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BLASCHKE-SANTALO INEQUALITIES 

ERWIN LUTWAK & GAOYONG ZHANG 

Two of the most important affine isoperimetric inequalities are the 
Blaschke-Santalo inequality (see, e.g., Gardner [6, p. 322] or Schneider 
[12, p. 425]) and the classical affine isoperimetric inequality of affine 
differential geometry (see, e.g., Schneider [12, p. 419]). These two 
inequalities are closely related in that given either one of these inequal­
ities, then by well-known methods one can be quickly deduced from the 
other. The aim of this article is to establish a new family of analytic in­
equalities and their geometric counterparts. One of the members of this 
family of inequalities turns out to be the Blaschke-Santalo inequality. 

Let S n - 1 denote the unit sphere in n. Let B denote the unit ball 
(the convex hull of S n~l) in R", and write n for the n-dimensional 
volume of B. Note that, 

u>n = 7n / 2 / r ( l + n), 

defines un for all non-negative real n (not just the positive integers). 
For real p>l, define c np by 

c n,p — • 
LÜ2iOnLüp-l 

For real p > 1 and continuous f : S n - 1 —> R, let ||f||p denote the 
standard L p-norm of f; i.e., 

Wf\\p={JS n_1\f(u)\p du} p> 
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where the integration is always with respect to the rotation invariant 
probability measure on S n - 1 . 

Theorem A. For real p > 1 and continuous f,g : S n - 1 —> (0,oo); 

S ju-vj p f(u)g(v)dudv > c n_2)p | | f | | n | | g | | n , 
S n - l n - l n+p n+p 

with equality if and only if there exist a (f> G GL(n) and real ci,c2 > 0 
such that 

f(u) = cij</>(u)j-(n+p) and g(u) = c2j0_t(u) (n+p) 

for all u G S 1 " 1 . 

Here u-v denotes the standard inner product of u and v, and 4>~t 
denotes the inverse of the transpose of (p. 

For the special case p = 2, the inequality of Theorem A is known 
(see e.g. Schneider [12, p. 422]) and easily established. The analytic 
inequality of Theorem A will be established by first proving its geometric 
counterpart. 

For each compact star-shaped (about the origin) subset, K, of R n, 
let the norm II • Hr*?̂  on n be defined by 

M II-"- p K 

Ix p K j c - V K K jxyjdy} p l<p<oo, 

where V(K) denotes the volume of K. For the case p = oo, this def­
inition is to be interpreted as a limit as p —> oo. The unit ball of 
this n-dimensional L p-space is denoted by T*K, and called the polar 
p-centroid body of K. The (unusual) normalization above was chosen so 
that for the unit ball B in R , we have T*B = B. 

We will prove the following centro-affine inequality involving the 
volumes of K and its polar p-centroid body, T*K: 

Theorem B. If K is a star body (about the origin) in n , then for 
1 < p < oo, 

V(K)V(Tp K)<Cn 

with equality if and only if K is an ellipsoid centered at the origin. 

If K is a centered convex body (i.e., symmetric about the origin) 
then V^K is just the polar, K*, of K where 

K* = {x G R n : jx-yj < 1, for all y G K}. 
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In this case, the inequality of Theorem B, for p = oo, reduces to: 

V(K)V(K*)<un 

with equality if and only if K is an ellipsoid. 

This is the well-known Blaschke-Santalo inequality. A very recent ap­

proach to the Blaschke-Santalo inequality and the classical affine isoperi-

metric inequality of affine differential geometry can be found in Andrews 

[2]. 

1. Star bod ies and dual m i x e d v o l u m e s 

For quick reference, we recall some basic properties regarding star 
bodies and dual mixed volumes. Some recent applications of dual mixed 
volumes can be found in [5] and [14]. For general reference the reader 
may wish to consult Gardner [6] and Schneider [12]. 

The radial function, K = p(K, • ) : n n {0} —> [0, oo), of a com­
pact, s tar-shaped (about the origin) K C n , is defined, for x ^ 0, by 
p(K,x) = max{ A > 0 : Xx G K}. If K is positive and continuous, 
call K a star body (about the origin), and write S for the set of star 
bodies (about the origin) of n . Two star bodies K,L G S are said to 
be dilates (of one another) if K{u)/'PL{u) is independent of u G S n~l. 

From the definition of the radial function, it follows immediately 
that for K G S and (f> G GL(n) we have p((pK,x) = p(K,cf)~lx), for all 
x T^ 0. Obviously, for the unit ball, B, in R n, we have p(B,x) = l/\x\, 
for all x T^ 0. Hence, if 0 G GL(n) then p((f)B,x) = \/\4>~lx\. From the 
definition of the polar body, it follows immediately that {<f>B)* = 0 _ t B . 
Thus, for all x ^ 0, we have p((cf)B)*, x) = l/\(f)t x\, where t denotes the 
transpose of (f>. We summarize this in: The bodies E and E* are centered 
polar reciprocal ellipsoids, if and only if, there exists a 0 G GL(n) such 
that 

(1.1) p(E,u) = l/\(t)u\ and p(E*,u) = l/|</>-t u|, 

for all u G S n ' 1 . 

If K is a convex body (i.e., compact convex subset with nonempty 
interior) in R n, then its support function, h K = h(K, • ) : n —> R, is 
defined for x G R n by h(K,x) = max{x-y : y G K}. If K is a centered 
(i.e., symmetric about the origin) convex body, then from the definitions 



4 e r w i n l u t w a k & g a o y o n g z h a n g 

of support function, radial function and polar body, it follows that 

(1.2) h K* = 1/PK and pK* = \jh K. 

Fix a real p > 1. For K,L G S, and e > 0, the p-harmonic radial 
combination K + e-L G S is defined by 

p K + e-L, -rp = P(K, -)-p+ep(L, -)-p. 

While this addition and scalar multiplication are obviously dependent 
on p, we have not made this explicit in our choice of notation. The dual 
mixed volume V-p(K, L) of K, L G S, can be defined by 

-p p e^ m e 

The definition above and the polar coordinate formula for volume give 
the following integral representation of the dual mixed volume V-p(K, L) 
for K,LeS: 

;i.3) V.p(K, L)=u;n Z p(K, v)n+pp{L, 
S n-1 

v)-p dv. 

Recall that the integration is with respect to the rotation invariant prob­
ability measure on S n - 1 . 

Unless K and L are dilates, [V-p{K,L)/V{K)]1/p is strictly increas­
ing, in p. This is an immediate consequence of the Holder integral 
inequality. From the integral representation (1.3) it is easily seen that 
[V-p(K, L)/V(K)]1'p is bounded by max ueS n-i PK{u)IPL{u)- It will be 
convenient to define V-^K, L) by 

(1 4Ì V-°°(K>L) - lim (V-p(K,L)\1,p _ K u± 
( L 4 ) V(K) -p%> V(K) - , m a x - i L u 

We will need two useful properties of dual mixed volumes. First, 
note that for each K G S, 

(1.5) V_p(K,K) = V(K), l<p<oo. 
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The integral representation (1.3) together with the Holder integral in­
equality immediately give the dual mixed volume inequality: If K, L G S 
and 1 < p < oo, then 

, 6 i V - o o i ^ L ) (V.p(K,L)\1/p (V(K)\lln 

V(K) - V(K) -V(L) ' 

with equality, in either inequality, if and only if K and L are dilates. 
This inequality will provide simple proofs of two key ingredients in the 
proof of Theorem B. 

2. Dua l m i x e d v o l u m e s and t h e operator T* 

For K G S and real p > 1, the p-centroid body, Tp K, of K is the 
body whose support function is given by 

(2.1) c n.2,p h(Tp K,x p = -VK- Z \x-v\pp(K,v)n+p dv, 

for all x É R " . 

For p = 1, the integral operator above is the classical cosine trans­
form which is closely related to the spherical Radon transform (see e.g. 
Goodey and Weil [7]). 

The Minkowski integral inequality shows that hrp K is the support 
function of a (centered) convex body. Define T^K as the convex body 
whose support function is given by 

(2.2) hCTooKju) = lim h(Tp K,u) = max \u-v\p(K,v), 
p^OO r veS n - 1 

for u G S n~l. Since the pointwise convergence hrp K —> hr^K, on S n~l, 
is a pointwise convergence of support functions, it is in fact a uniform 
convergence (see, e.g., Schneider [12, p. 54]). Note that the polar of 
Tp K is denoted by T*K, rather than (Tp K)*. 

From the definition of the p-centroid body we see that for K G S and 
4> G GL(n) we have Tp4>K = <pTp K. Thus, if E is a centered ellipsoid, 
then 

(2.3) Tp E = E. 
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Now (1.2), together with definition (2.1), and the integral represen­
tation (1.3), shows that for real p > 1 and K,L G S, 

V.p(K,Tp L) 
Cn-2,p V{K) 

(2.4) 

From (1.4), (1.2) and (2.2), we see that for the case p = oo we have, 

V-ooCKr^L) 
:—: = max max jU-VjPK(U)PL(V) 

V(K) ueS n-iveS n-1 

= max jU-VjPK(U)PL(V)-

According to these observations we immediately get: 

Lemma 2.5. If K,L G S, then 

(2.5) V.p(K,Tp L)/V(K) = V.p(L,Tp K)/V(L), I<p<^. 

Taking L = V*p K in (2.5), and using (1.5), we are led to see that for 
K e S, 

(2.6) V{K) = V.p(K, TpTp K ) , 1 < p < oo, 

where Y*pY*p K is used to abbreviate Y*p{T*p K). Identity (2.6) for p = 1 
can be found in [9]. 

From identity (2.6) and the dual mixed volume inequality (1.6), we 
have 

Proposition 2.7. If 1 < p < oo and K G S, then 

V(TpTp K) > V(K), 

with equality if and only if K and TpTp K are dilates. 

A consequence of this proposition, that will be needed in the proof 
of Theorem B, states that for the special case where K is a star body 
whose polar p-centroid body is an ellipsoid, the inequality of Theorem B 
holds. This is contained in: 
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L e m m a 2.8. If 1 < p < oo and K G S is a star body such that 
T*K is an ellipsoid, then 

V(K)V(Tp K)< n 

with equality if and only if K is a centered ellipsoid. 

Proof. Since T*K is an ellipsoid, from (2.3) it follows that 

Tp(Tp K) = (Tp K)*. 

This, together with the trivial observation that the product of the vol­
umes of centered polar reciprocal ellipsoids is un, gives 

V(TpTp K) = V((Tp K)*) = n2JV(Tp K). 

Combine this with the inequality of Proposition 2.7, to get the desired 
inequality. 

To see the necessity of the equality conditions, note that from the 
equality conditions of Proposition 2.7 it follows that equality, in our 
inequality, implies that K and T*T*K are dilates. But T*(T*K) = 
(Tp K)* and V*p K is (by hypothesis) a centered ellipsoid. Hence, equality 
implies that K is a centered ellipsoid, q.e.d. 

Define Z p to be the class of centered convex bodies that are the 
range of the operator Y* on S; i.e., 

Z* = {Z*K :KeS}. 

As an aside, note that the closure (in the space of convex bodies) of Z\ 
is the class of polar projection bodies. The polars of these bodies form 
the class of zonoids (see e.g. [6, p. 133] and [12, p. 182]). The class Z\ 
is the class of centered ellipsoids. 

The following lemma shows that in order to prove the inequality 
of Theorem B for all star bodies, we need only prove it for the class 
of centered convex bodies. In fact, a much smaller class than the set 
of centered convex bodies will suffice. These 'class reduction' methods 
were used in [8], and their use here may be seen as a natural extension 
to the Brunn-Minkowski-Firey theory (see, e.g., [10]). 

L e m m a 2.9. Suppose 1 < p < oo. If the inequality of Theorem B, 
with its equality conditions, holds for all bodies in Z*, then the inequality 
of Theorem B, with its equality conditions, holds for all bodies in S. 
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Proof. Suppose K G S. By definition of Z*, we have Y*p K G Z*. 
Hence, the hypothesis gives 

V(Yp K)V(YpYp K) <un 

with equality if and only if Y*K is a centered ellipsoid. Now, Proposition 
2.7 states that 

V(K) < V(YpYp K), 

with equality if and only if K and Y*Y*K are dilates. The desired 
inequality is obtained by combining these inequalities. 

If there is equality in the desired inequality, then Y*K must be a 
centered ellipsoid, and K and Y*pY*p K are dilates. Hence K must be a 
centered ellipsoid, q.e.d. 

3. Steiner symmetrization and the operator Yp 

For a set Q Ç R , and t G R, let 

Q t = {xeR n-1 :(x,t)£Q}, 

and write —Q t for {—x : x G Q t}. 

Lemma 3.1. Suppose K is a centered convex body in n , and K 
is the Steiner symmetral of K with respect to the hyperplane defined by 
x n = 0. Then, for 1 < p < oo; 

±(Y*p K)t + l(Y*p K)_tÇ(Yp K)t 

for all t G R. 

Proof. First note that it suffices to prove the inclusion for 
1 < p < oo. Also, without loss of generality, we may assume V(K) = 
l/c n,p = V(K). 

Let K' be the image of the orthogonal projection of K onto the 
hyperplane x n = 0. For x G K!, let c(x) denote the chord of K that is 
parallel to the and (whose extension) passes through x. Thus, 

c(x) = x x [m — ^, m + ^ ] , 

where a is the length of c(x), and m is the x n-coordinate of the midpoint 
of c(x). For (x, s) G e define 

si = s + m and s<2 = — s + m. 
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Thus, (x, si) and (x, s2) are points in c(x) that are symmetric about the 
midpoint of c(x). While m and a are obviously functions of x G K', we 
have chosen not to make this explicit in our notation. 

Recall that 

Tp K = {(x,t) G R"" 1 x R : \\(x,t)\\T*K < 1}. 

Suppose y1 G (r*K)t, y2 G (r*K)_t, and let y = \{yi + y2). To prove 

the lemma we will show that y G (Y*p K)t. The conditions 

yi,t)||rp K < 1 and | |(y2,-t)| |rp K < 1, 

give 

Z jy\-x+ tsj p dxds < 1 and Z jy2-x — tsj p dxds < 1. 
(x,s)£K (x,s)eK 

Our aim is to show that ||(y, t)||r«K < 1, or equivalently that 

Z e jy'x + tsj p dxds < 1-
(x,s)EK 

Now for (x, s) G e , recall that si = s + m and s2 = —s + m, and 
since s = 7j(s\ — s2), 

jy-x + tsj p = j\{y\+y2)-x + \{si-s2)tj p < \jyvx + tsij p + \jy2-x -ts2j p. 

Thus, 

Z jy-x + tsj p dxds 
K 

< - Z jyi-x + ts\j p dxds +- — Z jy2-x — ts2j p dxds 
2 Z K % K 
1 a/2 1 Z Z a/2 

= — dx jy\-x + ts\j p ds + - dx jy2-x — ts2j p ds. 
2 K 1 - a / 2 2 K, -a/2 

Since s\ = s + m and s2 = — s + m, with (x,si) G c(x) C K and 
(x,s2) G c(x) C K, 

Z Za/2 Z Z m+a/2 
dx jy\-x + ts\j p ds = dx jyi~x + ts\j p ds\ 

K' -a/2 K' m -a /2 

a/2 Z Z m+cr/2 
jy\-x + ts\j p ds = dx 

-a/2 K' m-a/2 

jy\-x +- tsij p dxdsi, 
(x,si)eK 

file://jy/-x
file:///jyvx
file://jy/-x
file://jy/-x
file://jy/-x
file://jy/-x
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and 

<T/2 Z Z m—a/2 
jy2-x -ts2j p ds = dx jy2-x -ts2j p{-ds2) 

K' -a/2 K' m+a/2 

jy2-x — ts2j p dxds2-
(x,s2)eK 

It follows that 

Z jy-x+tsj p dxds < — Z jy\-x+tsij p dxds\+- Z jy2-x—ts2j p dxds2 < 1. 
K 2 K 2 K 

Thus | |(y,t) | | r»K < 1, or equivalently, (y,t) G ^K, and hence 

\{yi + y2) = y & {vp K) t . q.e.d. 

The Brunn-Minkowski inequality can now be used to show that 
Steiner symmetrization does not decrease the volume of polar p-centroid 
bodies. 

L e m m a 3.2. Suppose K is a centered convex body in R n and 
1 < p < oo. If K is the Steiner symmetral of K with respect to the 
hyperplane Ç, then 

V(Yp K) < V(Tp K), 

with equality if and only if every (n — I)-dimensional slice of^K, par­
allel to £ is centrally symmetric. 

Proof. Without loss of generality, we may assume that the hyper-
plane £ is the subspace of n defined by x n = 0. From Lemma 3.1, 

vol n-i^rp K)t + ±(Vp KU) < voin_i((rp e t , 

for all t G R. Since T*K is centered, -(T*K)t = (^*p K)-t- Hence, the 
Brunn-Minkowski inequality (in R " _ 1 ) shows that for each t, 

vol n-iKrp K)t) < vol n-rdivp ̂  + \{Yp K) t), 
with equality if and only if (F*p K)t is a translate of — (Y*p K)t. Hence for 

all t e R , 

vol^arp ̂ ) < vol ̂ xUrp ^ ) , 
with equality if and only if (T*K)t is centrally symmetric. 

By integrating (over all t e R ) the quantities on both sides of the 
last inequality, we get 

V(Tp K) < V(Tp K), 
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with equality if and only if every (n — l)-dimensional slice of T*K, 
parallel to the hyperplane £ is centrally symmetric. q.e.d. 

4. P r o o f of the t h e o r e m s 

We are now in a position to quickly prove the theorems presented in 
the introduction. 

T h e o r e m B . If K G S and 1 < p < oo ; then 

V(K)V(Tp K) <un 

with equality if and only if K is a centered ellipsoid. 

Proof. First recall that from Lemma 2.9 it follows that we may 
assume that the star body K is a centered convex body. Now Lemma 
3.2, and a standard Steiner symmetrization argument, show that if B o 
is a dilate of the unit ball, B, chosen so that V(B o) = V(K), then 

V(Tp K) < V(Tp B o). 

Thus, 

V{K) V(Tp K) < V{B o) V{Yp B o) CO 

To obtain the necessity of the equality conditions, suppose there is 
equality in the last inequality. By Lemma 3.2 this implies that every 
(n—l)-dimensional slice of Y*p K is centrally symmetric. A special case of 
the false center theorem of Aitchison, Petty, and Rogers [1] (see Burton-
Mani [4] for an alternate proof) asserts that a convex body, all of whose 
(n — l)-dimensional slices are centrally symmetric, must be an ellipsoid. 
Thus we conclude that Y*p K must be an ellipsoid, and now the equality 
conditions of Lemma 2.8 may be invoked to show that K itself is a 
centered ellipsoid, q.e.d. 

The only tools needed to show how Theorem A follows directly from 
Theorem B are dual mixed volumes. 

T h e o r e m A. For real p > 1 and continuous f,g : S n~l —> (0, oo) ; 

\u-v\p f(u)g(v)dudv > c n_2)p | | f | | n \\g\\n, 
S n - l S n-l n+p n+p 

with equality if and only if there exist a (f> G SL(n) and ci,c2 > 0 such 
that 

f{u) = ci |0(u) |-(n+pO and g(u) = c 2 | 0 - t ( u ) r ( n + p ) , 
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for all u G S n~x. 

Proof. Define K G S and L G S by 

n+p n+p 
PK = f and ^ L = g-

The polar coordinate formula for volume and the definitions of K, L G S 
give 

||f||_n_ = \V(K)n,n and \\g\\_n_ = [V(L)^n pln. 

From the definition of K and L, identity (2.4), the dual mixed vol­
ume inequality (1.6), and the inequality of Theorem B, we have 

\u-v\p f(u)g(v) dudv 
S n-l S n — 1 

V-p(K,Tp L) 
- c n-2,p V{K) 

> c n_2,p [V(K)/V(rp L)p'n 
> c n_2,p [V(K)V(L)/<n p'n 

= c n-2,p f n - g n -
'^ n+p n+p 

The above equation also shows that equality in the inequality of 
the theorem implies that there is equality in the dual mixed volume 
inequality and equality in the inequality of Theorem B. Thus, equality 
in the inequality of the theorem implies that K and Y*p L are dilates, and 
L is a centered ellipsoid. But if L is a centered ellipsoid, then from (2.3) 
we have Y*p L = L*. Thus K and L are polar reciprocal ellipsoids which 
are centered at the origin. The necessity of the equality conditions now 
follows from (1.1). q.e.d. 

The preceding results show that Theorem B can be used to quickly 
obtain Theorem A. However, the process can be reversed. Theorem A 
will quickly yield Theorem B, for all real p. If we start with Theorem A, 
to quickly prove Theorem B we proceed as follows: 

Given K G S, define f and g in Theorem A by 
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From the polar coordinate formula for volume, we get 

| | f | | n = [V(K)/u;n]^n, and | |g | |n = [V(F*p K)/u;n]^n. 

Thus, by (2.3) and Theorem A, we have 

V-p(K,T*T*K) 1 f f 
\u-v\p f(u)g(v) dudv V{K) 

c n-2,p S n ' 1 S n-1 

> f n g n 
n+p n+p 

= [V(K)V(Vp K)ln pln. 

To obtain the inequality of Theorem B, recall that 

[V.p(K,TpTp K)/V(K)] = I, 

by (2.6). 
From the equality conditions of Theorem A, we see that equality in 

the inequality of Theorem B would imply the existence of a c > 0 and 
a 4> G SL(n) such that p(K,u)/V(K) = c/\cf)u\, for all u G S n ' 1 . This, 
in turn, would show that, by (1.1), the star body K must be a centered 
ellipsoid. 

5. Open problems 

Mahler (see e.g. [6, p. 339] and [12, p. 427]) conjectured that for 
each centered (i.e., origin-symmetric) convex body, K, in R n, 

An 

V(K)V(K*) > — 

For zonoids (and thus also their polars) this is Reisner's inequality (see 
e.g. [6, p. 339] and [12, p. 427]). 

Bourgain and Milman [3] proved the existence of an absolute con­
stant c > 0, such that for each centered convex body K, 

V{K)V{K*) > —. 
n! 

Thus, there exists an absolute constant c > 0 such that 

V(K)V(K*) > a&n 
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for each centered convex body, K , in n . 

The following problem is of considerable interest. 

P r o b l e m 5.1 . For each real p > 1, is there a constant c p > 0, 
independent of n (and perhaps even independent of p), so that for each 
centered convex body K in n, 

V(K)V{Yp K) > ^c n? 

For each K G S, the body r 2 K is an ellipsoid called the Legendre 
ellipsoid of K . For the casep = 2, the inequality of Problem 5.1 becomes 

V(K)V(T*2K)> cn n 

This inequality is one of the (equivalent) forms of the slicing problem 
(see, e.g., [6, p. 302]): Does there exist an absolute constant c > 0, such 
that each centered convex body of unit volume in R n, has an (n — 1)-
dimensional slice of (n — l)-dimensional volume greater than c? 

The body Y\K, with a different normalization, is called the centroid 
body of K. Characterizations and inequalities for centroid bodies can 
be found in [9] and [13]. The Busemann-Petty centroid inequality states: 
If K is a convex body in n, then 

VpxK) > V(K), 
with equality if and only if K is a centered ellipsoid. 

This inequality was conjectured by Blaschke, for centered convex bodies, 
and proved by Petty [11], for all bodies. 

For the operator T2 there is a similar inequality: If K is a convex 
body in n, then 

V(Y2K) > V(K), 
with equality if and only if K is a centered ellipsoid. 

A quick proof of this inequality can be found in e.g. [11]. Note that 
this inequality is an immediate consequence of Lemma 2.8 and the fact 
that T2K is an ellipsoid for every K . 

It is tempting to conjecture that an inequality stronger (in view 
of the Blaschke-Santalo inequality) than the inequality of Theorem B 
holds: 
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Problem 5.2. Is it the case that for each real p > 1 and each 
convex body K in n , 

V(Yp K) > V(K), 
with equality if and only if K is a centered ellipsoid? 
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