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SOLITON EQUATIONS AND DIFFERENTIAL
GEOMETRY

CHUU-LIAN TERNG

1. Introduction

In this paper we study certain symplectic, Lie theoretic, and differ-
ential geometric properties of soliton equations.

The equation for harmonic maps from the Lorentz space R™! to a
symmetric space, and the equation for isometric immersions of space
forms into space forms have many of the same properties as soliton
equations—for example, they have Lax pairs and Backlund transfor-
mations—and two of the main goals of this paper are to find Hamilto-
nian formulations for these equations and to see how they fit into the
general theory of soliton equations. As a by-product, we also find many
new n-dimensional soliton systems.

It is well-known that most finite-dimensional, completely integrable,
Hamiltonian systems can be obtained by applying the Adler-Kostant-
Symes Theorem (AKS) to some Lie algebra G equipped with an ad-
invariant, non-degenerate bi-linear form, and a decomposition G = K +
N. The symplectic manifold is some co-adjoint N-orbit M C Kt ~ A
and the equation is the Hamiltonian equation of f | M, where f : G — R
is some suitable Ad-invariant function. For example, Kostant obtained
the generalized Toda lattice ([23]) by applying the AKS theorem to G =
K + A such that the corresponding G/K is a non-compact, symmetric
space of split type (i.e., the rank of GG/K is equal to the rank of &),
and Adler and Van Moerbeke obtained the Euler-Arnold equation and
Moser’s geodesic flow on the ellipsoid ([6]) by applying the AKS theorem
to G = the loop algebra of a simple Lie algebra.
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Many soliton equations can also be obtained from the AKS theo-
rem. For example, Adler ([5]) showed that the KdV equation can be
obtained by taking the Lie algebra of pseudo differential operators as G;
Drinfeld and Sokolov ([15]) obtained the Gelfand-Dikii equations and
associated to each Kac-Moody algebra a hierarchy of soliton equations,
and Flaschka, Newell and Ratiu ([17], [18]) obtained many remarkable
properties of the soliton equations by taking G to be the algebra of loops
on the loop algebra of sl(n,C).

Another technique for generating soliton equations is the inverse
scattering method, and in particular Beals and Coifman used this to
obtain a hierarchy of evolution equations that will be of interest to
us. To describe their equations, we first set up some notation. Given an
inner product space V', we use S(V') to denote the space of smooth maps
from R to V that lie in the Schwartz class. Let U/ be a semi-simple Lie
algebra, T a fixed maximal abelian subalgebra of I/, 7+ the orthogonal
complement of 7 in U with respect to the negative of the Killing form of
U, and a € T a fixed regular element. The following results are proved
by Ablowitz, Kaup, Newell and Segur ([3], [4]) for & = sl(2), and by
Beals and Coifman [7] and Sattinger [33] for arbitrary semi-simple i:

(i) There exists a pair of compatible symplectic structures w® and wg
on S(T71), which is a Hamiltonian pair in the sense of Magri [25]
and Gel'fand and Dorfman [20], where w?(vq,v3) =
(—ad™'(a)(v1),v2) and wq is defined by an integral-differential
operator.

(ii) There exist a family of commuting Hamiltonians {Fy.,, |b € T,n €
N} on S(T1) and a family of polynomial differential operators
{Qpn(u)|b € T,n € N} on S(T1) such that the Hamiltonian
equation for Fy, is uy = [Qp,(u),a] with respect to w* and is
wt = [Qbn+1 (), a] with respect to wo. (ur = [@Qpnt1 (), a] will be
called the n-th flow equation associated to U defined by a,b.)

For example, the second flow equation associated to SU(2) defined by
a,a (with a = diag(i, —7)) is the non-linear Schrédinger equation (NLS),
and the first flow associated to SU(n) defined by a base a,b of T is the
n-wave equation.

In this paper we show that the above results arise naturally from
applying the AKS theorem to the Lie algebra of loops in an affine Kac-
Moody algebra. Moreover, we have the following:
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(1.1) Fin (1) = —l/oo (Qbsr (0), @) da.

n

When U = su(2) this formula agrees with the one in [28].

(2) (S(TH),w?) is a coadjoint orbit, and (S(T1), wg) is a symplectic
submanifold of some coadjoint orbit.

(3) Let U/K be a symmetric space of split type, and &4 = K + P the
Cartan decomposition. Let 7 be a maximal abelian subalgebra
of U that is contained in P. So K C T+. Let i : S(K) — S(T4)

denote the inclusion map. Then

(i) ¢*w® =0, and *wp is non-degenerate on S(K),
(ii) Fp2, =0 o0n S(K),

(iii) the Hamiltonian equation for the restriction of Fyoxp_1 to
S(K) with respect to i*(wq) is ur = [@p,2k(n), al.

It is known that the SGE is the equation for harmonic maps from
RY to SU(2)/SO(2) (cf.[40]). But SGE is also the —1-flow equation
associated to the symmetric space SU(2)/SO(2) ([28]). We generalize
this to arbitrary symmetric space. In fact, given a,b € T, the —1-flow
equation for a symmetric space U/K is u; = [a, g7 bg] for v € S(K),
where g : R — K is the solution for g7 'g, = v and lim,_,_., g(z) = e.
Moreover, we have:

(1) The —1-flow equation associated to U/K is Hamiltonian with re-
spect to wg.

(2) The —1-flow commutes with all the odd flows associated to U/K.

(3) Solutions of the —1-flow equation associated to U/K give rise to
harmonic maps from R to U/K.

Next we associate to each rank-n symmetric space U/K an n-dimen-
sional first order system for maps from R” to PN T+. Given a basis
{ai,...,a,}, the following system of n(n — 1)/2 first order equations
forv:R" = PNT*:

(12) [aiv Ul’]] - [ajv Uxi] = [[ai7 U]v [aj7 U]]v 1<e<y <,
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is called the n-dimensional first order system associated to U/K. The
relation of this system to the first flow equation associated to U/K is
that for fixed ¢ # j, the restriction of equation (1.2) to the z;z; plane
is the first flow equation associated to U/K defined by a;,a; on the
symplectic manifold (S(7+),wo) with u = [a;, v].

Using work of Beals and Coifman ([8]) on the inverse scattering for
linear system, we prove that the n-dimensional system (1.2) can be
solved globally for generic initial data on the line.

Now let N"(c) denote the space form of constant sectional curva-
ture ¢. We prove that the equation for isometric immersion of N"(c)
into N2"(c) with flat normal bundle and linearly independent curva-
ture normals is exactly the n-dimensional system (1.2) associated to
the symmetric space

SO(2n,1)/S(O(n) x O(n, 1)), if c=—1,
M.(n) = ¢ SO(2n)/S(O(n) x O(n)), if ¢ =0,
SO(2n+1)/5(0(n) x O(n+1)), ife=1.

In particular, this implies that:

(1) The system of equations for isometric immersions of N™(¢) into
N?"(c) is obtained by putting all the first flow equations associated
to the symmetric space M.(n) together.

(2) To solve this system of n variables, it suffices to solve the first flow
equations of two variables.

The literature in soliton theory is enormous, and we will only refer
here to papers we use directly. There are many excellent survey articles
and books; for example [2], [9], [28], [16], [29], where the reader can find
more complete bibliographies.

The relations among Backlund transformations, Poisson loop group
actions, and the inverse scattering for the j-th flow equation (j =
—1,1,2,..) will be studied in forthcoming joint papers with K. Uhlen-
beck.

This paper is organized as follows: In section 2 we review the work of
Beals, Coifman and Sattinger on evolution equations and inverse scat-
tering and prove the formula (1.1). In section 3 we apply the AKS
Theorem to the loop algebras of affine Kac-Moody algebras to obtain
the Beals-Coifman evolution equations. In section 4 we study a se-
quence of compatible symplectic structures w, on S(7+). In section 5
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we construct the —1-flow equation and study its relation to harmonic
maps. In section 6 we associate to each rank-n symmetric space an n-
dimensional system of first order partial differential equations and give
some examples. Finally, in section 7 we explain the relation between
the n-dimensional system and the equations for isometric immersions of
a space form into a space form.

The author would like to thank M. Adler, P. Van Moerbeke and
K. Uhlenbeck for many helpful discussions, and to thank R. Beals for
helpful suggestions concerning the preliminary version of the paper.

2. First order linear systems and non-linear evolution
equations

In this section, we state some of the results proved by Beals and
Coifman ([7], [8], [9]) and Sattinger [33] concerning the relation between
nonlinear evolution equations and spectral problems for first order linear
systems.

Let U, T be as in section 1, (,) an Ad-invariant bilinear form on i,
and 7+ the orthogonal complement of 7 in ¢ with respect to (,). Let

(uy, uz) = /OO (u1(2), ug(x))da

— 00

denote the L%inner product on S(71), Given a functional f : S(T+) —
R,let Vf:8(T+) = S(T1) denote the gradient of f with respect to
the L%inner product on S(71), i.e., df,(v) = (Vf(u),v). Let a € T be
a regular element. Then ad(a) : 7+ — 7+ is an isomorphism. So the
two-form w defined by

wy(v1,v2) = (—ad(a) ™ (v1), v2)

is a symplectic structure on S(7+), and the corresponding Poisson
structure for functions on S(71) is given by {fi, fo} = ([V f1,a], V f2).

Given u € S(T%), consider the following first order system for 4 :
R — U with asymptotic condition at —oc:

(2.1) Yu(x,A)=Y(z, N)(aXA+u(z)), lim exp(—arz)y(z,A)=ce,

T—r—00
where v, = %, and e € U denotes the identity. Let

m(z, A) = exp(—adz)p(z, A).
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Then the equation (2.1) written in terms of m is

(2.2) my(z, A) = A[m, a] + mu, lim m(z,\) =e.
r——00
Let U = su(n), a = diag(cy, ... ,¢,) a regular element in su(n), (i.e., all

the ¢;’s are distinct), and 7 be the space of diagonal matrices in su(n).
Set
I'={AeC|Re((c; —cx)A) =0, forsomej#k}.

2.1 Theorem ([7]). Given u € S(T?1), we have:

(i) There exists a discrete set D C C\I' such that for all x € C\(I'UD)
the system (2.2) has a unique solution m, m(z, X) is meromorphic

in A € C'\I' and holomorphic in C'\ (I'U D).

(ii) For generic u € S(T+), the set D is finite and m has simple poles
on D, and there exists a map S : (I'\{0}) U D — U such that

lim m(z, A) = %S (Ag)e™ % lim m(zx, \)
A=Ad A=Ag

for Ao € '\ {0}, and for X\; € D
(I = (A= A7l mS (A ) eV m(x, X)

has a removable singularity at X = X;. The scattering map u — S
is injective on an dense open subset of S(T).

2.2 Theorem ([7], [8]). Given b€ T, let
Qv(x,A) = m(z, )T om(z, A) = ¥(z, \) 7100 (2, A).

Then (Qp) s+ [aX+u, Q] = 0. Moreover, Qy has the asymptotic expan-
ston: Qp(z, A) ~ 3 57, Qb ()N, as A+ oo such that

1. (1)] Qvo = b,
(11) (Qp;)s+u, Qb ;] = [Qb,j41,a] withlim,_,_ Qp; =0 forall j >0,
(iii) u(x,t) satisfies equation
up = (@, (w))e + [u, Qv (W)] = [Q,j41(u), a]
if and only if its scattering data S(\, t) satisfies the linear equation
S\ 1) = M [S(A 1), b].
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Henceforth, we will call u; = [Qp ;+1(u),a] the j-th flow equation
associated to U defined by a,b.

2.3 Theorem ([8],[33],[10]). With the same notation as in Theo-
rem 2.2, we have

(1) Qv ;(u) is a polynomial differential operator in u,
(ii) w— Qp;(u) is a gradient vector field on S(T+), where x* denotes

the orthogonal projection of x onto T+,

(iii) the hierarchy of flows

(23) Uy = [Qb,j(u)v a]7 j=1
are commuting Hamiltonians with respect to the symplectic struc-
ture w on S(T1) defined by w(vy,v2) = (—ad(a)~ (vy), va),

(v) u is a solution of wy = [Qp ;41(u),a] if and only if the following
linear system is solvable for all A

¢x = ¢(aA+ u)
Yr =N+ Qo1 (WN T+ Qpa(W)N T2+ -+ + Q5 (u).

Theorem 2.2 implies that the evolution equation (2.3) is linearized
by the scattering map. Moreover, Beals and Sattinger proved in [10]
that equation (2.3) is completely integrable by finding the action-angle
variables.

The Hamiltonian function £, : S(T+) — R corresponding to the
(n — 1)-th flow equation us = [Qpn(u), a] is

i) = | Qo) wydt = / Qo (i), ),

because VF,,(u) = Qpn(u)t. It is proved in [33] that m(oc) =
limy ., m is diagonal and

S B ()" = (b, log(m(oc)) = /_OO (b, %log m(z, \))de.

When U = sl(2) and a = diag(¢, —%), there is a simple formula in terms

of Qs (cf. [28]):
Fon) =2 [ hn(de,  where Qu,0 = (’]’Z o ) .

nJ_x
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The following Proposition generalizes this formula to arbitrary U.

2.4 Proposition. The Hamiltonian functional Fy,, : S(T+) — R
15

(2.4) Fion(u) = —— /_ T Qo (w), a)da.

n

Proof. We write Q = Q. First we claim that for all v € S(T1) we
have

(2.5) (U,%) = (dQy(v), a).

To see this, we note that m, = A[m, a] + mu. So
dm oy 14 dm L dm
X AT T A

Let £ = m_1 dm . Then a direct computation gives
&t lar+u, & =a—m am.

Let Q@ = Qp = m~'bm, U = a\ + u and = m~tdm, (v). Then

1Q(a) = 40 = [Q.€).

dQ(v) = [Q, ),
Ne + [Uv 77] =v.
Therefore
(2.6) (dQ(a),v) = (dQ(v),a) = ([Q,&],v) — ([Q, 7], a)

= (Q7 [f,v] - [777@])-

Another direct computation implies that

(2.7) [, nle = [[&, 0], UL+ [§, 0] = [0, a] = [m ™ am, n).

Substituting equation (2.7) into equation (2.6), we get

(dQ(a)v U) - (dQ(U)v a)
= (@, [& e+ [U, [, mll + [m ™ am, )
= (Q:[6 ) | 2% = (Qu + [U, QL[ n)) + (@, [m ™ am, n)).
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Now the first term is zero because lim,_ ., m being diagonal implies
that £(oo) and n(oo) are diagonal so the bracket is zero. The second
term is zero because @, + [U, Q] = 0. The third term

(@, [m™ am, ) = (m~"om, [m~"

mooam,n

D) = ([m~"om, m™ am], n)
= (m™'[b, aJm, n)

is zero because [a,b] = 0. This proves equality (2.5).

But -
% =S QA=)
n=1

Comparing the coefficients of A~("+1) in (2.5), we get VE, .11 = —n@Qi.

q.e.d.
2.5 Example ([28]). Let if = su(2) and a = diag(7, —¢). Then u €

S(T1) is of the form u = (_Oq g) So S(T1) is naturally isomorphic
to the space of Schwarz functions ¢ : R — €. Under this identification,
walq1,92) = (41, 92), and the first and second flow equations are:

4t = 4z,
¢ = %(qm +2[q|%9).
Note that the second flow equation is the NLS equation.
2.6 Example ([8]). Let & = su(n), and
a = diag(ay,...,a,),b=diag(by,...,b,).

If @ is regular, then the first flow equation u; = [@p2(u),a] for u =
(uy) : R — Tt is

_ bi—b; by —b; b= by o
(uij)e = pr— (wij)e + Xk:(ak - ak)uzkum i # J.

When n = 3, this is the three-wave equation studied in [26].

3. Adler-Kostant-Symes Theory

In this section, we show that $(7 ) is a coadjoint orbit, the symplec-
tic form defined in section 2 is the orbit symplectic form, and the n-th
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flow equation (2.3) arises naturally when we apply the Adler-Kostant-
Symes theorem to the loop algebras of the affine Kac-Moody algebras.

A two-form w on M is called a weak symplectic form if w is closed
and the induced map from T'M to T*M defined by v — w(-,v) is injec-
tive (cf. [14]); and (M, w) will be called a weak symplectic manifold. If
M is a Riemannian manifold and there exists A € C*°(T'M,TM) such
that:

(i) Ay : TM, — TM, is an injective, skew adjoint operator for all
x€eM,

(i) wg(v1,v2) = (Az(v1), v2) is closed, where (,) is the inner product
on TM, defined by the metric,

then w is a weak symplectic form, and the Hamiltonian vector fields X
are defined for functions f : M — R whose gradient at x € M lies in
the image of A,. In fact,

Xy() = (A) TN (V f(2))-

The Poisson bracket for two such functions fi, fo is given by

{f1: 2} (@) = (AT (VAi(2)), Val2)),

and w(Xy,, Xy,) = {f1, f2}. Note that when M is of finite dimension, a
weak symplectic form is symplectic, but when M is of infinite dimension,
this is not the case in general.

Let M C G* be a co-adjoint orbit of G. Then the weak orbit sym-
plectic structure w on M is defined by

we(x(0),y(0) = [z, y]), x,yeG,LeM,

where z({)(z) = —{([z, z]) is the vector field induced by the co-adjoint
action.

Let G be a Lie algebra with a non-degenerate, Ad-invariant form (, ),
K, N subalgebras of G, and G = K + A as direct sum of vector spaces.
Let

Kt={ze€g|(z,K)=0},
Nt ={2ecG|(z,N)=0}.

Then Kt and At can be identified as linear subspaces of the dual A™*
and K* via (,) respectively. Under this identification, the coadjoint
action of N on K+ is given by

g-x=meL(grg™), forgée N,ze Kt
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and the infinitesimal action is
o) =meo([€,2]), forEeN, x€ K*.

We need the following slight generalization of the Adler-Kostant-Symes
theorem ([6],[23]).

3.1 Theorem. Let G = K+ N be as above, M C KL a coadjoint
N-orbit equipped with the natural weak orbit symplectic structure w,
and V; : M — G vector fields satisfying the condition [Vi(z),z] = 0
for all x € M. Let X;(z) denote the vector field on M defined by
Xi(z) = mn(Vi(z))(x). Then

(1) Xi(z) = [z, 7x(Vi(z))],
(ZZ) W(Xth) = 0,
(iii) if X1, Xo are Hamiltonian vector fields then Xy and X5 commute.

Proof. Since [V;(z), 2] = 0, we have [rx(Vi(2)), 2]+ [7n(Vi(z), 2] =
0. Since [K, K] C K+, we obtain

Xi(e) = mea ([ (Vi(2)), 2]) = mea [z, me(Vi(@))] = [, me(Vi(2)],
we (X1, Xo) = wo(mar (Vi (2)) (2), mar (Va () (2))
= (&, [rwv(Vi(2)), mn (Va(2))]) = ([2, 7 (Vi(@))], mar (Va(2)))
= ([re(Vi(2), 2], mp(Va(2))) = (mic (Vi (2)), [, mar(Va(2))])
= (me(Vi(2)), [mc(Va(@)), ¢]) = ([me(Vi(2)), mec(Va ()], ),

which is zero because € K*. This proves (i) and (i), and (iii) is a
consequence of (ii).  q.e.d.

\_/\_/

Next we apply Theorem 3.1 to the loop algebra of a Kac-Moody
algebra. First we recall some definitions and basic facts about Kac-
Moody algebras (c.f. [22], [31]). Note that S(i/) is a Lie algebra with
bracket defined by [u,v](z) = [u(x),v(x)]. Let p be the 2-cocycle on
S(U) defined by

o0

pluce)= [ (wa(o) @) o

o0

where u, = du/dz. The affine algebra of type 1 based on U is

U =38U)+ Re+ Rd,
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with the bracket operation defined by
[u, 0] = [w, o] + p(u,v)e, [do,u]" = up, [c,u)” = [e,ds]" =
The bilinear form on f defined by

o0

(3.1) (urtrictsidy, ugtrec+sady,) = r182+r231—|—/ (u(z),v(z)) dx

—0o0
is non-degenerate, ad-invariant, and has index 1. The Adjoint action on
U is given by
Ad(g)(u) = gug™ + (gug™", g97") ¢,

Ad(9)(ds) = —gog™" + di — »

5 {9297 9297 ") c.

In particular,

_ _ _ 1 _ _
Ad(g)(dy+ u) = dy + gug™" — 97" + ((qug™" — 5929 Y, 9297 e

For a € U, we will also use a to denote the constant map with value a.
Now consider the Lie algebra

L£=LU) = {u Zun” for some ng < oo | u, € U}
n<ng

with Lie bracket defined pointwise by

[, 0] (A) = [u(A), v(M)]".

For each integer r, we let (,), denote the Ad-invariant, non-degenerate

bilinear form on L(U) defined by

(3.2) (w,0)r = D (g, vm),

n4+m=r
where v = 3 u, A", v =73 v, A\ € L and (,) is the bi-linear form
on U defined by formula (3.1) above. For ky < kg, we let

Li gy ={ue L]u= Z wp A"}
klgnskg

3.2 Proposition. Let L = L(Z;[) be as above and equipped with the
Ad-invariant bi-linear form (,)_1 defined by formula (3.2). Let K =
Loco and N = L_o, _1. Then the following hold:
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(i) K and N are subalgebras of L, and L = K+ N as a direct sum of

vector spaces.

(ii) Let a € T be a reqular element of U, identify aX + dy + u as a
linear functional n— (aA 4+ dy + u,n)—1 on N';, M the coadjoint
N-orbit at aA + d,., and w the orbit symplectic form on M. Then
the map i : S(TL) — M defined by i(u) = aX + dy + u is an

isomorphism.
(iii) w_y = i*(w) is a symplectic form on S(T+), and
(w-1)ul(vr, v2) = (J7 ' (v1), v2),
where J, @ T+ — TL is the isomorphism defined by J,(v) =
—ad(a)(v) = [v,a].

Proof. (i) is obvious. For (ii), let g = e+ g A" + g2 A2 +--- € N.
Then g ' = e+ A P hod ™2 410, Equating the coefficients of M in
g9~ = e, we get hy = —g1, hy = g? — g2, .... Using the formula for
Adjoint action of 2 and the fact that ((gy),,a) = 0, we obtain

g - (aA+dy) = me(Ad(g)(aA + dz))
=ai+d, + [a, g1].

Since a is regular, the isotropy subalgebra i, = 7 and [a,U] = T+. This
proves (ii), and (iii) follows from the definition of the orbit symplectic
structure. q.e.d.

In order to apply Theorem 3.1 to M, we need to find vector fields
Q : M — L so that

(3:3)  [ad+dp+u, Q)" = (Qu + [u, Q]+ Na, Q) + p(uz, Q)c = 0.
This means that we need to find ) such that

Qo + [u, Q]+ Ale, Q] = 0,
(3.4) (uz, Q) = 0.

Let Q = m~"bm = ¥~ 'b1) be as in Theorem 2.2. Then @ satisfies the
first equation of (3.4). Next we claim (u,, Q) = 0. To prove this claim,
it suffices to prove

(3.5) (ugp,Qr(u)) =0, forall k>0.
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To see this, we use (@Q;)s + [u, Q;] = [@Q;j+1,a] and the ad-invariance of
(,). Then a direction computation gives

<ux7 Qk(u)> = _<u7 (Qk)l’> = _<u7 [Qk7 u] + [Qk-l-h a]> = _<u7 [Qk-l-l? a]>
= _<[u7 Qk+1]7 a> = <(Qk—|—1)1’ - [Qk+27 a]7 a> = 07

which proves our claim.

If Q is a solution to (3.3), then MQ(u) is also a solution for any
j > 0. Applying Theorem 3.1 to A7Q, we obtain the following evolution
equation:

(LZA + dx + u)t

= [aA+dotu, T (N Qu(u)]"

=[ad+dot+u, QoolW)N + QN1+ Qi (w)]".

7—1

= (Qb)e + [0, Qo)+ D> N ([0, Qupsa] + (Qu i)z + [, Qo]

=0

k
= (Qbj)e + [, Qb ] = [Qp 41 (u), d],
which is the j-th flow equation u; = [@p j4+1(u), ¢]. This also proves that
(aX + w)dz + (QooN + QuiN "+ -+ Qy ) dt

is flat for all A if and only if u is a solution of the j-th flow equation.

4. A sequence of weak symplectic structures

In this section, we study a sequence of weak symplectic structures

w, on the subspace S.(7+) of S(T*) defined by

(@r)u(vr, v2) = ()5 (v1), v2)
and having the following properties:
(1) Jo1 =J, = —ad(a), and J, = J,(J71Jp) L.

(2) Each w, is induced from a weak symplectic form of some coadjoint
orbit.

(3) The hierarchy of flows (2.3) are commuting Hamiltonians with
respect to the weak symplectic structure w,.



SOLITON EQUATIONS AND DIFFERENTIAL GEOMETRY 421

(4) The (n — 1)-th flow equation satisfies the Lenard-Magri relation:

w = [Qpn(u),al = J_1(VE,(u))
= JO(VFb,n—l) = Jl (VFbm_Q) == n_Q(VFbJ(U)).

Let P, : Su(T1) — S(T™) be the operator defined by

T

@) R = et = o [ ()],
where S, (T4) = {v € S(TH)/ /2 [u(y), v(y)]"dy = 0}. We claim that

P, is injective. To see this, let

o) = o) = [ [ula). o)y
Then P,(v) = (0) + [u,?]. If P,(v) =0, then (0), + [u,?] = 0. This
implies that ©(z) is conjugate to ©(0) for all 2. But lim,_,_., o(z) = 0.
So v =0 and P, is injective.

4.1 Remark. Given v € S(T1), if there exists & € S(U) such that
L= lim, o 8(z) = 0 and (9), + [u,0] € S(T1), then P,(v) =
-+ [u, 0]

4.2 Proposition. Let L = L(Z;[), K =Ly, N=L_o_1 be asin
Proposition 3.2, and a € T a reqular element. Let L be equipped with
the bi-linear form (,)_, with r > 0. Identify aX + d; + v as a linear
functional on N defined by n — (aX + dy + u,n)_,. Let M_, be the
coadjoint N -orbit through aX + d,., W_, the orbit symplectic form on
M_, and S.(T*) the space of u € S(T*) such that aX+d, +u € M_,.
Then

(i) aX +dy +u € M_, for all w € S,(T), soi:S(T) — M_,
defined by w— aA + d, + u is an embedding,

v
v

(ii) w_, = i*(w_,) is a weak symmetric form on S,(T+) given by
(w_r)u(vr, v2) = ((J=r)3" (V1) v2), where (J_p )y = Jo(J7 P) T,
Jo(v) = [v,a] and P, is defined by formula (4.1).

Proof. For & = Z]‘>1 Ej/\_j € N, the vector field induced by the

coadjoint N-action is given by

Elar+dy +u) = meo([€, ar+ dy + u]™)

=[xl 3 (E)e — [0 & €y, A
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So vy = &(aX + d, 4 u) if and only if
vy = [&1,al,
= (&)e — [ g+ [E41,a] =0, 1<j<r—1
which is equivalent to
(43) &G =J;"(n1) €8, JI'P&) =&y, for1<j<r-1.

In particular,

& = (J; P TN (o) = (J) 7 ().

Let M_, = (aA+d,+S(T+))NM_,. Given any vy in S(T+) we can find
&1, ..., & satisfy equation (4.3), and it follows that T'(M_,)urtdiu =
S(T+). This implies that M_, = aX + d, + S(T*), and hence proves

(i)
Ifn=> ;A7 € N and n(ad+ dy + u) = vy € T(M_,),, then

Uy = [771761]7
_(77])1’_[u777j]+[77j+17a]:07 1§]§T‘—1

Next we compute the induced weak orbit symplectic form w, directly

(w—r)u(vr, v2) = ([§, )", aA + do + u)

y 17
1

<[€7’ i Mit 1] ‘|‘Z [&r—ismis u) + p(Eriy i),

57’7 771 ‘|‘ Z gr ) 772-I—17 [772'7 u] - (772)1’>
= <€7’7 [7717‘1]> = <€7’7U2> = <(J—7’) ( 1) U2>‘

This proves (ii).  q.e.d.
Similarly, we get

4.3 Proposition. Let L, K, N be as in Proposition 4.2, and a € T
a regular element. Let L be equipped with the bilinear form (,), with
r > 0. Identify aA+ d, 4+ u as a linear functional n— (aA+ d +u, ),
on K. Let M, denote the coadjoint K-orbit through aX + d,, S,(T+)
the space of uw € S(T*) such that a\ + d, + u € M, and W, the orbit
symplectic structure on M,. Then
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(i) ir: So(TH) = M, defined by i(u) = aX + d,, + u is an embedding,

(ii) w, = i*(W,) is a weak symplectic form on S,(TL) and (w,),(v1, ve)
= ((J;) 7 (v1), va), where (J.)y = Jo(J71P,) L

4.4 Proposition. Let L = L(U) be equipped with the bi-linear form
(Yo, K=L1co and N = L_ o. Identify d;, + u as a linear functional
on N mapping 1 to (d, + u, n)o. Let Mo be the coadjoint N-orbit at d.,
So(T) the space of u € S(T+) such that d,+u € My, and W the orbit
symplectic form on My. Then the following hold:

(i) dy + So(T+) C Mp.

(i) Let i : So(TY) — My denote the embedding defined by i(u) =
dy + u, and wg = i*(Wwo); then wq is a weak symplectic form on

So(T1) and wo(vy, v2) = (P (v1), va).

The following Proposition follows from the fact that @ ;(u) € S(U)
together with the recursive formula for ¢);’s (Theorem 2.2) and Re-
mark 4.1.

4.5 Proposition. Let u € S(T1), and Qp.(u) as in Theorem 2.2.
Then

(1) Pu(Qp, () = [Qbnt1(w), d,
(it) J,(VFj(w) = [Qbjtr1(u),a], if j+1 >0,
(1it) [Qon(u),al = Jo(VFyp1) = J1(VFpp_2) == Joo(VF1), if
>

U
n>1.

4.6 Proposition. Let Iy, (u) be as in Proposition 2.4, and r > —1.
Then
{Fb7n|b€ T,TLZ 1}

is a family of commuting Hamiltonians with respect to w,, and the
Hamiltonian equation for Fy,(u) is up = [Qp nyrt1 (), a].

Proof. Given m,n > 1 and by,by € T, we have

0 :{Fbl,mv Fb2,n}—1 = <[Qb1,m (u)7 a]? szn (u)>
(4.4) =(a, [Qbyn, Qby,m]) = 0.
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But

{thm? Fb2771}7’ = <J7’ (Vthm)v VFb27n>

<[le,n—|—r—|—17 a]7 QbQ,m> = <[ng,m7 le,n+r—|—1]7 a>
0. q.e.d.

The above constructions of weak symplectic structures work exactly
the same way when « is chosen to be any fixed element of I/, and T is
the centralizer of @ in U, i.e., T ={z € U|[a,z] = 0}.

4.7 Remark. Using the Lie algebra £ of loops in an affine Kac-
Moody algebra, Reyman and Semenov-Tian-Shansky ([32]) prove that
there exist two compatible Poisson structures on the space S(¥f) defined

by
{F,G}o(u) = (VF(u))s+[u, VF],VG), {F,G}q = (([VF,a], VG).

Note that the phase space S(71) we are working on is a subspace
of S(U), and (So(T+),w®) is a symplectic leaf of (S(U),{,}.), but
(S(T*), wo) is not a Poisson submanifold of S().

The theorem below follows by a direct computation.

4.8 Theorem. Let U/K be a symmetric space, o : U — U the corre-
sponding involution, andU = K+ P the Cartan decomposition. Let A be
a mazimal abelian subalgebra in P, a € A a reqular element with respect
to the Ad(K)-action on P, and K = K, + K1 the orthogonal decomposi-
tion, where Ky = {z € K|[z,a] = 0}. Let Qp(u) ~ > 772, Qp i (w)A™7 be
as i Theorem 2.2, and Fy ; the corresponding Hamiltonian defined by
formula (2.4). If u € §(K4), then the following hold:

(1) Qpn(u) is in P if n is even and is in K if n is odd,

(2) *(w,) is a weak symplectic form if r is even, and is zero if r is

odd, where i : S(K1) — S(T*) is the inclusion,
(3) Fy; =0 on S(Ky) if j is even,

(4) {Fba2m+1|b € T,m > 0} are commuting Hamiltonians with re-
spect to *(wq,) for all r > 0, and the corresponding Hamiltonian
equations are uy = [Qo(;m4r)42(u), a] for m > 0.



SOLITON EQUATIONS AND DIFFERENTIAL GEOMETRY 425

Let L7(U) = {u € L(U) [o(u(—A)) = u(A)} denote the Lie subalge-
bra of L(U) twisted by o. Then u(A) = 3. u;N lies in £7(U) if and
only if u; € K for all even j and u; € P for odd j. Let

L5 00 U) = L7U) N Lo (W),

L7 1 U)=LIU)N L o1 (U).
Then the above Theorem can also be obtained by applying Theorem 3.1

to the Lie algebra splitting L£7(U) = £F . + L7, _; and vector fields
/\2m+1Qb(u)-
4.9 Example. Suppose U = su(2) and ¢ = diag(¢, —i). Identifying

S(TH) as S(O) via
(—Oq g) —

xr

(Jo)o(r) = ra + 4ig / Im(gr),

— 00

we have:

(J-1)q(r) = —2ir,
(Jr)q(r) = Jo1(J 21 (Jo)g) .

Let o : su(2) — su(2) be the involution o(X) = —X"*. Then K = so(2),
K.=0,K =K,
{0 gq
S(Ky) = {Z (—q 0) lq € S(R)} ~ S(R)
(Jo)g(r) =72,

(Jo2); ' (r) =~ %f‘x - q/gg q(y)r(y)dy,

— 00

and the third flow equation associated to SU(2)/SO(2) = S? defined
by a, which is written in terms of ¢, is the MKdV equation

1

5. The —1-flow equation u; = [a, Qp—1(u)]
The main purpose of this section is to describe the —1-flow equation.

5.1 Theorem. Let g be the solution of g~1g, = w with lim,_,_., g(x)
=e, and Qp_1(u) = g~'bg. Then:



426 CHUU-LIAN TERNG

(Z) (Qb,—l)x + [u7 Qb,—l] =0 and hmx—)—oo Qb,—l(u) ($) = b;
(i1) Pu(Qg:_l(u)) = [b, u], where P, is the operator defined by formula
(4-1),

(1i1) {Fpn|b € T,n > 1} is a family of commuting Hamiltonians with
respect to w_o, and the corresponding Hamiltonian equations are

ue = J_2(VE1)(u) = [a, Qp—1 ()],
w = J_o(VFy0)(u) = [Qppn-1(u),a]l, forn > 2,

(v) u is a solution of uy = [a,Qp —1(u)] if and only if the connection

0\ = (aX + u)dz + A1 Qp _1 (u)dt is flat for all \.

Proof. (i) is obvious. To prove (ii), let £ = Qp,—1(u) — b. Because
(Qp,—1)z + [u,Qp—1] = 0, we have

gx + [U,f] = (Qb,—l)l’ + [u7 Qb,—l - b] = _[u7 b]

Then (ii) follows from Remark 4.1.
To prove (iii), we note that [a,Qp1(u)] = [a, ;7 Tp(u)] = [b,u], so
that

(J=2)u(VEb1(w) = Ju (7 P) T Q1 (w) = Py (@1 (w)
= Jo P ([@ua(w), a] = Jo P ([u, b))
= —Ja(@h1(w)) = [0, Qp -1 (w)].
For n > 2, Proposition 4.5 gives J_3(VF, ) (u) = [Qn-1(u),a]. This

completes the proof of (iii). Statement (iv) follows from a direct com-
putation.  q.e.d.

The equation u; = [a,Qp _1(u)] for u : R — T+ is called the —1-
flow equation defined by a,b associated to U. If g : R? — U is as in
Theroem 5.1, then the —1-flow equation can be written as

(5.1) (97'92) = [a, 97 bg].

5.2 Proposition. Let Fy, _5(u) = (Qp,—1(u),a). Then the Hamil-
tonian equation for Iy _o with respect to the symplectic structure wq 1is
the —1-flow equation u; = [Qp,—1(u), al.

Proof. Let g(u) be as in Theorem 5.1, and v € S(T1). Set n =
g~ tdg,(v). 1t follows from a direct computation that 5, + [u, 7] = v and
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n(—o00) = 0. Since v € S(T1), by Remark 4.1, P,(nt) = v. A direct
computation then gives

d(Fby—Q)u(U) = _<[g_1bgvg_1dgu(v)]7 a>
= —(97 dgu(v), [a, g7 "bg]) = —(P(v), [a, 97 bg])
= —wo(v, [a, g_lbg]>.

So the Hamiltonian field of Iy 5 is u ~ [a, g~ bg] = [a, Qp—1(u)].
q.e.d.

Let U, K, P, A, K, K1 be as in Theorem 4.8, and b € A. If u €
S(Kq), then Qp_1(u) € S(P), and the —1-flow equation associated
to the symmetric space U/K with respect a,b is the equation w; =
[a,Qp—1(u)] for u: R? — K. If U/K is of split type, then K, = 0 and
the —1-flow equation is for u : R? — K.

5.3 Example. To write down the —1-flow associated to

SU(2)/50(2), we first note that give u = (_Oq g) and let

_ ( cos f sin f) , where f(ac) = /w Q(y)dy-

—sin f cos f e

Then g7'g, = wand lim,_,_., g = e. Let a = diag(i, —1), and b = —a/4.
Then a direct computation shows that the —1-flow equation associated

to SU(2)/SO(2) defined by a, b, written in terms of f gives the SGE
2fre =sin2f.

Note that the MKdV and the SGE are commuting Hamiltonian flows
with respect to the weak symplectic structures w_o and wyg.

5.4 Example. Let & = su(n), o(X) = —X', and «, b be regular
diagonal matrices with pure imaginary entries in su(n). Then the —1-
flow equation associated to SU(n)/SO(n) defined by a,b for u is

(97" 92)1 = [a, g7 'bg],

where ¢ : R? — SO(n) and g7'g, = u. The associated one-parameter
family of flat connections is 8y = (aX + g7 'g,)dx + A"tg~lbgdt. Note
that equation (5.2) is the SG-matrix equation studied in [12]. But our
associated linear problem to equation (5.2) is different from the one
given in [12].
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In the following, we show that solutions of the —1-flow equation as-
sociated to U (symmetric space U/Uj respectively) give rise to harmonic
maps from the Lorentz space RM! into Lie group U (symmetric space
U/Uy respectively).

Let R denote the Lorentz space given by the metric dadt, and

E:S(RYU) = R, &(s)= / (s7's,, 57 sy dadt
R2

denote the energy functional. A map s: RM' — U is harmonic if s is a
critical point of £. The Euler Lagrange equation is the harmonic map
equation:

(5.3) (57 sp)i = —(s7tsy)p = l[s_lsgg7 sl

Note that Q(z,t) = A(z,t)dx + B(x,t)dt is a flat, i{-valued connection
1-form on the (z,¢)-plane (i.e., dQ = —Q A Q) if and only if there
exists a unique F : R* — U such that E~'dE = Q with £(0,0) = e.
Such E will be called the parallel transport of Q. Given ¢ : R?* — U,
the gauge transformation of ¢ on the space of connections is ¢ x =

QP — dpp~1. Tt is easy to see that
(i) Qis flat if and only if ¢ * Q is flat,

(ii) if £ is the parallel transport of the flat connection €, then
#(0,0)"1E¢™! is the parallel transport of ¢ €.

The following Theorem is well-known ([39]):

5.5 Theorem [39]. If s : R\ — U is a solution of the harmonic
map equation (5.3), then Q= (1= X) (357 sy )da+ (1= A7) (ds7 sy )dt
is flat for all X. Conversely, if Qx(z,t) = (1 — AN)A(z,t)de + (1 —
A" Y B(x,t)dt is flat for all \, then s = F_y satisfies the harmonic map
equation (5.3), where E\ is the parallel transport of Q.

By a direct computation, we have

5.6 Corollary. Let u be a solution to the —1-flow equation u; =
[a,Qp—1(u)], and ®y\(z,t) the parallel transport of the corresponding
one-parameter family of flat connections 0y (x,t) = (aX + u(z,t))dz +
A1Qp 1 (u)dt. Then

(i) @1 %0y = (1 — N)(—Prad®] )de + (1 — A7) (—D0d])dt, where
v = Qb,—l(u);
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(ii) s = ®_1®]" is harmonic from RY to U and s™'s, € U - (—2a)
and s71s; € U - (—2b), where U -z denotes the Adjoint U-orbit at
zo.

5.7 Proposition. Let a € T be a regular element of U. If s :
RYY — U is harmonic such that s™'s, € U - (—2a), then there exists
¥ R? = U such that

P+ Q) = (aX+u)de + A lodt

for some u, v, where Q) is the one-parameter family of flat connections
associated to s as in Theorem 5.5.

Proof. Let A = %s‘lsx and B = %s‘lst. Then
Q=1 -ANAde+ (1 - /\_I)Bdt.

Choose ¢ : R? — U so that A = —¢a¢™!. Let f = —¢~1B¢. First we

claim that the following statements are true:
(1) fo=~[¢7"¢u fland f] = —[¢7"6u, f]7.
(2) (¢t — f)(z, ) €T.

Note that (1) follows from a direct computation. To prove (2), by
a direct computation we get A; = —[A, ¢;¢~!]. But s harmonic implies

that A; = [A, B]. So we have [A, B 4 ¢;¢~1] = 0, which implies that

(671 A6, 67 B+ ¢ d] = [a, f — 67 ] = 0.

Since a is regular, the centralizer of @ is T, and (2) follows.
Now suppose there exists h : B2 — T such that (¢h) ™! %, is of the
form

(aX +u)dz + A todt
for some u(z,t) € T+ and v(z,t) € Y. So we want

(ph) L+ Q= {h o7 (1 = N)Agh+ b hy + h o o h)da
+{h o7 (1 = AT Boh + A7 hy + K7 o7 g b} dt
={(-(1=XNa+h " he +h™ ¢ ¢ h}da
+{-A =AY A+ b7 e+ e R dt
= (a4 u)dz 4+ X" todt
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for some u : R — 7+ and v : R? — Y. This implies that h must satisfy
the following equations:

h=lhy + (h~ 1 1o,h)T = a,
RV fh b hy + R e bk = 0,

or equivalently,

hl’h_l =a— (¢—1¢$)T7
5.4
(54) {hth_l =f—¢7"¢r

By statement (2) above, the right-hand side of the second equation has
value in 7. So such h exists if and only if the integrability condition
holds. Since 7" is abelian, the integrability condition for system (5.4) is

(hxh_l)t - (hth_l)x — 0
The following computation shows that system (5.4) is integrable:

(@ (67200) )i = (f = ¢ 00w = — (67 00)] — F] + (67 00)]
= [0 07 0T — fT, by (2)
= [f7 (b_l(bx]T - fgv

which is zero by (1). q.e.d.

Assume a,b € U such that a is regular and [a,b] = 0. The above
discussion says that there is a bijective correspondence between the
space of harmonic maps s : R\'! — U such that s7's, € U - (—2a) and
s7's; € U - (=2b) and the space of solutions of the —1-flow equation

U = [a7 Qb,—l(u)]‘

Recall that the o-action of U on U for an involution ¢ : U — U is
defined by g-a = gao(g)~! and the orbit U - e is totally geodesic and is
isometric to the symmetric space U/K.

5.8 Proposition. Let o be an involution of U, U = K + P the
Cartan decomposition, T C P a mazximal abelian subalgebra, a,b € T,
and a regular with respect to the Ad(K)-action on P. Suppose u : R* —
KN K satisfies the condition that 6, = (a) + u)dz + A\~ vdt is flat for
all X, where K, = {2 € K|[z,a] = 0}. Let &, is the parallel transport
of 0y, Then

(1) s=®_1®y : RY' — U is harmonic,
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(2) the image of s lies in the orbit M of the o-action at e; since M
is totally geodesic and is isometric to the symmetric space U/ K,
s is harmonic from RY to the symmetric space U/K.

Proof. Since a(6)) = 0_\, o(®y) = ¢_)\. So o(®_y) = &;. In
particular,

s=0_ &' =a(®)0;' € U(o)-e. qed.

6. The n-dimensional systems

In this section, we associate to each rank-n, semi-simple Lie group
U (or a rank-n symmetric space U/K) an n-dimensional system for
maps u : B" — T+ (or u : R* — T+ N P respectively), which is the
first flow equation when restricted to any of the two variables of R™.
Using a theorem of [7], we also show that the Cauchy problem for this
n-dimensional system has global solutions for generic initial data.

Let U, T, T+ be as before, and n the rank of 4. Let a1,...,a, € T
be a basis of T consisting of regular elements. For ¢ € T, we let J,
and w® = w_y be as in section 3. Then on the symplectic manifold

(S(T1), w?), the first flow equation defined by a,b € T is

ur = [Qv2(u), a] = Qp1(u)e + [, Qp1(u)]
(6.1) = (Jo "y (w)z + [u, J5 T (w)].

Let t; denote the variable of u; : R — T+, and let ¢; (j # 1) denote
the flow variable for the first flow equation given by ai,a;. Set v =
—Ja_ll(ul)7 i.e., uy = [ay,v]. Then

(i) 5! oy (w) = [aj, vl,

(ii) the first flow equation defined by ay,a; written in terms of v is

(6'2) [alv Ut]] = [aj7 Utl] + [[alv U]v [aj7 U]]

Similarly, for uy € S(T%), the first flow equation defined by az,a; (j #
2) is

(6.3) (w2)t; = (Jo, oy (u2))e, + (2, 5 o, (u2)].



432 CHUU-LIAN TERNG

But if uy = [ag,v], then Ja_;Ja] (ug) = [a;,v], and equation (6.3) be-
comes

[a27 Ut]] = [aj7 Ut2] + [[a27 U]v [aj7 U]]

What this says is that the first flow equations on these n different sym-
plectic manifolds

{(S(TH), w*)[1 <@ < n}

are compatible. In other words, if v € S(R™, T1) satisfies
(64) [aiv Ut]] - [ajv Ul‘i] = [[ai7 U]v [aj7 U]]v forall 1< 7£] <,

then the restriction of u; = [a;, v] to the ¢;t;-plane satisfies the Hamil-
tonian equations

(6.5) (W), = [Qu,o(u)ya],  1<i#j<n

It is obvious that equation (6.4) is the condition for the following one-
parameter family of connections on R™ being flat:

n

(6.6) 0, = Z(a]‘/\ + [a]‘, U])dt]‘.

i=1

We will call equation (6.4) the n-dimensional system associated to the
rank-n Lie group U.

It is proved in [8] that the Cauchy problem for the two dimension
system (6.2) can be solved globally by the inverse scattering method for
generic initial data provided

/’|waovm

stays bounded for all ¢ in the maximal forward time interval [0,7"). Let
A be the root system associated to U with respect to 7, and U =
T + 2 _aesUs the root space decomposition. Then

Fyi(u) = /_OO (Ja_lJb(u)7 u) dz

:/_oo Z Z((z)) | ug | 2dz,
“aen
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where u, is the U,-component of u. We may choose regular elements
a,blying in the same Weyl chamber in 7. Then there exists ¢g > 0 such

that % > ¢g for all @ € A. This implies that

o0

Fyq(u) > co/ | u(z,t) | *d.

— 00

Since I is conserved under the flow, the energy remains bounded for
all t € [0,7). This proves that Cauchy problem for the n-dimensional
system can be solved globally for generic initial data. We summarize
our discussion in the following theorem:

6.1 Theorem. LetlU be a rank-n semi-simple Lie algebra, T a
mazimal abelian subalgebra of U, and a1, ... ,a, € T a basis of T con-
sisting of reqular elements. A smooth map v : R* — T+ is a solution to
the n-dimensional system (6.4) associated to U if and only if the one-
parameter family of connections defined by formula (6.6) on R™ is flat.
Moreover,

(i) for generic f € S(T+), the Cauchy problem for the system (6.4)

with initial condition v(t1,0,...,0) = f(t1) has global solution on
R",
(ii) if v(t1, ..., tn) is a solution of system (6.4), then the restriction of

w; = [a;,v] to any plane parallel to the t;t;-plane satisfies the first
flow equation associated to U defined by a;,a; on the symplectic
manifold (S(T+),w*) for all j # i: (w)y, = [Qu,2(ui),a;] =
(u)e; + [wi; ugl.

Now let U/K be a rank-n symmetric space, o : Y — U the corre-
sponding involution, 4 = K + P the Cartan decomposition, and 7 C P
a maximal abelian subalgebra. Let ay,...,a, be a basis for 7 con-
sisting of regular elements with respect to the Ad(K)-action on P.
Then a similar argument to the above will lead to a natural system

forv:R" = PNT:
(67) [ai7 Ut]] - [ajv Ul‘i] = [[ai7 U]v [aj7 U]]v forall 1 <1 7£] <,
(note that this equation is different from (6.4) because a; € 7 C P and

v(t) € PN TL). System (6.7) will be called the n-dimensional system
associated to the rank-n symmetric space U/K. To summarize, we have
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6.2 Theorem. Let U/K be a rank-n symmetric space, o : U — U
the corresponding involution, U = K + P the Cartan decomposition,
and T C P a maximal abelian subalgebra. Let ay,...,a, be a basis
for T consisting of reqular elements with respect to the Ad(K)-action
on P. Then a smooth map v : R* — PN T+ is a solution of system
(6.7) associated to the symmetric space U/ K if and only if the following
one-parameter family of U-valued connections on R"™ is flat:

n

(6.8) 0, = Z(azx\ + [ai, U])dti.

=1
(Note that here a; € T C P,v € T+ NP, and [a;,v] € K.) Moreover,

(i) for generic f € S(T+NP), there exists a unique v € C*°(R", TN
P) such that v is a solution of system (6.7) and v(t1,0,...,0) =
f(tl))

(i1) if v(t1,...,t,) is a solution of system (6.7), then the restriction
of u; = la;,v] to the t;t;-plane satisfies the first flow equation
associated to U/K defined by a;,a;: (u;)y, = [Qua,2(wi),a;] =
(uj)e, + [ui,u;] on the symplectic manifold (S(K N (K,)*L), wo),
where K, = {a € K|[z,b] = 0,forallb € T}.

Next we give some explicit examples.

6.3 Examples.

(1) M_1(n) =5S0(2n,1)/S(O(n) x O(n, 1)).
The Cartan decomposition of M_q(n) is U = Uy + U, where U =

so(2n, 1),
X 0 0

Uozso(n)Xso(n,l):{ 0 Y 7 ‘X7Y€80(n),n€R”},
0 nn O

0 F &
ulz{ —Ft 0 0 ‘FEgl(n),SeRn}.
€ 0 0
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Let
0 —-C 0
T = { C 0 0] €gl@2n+1)|C € gl(n) isdi:&ug;on:ad}7
0 0 0
0 —-C; 0
a;=1C; 0 0], where C; = diag(ci1, ¢izy - -+, Cin)-
0 0 0
Then 7 is a maximal abelian subalgebra in if;. Note that ay,...,a,

are regular and form a basis of 7 if and only if

(6.9) det((c;5)) # 0, c?j £ ¢, forall j # k.
Let gl(n).« = {(zi;) € gl(n) |z;; =0 forall 1 << n}. Then
UhnTt

0o F &
{(Ff 0 0) eul‘fz(bh---,bn)f:(fz'j)Ggl(n)*}-
€ 0 0

Make linear change of coordinates by setting z; = Y I, ¢jt;.
Then

zn: Chdt; = diag(z c;dt;, Z ciadti, . .., Z Cmdti)

1=1 [ [ [
= diag(dzy,...,dz,) = 0.
So the one-parameter family of flat connections (6.8) is:

n

0, = Z(azA + ui)dti

=1

0 -5 0 SFt — F§ 0 0
=Als 0 o]+ 0 SF — Fts 8¢t .
0 0 0 0 &5 0

The system (6.7) written in terms of differential forms is:

—F5 4+ 6F is left flat,
(6.10) < dw = w Aw+ 5 N &S, where w = —0F + F'§,
dENS=E(—F5+0F') N6, where § = diag(day, ..., dz,).
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(2) Mo(n) =S0O((2n)/S(O(n) x O(n)).
Similarly, the n-dimensional system associated to the symmetric
space My(n) is a system for v: R = Uy N T+

v = (_gw‘ Zg) , F={(fi;) € gl(n)s

and the system (6.7) in 2 coordinates becomes

—F§+0F" s left flat
(6.11) { + 18 lelt flat,

—0F + F'5  is right flat,

and the corresponding one-parameter family of flat connections is
(0 =9 —F5+ 61 0
GA_A(é 0)+( 0 5F-F%)'

(3) My(n) = SO(2n+1)/S(O(n) x O(n+1)).

For this example, we use the following real form of so(2n+ 1,C),
which is isomorphic to so(2n + 1):

X ’L?]t 2n
{(“7 0)‘)(680(271), neRr },

where 7 = y/—1. Then a similar calculation as for M_;(n) shows
that the n-dimensional system associated to the symmetric space
M (n) is given by

—F§+ §F¢ is left flat,
(6.12) dw =w Aw — 5 A E6, where w = —§F + F'§, ,
dENS =E&(—F8 +6F) A 6.

and the corresponding one-parameter family of flat connections is

0 -5 0 —F§+6F =6 0
O,=X[6 0 o]+ 5 SF — Ft§  isct
0 0 0 0 ics 0



SOLITON EQUATIONS AND DIFFERENTIAL GEOMETRY 437

6.4 Theorem. Let F' = (f;;) : R* — gl(n)s, and & = (by,...,b,) :
R™ — R™ be smooth maps. Then the n-dimensional system associated
to the symmetric space M.(n) is the following system for (F,§):

—F§+0F! is left flat,
(6.13) dw =wAw—cbE NES,  where w = —0F + F'6,
(bi)e; = fijb;.

The one-parameter family of flat connections associated to this system

0 -5 0 SEt — F§ 0 0
O,=X[6 0 o]+ 0 SF— F's J—ca¢t|,
0 0 0 0 Nar¥?) 0

15

where 6 = diag(day, ..., dz,).

Note that if ¢ # 0, then the system (6.13) for (b, F) in (21,...,2,)
coordinates is:

(6.14)
(bi)a; = fijb; = 0, if @ # j,
(fii)ai + (F5)a, + 225 frifry = 0, if 1 # J,
(fij)w, — fiefr; =0, if 4, 7, k are distinct,
(fij)e, + (Fii)e + 220 finfip = —cbibj,  if i # j,
and in (¢1,...,t,) coordinates is:

(=FCy + CF),, — (=FC; + C;FY),,
= [-FCy + CpFt,—FC; + C;F],
(~CyF 4 FICy)y, — (~CiF + F'C)y,
(6.15) = —[~CyF + F'Cy, —C;F + F'C}]
+e(CiE'ECK = CR&'ECy),
(ECk)e, = (€C5)e
= —(CLF'Cy + ECFICy,.

If ¢ = 0 then the system (6.13) for F' in (21,...,%,) coordinates is:
(fi)as + (fji)o, + 2k fai iy = 0, if i # j,

(6.16) (fij)ay — finSr; =0, if 2, 7, k are distinct,
(fij)ey + (fii)es + 200 fin fiw =0, if 05,
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and in (t,...,t,) coordinates is:

(—FCk + CkFt)tj — (—FC]' ‘|‘Cth)tk
= [—FCk—I—CkFt,—FC]‘—I—Cth],

(—CkF—I— F’ka)tj — (—CjF—I—FtC]‘)tk
= —[—CkF—I-FtCk,—C]‘F—I—Fth].

(6.17)

7. Isometric immersions of space forms into space forms

In this section we show that the n-dimensional system (6.13) asso-
ciated to the symmetric space M, (c) is the equation for the isometric
immersions of n-dimensional space forms of sectional curvature ¢ into
2n-dimensional space forms of the same curvature ¢ with ¢ = —1,0, 1.

Let N"(c) denote the simply connected, Riemmanian manifold of
constant sectional curvature c¢. Then N™(0) = R™, N™(1) is the stan-
dard unit sphere S”, and N"(-1) = {z € R™'|(z,y); = —1}, where
R™! is the Lorentz space equipped with the bilinear form (z,y); =
1+ TYn — TppiYntr-

Let M™ be a submanifold of N?*(¢) with constant sectional cur-
vature ¢ and flat normal bundle. Then by the Ricci equation, given
any p € M the collection of shape operators {A4,|v € v(M),} is a
commuting family of self-adjoint operators. So there exists a local or-
thonormal frame field eq,..., ez, such that e,1q,...,ey, are parallel
normal fields and {ey, ..., e,} is a common eigenbasis for the shape op-
erators. Let b$ denote the eigenvalues of A._, i.e., A. (e;) = b%¢;, and
v = Zin:n-l—l b'eq. Then given any v € v(M) we have A, (e;) = (v, v;)e;.
It is easy to see that the v;’s are well-defined, and they are called the
curvature normals of the submanifold M.

7.1 Theorem. Suppose O is a simply connected open subsel of
N™(¢), X : O — N?"(c) is an isometric immersion with flat nor-
mal bundle, and the n curvature normals are linearly independent. Let
{€nt1s.-.,€2,} be a parallel orthonormal normal frame field. Then the

following hold:

(i) There exist line of curvature coordinates (x1,...,x,) and smooth

maps £ = (by,...,b,) : O = R" and A = (a;;) : O — SO(n) such
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that the two fundamental forms are of the form

1= b
=1

17 = Z aﬁbidx?enﬂ.

=1
(i) Let & = (by,...,by), and F' = (fi;), where f;; = (b;)mj ifi £ and
J
0 ifi =j. Then (b, F) is a solution of the n-dimensional system
(6.13) associated to the symmetric space M.(n).

Proof. Statement (i) can be proved exactly the same way as for
isometric immersions of N"(c) into N?"71(c + 1) (cf. [13], [27] and

138]).
To prove (ii), we use the local theory of submanifolds in space forms
(cf. [30]). Set w; = b;dx;. Then the connection 1-form is

(7.1) wij = = fijde; + fiidey = (=6F + F'8)y5,

Wi pt; = aj;dx; and wyy; 4, = 0. The Codazzi equation
e
dWipy; = Y Wik A Wk
k=1
gives (a;ji)e, = fiva;r for ¢ # k. Since > ) a?k =1, for j # ¢ we have

2
(@), = _Zk;ﬁi(ajk)xi _ Z (l]‘k(a]"k)x,‘ _ Zajkfki-

2@" a:
Jt ki Jt ki

So dA = A(—F4 + 0F"), and hence F satisfies the first equation in
system (6.13). The structure equation dw; = > w;; Aw; gives the third
equation, and the Gauss equation dw;; = 2221 Wik A Wi — cw; A w;
gives the second equation of the system (6.13). q.e.d.

As a consequence of Theorem 7.1 and the fundamental theorem of
submanifolds in space forms, we have

7.2 Corollary. Let (F,€) (F = (fi;),§ = (b1,...,b,)) be a solution
of the system (6.14) for ¢ = +1 on R™. Then there exist smooth maps
A = (ay) : R* = SO(n) and X : R" — N*(c) such that X is an
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immersion, and has constant curvature ¢, flat normal bundle and I, 11
as in Theorem 7.1 on the set of all x € R" with b;(z) # 0 for all
1< < n.

7.3 Corollary. Let F' be a solution of the system (6.16). Then there
exist a smooth map A = (a;;) : R — SO(n) such that A~ 'dA = —F§+
SFt. Moreover, given constants fiy, ..., ft, and set b; = E]‘ piaz; > 0,
then there exists a smooth map X : R" — N?"(c) such that X is an
immersion, and has zero sectional curvature, flat normal bundle, and
I, 11 asin Theorem 7.1 on the set of x € R™ such that b;(z) # 0 for all
1 <2< n.

Theorem 7.4 below follows from Theorem 6.1 (ii), Corollary 7.2 and
Corollary 7.3.

7.4 Theorem. Fiz a non-zero vector ¢ = (cq,...,¢y,) such that
it # C? for alli # j. Then given generic rapidly decay smooth functions
5207t R — R with f;; =0 for 1 < 4,5 < n, there exists a smooth map

X 1 R™ — N?"(c) unique up to isometry of N*"(¢) such that
(i) I = X*(ds*) =3, b;(x)?da?, where ds* is the metric on N*"(c),
(71) bi(eat, ... cnt) = b9 (L) and ((b;)s,/b;)(cat, ... cnt) = IS (1),

(iii) X is an immersion, and has constant curvature ¢, flat normal
bundle on the set of x € R" such that b;(x) # 0 for all 1 < i < n.

Next we discuss the relation between local isometric immersions of
N™(¢) into N*"(¢) with flat normal bundle and local isometric immer-
sions of N"(c) into N2~ (c+1). It is proved by Cartan [13] that N"(c)
cannot be locally, isometrically, immersed into N**72(c + 1), but can
be into N?"~1(c + 1). Moreover, if X : O — N?"71(c+ 1) is a local
isometric immersion of N"(c), then the normal bundle is flat. Using the
work of Moore [27] and Cartan [13], it is known that given any parallel
normal frame field e, 41, ..., e2,-1 there exist a line of curvature coor-
dinates (21,...,2,) and a smooth map A = (a;;) : O — SO(n) such
that the first and second fundamental forms of the immersion X are
given by

I = Z a%idw?v
(7.2)
Il = Z aliajidac? & €ntj-1-

1=1,7=2
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Define

(ali)mj P .
fZ] — al] 1 lf g # ]7
0, if i =7,
and set ' = (f;;). Then the Gauss, Codazzi and Ricci equation of the
immersion is a system for (A, F):
A7VdA = —F§ + §F!
(7.3) Tor
dw = wAw — cdA AL,

where ¢ = diag(dzy, ... ,dz,),w = —0F+F'5, and p = diag(1,0,...,0).

Conversely, if (A, F) : R" — SO(n) X gl(n). is a solution of (7.3),
then it follows from the fundamental theorem of submanifolds in space
forms that there is a local immersion X : O — N**7!(c + 1) such that
the immersed submanifold has flat normal bundle, constant sectional
curvature ¢ and its first and the second fundamental forms are given
by the formula (7.2). In other words, system (7.3) is the equation for
isometric immersion of N™(¢) into N**~!(c+1). It is well-known that
the equation (7.3) with ¢ = —1 for isometric immersions of —1 curvature
surface into R? is the Sine-Gordon equation, and the equation (7.3)
with ¢ = 0 for isometric immersions of flat surfaces in S® is the wave
equation. So the system (7.3) is called the GSGE (generalized Sine-
Gordon equation) in [37] and [38] for ¢ = —1, and is called the GWE
(generalized wave equation) in [36] for ¢ = 0.

Let i : N*""Yc+ 1) — N?(c) be a standard isometric, totally
umbilic embedding of N?"~!(c+ 1) (cf. Chapter 2 of [30]). If X : O —
N2"=1(¢ 4 1) is a local isometric immersion of N"(c), then io X : O —
N?"(¢) is a local isometric immersion of N”(¢) with flat normal bundle
and linearly independent curvature normals. Moreover, if z is the line
of curvature coordinate for the immersion X, then the following hold:

(i) « is the line of curvature coordinate as in Theorem 7.1 for i o X.

(ii) If (A, F)) is a solution of equation (7.3) and let & = (@11, ..., a1n).
Then (F,§) is a solution of equation (6.13).

A direct computation also gives the following:

7.5 Proposition. Let A = (a;;) : R — SO(n), and F = (f;;) :
R™ — gl(n).. If (A, F) is a solution of the system (7.3) and let & =
(@11, ... ,a1,) the first row of A, then (F,&) is a solution of the system
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(6.13) associated to the symmetric space M.(n). Conversely, if (F,§) :
R" = gl.(n) x S™! is a solution of (6.13), then there exists a smooth
map A : R* — SO(n) such that

(i) the first row of A is €,
(ii) A~\dA = —F§ + §F",
(iii) (A, F) is a solution of the equation (7.3).
7.6 Corollary. Let O be a simply connected, open subset of R",
A= (a;): 0= 50(n), &= (a11,...,a1,), and F = (fi;) : O — gl(n)

be smooth maps. Then the (A, F') is a solution of the equation (7.3) if
and only if Oy as in Theorem 6.4 is flat for all X.

7.7 Remark. It was proved in [1] that (A, F') is a solution of
equation (7.3) if and only if

AL 0 —§ALT —SF+ F'§ 0 A/ 0 —G6A!
(7.4) T(—JA(S 0 )*( 0 0)*5(-%15 0 )

is a flat o(n, n)-connection on R" for all A\, where J = diag(—1,1,...,1).
The inverse scattering associated to the flat connection (7.4) was solved
in [1].

The result of this section shows that the system (7.3) for isometric
immersions from N"(c) into N?"~1(¢+ 1) has the standard linear prob-
lem considered in [7], and is the n-dimensional system associated to the
symmetric space M, (c). Hence the restriction of system (7.3) to the

tit;-plane (¢ # j)
(i) is the first flow equation associated to M, (c),

(ii) is the Hamiltonian equation for Fj ; with respect to the symplectic
structure wq,

(ili) commutes with all the odd flows assoicated to M, (c).
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