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S O L I T O N E Q U A T I O N S A N D D I F F E R E N T I A L 
G E O M E T R Y 

CHUU-LIAN TERNG 

1. Introduct ion 

In this paper we study certain symplectic, Lie theoretic, and differ­
ential geometric properties of soliton equations. 

The equation for harmonic maps from the Lorentz space R1'1 to a 
symmetric space, and the equation for isometric immersions of space 
forms into space forms have many of the same properties as soliton 
equations—for example, they have Lax pairs and Backlund transfor­
mations—and two of the main goals of this paper are to find Hamilto-
nian formulations for these equations and to see how they fit into the 
general theory of soliton equations. As a by-product, we also find many 
new n-dimensional soliton systems. 

It is well-known that most finite-dimensional, completely integrable, 
Hamiltonian systems can be obtained by applying the Adler-Kostant-
Symes Theorem (AKS) to some Lie algebra G equipped with an ad-
invariant, non-degenerate bi-linear form, and a decomposition G = + 
N . The symplectic manifold is some co- adjoint N-orbit M c ^ K 
and the equation is the Hamiltonian equation of f j M, where f : G —N R 
is some suitable Ad-invariant function. For example, Kostant obtained 
the generalized Toda lattice ([23]) by applying the AKS theorem to G = 
K + N such that the corresponding G/K is a non-compact, symmetric 
space of split type (i.e., the rank of G/K is equal to the rank of G), 
and Adler and Van Moerbeke obtained the Euler-Arnold equation and 
Moser's geodesic flow on the ellipsoid ([6]) by applying the AKS theorem 
to G = the loop algebra of a simple Lie algebra. 
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Many soliton equations can also be obtained from the AKS theo­
rem. For example, Adler ([5]) showed that the KdV equation can be 
obtained by taking the Lie algebra of pseudo differential operators as G; 
Drinfeld and Sokolov ([15]) obtained the Gelfand-Dikii equations and 
associated to each Kac-Moody algebra a hierarchy of soliton equations, 
and Flaschka, Newell and Ratiu ([17], [18]) obtained many remarkable 
properties of the soliton equations by taking G to be the algebra of loops 
on the loop algebra of sl(n, C). 

Another technique for generating soliton equations is the inverse 
scattering method, and in particular Beals and Coifman used this to 
obtain a hierarchy of evolution equations that will be of interest to 
us. To describe their equations, we first set up some notation. Given an 
inner product space V, we use S(V) to denote the space of smooth maps 
from R to V tha t lie in the Schwartz class. Let U be a semi-simple Lie 
algebra, T a fixed maximal abelian subalgebra of U, T1 the orthogonal 
complement of T in U with respect to the negative of the Killing form of 
U , and a G T a fixed regular element. The following results are proved 
by Ablowitz, Kaup, Newell and Segur ([3], [4]) for U = sl(2), and by 
Beals and Coifman [7] and Sattinger [33] for arbitrary semi-simple U: 

(i) There exists a pair of compatible symplectic structures w a and w 
on S(T"1"), which is a Hamiltonian pair in the sense of Magri [25] 
and Gel'fand and Dorfman [20], where uja (v1,v2) = 
(— ad _ 1 ( a ) (v i ) , v2) and w is defined by an integral-differential 
operator. 

(ii) There exist a family of commuting Hamiltonians fF b.n j b G T , n G 
Ng on S(T"1") and a family of polynomial differential operators 
fQ b,n{u) j b G T, n G N on S^1) such that the Hamiltonian 
equation for F bn is u t g [Q b,n(u T ,a] with respect to w a and is 
u = [Q b^n+i^u), a] with respect to w . [u t = [Q b^+i^u), a] will be 
called the n-th flow equation associated to U defined by a, b.) 

For example, the second flow equation associated to SU(2) defined by 
a, a (with a = diag(i, —i)) is the non-linear Schrödinger equation (NLS), 
and the first flow associated to SU(n) defined by a base a, b of T is the 
n-wave equation. 

In this paper we show that the above results arise naturally from 
applying the AKS theorem to the Lie algebra of loops in an affine Kac-
Moody algebra. Moreover, we have the following: 
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(1) 

1 Z°° 
(1.1) F bn(u) = (Q bn+1(u),a)dx. 

n J-co 

When U = su(2) this formula agrees with the one in [28]. 

(2) (S(T~L),w a) is a coadjoint orbit, and (S^1), wo) is a symplectic 
submanifold of some coadjoint orbit. 

(3) Let U/K be a symmetric space of split type, and U = K + P the 
Cartan decomposition. Let T be a maximal abelian subalgebra 
of U tha t is contained in P. So K C T 1 . Let i : S(K) -> SCT 1 ) 
denote the inclusion map. Then 

(i) i*w a = 0, and i*w is non-degenerate on S(K), 

(ii) F bn = 0onS(K), 

(iii) the Hamiltonian equation for the restriction of F bt2k-i to 
S(K) with respect to i*(wo) is Mt = [Q b,2k(u),a]-

It is known that the SGE is the equation for harmonic maps from 
R1'1 to SU(2)/SO(2) (cf.[40]). But SGE is also the -1-flow equation 
associated to the symmetric space SU(2)/SO(2) ([28]). We generalize 
this to arbitrary symmetric space. In fact, given a,b G T , the —1-flow 
equation for a symmetric space U/K is u t = [a,g~1bg] for u G S (I), 
where g : R —> K is the solution for g~lg x = u and lim x^-oo g(x) K e. 
Moreover, we have: 

(1) The —1-flow equation associated to U/K is Hamiltonian with re­
spect to wo. 

(2) The —1-flow commutes with all the odd flows associated to U/K. 

(3) Solutions of the —1-flow equation associated to U/K give rise to 
harmonic maps from R1'1 to U/K. 

Next we associate to each rank-n symmetric space U/K an n-dimen­
sional first order system for maps from R n to P n T1 • Given a basis 
f a i , . . . , a n g, the following system of n(n — l ) / 2 first order equations 
for v:R n ^PC\TL: 

(1.2) [a i, v x j] - [a j , v x i] = [[a i, v], [a j , v]], 1 < i < j < n, 
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is called the n-dimensional first order system associated to U/K. The 
relation of this system to the first flow equation associated to U/K is 
that for fixed i / j , the restriction of equation (1.2) to the Xi x j plane 
is the first flow equation associated to U/K defined by a i,a j on the 
symplectic manifold (^(T"1") ,^) with u = [a i,v]. 

Using work of Beals and Coifman ([8]) on the inverse scattering for 
linear system, we prove that the n-dimensional system (1.2) can be 
solved globally for generic initial da ta on the line. 

Now let N n(c) denote the space form of constant sectional curva­
ture c. We prove that the equation for isometric immersion of N n(c) 
into N2n(c) with flat normal bundle and linearly independent curva­
ture normals is exactly the n-dimensional system (1.2) associated to 
the symmetric space 

M An) 

SO{2n, 1)/S(O(n) X O(n, 1)), if c = - 1 , 

SO(2n)/S(O(n)xO(n)), if c = 0, 

^ SO(2n + l)/S(O(n)xO(n+l)), i fc=l . 

In particular, this implies that : 

(1) The system of equations for isometric immersions of N n(c) into 
N2n(c) is obtained by putting all the first flow equations associated 
to the symmetric space M c(n) together. 

(2) To solve this system of n variables, it suffices to solve the first flow 
equations of two variables. 

The literature in soliton theory is enormous, and we will only refer 
here to papers we use directly. There are many excellent survey articles 
and books; for example [2], [9], [28], [16], [29], where the reader can find 
more complete bibliographies. 

The relations among Backlund transformations, Poisson loop group 
actions, and the inverse scattering for the j - t h flow equation (j = 
— 1,1,2,..) will be studied in forthcoming joint papers with K. Uhlen-
beck. 

This paper is organized as follows: In section 2 we review the work of 
Beals, Coifman and Sattinger on evolution equations and inverse scat­
tering and prove the formula (1.1). In section 3 we apply the AKS 
Theorem to the loop algebras of affine Kac-Moody algebras to obtain 
the Beals-Coifman evolution equations. In section 4 we study a se­
quence of compatible symplectic structures u>r on ̂ (T"1"). In section 5 
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we construct the — 1-flow equation and study its relation to harmonic 
maps. In section 6 we associate to each rank-n symmetric space an n­
dimensional system of first order partial differential equations and give 
some examples. Finally, in section 7 we explain the relation between 
the n-dimensional system and the equations for isometric immersions of 
a space form into a space form. 

The author would like to thank M. Adler, P. Van Moerbeke and 
K. Uhlenbeck for many helpful discussions, and to thank R. Beals for 
helpful suggestions concerning the preliminary version of the paper. 

2. First order linear s y s t e m s and non-l inear evo lut ion 
equat ions 

In this section, we state some of the results proved by Beals and 
Coifman ([7], [8], [9]) and Sattinger [33] concerning the relation between 
nonlinear evolution equations and spectral problems for first order linear 
systems. 

Let U, T be as in section 1, (, ) an Ad-invariant bilinear form on U, 
and T1 the orthogonal complement of T in U with respect to (, ). Let 

Z o o 
(u1(x),u2(x))dx 

-oo 

denote the L2-inner product on S(T"1"), Given a functional f : S(T"1") —> 
R, let r f : S(T"1") —T- S(T"1") denote the gradient of f with respect to 
the L2-inner product on S^1), i.e., df u(v) = h r f ( u ) , vi. Let a G T be 
a regular element. Then ad T a) : T1 —> T1 is an isomorphism. So the 
two-form uj defined by 

u{vi,v2) = h - a d ( a ) _ 1 ( v i ) , v 2 i 

is a symplectic structure on S^1), and the corresponding Poisson 
structure for functions on S(T"1") is given by ffi, f2g = h [ r f i , a], r f 2 i . 

Given u G S^1), consider the following first order system for ip : 
R —7- U with asymptotic condition at —00: 

(2.1) tf)x(x,X) = tf)(x,X)(a\-\-u(x)), lim exp( — aXx)tp(x, A) = e, 
x—Y — 0 0 

where ipx = -x, and e G U denotes the identity. Let 

m(x, A) = exp( — aXx)tp(x, A). 
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Then the equation (2.1) written in terms of m is 

(2.2) m x(x, A) = X[m, a] + mu, lim m(x, A) = e. 
x—Y — OO 

Let U = su(n), a = d i a g ( c i , . . . , c n) a regular element in su(n), (i.e., all 
the i's are distinct), and T be the space of diagonal matrices in su(n). 
Set 

r = fA G C j Re((c j — cjt)A) = 0, for some j / kg. 

2.1 T h e o r e m ([7]). Given u G S(T"1"), we have: 

fi) There exists a discrete set D C CnT such that for all A G Cn(TUD) 
the system (2.2) has a unique solution m, m(x, A) is meromorphic 
in A G C n r and holomorphic in C n {Y U D). 

(ii) For generic u G S (T - 1 ) , the set D is finite and m has simple poles 
on D, and there exists a map S : (T n f0g) U D —> U such that 

lim m(x,X) = e aXox S(X0)e-aX°x lim_m(x,X) 

for A0 G r nf0g, and for Xj G D 

(I - (A - Aj)"1e a A x S(Aj )e -a A x)m(x , A) 

has a removable singularity at X = Xj. The scattering map u H-> S 
is injective on an dense open subset o fS (T _ L ) . 

2.2 T h e o r e m ([7], [8]). Given beT, let 

Q b{x, A) = m(x, X)~ bm(x, A) = ij)(x, X)~ bij)(x, A). 

Then {Q b)x + [aX + u, Q b] = 0. Moreover, Q b has the asymptotic expan­

sion: Q b(x, A) ~ P ^ jLo Q b,j{x)^~j, as A H-7- oo such that 

1. (i)]Q b,o = b, 

(ii) (Q b,j)x + [u, Q b,j] = [Q b,j+i,a] with lim x^.oo Q btj = 0 for all j > 0, 

(iii) u(x,t) satisfies equation 

u t = {Q b,j{u))x + [u,Q b,j{u)] = [Q b,j+i{u),a] 

if and only if its scattering data S(X, t) satisfies the linear equation 

S t(X,t) = Xj[S(X,t),b]. 
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Henceforth, we will call u t = [Q bj+i(u),a] the j-th flow equation 
associated to U defined by a,b. 

2.3 T h e o r e m ([8],[33],[10]). With the same notation as in Theo­
rem 2.2, we have 

(i) Q bj(u) is a polynomial differential operator in u, 

(ii) u H-7- Q ̂ j(u) is a gradient vector field on S^1), where x1- denotes 

the orthogonal projection of x onto T1, 

(iii) the hierarchy of flows 

(2.3) u t = [Q bj(u),a], j > 1 

are commuting Hamiltonians with respect to the symplectic struc­
ture LU on S(T"L) defined by CJ(vI, v2) = (— ad (a ) _ 1 (v i ) , v2), 

(iv) u is a solution of u t = [Q bj+i(u),a] if and only if the following 
linear system is solvable for all A 

\ipx =ip(a\+u) 

\^ t = 1>(b\j + Q b,i(u)j-1 + Q b,2{u)\j-2 + ••• + Q b,j{u)). 

Theorem 2.2 implies that the evolution equation (2.3) is linearized 
by the scattering map. Moreover, Beals and Sattinger proved in [10] 
that equation (2.3) is completely integrable by finding the action-angle 
variables. 

The Hamiltonian function F b)n : S^1) —> R corresponding to the 
(n — l)- th flow equation u t = \Q b,n{u)i a T is 

F b,n(u) = Z (Q b,n(tu)-L,u)dt= Z (Q b,n(tu),u)dt, 
o o 

because VF b,n(u) = Q b,n{u)'L- It is proved in [33] that m(oo) = 
lim x-^oo m is diagonal and 

Z ° ° d 
(b,—logm(x,\))dx. 

When U = sl(2) and a = diag(i, —i), there is a simple formula in terms 
of Q's (cf. [28]): 

F a,n(u) = z h n+1(u)dx, where Q a^n = n _n 
f n i(ln 
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The following Proposition generalizes this formula to arbitrary U. 

2.4 Propos i t ion . The Hamiltonian functional F bjn : ^(T"1") R 

is 

(2.4) F bn(u) (Q b,n+i(u),a)dx. 

Proof. We write Q = Q b. First we claim that for all v G ^(T"1") we 
have 

(2.5) (v,~d\^ = ( r f<3u(v)'a)-

To see this, we note that m x = X[m, a] + mu. So 

dm d m = [ m ' a ] + A 

dA 

dm 
+ dxu-

Let £ = m-1d ^ . Then a direct computation gives 

x + [aA + u, £] = a — m~ am. 

Let Q = Q b = m~1bm, U = a\-\- u and 77 = m~ldm u(v). Then 

dQ(a) = d Q = [Q,£], 

dQ(v) = [Q,»7], 

f]x + [U, ??] = v. 

Therefore 

(2.6) 
(dQ(a),v)-(dQ(v),a) = ([Q,Ç],v) - ([Q, r,], a) 

= (Q,[Ç,v]-[riia]). 

Another direct computation implies that 

(2.7) [£, rj\x = [[£, rj\,U]+ [£, v] - [77, a] - [m^am, rj\. 

Substituting equation (2.7) into equation (2.6), we get 

(dQ(a),v) - (dQ(v),a) 

= (Q, [£, rj\x + [U, [Ç, vìi + [m-'am, rj\) 

= (Q, [£, Vl) I ^00 - (Q x + [U, Q], [£, »7]) + (Q, [ m - ^ m, 7?]). 
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Now the first term is zero because lim x^oo m being diagonal implies 
that £(oo) and 77(00) are diagonal so the bracket is zero. The second 
term is zero because Q x + [U, Q] = 0. The third term 

[Q, [ m - am, rj\) = ( m - bm, [ m - am, rj\) = ( [ m - bm, m~ am], rj) 

= ( m - [b, aim, rj) 

is zero because [a, b] = 0. This proves equality (2.5). 
But 

CO 

n=l 

Comparing the coefficients of \~(n+1> in (2.5), we get V F ̂ + i = — nQ ^. 
q.e.d. 

2.5 E x a m p l e ([28]). Let U = su(2) and a = diag(i, —i). Then u G 

(5(T ) is of the form u = _ . So <S(T ) is naturally isomorphic 

to the space of Schwarz functions q : R —» C. Under this identification, 
üja(qi, q-ì) = i (q i , q2)) and the first and second flow equations are: 

q t = q x, 

q t = ^(q xx + ^\q\2q)-

Note that the second flow equation is the NLS equation. 

2.6 E x a m p l e ([8]). Let U = su(n), and 

a = d i a g ( a i , . . . ,a n),b = d i a g b i , . . . ,b n). 

If a is regular, then the first flow equation u t = [Q b,2(u),a] for u = 
(u ij) : R 2 - • T 1 is 

b b b b b b 

a i-a j k K a k-a j a i - a k' 

When n = 3, this is the three-wave equation studied in [26]. 

3. A d l e r - K o s t a n t - S y m e s T h e o r y 

In this section, we show that <S(T-1) is a coadjoint orbit, the symplec-
tic form defined in section 2 is the orbit symplectic form, and the n-th 
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flow equation (2.3) arises naturally when we apply the Adler-Kostant-
Symes theorem to the loop algebras of the affine Kac-Moody algebras. 

A two-form UJ on M is called a weak symplectic form if UJ is closed 
and the induced map from TM to T*M defined by v t—> uj(-, v) is injec-
tive (cf. [14]); and (M,UJ) will be called a weak symplectic manifold. If 
M is a Riemannian manifold and there exists A G C°°(TM,TM) such 
that : 

(i) A x : TM x —T- TM x is an injective, skew adjoint operator for all 
x e M, 

(ii) ujx(vi,v2) = hA x(vi),v2i is closed, where h, i is the inner product 
on TM x defined by the metric, 

then UJ is a weak symplectic form, and the Hamiltonian vector fields X f 
are defined for functions f : M —» R whose gradient at x G M lies in 
the image of A x. In fact, 

X f(x) = (A x)-\rf(x)). 

The Poisson bracket for two such functions fi, fi is given by 

ffi,f2g(x) = hA-1(rf1(x)),rf2(x)i, 

and cj(X fj, X f ) = f f l , f g - Note that when M is of finite dimension, a 
weak symplectic form is symplectic, but when M is of infinite dimension, 
this is not the case in general. 

Let M C G* be a co-adjoint orbit of G. Then the weak orbit sym­
plectic structure UJ on M is defined by 

ue(x(£),y(£)) = £([x,y]), x,yeG,£eM, 

where x(£)(z) = — £([x,z]) is the vector field induced by the co-adjoint 
action. 

Let G be a Lie algebra with a non-degenerate, Ad-invariant form (, ), 
K, N subalgebras of G, and G = K + N as direct sum of vector spaces. 
Let 

K L = fxeG j {x ,K ) = 0g, 

N L = fxeGj{x,N ) = og. 

Then K 1 and N 1 can be identified as linear subspaces of the dual N* 
and K* via (, ) respectively. Under this identification, the coadjoint 
action of N on K 1 is given by 

g • x = 7T̂ j_ (gxg~ ), for g G N, x G K , 
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and the infinitesimal action is 

$(x) = K±([$,x]), f o r Ç e N , x G KL. 

We need the following slight generalization of the Adler-Kostant-Symes 
theorem ([6],[23]). 

3.1 Theorem. Let G = K + N be as above, M C K1- a coadjoint 
N-orbit equipped with the natural weak orbit symplectic structure LO, 
and V i : M —» G vector fields satisfying the condition [V i(x),x] = 0 
for all x G M. Let X i{x) denote the vector field on M defined by 
X i{x) = TN(V i(x))(x). Then 

(i) X i(x) = [x,K{V i(x))], 

(ii) LO(X1,X2) = 0, 

(iii) ifX\,X2 are Hamiltonian vector fields then Xi and X2 commute. 

Proof. Since [V i(x), x] = 0, we have [rK(V i(x)), x] + [7N(V(x), x] = 
0. Since [KjK"1"] C K 1 , we obtain 

X i{x) = TKX ([71N(V(x)), x]) = TTKL{[x, TK ^V^x))] = [x,K(V i(x))], 

ux(X1,X2) = x ( N ( V 1 ( x ) ) ( x ) , N ( V 2 { x ) ) ( x ) ) 

= {x,[TN{VI{x)),TN{V2{x))]) = {[x,TN{VI{x))},TN{V2{x))) 

= {[*K{V1{x),x\,KN{V2{x))) = (K Vix x NiViix))]) 

= (K Vi(x)),[K(V2(x)),x]) = ([K(V1(x)),iK(V2(x))],x), 

which is zero because x G K 1 . This proves (i) and (ii), and (iii) is a 
consequence of (ii). q.e.d. 

Next we apply Theorem 3.1 to the loop algebra of a Kac-Moody 
algebra. First we recall some definitions and basic facts about Kac-
Moody algebras (cf. [22], [31]). Note that S{U) is a Lie algebra with 
bracket defined by [u, v](x) = [u(x),v(x)]. Let p be the 2-cocycle on 
S{U) defined by 

Z o o 
(u x(x),v(x)) dx, 

-00 

where u x = du/dx. The affine algebra of type 1 based on U is 

U = S(U) + Rc + Rd 
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with the bracket operation defined by 

[u,v]A = [u,v] + p(u,v)c, [d x,u]A = u x, [c, u]A = [c, d x]A = 0. 

The bilinear form on U defined by 

oo 

(3.1) hu1+r1c+s1d xlu2+r2c+s2d x) = r1s2+r2s1 + Z (u(x),v(x)) dx 

is non-degenerate, ad-invariant, and has index 1. The Adjoint action on 
U is given by 

Ad(g) (u) = gug'1 + hgug'1, g x g~x) c, 

Ad(g)(d x) = -g x g~l + d x - -hg x g~l,g x g~l) c. 

In particular, 

Ad(g)(d x + u) = d x+gug~l - g x g~1 + h(gug'1 - -g x g~l),g x g~l)c. 

For a £ U , we will also use a to denote the constant map with value a. 
Now consider the Lie algebra 

£ = L{U) = {u(X) = X u n ̂  n for some no < oo\u n <E U} 

with Lie bracket defined pointwise by 

[u,v]A(X) = [u(X),v(X)]A. 

For each integer r, we let h, )r denote the Ad-invariant, non-degenerate 
bilinear form on L{U) defined by 

(3.2) hu,v)r= X hu n,v m), 
n-\-m=r 

where u = P n u nXn, v = P m v mXm G £ and h, ) is the bi-linear form 

on U defined by formula (3.1) above. For k\ < k2, we let 

Ckuk ={ue £\u= X u n ̂  n}-

3.2 Propos i t ion . Let £ = L{U) be as above and equipped with the 
Ad-invariant bi-linear form h , ) - i defined by formula (3.2). Let K = 
£o,oo and N = £_oo i . Then the following hold: 
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(i) K and N are subalgebras of L, and L = K + N as a direct sum of 
vector spaces. 

(ii) Let a G T be a regular element of U, identify aX + d x + u as a 
linear functional r] \—> haX + d x + u, rji_i on N , M the coadjoint 
N-orbit at aX + d x, and w the orbit symplectic form on M. Then 
the map i : S^1) —> M defined by i(u) = aX + d x + u is an 
isomorphism. 

(iii) w_i = i*(w) is a symplectic form on S^1), and 

(u-i)u(v1,v2) = hJ~1(v1),v2i, 

where J a : T1 —> T1 is the isomorphism defined by J a(v) = 
— ad(a)(v) = [v, a]. 

Proof, (i) is obvious. For (ii), let g = e-\-g\X~l -\-g2X~2 -\-• • • G N. 
Then g~l = e + h\X~l + h2X~2 + • • •. Equating the coefficients of Xj in 
gg~l = e, we get h\ = —g\, h2 = g\ — g2, . . . . Using the formula for 
Adjoint action of U and the fact that h(gì)x, ai = 0, we obtain 

g • (aX + d x) = KfC(Ad(g)(aX + d x)) 

= aX + d x+ [a,gi]. 

Since a is regular, the isotropy subalgebra U a = T and [a, U\ = T1 • This 
proves (ii), and (iii) follows from the definition of the orbit symplectic 
structure. q.e.d. 

In order to apply Theorem 3.1 to M, we need to find vector fields 
Q : M -> L so that 

(3.3) [aX + d x + u, Q]A = (Q x + [u, Q] + X[a, Q\) + p(u x, Q)c = 0. 

This means that we need to find Q such that 

Q x + [u,Q] + X[a,Q] = 0, 

(3.4) hu x,Qi = 0. 

Let Q = m~lbm = tp~1btp be as in Theorem 2.2. Then Q satisfies the 
first equation of (3.4). Next we claim hu x,Qi = 0. To prove this claim, 
it suffices to prove 

(3.5) hu x,Q k(u)i = 0, forall k > 0. 
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To see this, we use (Q j)x + [u, Q j] = [Q j+ii a] and the ad-invariance of 
h,i. Then a direction computation gives 

hu x,Q k{u)i = -hu, (Q k)x i = -hu,[Q k,u] + [Q k+1,a]i = -hu,[Q k+1,a]i 

= ~h[u, Q k+i], ai = h{Q k+i)x - [Q k+2, a], ai = 0, 

which proves our claim. 
If Q is a solution to (3.3), then \ j Q(u) is also a solution for any 

j > 0. Applying Theorem 3.1 to Xj Q, we obtain the following evolution 
equation: 

(aX + d x + u)t 

= [a\ + d x + u, TK(\j Q b(u))]A 

= [a\ + d x + u, Q bfi(u)\j + Q b,!^'1 ••• + Q b,j(u)]A. 

j - 1 

= {Q b,j)x + [u, Q b,j] + ^2 Aj_k([a, Q b,k+i\ + {Q b,k)x + [u, Q b,k]) 
k=0 

= {Q b,j)x+ [u,Q b,j] = [Q b,j+i{u),a], 

which is the j - t h flow equation u t = [Q bj+i(u), a]. This also proves that 

(aX + u)dx + (Q bflXj + Q b,!^-1 + ••• + Q b,j)dt 

is flat for all A if and only if u is a solution of the j - t h flow equation. 

4. A sequence of weak symplec t i c s tructures 

In this section, we study a sequence of weak symplectic structures 
ujr on the subspace S ( T - 1 ) of S^1) defined by 

(ur)u(v1,v2) = h(J r)~1(v1),v2i 

and having the following properties: 

(1) J_ ! =J a = - ad(a) , and J r = J a(J-1J0)r+1. 

(2) Each ujr is induced from a weak symplectic form of some coadjoint 
orbit. 

(3) The hierarchy of flows (2.3) are commuting Hamiltonians with 
respect to the weak symplectic structure ujr. 
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(4) The (n — l)- th flow equation satisfies the Lenard-Magri relation: 

u t = [Q b,n{u),a] = J _ i ( r F bin(u)) 

= J o ( r F bin_!) = J ! ( r F bjn_2) = • • • = J n _ 2 ( r F M ( u ) ) . 

Let P u : S ( T 1 ) —7- S(T"1) be the operator defined by 
x 

(4.1) P u{v) = v x + [u, v]L - [u, Z [u(y), v(y)]T dy], 

where S u(Tr) = fv G ^ T 1 ) / R ^ u ( y ) , v(y)]T dy = 0g. We claim that 
P u is injective. To see this, let 

Z x 
[u(y),v(y)]T dy. 

-oo 

Then P u{v) = (v)x + [u,v]. If P u{v) = 0, then (v)x + [u,v] = 0. This 
implies that v(x) is conjugate to v(0) for all x. But lim x^-oo v(x) = 0. 
So v = 0 and P u is injective. 

4.1 Remark . Given v G S(T"1"), if there exists v G S{U) such that 
v1- = v, lim x-^-oo v(x) = 0 and (v)x + [u, v] G S^1), then P u{v) = 
v x + [u,v\. 

4.2 Propos i t ion . Let L = L{U), K = L,oo; N = L_oo,-i be as in 
Proposition 3.2, and a G T a regular element. Let L be equipped with 
the bi-linear form h, i_r with r > 0. Identify a\ -\- d x -\- u as a linear 
functional on N defined by r] i—> haA + rx + u,r]i_r. Let M_r be the 
coadjoint N-orbit through aX + rx, w_r the orbit symplectic form on 
M_r and S riT^-) the space ofu G S(T"1") such that a A + rx + u G M_r . 
Then 

(i) a\ + d x + u G M_r for all u G S ( T 1 ) , so i : SCT 1 ) -> M_r 
defined by u ^ a\ -\- d x -\- u is an embedding, 

(ii) w_r = i*(w_r) is a weak symmetric form on ^ ( T - 1 ) given by 
(w_r)u(v1,v2) = h(J-r)~1(v1),v2i, where (J-r)u S J a(J-1P u)-r+1, 
J a(v) = [v, a] and P u is defined by formula (4-1)• 

Proof. For £ = P j>i£j ^~j ^ N, the vector field induced by the 
coadjoint N-action is given by 

£(aA + d x + u) = K/L ([£, a\ + d x + u ] A ) 

r - l 

= [6, a] + X f - j ) x - fu, j] + fj+i, a]gA-j. 
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So v\ = Ç(aA + d x + u) if and only if 

vi = [6, a], 
- (tj)x - [u, tj] + j+ i , a] = 0, 1 < j < r - 1, 

which is equivalent to 

(4.3) 6 = « a - v ! ) € < u , J-1P u(j)=j+1, f o r l < j < r - l . 

In particular, 

Cr = ( J - 1 P u ) r - 1 J - 1 ( v l ) = ( J_ r )u 1 (v l ) . 

Let M_r = (aA + <x + S(T~ L ) )nM_r . Given any vi in S^1) we can find 
£ i , . . . , £r satisfy equation (4.3), and it follows that T T M_r)a\+d+u = 
S(T"1"). This implies that M_r = a A + rx + S(T"1"), and hence proves 

If 77 = P j > 1 i]jX j G N and ?](aA + rx + u) = vi G T(M_r)u, then 

v2 = [??i,a], 

- (»7j)x - iu, »7j] + t j + b a ] = 0, 1 < j < r - 1. 

Next we compute the induced weak orbit symplectic form w r directly 

(w_r)u(vi, v2) = h[£, ??]A, aA + d x + u i_r 
r—1 r—1 

= X h ^ r - i , î?i+l], a i + X h[£r-i, Vi], ui + P(£r-i, Vi), 
i=0 i=l 

r - 1 

= h£r,[Vl,a]i = h r , ^ i = h(J-r )" 1v!) ,^ i. 

This proves (ii). q.e.d. 

Similarly, we get 

4 .3 P r o p o s i t i o n . Let L, K , N be as in Proposition Jh2, and a G T 
a regular element. Let L be equipped with the bilinear form h, i r with 
r > 0. Identify a\-\- d x -\- u as a linear functional v |—> haA + d x + u, vi r 
on K. Let M r denote the coadjoint K-orbit through aX + d x, S ( T - 1 ) 
the space of u G S^1) such that aX -\- d x -\- u G M r and w r the orbit 
symplectic structure on M r. Then 
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(i) i r : S ( T " 1 ) —T- M r defined by i(u) = a A + d x + u is an embedding, 

(ii) w r = i*(w r) is a weak symplectic form on S ( T - 1 ) and {w r)u{v\, v2) 
= h(J r)u1(v1),v2i, where (J r)u = J a(J-1P u)r+1. 

4.4 P r o p o s i t i o n . Let L = L(U) be equipped with the bi-linear form 
h, i ; = Li j0o and N = L_oo,o- Identify d x + u as a linear functional 
on K mapping r] to hd x + u, T]i. Let MQ be the coadjoint N-orbit at d x, 
SoN1) the space of u G S^1) such that d x-\-u G M , and w the orbit 
symplectic form on MQ. Then the following hold: 

(i) d x + S0{Tr)CM. 

(ii) Let i : SoT1) —> M denote the embedding defined by i(u) = 

d x + u, and w = i*{w); then w is a weak symplectic form on 

S0(T
r) and w0(v1,v2) = hP~l(vl),v2i. 

The following Proposition follows from the fact that Q bj(u) G S{U) 
together with the recursive formula for Q j ' s (Theorem 2.2) and Re­
mark 4.1. 

4 .5 P r o p o s i t i o n . Let u G S^1), and Q b,n{u) as in Theorem 2.2. 
Then 

(i) P u(Q b,n(u)) = [Q b,n+i(u),a], 

(ii) J r(rF bj(u)) = [Q b)j+r+1(u),a], ifj + r>0, 

(iii) [Q b,n{u),a] = J 0 ( r F bjn_i) = J i ( r F bjn_2) = • • • = J _ 2 ( r F b ) , if 
n > 1. 

4.6 P r o p o s i t i o n . Let F b;n(u) be as in Proposition 2.4, and r > — 1. 
Then 

fF b,n j b G T, n > 1g 

is a family of commuting Hamiltonians with respect to ujr, and the 

Hamiltonian equation for F b;n(u) is u t = [Q btn+r+i(u),a]-

Proof. Given m,n > 1 and b1,b2 £ T, we have 

0 = { i b 1 , m , i b , n g- i = h[Q bum{u),a],Q b2tn(u)i 

(4.4) =ha,[Q b2,n,Q b1,m]i = 0-
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But 

= h[Q bi,n+r + li a r i Q b2,m i = h[Q b2,m , Q bi,n+r + l\ 1 ai 

= 0. q.e.d. 

The above constructions of weak symplectic structures work exactly 
the same way when a is chosen to be any fixed element of U , and T is 
the centralizer of a in U , i.e., T = fx G U j [a, x] = 0g. 

4.7 Remark . Using the Lie algebra L of loops in an affine Kac-
Moody algebra, Reyman and Semenov-Tian-Shansky ([32]) prove that 
there exist two compatible Poisson structures on the space S (U) defined 

by 

fF,Gg(u) = h(rF(u))x + [u,rF],rGi, fF,Gg a = h ( [ rF , a], r G i . 

Note that the phase space S^1) we are working on is a subspace 
of S{U), and (So(T~L),w a) is a symplectic leaf of (S{U), f, g a), but 
(S(T_L),wo) is not a Poisson submanifold of S (U). 

The theorem below follows by a direct computation. 

4 .8 T h e o r e m . Let U/K be a symmetric space, a :U —» U the corre­
sponding involution, andU = K + P the Cartan decomposition. Let A be 
a maximal abelian subalgebra in P , a G A a regular element with respect 
to the Ad(K) -action on P , and K = K a + K\ the orthogonal decomposi­
tion, where K a = x G K j [x, a] = 0g. Let Q b(u) ~ P ^ jLo Q b,j{u)^~j be 
as in Theorem 2.f, and F bj the corresponding Hamiltonian defined by 
formula (2.4). Ifu G S(K\), then the following hold: 

(1) Q b,n(u) is in P if n is even and is in K if n is odd, 

(2) i*(ujr) is a weak symplectic form if r is even, and is zero if r is 

odd, where i : S (Ki ) —> S^1) is the inclusion, 

(3) F b)j = 0 on S(Ki) if j is even, 

(4) fF b^m+i j b G T,m > 0 are commuting Hamiltonians with re­

spect to i*(uj2r) for all r g 0, and the corresponding Hamiltonian 

equations are u t = [Q2(m+r)+2(u)i a] for m > 0. 
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Let L7{U) = f u É L(pL) j a(u(~^)) = u(^) denote the Lie subalge­
bra of L{U) twisted by U. Then u(X) = P j g jXj lies in L7(U) if and 
only if u j G K for all even j and Ui G P for odd j . Let 

L i 0 0 ( U ) = L T ( W ) n L , o o ( U ) , 

L00,_1(är) = LT(U)nL_00,_1(U). 

Then the above Theorem can also be obtained by applying Theorem 3.1 

to the Lie algebra splitting La (U) = LQ ̂ -\- L L ^ _i and vector fields 

X2m+1Q b(u). 

4.9 E x a m p l e . Suppose U = su(2) and a = diag(i, —i). Identifying 
S(TL) as S(C) via 

' 0 q* 

we have: 
Z x 

Im(qr), 
-CO 

( J - i )q ( r ) = - 2 i r , 

( J r)q(r) = J_ 1 ( J l 1
1 ( Jo)q) r + 1 . 

Let a : s u ( 2 ) —> su(2) be the involution cr(X) = —X t. Then K = so(2), 

K a = 0, Ki = K, 

S^i) = i ( \ q ) jqeS(R)\~S(R) 

(Jo q\ 

1 x 
(J_2)~

l(r) = - - r x-q q(y)r(y)dy, 
** — oo 

and the third flow equation associated to SU(2)/SO(2) = S2 defined 
by a, which is written in terms of q, is the MKdV equation 

q t = -{q xxx + 6q2q x)-

5. T h e —1-flow equat ion u t = [a, Q bt_i(u)] 

The main purpose of this section is to describe the —1-flow equation. 

5.1 T h e o r e m . Let g be the solution of g~lg x = u with lim x^-oo g(x) 
e, and Q b^i(u) = g~lbg. Then: 
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(i) (Q b,-i)x + u, Q b,-i] = 0 and l i m ^ - o o Q b,-i (u) (x) = b, 

(ii) P u{Q b~-i{u)) = [b,u]> where P u is the operator defined by formula 

(A-i),,~ 

(iii) fF b^n jb G T,n > 1} is a family of commuting Hamiltonians with 
respect to U-2, and the corresponding Hamiltonian equations are 

u t = J _ 2 ( V F M ) ( u ) = [a,Q b-i{u)], 

u t = J-2(VF btn)(u) = [Q b,n-i(u),a], forn > 2, 

(iv) u is a solution of u t = [a, Q bt-i(u)] if and only if the connection 
0X = (aA + u)dx + X~1Q b )-i(u)dt is flat for all A. 

Proof, (i) is obvious. To prove (ii), let £ = Q bt-i(u) — b. Because 

(Q b,-i)x + [u, Q b,-i] = 0, wehave 

x + [u,Ç] = {Q b,-i)x + [u,Q b,-i -b] = -[u,b]. 

Then (ii) follows from Remark 4.1. 
To prove (iii), we note that [a,Q bti(u)] = [a, J~lJ b{u)~\ = [b,u], so 

that 

( J _ 2 ) u ( V F b j l(u)) = J a{J-lP u)-l{Q b^{u)) = J a P-lJ a{Q bAu)) 

= J a P-l([Q bAu)ia} = J a P-\[u,b]) 

= -J a(Q b,-i(u))) = [a,Q b,-i(u)]. 

For n > 2, Proposition 4.5 gives J_2(^F b,n)(u) = [Q n- i (u ) )a ] - This 
completes the proof of (iii). Statement (iv) follows from a direct com­
putation. q.e.d. 

The equation u t = [a,Q b,-i(u)] for u : R2 —> T 1 is called the — 1-
/Zow equation defined by a,b associated to U. If g : R 2 —> U is as in 
Theroem 5.1, then the — 1-flow equation can be written as 

(5.1) (g~1g x)t = [a,g~1bg]. 

5.2 Propos i t ion . Let F bt-2(u) = (Q bt-i(u),a). Then the Hamil­
tonian equation for F bt-2 with respect to the symplectic structure w is 
the —1-flow equation u t = [Q b,-i(u),a]. 

Proof. Let g(u) be as in Theorem 5.1, and v G S(TJ~). Set ra = 
g~ldg u(v). It follows from a direct computation that rjx-\- [u, ra] = v and 
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7/( — oo) = 0. Since v G S(T"1"), by Remark 4.1, P u ̂ rj-1) = v. A direct 
computation then gives 

d{F b_2)u{v) = -h[g~lbg,g~ldg u{v)},ai 

= -hg~ldg u{v)1[aig~lbg]i = -hPl(v)Aaig~lbg]i 
= -w0{v,[a,g~lbg\i. 

So the Hamiltonian field of F - 2 is u \—> [a,g~1bg] = [a,Q bt-i(u)]. 
q.e.d. 

Let U,K,P,A,K a , i be as in Theorem 4.8, and b G A. If u G 
S(Ki), then Q bt_i(u) K S(P), and the —1-flow equation associated 
to the symmetric space U/K with respect a, b is the equation u t = 
[a, Q bt_i(u)] for u : R2 —> K \ . If U/K is of split type, then K a = 0 and 
the —1-flow equation is for u : R2 —> K. 

5.3 E x a m p l e . To write down the —1-flow associated to 

SU(2)/SO(2), we first note that give u = I and let 

/ cosf sin f , , Z x t \ 
g = , where a; = q(y)dy. 

-sinf cosf f ; J-oo 

Then g~lg x = u and lim x^-oo g = e. Let a = diag(i, —i), and b = —a/4. 
Then a direct computation shows that the —1-flow equation associated 
to SU(2)/SO(2) defined by a, b, written in terms of f gives the SGE 

2f xt = sin 2f. 

Note that the MKdV and the SGE are commuting Hamiltonian flows 
with respect to the weak symplectic structures w_2 and w . 

5.4 E x a m p l e . Let U = su(n), cr(X) = —X t, and a, b be regular 
diagonal matrices with pure imaginary entries in su(n). Then the — 1-
flow equation associated to SU(n)/SO(n) defined by a, b for u is 

{g~1g x)t = [a.g'bg], 

where g : R2 —» SO(n) and g~lg x = u- The associated one-parameter 
family of flat connections is 6\ = (aX + g~lg x)dx + \~lg~lbgdt. Note 
that equation (5.2) is the SG-matrix equation studied in [12]. But our 
associated linear problem to equation (5.2) is different from the one 
given in [12]. 
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In the following, we show that solutions of the — 1-flow equation as­
sociated to U (symmetric space U/Uo respectively) give rise to harmonic 
maps from the Lorentz space R1'1 into Lie group U (symmetric space 
U/Uo respectively). 

Let R1'1 denote the Lorentz space given by the metric dxdt, and 

E ^ ( R 1 ' 1 , U ) -> R, E{s)= Z (s-1s xis-1s t)dxdt 
R2 

denote the energy functional. A map s : R1'1 —> U is harmonic if s is a 
critical point of E. The Euler Lagrange equation is the harmonic map 
equation: 

(5.3) (s~xs x)t = - ( s _ 1 s t)x = ^[s~1s x, s^s t]. 

Note that Çi(x, t) = A(x, t)dx + B(x, t)dt is a flat, U-valued connection 
1-form on the (x,t)-plane (i.e., dQ = — Q A Q) if and only if there 
exists a unique E : R2 —» U such that E~xdE = Q with E(0, 0) = e. 
Such E will be called the parallel transport of Q. Given <f> : R2 —» U, 
the gauge transformation of (f> on the space of connections is (f> * Ci = 
(f)Çl(f)~l — d(f)(f)~l. It is easy to see that 

(i) Ci is flat if and only if (f> * Ci is flat, 

(ii) if E is the parallel t ransport of the flat connection Ci, then 
0(0, O) - 1 E«^ - 1 is the parallel t ransport of <f> * Q. 

The following Theorem is well-known ([39]): 

5.5 T h e o r e m [39]. If s : R1'1 —ïUisa solution of the harmonic 
map equation (5.3), thenQ\ = (1 — X)(^s~1s x)dx-\- (1 — \~1)(^s~1St)dt 
is flat for all X. Conversely, if Çi\(x,t) = (1 — X)A(x,t)dx + (1 — 
X~1)B(x,t)dt is flat for all X, then s = E-\ satisfies the harmonic map 
equation (5.3), where E\ is the parallel transport ofQ\. 

By a direct computation, we have 

5.6 Corollary. Let u be a solution to the —1-flow equation u t = 
[a, Q bt_i(u)], and <&\(x,t) the parallel transport of the corresponding 
one-parameter family of flat connections 9\(x,t) = (aX + u(x,t))dx + 
X~1Q b )-i(u)dt. Then 

(i) $ ! * 0A = (1 - X)(-^1a<^-1)dx + (1 - A - 1 ) ( - $ i v $ - 1 ) d t , where 
v = Q b J _I(u) , 
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(ii) s = <i>_i<i>̂  is harmonic from R1,1 to U and s~1s x G U • ( — 2a) 
and s~1s t G U • ( — 2b), where U • x denotes the Adjoint U -orbit at 

x . 

5.7 Propos i t ion . Let a G T be a regular element of U. If s : 
R1'1 —T- U is harmonic such that s~1s x G U • ( — 2a), then there exists 
if) : R2 —> U such that 

ip *Qx = (aA + u)dx + A~ vdt 

for some u,v, where Ç}\ is the one-parameter family of flat connections 
associated to s as in Theorem 5.5. 

Proof. Let A = ^s~1s x and B = ^s~1s t. Then 

Qx = (1 - \)Adx + (1 - \~v)Bdt. 

Choose <j) : R2 —» U so that A = -(\>a(\)~x. Let f = -(f)~1B(f). First we 
claim that the following statements are true: 

(1) f x = - [ « T x , f] and f x = - [ « T x , f]T-

(2) (rt-f)(xt)eT. 

Note that (1) follows from a direct computation. To prove (2), by 
a direct computation we get A t = —[A, 4>t4>~ll\. But s harmonic implies 
that A t = [A, B]. So we have [A, B + ç t - 1 ] = 0, which implies that 

[4>-lA4>, 4>~lB4> + r 14t = [a,f- r 14t = o. 

Since a is regular, the centralizer of a is T , and (2) follows. 

Now suppose there exists h : R2 —> T such that (cf)h)~l * Q\ is of the 
form 

(aX + u)dx + A~ vdt 

for some u(x,t) G T1" and v(x,t) G U. So we want 

( < h ) _ 1 * 0 A = { h - V _ 1 ( l - X)A<f)h + h 1 h + h~x4>~x4>x h}dx 

+ { h " V " 1 (1 - \~V)B4>h + h 1 h + h~x4>~x4>t h}dt 

= {( - (1 - A)a + h~1h x + h^^fx hjdx 

+ { - ( l - \-l)h~lfh + h h + h~x4>~x4>t h}dt 

= (aA + u)dx + A~ vdt 
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for some u : R2 —> T1 and v : R2 —> U. This implies that h must satisfy 
the following equations: 

{h-1h x+{h~1(t>-1(t>x h)T = ai 

\-h~lfh + h~lh t + h~x(t>-x(t>t h = 0, 

or equivalently, 

(54) [h x h~l = a- ((f>-1(f>x)T, 

\h t h-l=f-<p-l<Pt. 

By statement (2) above, the right-hand side of the second equation has 
value in T . So such h exists if and only if the integrability condition 
holds. Since T is abelian, the integrability condition for system (5.4) is 

(h x h-1)t-(h t h-1)x = o. 

The following computation shows that system (5.4) is integrable: 

(a - ( f x i t - (f - r Vt)x = -or x)T - f x + o r t x 
= - [ < r x , < r V t ] T - f , by (2) 

= [ f , r x T - f , 

which is zero by (1). q.e.d. 
Assume a,b G U such that a is regular and [a, b] = 0. The above 

discussion says that there is a bijective correspondence between the 
space of harmonic maps s : R1'1 —> U such that s~1s x G U • ( — 2a) and 
s~1St G U • ( — 2b) and the space of solutions of the — 1-flow equation 
u t = [a,Q b i_i(u)]. 

Recall tha t the u-action of U on U for an involution a : U —> U is 
defined by g • x = gxa(g)~1 and the orbit U • e is totally geodesic and is 
isometric to the symmetric space U/K. 

5.8 Propos i t ion . Let a be an involution of U, U = K + P the 
Cartan decomposition, T C P a maximal abelian subalgebra, a,b G T, 
and a regular with respect to the Ad(K)-action on P. Suppose u : R2 —> 
K a" Pi K satisfies the condition that 6\ = (aX + u)dx + X~1vdt is flat for 
all X, where K a = fx G K j [x, a] = 0g. Let &\ is the parallel transport 
of 9\, Then 

(1) s = <i>_i<i>i : R1'1 —T- U is harmonic, 
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(2) the image of s lies in the orbit M of the a-action at e; since M 
is totally geodesic and is isometric to the symmetric space U/K, 
s is harmonic from R1'1 to the symmetric space U/K. 

Proof Since a{9\) = 9-\, a($\) = $-\. So cr(<I>_1) = 3 ^ . In 
particular, 

s = I . ^ J " 1 = u f l ^ J " 1 g U((T) • e. q.e.d. 

6. T h e n-dimensional s y s t e m s 

In this section, we associate to each rank-n, semi-simple Lie group 
U (or a rank-n symmetric space U/K) an n-dimensional system for 
maps u : R n —> T1 (or u : R n —> T1 l~l P respectively), which is the 
first flow equation when restricted to any of the two variables of R n. 
Using a theorem of [7], we also show that the Cauchy problem for this 
n-dimensional system has global solutions for generic initial data . 

Let U, T, T1 be as before, and n the rank of U. Let a\,... , a n G T 
be a basis of T consisting of regular elements. For a G T, we let J a 
and w a = w-i be as in section 3. Then on the symplectic manifold 
(S(T"1"), w a), the first flow equation defined by a, b G T is 

u t = [Q b,2{u),a] = Q b,i{u)x + [u,Q b)1(u)] 

(6.1) =(J-1J b(u))x + [u1J-J b(u)}. 

Let t\ denote the variable of u\ : R —> T1, and let t j (j / 1) denote 
the flow variable for the first flow equation given by a\,a j . Set v = 
— J~^(ui), i.e., ui = [ai ,v] . Then 

(i) J a ^ J a j{ui) = [a j,v], 

(ii) the first flow equation defined by a\, a j written in terms of v is 

(6.2) [au v t j] = [a j , v t] + [[au v], [a j , v]]. 

Similarly, for u ̂  G S(T"1"), the first flow equation defined by a2, a j (j / 
2) is 

(6.3) (u2)t j = (J a J a j (u2))t2 + [u2, J a J a j (u2)]-
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But if u2 = [a2,v], then J a^J a j u2) = [a j>vL and equation (6.3) be­
comes 

[a2, v t j] = [a j , v t2] + [[a2, v], [a j , v]]. 

What this says is that the first flow equations on these n different sym-
plectic manifolds 

f{S{TL),w a i)jl<i<ng 

are compatible. In other words, if v G S(R n, T1) satisfies 

(6.4) [a i, v t j] - [a j , v t i] = [[a i, v], [a j , v]], for all 1 < i / j < n, 

then the restriction of Ui = [a i,v] to the t i t j-plane satisfies the Hamil-
tonian equations 

(6.5) (u i)t j = [Q a j,2{u i),a i], 1 < i / j < n. 

It is obvious that equation (6.4) is the condition for the following one-
parameter family of connections on R n being flat: 

n 

(6.6) ©A = y^(a j \ + [a j , v])dt j . 

j = 1 

We will call equation (6.4) the n-dimensional system associated to the 
rank-n Lie group U. 

It is proved in [8] that the Cauchy problem for the two dimension 
system (6.2) can be solved globally by the inverse scattering method for 
generic initial da ta provided 

u(x, t) j dx 

stays bounded for all t in the maximal forward time interval [0,T). Let 
A be the root system associated to U with respect to T, and U = 
T + a e A ^ the root space decomposition. Then 

F b,i{u) = (J a1J b(u),u)dx 

a(b) 

a (a) 

oo 
oo 

V ^ j u j2dx 
* • — ' 

«eA 
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where ua is the U„-component of u. We may choose regular elements 
a, b lying in the same Weyl chamber in T • Then there exists c > 0 such 
that —j-4 > c for all a G A. This implies that 

a(a) — u 

Z o o 
j u(x, t) j dx. 

-oo 

Since F bti is conserved under the flow, the energy remains bounded for 
all t G [0,T). This proves that Cauchy problem for the n-dimensional 
system can be solved globally for generic initial data . We summarize 
our discussion in the following theorem: 

6.1 T h e o r e m . Let U be a rank-n semi-simple Lie algebra, T a 
maximal abelian subalgebra ofU, and a\,... , a n G T a basis of T con­
sisting of regular elements. A smooth map v : R n —> T1 is a solution to 
the n-dimensional system (6-4) associated to U if and only if the one-
parameter family of connections defined by formula (6.6) on R n is flat. 
Moreover, 

(i) for generic f G S^1), the Cauchy problem for the system (6.4) 
with initial condition v(t\, 0 , . . . , 0) = f(t\) has global solution on 
R n, 

(ii) ifv(ti,... , t n) is a solution of system (6.4), then the restriction of 
u i = [a i, v] to any plane parallel to the t i t j-plane satisfies the first 
flow equation associated to U defined by a i,a j on the symplectic 
manifold (S(T-L),w a i) for all j / i: (u i)t j = [Q a j,2(u i),a i] = 

(u j)t i + [u i,u j]. 

Now let U/K be a rank-n symmetric space, a : U —» U the corre­
sponding involution, U = K + P the Cartan decomposition, and T C P 
a maximal abelian subalgebra. Let a\,... ,a n be a basis for T con­
sisting of regular elements with respect to the Ad(K)-action on P. 
Then a similar argument to the above will lead to a natural system 
for v i R n P f l T 1 : 

( 6 . 7 ) [a i,v t j] - [a j , v t i] = [[a i,v],[a j , v ] ] , forall 1 < i / j < n, 

(note that this equation is different from (6.4) because a i G T C P and 
v(t) £ P n T1). System (6.7) will be called the n-dimensional system 
associated to the rank-n symmetric space U/K. To summarize, we have 
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6.2 T h e o r e m . Let U/K be a rank-n symmetric space, a : U —» U 
the corresponding involution, U = K + P the Cartan decomposition, 
and T C P a maximal abelian subalgebra. Let a\,... ,a n be a basis 
for T consisting of regular elements with respect to the Ad(K) -action 
on P . Then a smooth map v : R n —> P n T1 is a solution of system 
(6.7) associated to the symmetric space U/K if and only if the following 
one-parameter family of U-valued connections on R n is flat: 

(6.8) ex = (a i\ + [a i,v])dt i. 
i=l 

(Note that here a i G T c P , v É T1 C\ P, and [a i, v ] G K . ) Moreover, 

(i) for generic f G S ^ ^CìP), there exists a unique v G COD(R n, T ^fl 
P ) such that v is a solution of system (6.7) and v(t\, 0 , . . . ,0) = 

Hh), 

(ii) if v(t\,... ,t n) is a solution of system (6.7), then the restriction 
of u i = [a i, v] to the t i t j-plane satisfies the first flow equation 
associated to U/K defined by a i,a j . {u i)t = [Q a ,2(u i),a i] = 
(u j)t i + [u, u j] on the symplectic manifold (S(K l~l (K o)~L)1wo), 
where K o = fx G K j [x, b] = 0, for allb G Tg . 

Next we give some explicit examples. 

6.3 E x a m p l e s . 

(1) M_i (n) = SO(2n, 1)/S(O(n) x O(n, 1)). 

The Cartan decomposition of M_i (n) is U = UQ + U I , where U 
so(2n,lì, 

UQ = so(n) X so(n, 1) = 0 Y rt X,Ye so(n),rj G R 

0 F ^ 
Ux = -F t 0 0 

? 0 0 
Fegl(n),çeR 
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Let 

r / 0 -C 0 \ ì 

T=l\C 0 0 \ e gl(2n+1) Ce gl(n) is diagonali, 
l \ 0 0 0/ J 
/ 0 -C 0\ 

a i = I C i 0 0 1, where C i = diag(c ii , c i2,... , c in). 
\ 0 0 0 / 

Then T is a maximal abelian subalgebra in U\. Note that 
are regular and form a basis of T if and only if 

(6.9) det((ij)) / 0, c / c for all j + k. 

Let gl{n)* = {(x ij) G gl(n) | x ii = 0 for all 1 < i < n}. Then 

o F t 
£ = (bi, • • • , b n ) , F = (f ij) G gl(n)* F t o o e Ux 

? 0 0 

Make linear change of coordinates by setting x j 
Then 

n c i t i 

y ^ C i dt i = d i a g ( ^ cudt, ^ c i2dt i, • • • , ̂  c in dt 
i = l 

= diag(dxi,... , dx n) = 5. 

So the one-parameter family of flat connections (6.8) is: 

n 

©A = ^ ( a iA + Ui)d£i 
i=l 

/ 0 - 5 0\ / 5 F t - F 5 0 0 
=\ls 0 0 + 0 SF - F t S^ . 

\ 0 0 0 / V 0 £5 0 

The system (6.7) written in terms of differential forms is: 

-F5 + 5F t is left flat, 

(6.10) d ) = w A w | t A f t where u = -5F + F t5, 

d£ A 5 = Ç( — F5 + # F t) A 5, where 5 = d i a g ( d x i , . . . , dx n). 
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(2) Mo(n) = SO{2n)/S{O{n) X O{n)). 

Similarly, the n-dimensional system associated to the symmetric 
space Mo(n) is a system for v : R n —?- Ui Pi T1 

0 F\ 
F t o j ' F = ( f ) e g l n * . 

and the system (6.7) in x coordinates becomes 

(6.11) 
-F5 + SF t is left flat, 

SF + F^ is right flat, 

and the corresponding one-parameter family of flat connections is 

* = * ! > 

F8 + 5F t 0 
0 6F- F t 

(3) Mi(n) = S O ( 2 n + l ) / S ( O ( n ) x O ( n + l ) ) . 

For this example, we use the following real form of so(2n + 1, C) , 
which is isomorphic to so(2n + 1): 

X irt 
ir] 0 

X e so(2n), i] e R 2n 

where i = p — 1. Then a similar calculation as for M_i (n) shows 
that the n-dimensional system associated to the symmetric space 
M\{n) is given by 

(6.12) 

-FS + 5 F t 

du; = a; A us - SÇt A ££, 

dÇ/\5 = Ç(-F5 + 5F t) /\5. 

is left flat, 

where us = —5F + F t5, , 

and the corresponding one-parameter family of flat connections is 

0 S 0̂  
e = A s 0 01 + 

0 0 0 

F6 + 5F t -5 0 
5 SF-F t iSt 
0 iÇS 0 
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6.4 T h e o r e m . Let F = (f i j) : R n -> gl(n)*, and £ = (bi n 
R n —T- R n be smooth maps. Then the n-dimensional system associated 
to the symmetric space M c(n) is the following system for (F, £) : 

(6.13) 

-FS + SF t is left flat, 

du = us A us - cS^ A £6, where us = -SF + F t S, 

K \b i)x j = f ij b j -

The one-parameter family of flat connections associated to this system 
is 

/ 0 -5 0 \ /5F t - F5 0 0 \ 
eA = A is o o + o SF-F t p~c5^ , 

\0 0 0A V 0 p^tf 0 A 

where 8 = d i a g ( d x i , . . . , <ia;n). 

Note that if c / 0, then the system (6.13) for (b, F) in (x\,... , x n) 
coordinates is: 
(6.14) 

(b f ij b j = 0, if i + j , 

(f i j)x i + (f ji)x j + P k fiti fit j = o, if i / j i 

(f ij)x - f ik f kj = 0, if i, j , k are distinct, 

s (f ij)x + {f ji)x i + P k f ik f jk = -cb i b j , if i / j , 

and in (t\,... , t n) coordinates is: 

( - F C k + C k F t)t j - ( - F C + C F k 

= [ - F C k + C k F t -FC j + C F t], 

C k F + F t C k)t j - ( - C F + F t C ) t k 

(6.15) - [ - C k F + F t C k, -C j F + F t C ] 

+c(CÇtÇC k - C kÇtÇC), 

(£C k)t j - (ÇC)t j t k 

ÇC k F C + ÇCF t C . 

If c = 0 then the system (6.13) for F in (x\,... , x a ) coordinates is: 

(6.16) 

( f ) x i + (f ji)x j + P k fiti fit j = 0, if i / j , 

( f J ) x - f iitfitj = 0, if i,j, k are distinct, 

{f ij)x j + (f ji)x + k f ik f jk = o, if i / j , 
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and in (t\,... , t n) coordinates is: 

(-FC k + C F - i - F C j+CF 

= [-FC k + C k F t -FC j + C j F t 

(-C k F + F t C k)t j-(-C j F + F t C j)t k 

= -[-C k F + F t C kl -C j F + F t C ] . 

7. I sometr ic immers ions of space forms into space forms 

In this section we show that the n-dimensional system (6.13) asso­
ciated to the symmetric space M n(c) is the equation for the isometric 
immersions of n-dimensional space forms of sectional curvature c into 
2n-dimensional space forms of the same curvature c with c = —1, 0 , 1 . 

Let N n(c) denote the simply connected, Riemmanian manifold of 
constant sectional curvature c. Then N n(0) = R n, N n(l) is the stan­
dard unit sphere S n, and N n( — 1) = fx G Fn ' 1 | (x,y)\ = —1g, where 
Fn ' 1 is the Lorentz space equipped with the bilinear form (x,y)i = 
xiyi + • • • + x n y n - x n+iy n+i. 

Let M n be a submanifold of N2n(c) with constant sectional cur­
vature c and flat normal bundle. Then by the Ricci equation, given 
any p G M the collection of shape operators fA v \ v G v{M)p g is a 
commuting family of self-adjoint operators. So there exists a local or­
thonormal frame field e\,... , e ̂ n such that e n+i,... , e ̂ n are parallel 
normal fields and f e i , . . . , e n g is a common eigenbasis for the shape op­
erators. Let b" denote the eigenvalues of A ea, i.e., A ea (e i) = b e i, and 

v i = P a = n + 1 b e a - T h e n g i v e n a n y v £ Z / ( M ) w e h a v e A ( e i) = ( v , v i)e i-

It is easy to see that the v^s are well-defined, and they are called the 
curvature normals of the submanifold M. 

7.1 T h e o r e m . Suppose O is a simply connected open subset of 

N n(c), X : O —» N2n(c) is an isometric immersion with flat nor­

mal bundle, and the n curvature normals are linearly independent. Let 

fe n+i,... , e2n g be a parallel orthonormal normal frame field. Then the 

following hold: 

(i) There exist line of curvature coordinates (xi,... , x n) and smooth 
maps £ = ( b i , . . . , b n) : O —> R n and A = (a ij) : O —> SO(n) such 

(6.17) 
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that the two fundamental forms are of the form 

n 

I = X b i dx i , 
i=\ 
n 

II = X a ji b i dx2i e n+j. 

j = 1 

(ii) Let £ = ( b i , . . . , b n), and F = (f i j) , where f ij = - b - if i / j and 

0 if i = j . Then (b,F) is a solution of the n-dimensional system 

(6.13) associated to the symmetric space M c(n). 

Proof. Statement (i) can be proved exactly the same way as for 
isometric immersions of N n(c) into N2n~l(c-\- 1) (cf. [13], [27] and 

[38]). 
To prove (ii), we use the local theory of submanifolds in space forms 

(cf. [30]). Set toi = b i dx i. Then the connection 1-form is 

(7.1) w ij = -f ij dx i + f ji dx j = (-SF + F t£)ij, 

w itn+j = a ji dx i and w n+itn+j = 0. The Codazzi equation 

dw i n + j = X w ik A w k,n+j 
k=i 

f ik a jk for i / k. Since n=i a jk = 1> for j / i wehave jk 

kj:i\a jk)x i a jk{a jk)x kMa2 

2a 
X u , j k \ u - j k ) x i 

— = - X a jk f ki. 
j i i -L • j i i -L • 

So dA = A( — FS + SF t), and hence F satisfies the first equation in 
system (6.13). The structure equation dw i = P j WijAWj gives the third 
equation, and the Gauss equation dw ij = P k=i w ik A w kj — cw i A w j 
gives the second equation of the system (6.13). q.e.d. 

As a consequence of Theorem 7.1 and the fundamental theorem of 
submanifolds in space forms, we have 

7.2 Corollary. Let (F,£) (F = (f ij),£ = ( b i , . . . , b n)) be a solution 
of the system (6.14) for c = ± 1 on R n • Then there exist smooth maps 
A = (a ij) : R n - • SO(n) and X : R n - • N2n(c) such that X is an 
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immersion, and has constant curvature c, flat normal bundle and I, II 
as in Theorem 7.1 on the set of all x G R n with b i(x) / 0 for all 
1 < i < n. 

7.3 Corollary. Let F be a solution of the system (6.16). Then there 
exist a smooth map A = (a ij) : R n —?- SO(n) such that A~ldA = —F5-\-
SF t. Moreover, given constants / i i , . . . , ßn and set b i = P j ßj a ji > 0, 
then there exists a smooth map X : R n —> N2n(c) such that X is an 
immersion, and has zero sectional curvature, flat normal bundle, and 
I, II as in Theorem 7.1 on the set of x G R n such that b i(x) / 0 for all 
1 < i < n. 

Theorem 7.4 below follows from Theorem 6.1 (ii), Corollary 7.2 and 
Corollary 7.3. 

7.4 T h e o r e m . Fix a non-zero vector c = ( c i , . . . ,c n) such that 

c i ^ c2j for all i / j . Then given generic rapidly decay smooth functions 

f o j , b o : R —7- R with f ii = 0 for 1 < i,j< n, there exists a smooth map 

X : R n —T- N2n(c) unique up to isometry of N2n(c) such that 

(i) I = X*(ds2) = P i b i(x)2dx2, where ds2 is the metric on N2n(c), 

(ii) b i ( c i t , . . . , c n t) = b o(t) and ((b i)xt/b j)(c1t,... , c n t) = f o(t), 

(iii) X is an immersion, and has constant curvature c, flat normal 
bundle on the set of x G R n such that b i(x) / 0 for all 1 < i < n. 

Next we discuss the relation between local isometric immersions of 
N n(c) into N2n(c) with flat normal bundle and local isometric immer­
sions of N n{c) into N2n-l{c+l). It is proved by Cartan [13] that N n{c) 
cannot be locally, isometrically, immersed into N2n~2(c-\- 1), but can 
be into N2n~l{c+ 1). Moreover, if X : O -> N2n~l{c+ 1) is a local 
isometric immersion of N n(c), then the normal bundle is flat. Using the 
work of Moore [27] and Cartan [13], it is known that given any parallel 
normal frame field e n+i,... , e2n-i there exist a line of curvature coor­
dinates (xi,... ,x n) and a smooth map A = (a ij) : O —> SO(n) such 
that the first and second fundamental forms of the immersion X are 
given by 

n 

I = X ali dx i, 

(7-2) 

II = X aua ji dx2 <g) e n + j _ i . 
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Define 

lo, ifi = j , 

and set F = (f ij). Then the Gauss, Codazzi and Ricci equation of the 
immersion is a system for (A, F): 

(7.3) 
A~1dA= -F6 + 6F t, 

du = u A cj — c5A t/iA5, 

where 5 = d i a g ( d x i , . . . , dx n), u = —SF-\-F tS, and /i = diag(l , 0 , . . . , 0). 
Conversely, if (A, F) : R n —» SO(n) X gl(n)* is a solution of (7.3), 

then it follows from the fundamental theorem of submanifolds in space 
forms that there is a local immersion X : O —> N2n~l(c-\- 1) such that 
the immersed submanifold has flat normal bundle, constant sectional 
curvature c and its first and the second fundamental forms are given 
by the formula (7.2). In other words, system (7.3) is the equation for 
isometric immersion of N n(c) into N2n~l(c-\- 1). It is well-known that 
the equation (7.3) with c = — 1 for isometric immersions of —1 curvature 
surface into R3 is the Sine-Gordon equation, and the equation (7.3) 
with c = 0 for isometric immersions of flat surfaces in S 3 is the wave 
equation. So the system (7.3) is called the GSGE (generalized Sine-
Gordon equation) in [37] and [38] for c = — 1, and is called the G W E 
(generalized wave equation) in [36] for c = 0. 

Let i : N2n~1(c + 1) —» N2n(c) be a standard isometric, totally 
umbilic embedding of N2n~1{c+ 1) (cf. Chapter 2 of [30]). If X : O - • 
N2n~l (c -\-1) is a local isometric immersion of N n(c), then i o X : O —> 
N2n(c) is a local isometric immersion of N n(c) with flat normal bundle 
and linearly independent curvature normals. Moreover, if x is the line 
of curvature coordinate for the immersion X, then the following hold: 

(i) x is the line of curvature coordinate as in Theorem 7.1 for io X. 

(ii) If (A, F) is a solution of equation (7.3) and let £ = ( a n , . . . , a\n. 
Then (F, £) is a solution of equation (6.13). 

A direct computation also gives the following: 

7.5 Propos i t ion . Let A = (a ij) : R n -> SO{n), and F = (f i j) : 
R n —T- gl{n)*. If (A, F) is a solution of the system (7.3) and let £ = 
( a n , . . . , ain) the first row of A, then (F, £) is a solution of the system 
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(6.13) associated to the symmetric space M c(n). Conversely, if (F,£) : 
R n —T- gl(n) X S n - 1 is a solution of (6.13), then there exists a smooth 
map A : R n —> SO(n) such that 

(i) the first row of A is £, 

(ii) A~1dA= -FS + SF t, 

(iii) (A, F) is a solution of the equation (7.3). 

7.6 Corollary. Let O be a simply connected, open subset of R n, 
A = (a ij) : O -> SO(n), £ = (alt,... , aln), and F = (f ij) : O -> gl(n)* 
be smooth maps. Then the (A, F) is a solution of the equation (7.3) if 
and only if@\ as in Theorem 6.4 is flat for all A. 

7.7 Remark . It was proved in [1] that (A, F) is a solution of 
equation (7.3) if and only if 

,„ A. A " 1 / 0 -<L4t J \ (SF + F t 0 \ A / 0 -<L4t\ 

(?-4) — {-JAS 0 J H 0 0) + 2 {-AS 0 ) 

is a flat o(n, n)-connection on R n for all A, where J = diag( — 1 , 1 , . . . ,1 ) . 
The inverse scattering associated to the flat connection (7.4) was solved 
in [1]. 

The result of this section shows that the system (7.3) for isometric 
immersions from N n(c) into N2n~l(c-\-1) has the standard linear prob­
lem considered in [7], and is the n-dimensional system associated to the 
symmetric space M n(c). Hence the restriction of system (7.3) to the 
t i t j-plane (i / j) 

(i) is the first flow equation associated to M n(c), 

(ii) is the Hamiltonian equation for F bi with respect to the symplectic 
structure w0, 

(iii) commutes with all the odd flows assoicated to M n(c). 
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