of Corollary 4.4 and 
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Lemma 4.5 apply. For b = ( b i , . . . , b r) G B r, let E i in 7r_1(b) denote the 
exceptional divisor corresponding to the point fi. Assume, for a general 
point b G U rj there exists a map /z : P 1 —>• 7r_1(b) satisfying: 

(i) [ / i ] e M o , o ( i - 1 ( b ) , ( d , a ) ) . 

(ii) There exists a point p E P 1 such that dß(p) = 0 and ß(p) G i i for 
some i. 

In this case, there must exist a fixed index j such that for general b £ U r 
the moduli space Mo ;o(y_ 1(b) , (d, a)) contains a map with vanishing 
differential at some point over E j . Let Y C r~l(U r) denote the locus of 
maps with vanishing differential at some point over E j . Y is closed in 
T~l(U r). Let Y denote the closure of Y in Mo;o(7r, (d,a)). Let [/z] G Y 
where /z : C —> ir~l (r([/z])). It is easily seen that one of the following 
two cases hold: 

(i) There exists a point p G C nonsing satisfying dß(p) = 0 and /z(p) G 

(ii) There is a node of C mapped to E j . 

These are the two possible degenerations of the singular point of the 
morphism /z over E j . Since Y dominates B r, the map Y —> B r is sur-
jective. 

Define a complete curve F C B r as follows. Let the points e i , . . . , e r 
be distinct points on a nonsingular cubic plane curve F c P 2 . Choose 
a zero for the group law on F. Let the curve F C B r be determined 
by elliptic translates of the tuple ( e i , . . . ,e r). There is a natural map 
€j : F —>• F given by ej(f = ( f i , . . . , f r)) = f j - Consider the fibra-
tion of blown-up P 2 ' s over F , v r - 1 F ) ->• F . Let S C v r - 1 F ) be the 
subfibration of P ^ s determined by the exceptional divisor E j: 

Via composition with ej, there is a natural projection S ^ F. There is 
a canonical isomorphism S = P ( T P2j F ) —> F of varieties over F. 

Let 7 : D —> Y be an irreducible curve that surjects onto F via r . 
After a possible base change, a flat family of stable maps which induces 
the morphism 7 exists over D . (In [9], the moduli space of maps is 
constructed locally as finite quotient of a fine moduli space of rigidified 
maps, so a base change with a universal family exists on an open set of 
D. The properness of the functor of stable maps implies, after further 
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base changes, that this family can be completed over D.) Denote this 
family of stable maps over D by n : C —> D and \i : C —>• 7r _ 1 (F) . 
Let Z C C be the locus of nodes of the fibers of n union the locus of 
nonsingular points of the fibers where d/j, vanishes on the tangent space 
to the fiber. Z is a closed subvariety. 

Let Z' C C denote the (closed) intersection Zr\/j,~l(S). The subva
riety T = n(Z') C S = P (T P2j F) dominates F by the properties of Y. 
There is a natural section F —> P (T P2j F) given by the differential of F. 
By Lemma 4.7 below, F fi T is nonempty. Let ( G F fl T. 

There are now two cases. First, let d G D be such that there exists a 
nonsingular point p G C at which the differential of /zd vanishes satisfing 
C = lld(p)- Consider the map ßd from C d to P 2 blown-up at the points 
f = (fi,... , f r). Since ( e F C P ( T P2j F ) , the strict transform of F in 
this blow-up passes through Ç = //d(p) G E j . Ifp lies on a component of 
C d not mapped to a point, then C d • ß*(F) > 2 because of the vanishing 
differential at p. However, since n d a — 0 and F represents the first 
Chern class of the surface, C- /u*(F) = f. A contradiction is reached. Ifp 
lies on a component mapped to a point, let K be the maximal connected 
subcurve of C which contains p and is mapped to a point. By stability 
of the map, K must intersect the other components of C at least at 3 
points. By maximality, these intersection points lie on components not 
mapped to a point by /id. Hence, in this case, C • ß*(F) > 3. Again a 
contradiction is reached. 

Second, let d G D be such that a node p G C maps to Ç. Again con
sider the map /id from C d to P 2 blown up at the points f = ( f i , . . . , f r). 
The strict transform of F in this blow-up passes through Ç = Hd(p) G E j . 
If the node p is an intersection of 2 components of C d neither of which 
is mapped to a point by ßd-, then C • ß*(F) > 2 and a contradiction is 
reached. If the node is on a component that is mapped to a point, then 
C d ' ^{F) > 3 as before and a contradiction is again reached. q.e.d. 

L e m m a 4.7. Let i : F <—>• P 2 be a nonsingular plane cubic. Let 
F —> P (T P2j F) be the canonical section induced by the differential. Then 
F n V is nonempty for any curve V C P(T P2j F). 

Proof. First the divisor class of the section F is calculated. Consider 
the tangent sequence on the plane cubic F: 

(4.7.1) 0 ->• O F = T F ->• T P2j F - • O P2(3)j F = O F(3) - • 0. 

Let S = P(T P2j F) and let p : S —> F denote the projection. Let L 
denote the line bundle P(l) on S. Via a degeneracy locus computation, 
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sequence (4.7.1) implies that the section F is a divisor in the linear series 
of the line bundle L <g> p*O F(3). Note that: 

H0(S,L®p*O F(3))=H°(F,T P2j F(3)). 

The dual of the Euler sequence tensored with O P2(3) restricted to F 
yields: 

0 -> T 2 j F(3) ->• ®\O F{2) -+ O F(3) ->• 0. 

It is easy to see the corresponding sequence on global sections is exact. 
Hence H°(S,L ® p*O F(3)) = 9. Therefore, for any s G S, there exists 
a divisor linearly equivalent to F passing through s. Also, it is easy to 
calculate F • F = 9. 

Let V be an irreducible curve in S and assume V n F is empty. 
Hence, V • F = 0 and V is not a fiber of p. Let G be a divisor equivalent 
to F meeting V. By the equation V • G = 0, V must be a component 
of G. Write G = c V V + P cjW i. Let f b e a general fiber of p. 

c v V-f + X c W i-f = G-f = l. 
i 

V • f > 1 since V is not a fiber. Therefore, V • f = 1, c V = 1, and 
W i • f = 0. This implies each W i is a fiber. Then, 

i i 

V is therefore a section of O S(F) ® p*N where N is degree —9 line 
bundle on F. Again H°(S, O S(F)®p*N) = H°(F,T*2j F ® O F(3)®N). 
The latter is seen to be zero by the dual Euler sequence argument. No 
such V exists. q.e.d. 

The Lemma 4.6 showed the branches of the image curve ^(P1) are 
nonsingular at their intersections with the E i Next, it is shown that 
distinct branches of the image curve do not intersect in the exceptional 
divisors. 

Lemma 4.8. Let (d,a) satisfy n d a = 0. Let p : P1 —> X r corre
spond to a point [p] G MQ^(X rj (d,a)). Let I be the image curve //(P1). 
Then the set InE i is contained in the nonsingular locus of I (for all i). 

Proof. The proof of this lemma exactly follows the proof of Lemma 
4.6. If the assertion is false, a quasi-projective subvariety 

W C Mo,o(7T,(d,a)) 
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can be found where the image curve has distinct branches meeting in 
E j (for a fixed index j). The closure W of W then surjects upon B r. 
Let /z : C —> X b be a limit map [/z] G W. At least one of the following 
properties must be satisfied: 

(i) Distinct points of C are mapped by /z to the same point of E j . 

(ii) There exists a point p G C nonsing satisfying d/j,(p) = 0 and 

A»(p) e E j -

(iii) There is a node of C mapped to E j . 

The same curve F C B r is considered. Let 7 : D —>• W be an irreducible 
curve that surjects onto F via r. As before, a curve in T C S = P(T P2j F) 
can be found representing the points on E j where the singularities oc
cur. Using Lemma 4.7, F HT is non-empty. It is then deduced that 
stable maps exist satisfying jj,*ci(T X b) > 2 as before. A contradiction is 
reached. q.e.d. 

4.4. Nonsingulari ty conditions 

The main nonsingularity result needed for the proof of Theorem 4.1 can 
now be proven. 

Lemma 4.9. Let (d,a) satisfy d > 0, a > 0, and n d a = 0. If there 
exists an index i for which a i G f1, 2g, then Moß(X r, (d, a)) is non-
singular of pure dimension 0. Moreover, the points of Moß(X r, (d, a)) 
correspond to immersions of P1 in X r. 

Proof. If Moto(X r,(d,a)) is empty for generic X r, the Lemma is 
trivially true. Let /z : P1 —> X r be a map in Moß(X r, (d,a)). By the 
genericity assumption, the natural map: 

(4- 9 - 1 ) dT : T Mo,oU,d«)),M ^ T*T B r,r([ß]) 

must be surjective. The Lemma is proved in two steps. First, the 
surjectivity of (4.9.1) is translated into a condition on the global sections 
map of a normal sheaf sequence associated to /z. The map /z is then 
shown to be an immersion. N X r is therefore locally free of rank 1 and 
degree 3d — jaj — 2 = n da — 1 < 0. The Zariski tangent space to 
Mofi(X r, (d,a)) at [/z] is H°(P1, N X r) = 0. Hence, [/z] is a nonsingular 
point of MQ;O(X r,(d,a)). 
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Let X r be the blow-up of P 2 at the points xi,... ,x r. The defor
mation problem as the blown-up points xi,... ,x r vary is considered. 
There is a projection X r —> P 2 which yields et SGQU6I1CG Oil Jvrl 

(4.9.2) 0 ->• T X r -+ T P2 -+ Q ->• 0. 

Q is a sheaf supported on the exceptional curves E i Qj E i is a line bundle 
on E i. More precisely, if the point e G Üi corresponds to the tangent 
direction T e C T P2 x , then the fiber of Q at e is T P2x i /T e. The space 
of deformations of the points x i , . . . ,x r is ©i= iT P2x i 
©r = 1 T P2 x is also canonically the tangent space to B r at the point x = 

). Therefore a vector 0 / v Ë © r i ^ P 2 x i defines a first order 
deformation of X r in the family X r. Let A : A —> B r be a nonsingular 
curve in B r passing through x with tangent direction Cv. Let X/\ = 
X~lX r —> A . This deformation naturally yields a differential sequence 
on X r: 

(4.9.3) 0 - • T X r -)• T XA - • O X r - • 0. 

Sequences (4.9.2) and (4.9.3) are related by a commutative diagram: 

0 > T X r > T XA a - ^ O X r > 0 

(4.9.4) 

0 > T X r > T P2 d-^ Q > 0. 

Moreover, it is easy to check that the image of 

c:H°(X r,O X r)^H°(X r,Q) 

is simply Cv. 
Since d > 1, Im(ß) is not contained in any E i. Therefore the above 

commutatitive diagram stays exact when pulled back to P 1 . Let N P2 
and N XA denote the normal sheaves on P 1 of the maps to P 2 and XA 

induced by /z. Consider the commutative diagram of exact sequences 
obtained by pulling back (4.9.4) to P 1 and quotienting by the inclusion 
of sheaves induced by the differential d/j, : T Pi —> \i*T X r : 

0 > N X r > N XA —a O Pi > 0 

b c 

0 > N X r > N P2 —d n*Q > 0. 
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H° (P1 , N XA ) is the space of first order deformations of the map ß 
considered as a map to X&. By the surjectivity of (4.9.1), there must 
exist a first order deformation of [/J] not contained in X r. Therefore, 
the image of a : H°(P\N XA) ->• H°(P\O PI) must be non-zero. This 
condition is equivalent to the splitting of the top sequence. Using this 
splitting and the morphism b, it is seen that the section v G H ° ( P 1 , Q) 
must be in the image of d : H°{P1,N P2) ->• H°{P1,p*Q). 

The conclusion of the above considerations is the following. For 
every element v G ®r=iT P2 x , there exists a section of H ° ( P 1 , i P 2 ) 
which has image v G H°(P1,ß*Q). The map ß will now be shown 
to be an immersion. 

Suppose p G P 1 satisfies ß(p) G E i. By Lemma 4.6, dp{p) is injective. 
Let m be the multiplicity of p*E i at p. Local calculations show that the 
following hold in a neighborhood U c P 1 of p with local parameter t: 

(i) i P 2 has torsion part C[t]/(t m _ 1 ) , where t is a local parameter at 
p. 

(ii) fj,*(Q) is the torsion sheaf C[t] / {t m ). 

(iii) The map on torsion parts from N P2 to p*(Q) is multiplication by 
t. 

Let T be the torsion part of 7P2. By (iii), the natural map of sheaves 
on U: 

N Pi/T ^ ß*{Q)®O p = C 

is surjective. Therefore, a section s of the line bundle N^/T is zero at 
p if and only if the image of s in p* (Q) (g> O p is zero. 

Decompose r = A © B where A is the torsion part supported at the 
points IJi p~1(E i), and B is the torsion part supported elsewhere. Let n 
equal the set theoretic cardinality j S ip~1(E i)j. For each point z G P 1 

lying over an exceptional divisor E, let m z be the multiplicity of ß*E 
at z. The following equations are obtained: 

zeS i X ^E i) i 

degree(A) = X (m z — 1) 
zeS iß-HE i) 

The degree of i P 2 is 3d — 2. The degree of 

N P2/A = 3d-2 + n - X a i 
i 

n + a i-

n — 1. 
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Let b = degree(B). Then, the degree of N^/T is n — 1 — b. Note that 
[i is an immersion if and only if b = 0. 

Without loss of generality, let a\ G f1,2g. First consider the case 
a\ = 1. There is a unique point z\ in \i~x{E\). Let v = (Bi v i where 
v i G T P2yx. satisfy: 

(i) vl ^0 in fj,*Q®OZl. 

(ii) v i = 0 for i > 2. 

Since there exists a section s of H ° ( P 1 , N P2) with image 

veH°(PV(Q)), 

there must exist a nonzero section s of H° (P1, N P2/T) vanishing at (at 
least) n — 1 points (all the z's except zi) by (iii). Therefore, 

degree(N P2/r) > n — 1. 

It follows that b = 0. 

Next, consider the case ai = 2. There are two possiblities. Either 
H~l(E\) consists of two points or one point. If there is a unique point 
in ß~l(E\), the argument proceeds exactly as in the ai = 1 case and 
b = 0. Now suppose /J,~1(EI) = fzi,z2g- By Lemma 4.8, /z(zi) ^ ß{z<2)-
Let v = (Bi v i satisfy: 

(i) vi ^0infi*Q®O z l , 

(ii) vi = 0 in fj,*Q®OZ2, 

(iii) v i = 0 for i > 2. 

Such a selection of vi is possible since T P2 x surjects upon ß*Q® OZl © 
ß*Q ® O z,2 for /i(zi) T^ n{z2)- As before, there must exist a nonzero 
section s of H° (P1 , 7P2/V) vanishing at least n — 1 points (all the z's 
except zi) by (iv). Therefore, degree(N P2/r) > n — 1. It follows that 
b = 0. q.e.d. 

L e m m a 4.10. Let d > 0, a > 0, r < 8, and n d a = 0. Then, 
Mo,o(X r,(d,a)) is nonsingular of pure dimension 0. Moreover, the 
points of MQo(X r,(d,a)) correspond to immersions ofP1 in X r. 
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Proof. Let p : P 1 ->• X r be a map in Mo ; o(X? (d,a)). By Lemma 
4.6, /i is an immersion at the points of P 1 mapping to the exceptional 
curves E i Suppose p G P 1 is a point where p, is not an immersion 
{ß{p) £ E i). Since the number of blown-up points xi,... , x r is at most 
8, there is curve in the linear series 3H — P i=i E i passing through 
p(p). Let F denote this cubic (which may be reducible). There are 
now two cases. If //(P1) is not contained in any component of F, then 
P 1 -p* (F) > 2 because p is not an immersion at p. This is a contradiction 
since the numerical assumption implies P 1 • p*{F) = 1. If ^(P 1 ) is 
contained in a component of F, then d must equal 1,2, or 3 (since p is 
birational). For these low degree cases, MQJQ{X r, (d,a)) is empty unless 
a i = 1 for some i. Then, Lemma 4.9 yields a contradiction. We conclude 
/i is an immersion and Moß(X r, (d,a)) is nonsingular. q.e.d. 

4.5. Proof of Theorem 4.1 

First, the case n d a — 0 is considered. Since d > 0, o ^ 0, and 
aj G {1,2} (for some i), Lemma 4.9 shows that Moß(X r,(d,a)) is a 
nonsingular set of points. By Proposition 3.2, N^ equals the number 
of points in Moß(X r, (d,a)). Moreover, by Lemma 4.9, the points of 
Moß(X r, (d, a)) represent immersions of P 1 . Theorem 4.1 is established 
for classes (d, a) satisfying n d a = 0. 

Proceed now by induction on n = n d a . If n d^ > 0, consider the 
class (d, (a, 1)) on P 2 blown-up at r + 1 points x\,... , x r+\. Certainly, 
n d,(a,i) = n — I. By property (P5) of Section 3, 

N d,a = N d,(a,l)-

The class (d, (a, 1)) satisfies condition (ii) in the hypotheses of Theorem 
4.1. By induction, N d^a^ equals the number of genus 0 stable maps 
of class (d, (a, 1)) passing through n d a — 1 points pi,... ,p n-i in X r+\. 
This is precisely equal to the number of stable maps of class (d, a) 
passing through the n d a points pi,... ,p n-i,x r+\ in X r by Lemma 
4.3. Since the solution curves are immersions in X r+\, it follows easily 
that the corresponding curves m Jvr are also immersions. The proof of 
Theorem 4.1 is complete. 
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5. S y m m e t r i e s and c o m p u t a t i o n s 

5.1. The cremona t ransformat ion 

Let pi,p2,p3 be 3 non-collinear points in P 2 . Let L\,L2,L ^ be the 3 
lines determined by pairs of points where p i,p j G L k for distinct indices 
i,j,k. Let S be the blow-up of P 2 at the points pi,p2,pz- Let E\, E ̂ , E3 
be the exceptional divisors of this blow-up. Let Fi,F2,Fs be the strict 
transforms of the lines L i , L2,L3. The F k are disjoint (—l)-curves on 
S and can be blown-down. The resulting surface is another projective 

—2 
plane P . The blow-down maps are: 

(5.0.1) P 2 e S f P2. 

This is the classical Cremona transformation of the plane. Let qi, q2, q3 G 

P 2 be the points f(Fi), f(F2), f(F3). Let H and ~H denote the hy-

perplane classes in A\(P2) and Ai(P ) respectively. There are now 2 

bases of A\(S) corresponding to the two blow-downs: H,Ei,E2,E$ and 

H,Fi,F2,F3. The relationship between these bases is: 

dH — a\Ei — a2E2 — a3E3 

= (2d — a\ — a2 — as)H — (d — a2 — a3)Fi 

— (d — ai — a3)F2 - (d - a\ - a2)F3. 

Let x 4 , . . . ,x r G P 2 be additional general points on P 2 which cor
respond via the maps (5.0.1) to general points s±,...,s r G S and 

—2 
y 4 , . . . , y r G P . The blow-up of S at the points s4,... ,s r may be 
viewed as a general blow-up of P 2 at p\, p2, p%, x4,... ,x r or as a gen-

—2 
eral blow-up of P at qi,q2,q3,y4,- • • ,y r- Let G 4 , . . . ,G r denote the 
exceptional divisors of the blow-up of S. 

Since the class dH — a\E\ — a2 E2 — a3E3 — Y^r=4a i G i equals the 
class 

(2d — a\ — a2 — as)H—(d — a2 — a$)Fi — (d — a\ — a3)F2 
r 

-(d-ai -a2)F3 - X a i G i, 
i=4 

the Gromov-Witten invariant N d a on the blow-up of P 2 equals the in-
—2 

variant N^^i on the blow-up of P where 

(d , a ) = (2d—a1—a2—a3, (d—a2—a3,d—a1—a3, d—a1—a2,a4,... ,a r)). 
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It follows that Mofi(X r,(d,a)) is nonsingular if and only if 
Moß(X r, (d',a')) is nonsingular. Therefore, N d a is enumerative if and 
only if N d a1 is enumerative. The Cremona symmetry of the Gromov-
Wit ten invariants of X r is discussed in [6] from a slightly different per
spective. 

For example, let (d,a) = (10 , (4 ,4 ,3 ,3 ,3 ,3 ,3 ,3 ,3 ) ) = (10, (42 ,37)) 
where the last equality is just notational convenience. Then, n10,(42^7) = 
30 - 29 - 1 = 0. The class (10, (42 ,37)) does not satisfy either condi
tion (i) or (ii) of Theorem 4.1. Applying the Cremona transformation, 
(d',ar) = (9, (3, 3 , ^ 3 ^ ) . Theorem 4.1 applies to {d',a'). Therefore, 
the moduli space Moß(X r, (10, (42, 37)) is nonsingular (and all points 
correspond to immersions). N9/42 >37) = 520 is enumerative in this case. 

5.2. Tables 

The arithmetic genus of the class (d, a) on X r is determined by: 

(d-l){d-2) • r a i(a i - l ) 
g a{d, a) = 2 ^ 2 ' 

i=l 

The arithmetic genus of a reduced, irreducible curve is non-negative. By 
Corollary 4.4, Moß(X r, (d, a)) is empty when g a(d, a) < 0 and n d a = 0. 
A simple reduction to the case of expected dimension zero shows that 
N d,a = 0ifg a{d,a) < 0. 

If a i + a j > d for indices i ^ j , then N d a = 0 unless (d,a) = 
(1, (1,1)). This follows again by a reduction to the expected dimension 
zero case. Then, Corollary 4.4 shows that Moß(X r,(d,a)) is empty 
(unless (d,a) = (1,(1,1))) by considering the intersection of a map 
with the line in P 2 connecting the points x i and x j . 

In the first table below, Gromov-Witten invariants N d a for d < 5 
and a > 0 are listed. By properties (P3), (P4), and (P5), it suffices to 
list the invariants for ordered sequences a satisfying a > 2. Moreover, 
if g a(d,a) < 0 or if a i + a j > d, the invariant vanishes and is omitted 
from the table. The invariants were computed by a Maple program via 
the recursive algorithm of the proof of Theorem 3.6. 
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d=\ 
Ni = 1 

2 

N2 = 1 

3 

N3 = 12 

N3,(2) = 1 

4 

N4 = 620 

N4,(2) = 96 

NM22} = 12 

N4>(2s) = 1 
N4,(3) = 1 

5 
N 6 = 87304 
N6,(2) = 18132 
N6i(22) = 3510 
N6i(23) = 620 
N6i(24) = 96 
N6,(25) = 12 

5 
N5,(26) = 1 

NB>(3) = 640 

N5,(3,2) = 96 

N5,(3,22) = 12 

N5,(3,23) = ! 
N5,(4) = 1 

The Cremona transformation applied to the class (5,(2,2,2)) yields 
N5,(2,2,2) = N4,(1,1,1)- By Property (P5), N4,(1,1,1) = N4 = 620. The 
following table lists all the Gromov-Witten invariants for degrees 6 and 
7 which are not obtained from lower degree numbers by the Cremona 
transformation. 

d = 6 
N6 = 26312976 
N6)(2) = 6506400 
N 6j ( 2 2 ) = 1558272 
N6|(23) = 359640 
N6j(24) = 79416 
N6|(2B) = 16608 

N6|(26) = 3240 
NQ(27) = 576 

N ( 2 8 ) = 90 
N6)(3) = 401172 
N6̂ (3,2) = 87544 
N6,(4) = 3840 

7 
N7 = 14616808192 
N7)(2) = 4059366000 
N7[{22} = 1108152240 
N 7j ( 2 3 ) = 296849546 
N7[{24} = 77866800 
N7|(2B) = 19948176 

N 7j ( 2 6 ) = 4974460 
N7|(27) = 1202355 
N7[{28} = 280128 
N7[{29} = 62450 

N7 (210) = 13188 
N7'(3) = 347987200 

7 

N7,(3,2) = 90777600 
N7'tQt22) = 23133696 
N7|(3|23) = 5739856 
N7'tQt24) = 1380648 
N7|(3|26) = 320160 
N7|(3|26) = 71040 
N7|(3|27) = 14928 
N7|(3|28) = 2928 
N 7j ( 3 2 ) = 6508640 
N7[{4) = 7492040 
N7^2) = 1763415 
N7'(5; = 21504 

In [7], the Gromov-Witten invariants of XQ are computed. Our 
computation N6,(26) = 3240 disagrees with [7]. We have checked our 
number using different recursive strategies. 

Let (d,a) be a class for which all the hypotheses of Theorem 4.1 
and Lemma 4.10 fail. Then, r > 9, 3d = \a\ + 1, and a > 3. Hence, 
d > 10. If d = 10, then there are only two possible values (up to re
ordering) for a: (42,37) or (5,38). The invariant N10,(42,3?) was shown 
to be enumerative by the Cremona transformation in Section 5.1. Ap
plying the transformation to (10, (5, 38)) yields (9, (4, 22, 36)). Hence, 
Nio,(5,38) = N9,(4,22,36) = 90 is enumerative by Theorem 4.1. We have 
shown all invariants of degree d < 10 are enumerative. The only in
variants of degree 11 not proven to be enumerative by the methods 
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of this paper correspond to the classes (11, (5, 39)) and (11, (42, 38)). 
N11;(5;39) = 707328 and Nn^2i3S) = 2350228. It is not known to the 
authors whether non-trivial multiplicities arise. 
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