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ON THE IΛINDEX OF DIRAC OPERATORS
ON MANIFOLDS WITH CORNERS

OF CODIMENSION TWO. I

WERNER MULLER

0. Introduction

The purpose of this paper is to generalize the Atiyah-Patodi-Singer
index theorem (or APS theorem for briefness) [1] to compact manifolds
with corners of codimension two. To explain this in more detail, we first
recall the results of [1].

Let X be an even-dimensional compact oriented manifold with smooth
boundary M and assume that X is endowed with a metric which is a
product near the boundary. Let E ->> X be a Clifford bundle over X.
We also assume that the metric and the connection of E are products
near the boundary. Let D+ : C°°{X,E+) -> C°°(X,E-) be the asso-
ciated chiral Dirac operator. Then near the boundary, D+ takes the
form

(0.1) z,+ =

where 7 denotes Clifford multiplication by the inward unit normal vector
field, u is the inward unit normal coordinate and A is a Dirac operator
on M. Let P be the nonnegative spectral projection of A and denote
by C°° (Jf, E+ P) the space of smooth sections of E+ satisfying the
boundary conditions

(0.2) P(φ\M) = 0.
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Then D+ : C°°(X,E+\P) -> C°°{X,E") is a Predholm operator and
its index is given by

(0.3) Ind D+ = ί ωD - hη(A) + dimkerj4),
Jx 2

where ωD is the Atiyah-Singer index density of Z}+, and η(A) is the eta
invariant of the self-adjoint operator A. Recall that the eta invariant is
defined by the eta function

(0.4) ^(*) = Σ l l τ A Re(5)>dimM,

where λ runs over the nonzero eigenvalues of A. The series is absolutely
convergent in the half-plane Re(s) > dimM and has a meromorphic
continuation to C with no pole at s = 0. Then the eta invariant η(A)
is defined as 774 (0).

In the sequel, the APS theorem has been rederived by many differ-
ent approaches. First, Cheeger [5], [6] gave a new proof of the APS
theorem for the signature operator using analysis on spaces with con-
ical singularities. If one attaches a cone C(M) to the boundary M of
X, then X U C(M) becomes a space with a conical singularity. The
boundary conditions (0.2) are now replaced by the L2-conditions in the
complement of the cone tip and the computation of the L2-index of the
signature operator reproduces (0.3) in this case. In fact, as emphasized
by Cheeger [5], this should not be considered as a rederivation of the
APS theorem, but rather as the natural signature formula for a class
of singular spaces. This approach was extended in [2] to twisted Dirac
operators.

In place of a cone one can also attach a half-cylinder to the bound-
ary of X, endow M+ x M with certain warped product metrics, and
rederive the APS theorem as L2-index theorem for the corresponding
Dirac operator on the enlarged manifold [18], [15], [22]. In particular,
we may consider the manifold X — X UM (IR+ x M) where the cylinder is
equipped with the product metric. Then X is a complete manifold, and
it was already observed in [1] that the index of the APS boundary value
problem and the L2-index of the canonically extended Dirac operator
on X are closely related. After changing coordinates, we may think of
X as being the interior of a compact manifold with boundary, endowed
with a complete metric which sends the boundary to infinity. This is
the point of view adopted by Melrose in [15].

In the present paper we study similar index problems on manifolds
with corners of codimension two. Here, we follow [15] and define a
manifold with corners to be a topological manifold X with boundary
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together with an embedding i : X «-> X into a closed C°° manifold for
which there exists a finite collection of functions p{ E C°°(X), i G / ,
such that L(X) = {x E X \ pi(x) > 0, i E /} and for each subset
J C / , the dpi, i € J, are linearly independent at each point x E X
where all p{, i E </, vanish. It follows from this definition that the
boundary of X is the union of embedded hypersurfaces YJ, i E / . Let
Yii-ifc = i ί 1 Π ny;fc, ^ E J. Then we say that Yix...ik is a corner of
codimension k. We assume that X is endowed with a metric which is
a product near all hjφersurfaces and also near all corners. This means
that for any corner Y 1̂...ifc of codimension A;, the metric is a product on a
neighborhood of the form (—ε,0]fc x Y^...^- Let D+ be a Dirac operator
on X, which is adopted to the product structure near the boundary.
Then the goal is to generalize the APS theorem to this case. There
are several reasons to expect that such an extension will be of inter-
est. For example, by investigating index problems on manifolds with
smooth boundary one is led very naturally to new spectral invariants
on odd-dimensional manifolds, namely the eta invariants. Therefore,
the presence of corners may lead to other new invariants attached to
the corners. Furthermore, an index formula is also closely related with
a gluing formula for eta invariants (see §8).

We do not know if there exists any generalization of the APS bound-
ary conditions to the case of manifolds with corners. However, as ex-
plained above, the APS boundary conditions can be replaced by the
L2-conditions on the corresponding manifold with cylindrical ends. This
is the approach we are going to use for a manifold with corners Xo. To
get a complete manifold, we may either enlarge Xo by gluing succes-
sively cylinders to boundary components or, we may endow Xo with a
complete metric of the type used by Melrose [15]. One may even think
of more general geometric structures at infinity so that, for example,
locally symmetric manifolds of finite volume are included naturally into
the setting.

Working in the L2-setting introduces new difficulties which are con-
nected with the presence of the continuous spectrum. But this should
not be considered as being necessarily a disadvantage, because the
L2-approach also opens up new perspectives of the whole subject. We
have to study the spectral theory of Dirac operators on such manifolds.
In particular, we have to investigate the structure of the continuous
spectrum of these operators and to establish the link with scattering
theory. There is a close relation of these problems with both the analy-
sis of the TV-body problem in quantum mechanics and the study of the
spectral resolution of the Casimir operator on locally symmetric man-
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ifolds of finite volume [13]. This may be a lot more interesting than
simply the derivation of an index formula.

In the present paper we consider only manifolds with corners of codi-
mension < 2. The reason for this assumption is obvious because, in
order to treat the continuous spectrum of Dirac operators on the cor-
responding complete manifolds, we need to know as much as possible
about the spectral resolution of the induced Dirac operators on the
boundary hypersurfaces. In the codimension-two case, the boundary
hypersurfaces are manifolds with cylindrical ends for which the spectral
theory is well understood.

For simplicity, we assume that the boundary of our manifold with
corners Xo is the union of exactly two hypersurfaces Mi and M2, in-
tersecting in a closed manifold Y which is the corner in this case (see
Fig.l). The extension of our results to several corners of codimension
two is straightforward. We enlarge Xo by gluing first half-cylinders to
the boundary components Mi and then filling in (R+)2 x Y (see Fig.2).
In this way, we construct a complete manifold X which is canonically
associated with Xo. Let Z{ = M< Uy (E+ x 7), ί = 1,2, be the man-
ifolds obtained from M; by attaching half-cylinders to their boundary
Y. Then Zi are manifolds with cylindrical ends which may be regarded
as the components of the ideal boundary of X. Note that X is the union
of M+ x Zu ! + x Z2 and Xo.

In §2 we study Dirac operators D : C°°(X,E) -> C°°(X,E) on X.
We assume that D is adopted to the product structure of X near infinity,
that is, we assume that onK + x Zj, D takes the form

(0.5) D =

and on (M+)2 x Y, it can be written as

D = Ίl— + 7 2 — + Dγ,dui du2

where conditions (2.1) - (2.4) are satisfied. One of our main results in
this section is that the space of L2 solutions of D is finite-dimensional.
Hence, if X is even-dimensional, the chiral Dirac operator
ΰ + : COO(X,E+) -> C°°{X,E-) has a well-defined L2 index

L2-Ind D+ = dim(ker(£>+) Π L2) - dim(ker(£r) Π L2).

In §3 we study the space Ή*2)(X) of L2 harmonic forms on X. The
main result is Proposition 3.13 which states that the canonical map
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Ή,*2){X) -> H*(X) induces an isomorphism

(0.6) j : Hm

l2)(X)^Ίm{H:(X) -> H*(X)),

where H*(X) denotes the de Rham cohomology with compact supports.
Suppose that dimX0 — 4fc and let Sign(X0) be the signature of the
compact manifold with boundary Xo. As a consequence of (0.6) we get
that the L2 index of the signature operator on X equals Sign(X0), which
should be expected to hold for the right choice of boundary conditions.

Let Δ = D2. In §4, we study the heat equation for Δ and construct
a parametrix for the fundamental solution of d/dt + Δ.

For the derivation of the index formula we need to describe the contin-
uous spectrum of Δ near zero. In §5 we study the resolvent (Δ — A2)"1,
Im(λ) > 0. If the Dirac operator Dγ on the corner is invertible, then
we prove that (Δ — λ 2 )" 1 , regarded as operator in certain weighted L2

spaces, has an analytic continuation to a neighborhood of 0. We be-
lieve that the condition kevDy = 0 can be removed. Then, however,
(Δ — λ 2 )" 1 does not extend analytically to a small disc around λ = 0,
but rather to the logarithmic covering of such a disc. The investigation
of the analytic continuation of the resolvent in general requires a more
thorough study of the continuous spectrum, which we postpone to a
forthcoming paper.

Let Ai : C°°(ZuE\Zi) -> C°°{Zi,E\Zi) be the Dirac operator defined
by (0.5) and let Ai be its unique self-adjoint extension in L2. Using the
analytic continuation of the resolvent to a neighborhood of the origin,
we construct in §6 generalized eigensections Ei(φ,\), Im(λ) > 0, of
Δ which are attached to φ G k e r ^ , i — 1,2. If keτDγ = 0, then
the generalized eigensections Eι(φ, λ) can be extended to meromorphic
functions of λ for |λ| < c. We establish a number of properties, including
the functional equations, satisfied by the generalized eigensections. The
continuous spectrum of Δ near zero can be completely described in
terms of the generalized eigensections Ei(φ, λ), φ G ker Ai, % — 1,2.

Then in §7, we prove our index formula. Our approach is based on
the local version of the McKean-Singer formula. Let dim X = 2k and
let r : E -> E be the canonical involution of the Clifford bundle. Then
we have TD = —Dr. Let e~w2(x,y) be the kernel of the heat operator

e-tD2 Thgn the local McKean-Singer formula states that

(0.7) ^ t r ( re- t D 2 (a ; , a ; ) )

where VD is the vector field on X which is given locally, with respect to
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an orthonormal moving frame {ei}JL1? by

For a closed manifold, (0.7) implies the usual statement that the su-
pertrace Ύr(τe~tD2) is independent of t and equals Ind D+. Since our
manifold is noncompact, we exhaust it by compact submanifolds Xτ,
T > 0, with piecewise smooth boundary. For Γ > 0, let Z i ) T =
Mi U y ([0,T] x Y). Then the boundary of Xτ is the union of Zi, τ

and Z2>τ? which intersect in {T} xY~Y. Using (0.7) together with
the local index theorem for Dirac operators [10], we get

L2-Ind£>+

(0.8) - 1 r°° r 2

= / ωD + lim - / / tr(en τDe~tD (x,x))dxdt,
Jχ T->oo 2 Jo JdXτ

where ω^ is the Atiyah-Singer index density of D+ and en is the outward
unit normal vector field to the boundary. To compute the limit on the
right-hand side of (0.8), we split the ί-integral as /0 + fjψ and study
the corresponding double integrals separately. The limit of the first
double integral, where t runs from 0 to \/T, can be described in terms
of eta invariants. Since TD = —Dr, it follows from (0.5) that the
involution r commutes with A$, j = 1,2. Let A* be the restriction of
Aj to L2(Zi,E

Jt\χ). Then the eta invariant η{Λj) of Af is defined by

(0.9) Ί\^j ) — r-

where e~^Λj * (x, y) denotes the kernel of e~t<<Λi * . The absolute conver-
gence of (0.9) is proved in [16]. From the results of [16], it follows that
as T —> oo, the first double integral converges to 1/2(77(*A+) + η(At))-

Let R(T) be the remaining double integral, where t runs from y/T to
oo. The behaviour as T -> oo, of R(T) is determined by the continuous
spectrum of Δ near zero. If the continuous spectrum has a positive
lower bound, then R(T) decays exponentially as T —» oo. Our analysis
of the continuous spectrum shows that this case occurs if and only if
ker Dγ — 0 and ker Aj = 0, j = 1,2. We assume only that ker Dγ = 0,
which may be regarded as intermediate case. Then the generalized
eigensections Ei(φ, λ), φ E ker A^ determine scattering matrices Ci(λ) :
keτAi —> ker^li which are meromorphic functions on a disc |λ| < c and
satisfy the functional equations Ci(X)Ci(—λ) =Id, |λ| < c, i = 1,2. In
particular, Ci(X) is regular at λ = 0 and C (O)2 =Id. The canonical



ON THE IAINDEX OF DIRAC OPERATORS ON MANIFOLDS 103

involution τ of E induces an involution of ker *Ai5 which we also denote
by r. The scattering matrix C (λ) commutes with r. Let C+(λ) be the
restriction of Ci(X) to the +l-eigenspace of r. Then it follows that as
Γ -> oo, R(T) converges to -l/2Tr(CΊ+(0)) - 1/2 Tr ((7^(0)), and our
final index formula can now be stated as follows:

Theorem 0.1. Let Xo be an even-dimensional Riemannian manifold
with a corner of codimension two such that the boundary of Xo is the
union of two components Mλ and M2, intersecting in a closed manifold
Y. Let X be the associated complete manifold constructed above with
ideal boundary components Z{ = M{ Uy (R+ x Y), i = 1,2. Let

D+ :

be a chiral Dirac operator on X and assume that on M+ x Zi7 Z)+ takes
the form

where ji denotes Clifford multiplication by the inward unit normal vector
field and Af is a Dirac operator on Z{. Suppose that the corresponding
Dirac operator Dy on the corner Y is invertible. Then we have

L2-Ind D+ = ί ωD - Uη{Λt) + Ίϊ(C+(0))}
Jx ίJx

(0.10) \

where η{Af) is the eta invariant, defined by (0.9), of the unique self-
adjoint extension Λf of Af in L2, and Cf(\) : ker^4^ -> ker^4+;

|λ| < c, is the scattering matrix associated with Λf.
This index formula can be rewritten such that the right-hand side

involves only terms which are defined on Xo. First observe that near
the boundary of Mj, A+ takes the form

where Bj is some Dirac operator on Y and σj denotes Clifford multipli-
cation by the outward unit normal vector field. Let Pj be the negative
spectral projection for Bj. Using Pj, we impose APS boundary con-
ditions for A+ at ΘMj — Y. Since ker Dγ = ker Bj — 0, we get a
self-adjoint extension {A+)Pj. In [16] we proved that {A*)Pj has pure
point spectrum and the eta invariant η(A~]~,Pj) of (A ~)Pj can be de-
fined by analytic continuation of a series which is analogous to (0.4).
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Moreover, by Theorem 0.1 of [16], we have

η(At)=η(A+,Pi), .7 = 1,2.

Let hf be the dimension of the subspace of ker̂ A^ consisting of all
limiting values of extended L2 solutions of D± (see the end of §7 for the
definition). Then we have

Tr(C+(0)) = h+ - hj and dimker^+ = Λ+ + hj.

In general, the L2 index is not stable under compactly supported per-
turbations. However, as the index formula shows, L2-IndD+ — hϊ — h^
is stable under perturbations supported on a compact subset of X. This
suggests to define

(0.11) hϊdD+ = L2-Ind D+ - /if - /£.

If the boundary of Xo is smooth, it is proved in Corollary 3.13 of [1] that
(0.10) equals the index of the APS boundary value problem. This index
can also be interpreted as Fredholm index in weighted Sobolev spaces
[15]. Therefore we think that IndD + , as defined above, has a similar
interpretation which justifies the notation. Now we can reformulate
Theorem 0.1 as follows:

Theorem 0.2. Let the assumptions be the same as in Theorem 0.1.
Suppose that near the boundary of Mi, Af has the form

where B{ is a Dirac operator on Y and α* denotes Clifford multiplication
by the outward unit normal vector field. Let Pi be the negative spectral
projection with respect to B{. Then we have

^ ωD - ^

- -{η(At,P2) + dimker(A+)p2},

where IndD+ is defined by (0.11), ωD is the Atiyah-Singer index density
for D+ and η(A^Pj) is the eta invariant of the self-adjoint extension
(A*)P. of A*\jrf. wtth respect to the APS boundary conditions defined
byPj.

The elimination of the condition ker Dγ = 0 requires a better under-
standing of the continuous spectrum of Δ. There will be no significant
change of the index formula. Again, the contribution of the continuous
spectrum in the index formula will be given as combination of traces of
scattering matrices at energy zero. This will be discussed elsewhere.
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In §8 we use the index theorem to derive a splitting formula for eta
invariants. A number of authors [4], [8], [14], [25] have proved splitting
formulas mod Z. We identify explicitly the integer part as combination
of indices of certain Dirac operators.

Finally, in §9 we discuss as an example the case where X is the
product of two even-dimensional manifolds with cylindrical ends, say
Xι and X<ι. We also assume that the Clifford bundle is the exterior
tensor product of Clifford bundles over X{. Then the L2 index of the
corresponding Dirac operator Z)+ is the product of the L2 indices of the
Dirac operators Df on Xι. Using the index formula for Dirac operators
on manifolds with cylindrical ends, we get a formula for L2-lnd(D+).
We compare this formula with the answer given by Theorem 0.1. The
boundary term in this index formula displays a natural decomposition
where each term is associated with a particular stratum of the boundary
at infinity. In the present case, the corner Y is the product of two odd-
dimensional closed Riemannian manifolds. The term which seems to
be naturally attached to the corner is the product of the eta-invariants
of the induced Dirac operators on Yim At the end we briefly discuss a
possible approach to obtain such a decomposition in general.

1. Manifolds with corners of codimension two

To simplify notation, we shall only consider the simplest case of a sin-
gle corner of codimension two. The extension of our results to manifolds
with several corners of codimension two is straightforward.

Let M be a closed oriented (n — l)-dimensional C°° Riemannian man-
ifold and let Y C M be a closed oriented submanifold of codimension
1, which separates M in two submanifolds, say Mi and M2. We also
assume that, near Y, M is isometric to the product (—ε, ε) x Y, ε > 0.
Let Xo be a compact oriented n-dimensional Riemannian manifold with
boundary M. We assume that the metric on Xo has the following prop-
erties:

(1) In a neighborhood (—ε, 0] x M{ of the boundary component M»,
i = 1,2, Xo is isometric to the product metric on (—ε, 0] x M{.

(2) In a neighborhood of the corner Y, Xo is isometric to (—ε, 0]2 x Y,
equipped with the product metric.

We shall call Xo a manifold with a corner at Y. More generally, we
may consider a compact oriented Riemannian manifold X which has k
boundary components Yί? and near each boundary component Y;, the
metric has a product structure as described above.

Example 1. Let M», i = 1,2, be two compact oriented Rieman-
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FIGURE 1. A 2-dimensional manifold with a corner at Y.

'•> R+xR+xY

FIGURE 2. The complete manifold X.

nian manifolds with C°° boundary B{. Suppose that in a neighborhood
(—ε,0] x Bi of the boundary B^ the metric of M* is isometric to the
product metric on this neighborhood. Then Xo = Mλ x M2 is a manifold
with a corner at Y = Bλ x B2.

We associate with Xo a noncompact complete Riemannian manifold
X as follows. Let

(1.1) Zi = Mi U y (M+ x y), i = 1,2,

where the bottom {0}x7 of the half-cylinder is identified with
Then Zi is a manifold with a cylindrical end. Furthermore, let

(1.2) ^ = I

Observe that W» is an n-dimensional manifold with boundary Z^. Set

(1.3) X = WX UZl (R+ x Z1) = W2 Uz2 (M
+ x Z2),

where {0} x Z{ is identified with the boundary Z{ of W<? i = 1,2. We
equip IR+ xM» and R + xZj , i = l,2, with the product metric and extend
in this way the metric on Xo to a complete C°° Riemannian metric on
X. We call X a complete manifold with a corner at Y. If we unravel
(1.1) and (1.2), we get a further decomposition of X as

(1.4) X = Xo U (M+ x Mx) U (R+ x Af2) U ((R+)2 x y) ,

where the boundaries are identified correspondingly. See Fig.2 for an
illustration.
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[0 fT]xMi [0,T]2xY

[0,T]xM2

FIGURE 3. The extended manifold Xτ.

Example 2. Let Zλ and Z2 be two Riemannian manifolds with cylin-
drical ends, that is, Zi = Mi U (M+ x Bi) where M* is a compact Rie-
mannian manifold with boundary Bi. Then X = Zλ x Z2 is a complete
manifold with a corner at Bγ x B2.

There exists a distinguished exhaustion of X by compact submani-
folds Xτ, T > 0, which we shall now describe. Let T > 0 be given and
set

(1.5) Z i f Γ = M i U y ( [ 0 , T ] χ y ) , i = 1,2.

Here it is understood that {0} x Y is identified with 9M f. Then ZiiT,
Γ > 0, is a family of compact manifolds with boundary which exhaust
Zi. Next we attach the finite cylinder [0,T] x M\ to Xo by identifying
Mi C dX0 and {0} x Mλ in the obvious way. The resulting manifold
W2,τ = XQ U M I ( [ 0 , Γ ] x Mi) is a manifold with a corner. Note that
the boundary of W2j is the union of M\ and Z2^τ. Now we glue the
finite cylinder [0,T] x Z 2 , τ to W2,τ where {0} x Z2yT is identified with
the corresponding piece Z2,τ of the boundary of W2iT The resulting
manifold is called Xτ, that is,

(1.6) Xτ = W2,τ Uz2iT ([0,T] x Z 2 ) T), Γ > 0.

The manifold Xτ is again a manifold with a corner at Y. Moreover, the
boundary is given by

(1.7) dXτ = ZltT\Jγ(-Z2tτ).

We may also construct Xτ by a different gluing process, namely

(1.8) Xτ = Xo U ([0,T] x Mi) U ([0,Γ] x M2) U ([0,Γ]2 x F),

where the boundaries are identified correspondingly (see Fig. 3).
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2. Dirac operators on complete manifolds with corners

Let X be as above and let E -> X be a Clifford bundle over X
(cf. [11]). Let D : C°°(X,E) -> C 0 0 ^ , ^ ) be the (generalized) Dirac
operator associated with E. We assume that the Hermitian metric and
the connection V^ of the Clifford bundle E are compatible with the
product structure of X. Let RE be the curvature tensor of E. Then
\(VE) RE(x)\ is uniformly bounded on X for all k e N. Furthermore,
D has the following properties:

(i) There exist Clifford bundles E{ over Z{ such that E\^- χ χ is

the pull-back of Eu and on M+ x Zi we have

(2.1) jD = 7 < ( ^ - + i

where A» is the Dirac operator of 2^, and j { denotes Clifford
multiplication by the outward unit normal vector field. The ji
satisfy the following relation

(2.2) 7 l

2 = -Id, τΓ = -7i and ΊiAi = -AiΊi, t = 1,2.

(ii) There exists a Clifford bundle S over Y such that

is the pull-back of 5, and on (R+)2 xYwe have

(2.3) £> = 7 + 7 2 _ + Z)y ?

where DY is the Dirac operator of 5, and 71,72 are Clifford
multiplications by the outward unit normal vector fields. In
addition to (2.2), the following relations hold

(2.4) 7 l 7 2 + 7 2 7 l = 0, ΊiDY - -DYΊU i = 1,2.

We shall now describe some of the basic properties of D. Since X is
a complete Riemannian manifold, from Theorem 1.17 of [11] it follows
that D : C™(E) -» £ 2 (#) is essentially self-adjoint. For φ G C?{E),
set

(2.5) II φ \\l= Σ II v v llϊ.
i=o

and denote by Hk{E) the completion of C™(E) in this norm. The
Sobolev space Hk(E) coincides with the space of all ψ G L2(E) such
that the distributional image Vιφ is also in L2(E) for all / < k. The
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connection V gives rise to an elliptic second order differential oper-
ator V*V : C°°{E) —> C°°{E). Recall that the following Bochner-
Weitzenbόck formula holds:

(2.6) D2 = V*V + RE,

where RE is defined by the curvature tensor of E. More precisely, if
βi, ...,en is an orthonormal basis of TXX, then

and RE

W is the curvature transformation of E. Due to our assumption
on E, the curvature tensor is uniformly bounded on X. Therefore, by
(2.6) there exist constants C\,C2 > 0 such that

for all φ G Hι(E). This implies that an equivalent norm in Hι(E) is
given by

\\\Φ\\\\=\\Φ\\2 + \\DΦ\\2.
A similar result holds for all Hk(E).

Proposition 2.7. For each k G N, there exist Cι(k),C2(k) > 0 such
that

k
ιi2 <" V^ II n*.λ ιι2 ^ n (u\ n JL 112Ci(Ar) II 0 MI < Σ I I ^ I I 2 < C-2(fc) || ^ IIJ

z=o
for allφeHk{E).

To prove Proposition 2.7 one uses that the injectivity radius of X has
a positive lower bound, and all covariant derivatives of the curvature
tensor of E are uniformly bounded in absolute value. Then the claimed
inequalities follow, as on a compact manifold, from the elliptic estimate
foriλ

In other words, an equivalent norm in Hk(E) is given by

= Σ12
/=0

For the same reason, it also follows that the Sobolev embedding theorem
holds for X [9, Corollary 1.14]. Namely, we have

Proposition 2.8. For I > n/2 + k, there exists a continuous em-
bedding Hι{X,E) -> Ck{X,E), i.e., there exists Cltk > 0 such that
II ψ | |c*< CΊ,* II Ψ \W f°r all ψ G Hι{X,E).

Let V denote the unique self-adjoint extension of D in L2(E). We
shall now investigate the kernel of V. Let φ G L2(E) and assume that
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Dφ = 0. By elliptic regularity, φ is a C°°-section of E. Furthermore,
Proposition 2.7 implies that

(2.9) V V e I 2 ( £ ; ® ( r i H and || φ \\k < C(k) II φ Ho, ken,

for some constant C(k) > 0 and all φ E kerD.
Now consider the restriction of φ to R+ x Zi C X. On this subman-

ifold we have

where Aγ : C°°(Zι,Eι) —» COO(Z1,E1) is a generalized Dirac operator
on the manifold Zλ. Thus on IR+ x Zλ,

(2.10) (— +

Next recall that the manifold Z l 5 defined by (1.1), is a manifold with a
cylindrical end. Moreover, the connection V^1 and the Hermitian metric
of the Clifford bundle Eλ are compatible with the product structure of
Zx on M+ x y. Hence onR + xY, Ax takes the form

(2.11) Aλ =

where u E M+, η2 is Clifford multiplication by the outward unit normal
vector field to y, and Bx : C°°(Y,S) -> C°°(Y,S) is a Dirac operator

Since Zx is complete, Ax is essentially self-adjoint in L2(Zx,Eχ) [11].
Let A\ be the unique self-adjoint extension of A\. In §4 of [16], we have
described the spectral resolution of such operators. It follows that A\
has only a point spectrum and an absolutely continuous spectrum. The
point spectrum consists of a sequence of eigenvalues < λj < λj+i <
• of finite multiplicity, and the continuous spectrum has an explicit
description in terms of the generalized eigensections.

Since for almost all υ > 0, φ(v, •) belongs to L2(ZuEι), we may ex-
pand φ(υ, •) in terms of the L2-eigensections and the generalized eigen-
sections of A\. Let L2

d(Eι) and L2

c(Eι) denote the discrete and contin-
uous subspace of A\, respectively. Denote by φd{v,-) (resp. φc{v, •))
the orthogonal projection of φ(υ, •) onto L2

d(Eι) (resp. L2

c(Eι)). Let
{ψjjjez be an orthonormal basis of L2

d(Eι) consisting of eigensections
of A\ with eigenvalues < λ̂  < λj+1 < . Then we have

φd{v,z) =
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and the α/s satisfy

Thus a,j(υ) = Cje~XjV. Since φd is square integrable, it follows that
Cj = 0 for λj < 0 and

(2.12) φd(v,z)=

Suppose that the enumeration of the eigenvalues of Λι is chosen such
that λx > 0 is the smallest positive eigenvalue. Let T > 1. Then we get

ί°° f , /
/ / \φd{v,;

JT Jzx

12

— e"

(2.13) < e " 2 T λ l ί \φd{v,z)\2 dzdv
JR+XZΛ

2

In the same way, we can derive a pointwise estimate. By the Sobolev
embedding theorem, we obtain

<

for some constant C > 0, independent of j . Furthermore, we also have

\r I2 r°° r
Σ f r = / / \Mv,*)\*dzdυ <\\φ\\2.
*-*' 2λj Jo Jzλ

Hence \CJ\ < y/2λ~ \\ φ \\ and, for υ > 1,

(2.14) \φd(v,z)\ < C Σ (1 + λ, Γ e~x>v \\ φ \\ < de'x^2 \\ φ \\ .
Xj>0

Now we shall investigate φc. Let P+ be the positive spectral projec-
tion of the self-adjoint extension of the Dirac operator Bx : (7°°(y, S) —>
C°°(Y, S), defined by (2.11). Furthermore, let Π denote the orthogonal
projection of L2(Y, S) onto the +ί-eigenspace of 7172 : ker Bλ -> ker Bλ.
Set Π + = P + + Π. Let {ΦJ}J^N be an orthonormal basis of Ran(Π+)
consisting of eigensections of Bx with corresponding eigenvalues 0 <

μ>ι < μ>2 < *
Let Σ s be the Riemann surface associated with the functions ΛJ\ ± μj,

j G N, such that Λ/X~±JL] has positive imaginary part for μj sufficiently
large. The Riemann surface Σ s is a ramified double covering πs : Σ s —> C
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of C with ramification locus {±βj \ j E N}. To each φj there corre-
sponds a generalized eigensection E(φj,A) E Coo(Zι,E1) of V, which is
a meromorphic function of Λ E Σ,8 and satisfies

DE(φj,A) = πs(A)E(φj,A), Λ E Σ*,

(cf. [12]). The half-plane Im(λ) > 0 can be identified with an open
subset FPS of Σ s , the physical sheet, and each section E(φj,A) is regular
on dFPs = E. Then φc has an expansion of the form

φc(υ,z) = f^i Γ E(φj,X,z)aj(v,X)drj{X)

(2.15) + Γ E{φj,-\z)βj{v,X)dτj{X)\,

where

and aj,βj E L2(M+ x \μ^oo)\dυdτj). Convergence of (2.15) has to be
understood in the L2 sense. By (2.10), Oίj and βj are smooth functions
of v satisfying

| ^ α i ( t ; ϊ λ ) + λα i ( t ; ,λ)=0 and ^ i ( v , λ ) - Xβ^υ, λ) = 0.

Hence Cέj(v,X) = αJ(λ)e~λυ and βj(v,\) = bj(X)eXυ. Since each βj is
square integrable, it follows that bj = 0 for all j E N, and (2.15) leads
to

(2.16) φe(v,z) = £ Γaj(X)e-χ*E(φj,X,z)dτj(X).

j=i ^

Let Γ > 1. Then (2.16) implies

poo p OQ «oo «oo

/ / \Ψc(v,z)\2dzdv = Σ / K Kλ) ! 2 ^-
JT JZ1 ]^ΐJτ hi

(2-17)
, = 1

3=1
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First, assume that ker Bλ = 0. Then μλ > 0 is the smallest positive
eigenvalue of Bι, and by (2.17) we get

(2.18) Γ f \φc(υ,z)\2 dz dv < Ce~τ^ \\ φc f < Ce~τ^ || φ ||2,

where C > 0 is independent of ψ. Similar estimates hold for the restric-
tion of φ to 1R+ x Z2.

Let Dγ be the Dirac operator defined by (2.3). Then we have
Bι = —η2Dγ. In particular, ker Dγ — ker Bx. If we combine (2.13),
(2.18) and the corresponding estimates with respect to Z2, we obtain

Proposition 2.19. Assume that kerDy = 0. Let T > 1 and let XT
be the manifold defined by (1.6). Then there exist constants C, c > 0
such that for ψ G ker V7 we have

f \ψ(x)\2dx < Ce~cT || ψ ||2 .
JX-Xτ

Proposition 2.19 combined with (2.9) implies that ker V is finite-
dimensional.

We shall now relax the assumption kerDy = 0. For this purpose we
introduce an auxiliary differential operator L : C°°(E) -> C°°{E®T*X)
as follows. Let ω G ΛJ(X) be a 1-form with compact support such that
\ω(x)\ ~ 1 for all x e Xo. Since Xo has a nonempty boundary, such a
1-form always exists. Let ψ0 £ C£°(Xι) and suppose that ^o(^) = 1 for
x e Xo. Furthermore, let φ{ G C°°(R),z = 1,2, be such that φi(u) = 1
for u > 1 and φi{u) = 0 for u < 0. We regard φi as a smooth function
on M+ x Zi in the obvious way. Given ψ E C°°(E), let ψi denote the
restriction of ψ to M+ x Z{. Then we set

(2.20) Lφ = φoφ ® ω + Φι~~- ® dv p
2 p ® dw.

σu

By (2.9), L induces a bounded linear operator L : ker V -> L2(E®T*X).

Lemma 2.21. We have kerL = {0}.

Proof. Let ψ G ker V and suppose that Lφ = 0. Then it follows from

(2.20) that

^ 1 = 0 a n d a ^ 2 = a

By (2.12) and (2.16), the second equality implies that φλ = 0. In the
same way we get φ2 — 0. Hence φ = 0. q. e. d.
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Let T > 1 and let φ e keτV. By (2.20), we obtain

ί ί°° ί d | 2

/ \Lφ{x)\2dx< I I jL
Jχ-Xτ JT JZX VV

/ /
JT Jz2

d 2

( ) dz2du.
iz2

The integrals on the right-hand side can be estimated in the same way
as above. From (2.12) and (2.16), it follows that the first integral is
bounded by

Ce - c T

C i

where C, c > 0 are constants, independent of φ. A similar estimate
holds for the second integral. Thus we have proved.

Lemma 2.22. There exists a constant C > 0 such that for T > 1
and φ E kerP, we have

LX-Xτ J-

Corollary 2.23. Suppose that there exists C > 0 such that || φ | |<
C II L</? II /or all ψ £ kerD. TΛen kerP is finite-dimensional.

Proof. By Lemma 2.21, it is sufficient to show that L(keτV) is
finite-dimensional. Let

I: L{keτV) -^ L2{E ®T*X)

be the inclusion. For T > 0 we denote by Iτ : L(keτV) -* L2(E®T*X)
the composition of the restriction of sections to Xr and the canonical
inclusion. By Lemma 2.22, we have

(2-24) | | / _ / τ | | < | ) Γ > i .

Let ^(XT^E® T*X) denote the Sobolev Space of the restriction of
E ® T*X to Xτ Since Xτ is compact, the canonical map

H1 (XT,E® T*X) ->L2(XT,E® T*X)
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is a compact operator. Furthermore, from (2.9) it follows that L(ker£>)
is contained in Hι(E ® T*X) and

\\ Lφ W^ C \\ Lφ \\0, φekeτV,

for some constant C > 0, independent of φ. By Rellich's compactness
theorem, Iτ is a compact operator and hence, by (2.24), / is compact
too. Therefore, ker V is finite-dimensional. q.e.d.

Next we shall estimate the supremum norm of any φ G kerlλ As
above, we consider the restriction of a given φ G ker V to IR+ x Z±. By
Proposition 2.8, we have

φc{v,z)\ <C\\ {I + Aλ

where Aλ is the Dirac operator considered above. Let υ > 1. Employing
(2.17), we get

t x J Z OO

\ n ( \ l | 2 \ ~ ^ / (Λ i \ \ 2 π | / ' λ N ^ — 2 λ i) ψc\V) — / / I I + A) GL l A) β

Mi>0

f0° K(λ)|2

,,,

/

Z OO

Σ / / K
j=1 Jo Jμj

Combining this with (2.14) gives
Lemma 2.25. There exists C > 0 such that for all v > 1

<p G kerD, the following inequality holds

C
sup|<p(v,*)| < - p || φ ||, t = 1,2.

// ker ί?y = 0, £/ιen it e Λave exponential decay.
Now suppose that n = 2A;, A: G N. Let r = ikr)ι ... j 2 k be the canonical

involution of the Clifford bundle E and let

E = E+ Θ £L

be the parallel orthogonal splitting of £7 into the ±l-eigenbundles of r.
Since n is even, r anticommutes with D and we get a pair of elliptic
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first order operators

D± = C°°(E±) -> C

called chiral Dirac operators. Let V± denote the closure of D± in L2.
Then we have

V = V+®V_ and V+ = V*_.

By Corollary 2.24, kerP+ and kerXL are finite-dimensional. Therefore,
we can define the L2-index of D+ by

(2.26) L2-lnάD+ = dim(ker£>+) - dim(kerP_).

Remark. In general, D+ is not a Predholm operator. We observe
that V+ is Fredholm if and only if 0 is not in the continuous spectrum of
V_V+ or, what is the same, if the continuous spectrum OΪVJD+ has a
positive lower bound. In this case, the ZΛindex of D+ equals the index
of the Fredholm operator V+. This implies that the ZΛindex of D+
is stable under compactly supported pertubations of D. If £>+ is not
Fredholm, then the L2-index will be unstable in general. This makes it
difficult to compute the index for these cases.

3. L2-harmonic forms and cohomology

Let A* (A") be the space of C°°-differential forms on X. In this section
we consider the Gauβ-Bonnet operator d + d* : Λ*(X) -* A*(X). This
is a generalized Dirac operator on X, which obviously satisfies (2.1) -
(2.4). Therefore, the results of the previous section can be applied to
this operator. Let Δ = (d + d*)2 be the Laplace-Beltrami operator on
forms, and let Ap be the restriction of Δ to the space AP(X) of C°°
p-forms. We shall denote the self-adjoint extensions of d + d* and Δ in
L2A*(X) by d + d* and Δ, respectively.

Let Ή*2)(X) denote the space of square integrable harmonic forms on
X, that is,

(3.1) n\2){X) = {φe Λ pQ I Aφ = 0, IMI < ex,}.

Correspondingly, H^(X) will denote the space of square integrable
harmonicp-forms on X. Since X is complete, H*2^(X) equals the kernel
of d + d* (cf. [11]). In other words,

U\2)(X) = {φeA*(X) \dφ = d*φ = 0, \\φ\\ < oo} = *

In this section, we prove
Proposition 3.2. The space H*^(X) is finite-dimensional
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Let Hfa(X\ C) be the L2-cohomology of X. Recall that H{2)(X; C) is
the cohomology of the L2-de Rham complex consisting of all C°°-forms
which together with their exterior derivative are square integrable [26].
Then HP^{X) equals iJ(P

2)(X;C) if and only if the essential spectrum
of Δ p has a positive lower bound. As we shall see in §6, this depends
on the cohomology of Y, Mλ and M2. If the essential spectrum of Ap

contains zero, then H?2}(X;C) is infinite-dimensional.
Now we shall study the relation of T-ULΛX) with the de Rham co-

homology of X. Let H*(X) be the de Rham cohomology of X with
complex coefficients and let H*(X) be the de Rham cohomology of X
with compact supports and complex coefficients. Set

mix) =1m(H e(X)ΛH (X)),

where i is the canonical map. As mentioned above, a harmonic L2-form
φ satisfies dφ = 0 and d*φ = 0. In particular, φ defines a cohomology
class [φ] in H*(X). In this way we obtain a canonical map

For a general complete manifold, this map will neither be injective,
nor surjective. In the present case, however, we can describe this map
completely.

Lemma 3.3. The image of j is contained in H*(X).
Proof. First observe that by the construction of X, there is a

canonical retraction X —> Xo. Hence, H*(X) can be identified with
the image of H*{X0,dX0) in H*(X0) = H*{X). Let ψ E U\2)(X). In
order to see that the cohomology class [φ] is contained in H*(X), it is
sufficient to show that

for all cycles a in dX0 = Mλ Uy M2. Using this decomposition of the
boundary, it follows that H*(dXo) has a basis which can be represented
by cycles a of the following form: There exist a cycle α0 in Y and
relative cycles α̂  in (Mi,Y) such that

doίi = αOj i = 1,2, and a = aλ Uαo (-α 2 ).

Note that α 0 may be zero. In this case, c^ is a cycle in Mi and a is the
disjoint union of αi and α2.

Let T > 0 and let ZitT be the manifold defined by (1.5). Then we
define relative cycles α^τ in (Zi^^dZi^z) by
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where we identify da^ with {0} x α0. Set

ax — Oίι^τ U (—Oί2,τ)-

Then aτ is a cycle in dXτ = ̂ i,τ U Z2,τ If we regard a and α τ as
cycles in Xτ, then the construction of otτ implies that a and aτ are
homologous. Since φ is closed, it follows that

[<p= f φ= ί Ψ - ί φ,
t/Q; JOLT ** °<-\,T ** &2,τ

>

We shall now estimate the integrals on the right-hand side. For this
purpose we use the expansion of φ on R+ x Zι in terms of the eigensec-
tions of Ai, i — 1,2. It is sufficient to consider the integral over aίtτ
We have to specialize the eigensection expansion (2.12) and (2.15) to
the present case. Let AZl be the Laplacian on Λ*(Zχ) and let Δy be
the Laplacian on A*(Y). Note that

Λ*(R+ xY) = (C°°(IR+)®Λ*(y)) Θ (Λ1(E+)®Λ*(y)).

Therefore, to each eigenform φ of Δy there correspond two general-
ized eigenforms of AZl', namely E(φ,\,z) and E(du A φ,\,z). Let
iυ : {υ} x Zx C M+ x Zx be the inclusion and let

Let 0i,..., φm be an orthonormal basis of H*(Y). Then from the above
remarks combined with (2.12) and (2.16) (specialized to the present
case), it follows that

ai{\)e-χυE(φj,\,z)dλ

(3.4) + Γbj(λ)e-χvE(duΛφj,λ,z)d\\ + ψi{υ,z),

where VΊ satisfies

(3.5) sup\φ1(T,z)\<Ce-cT,
zezλ

with constants C, c > 0, independent of T. The integrals converge in the
L2 sense. Moreover, the functions a,j(λ) and bj(λ) are square integrable
with respect to the measure λ " 1 ^ . From (3.5) follows that

(3.6) < CλTe-cT
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It remains to investigate the differential forms defined by the infinite
integrals on the right-hand side of (3.4). We consider the first type of
integrals. Let φ G U*(Y) and a G L2(K+; χ-χdX). Put

= f V

Jo

(3.7) ω2(φ,υ)= / a{X)e~XvE{φ, X)dλ

It is clear that ωι(φ,υ) is a smooth differential form. The convergence
of the infinite integral is understood in the L2 sense. Therefore, it
is not obvious that ω2(φ,υ) is a smooth differential form. To verify
smoothness, let v > 1 and m G N. By definition, we have

/•OO

ΓO° \a(X)\2^<C'me-^.
i/v^

By the Sobolev embedding theorem, this implies that ω2(φ,v) is a
smooth form which satisfies

(3.8) sup I ω2{φ,v,z) \< Ce~^, υ > 1,

for some constant C > 0. Put

ω(φ,υ) =ωι{φ,υ) +ω2(φ,υ).

Our goal is to estimate Jaiτ ω{φ,T) as T -> oo. By (3.8), Jai τ ω2{φ,T)
decays exponentially as T -> oo. To deal with ωχ(φ,T), we observe that
on E+ x y, E(φ, X) has an expansion of the form

E(φ,X,{u,y)) =

(3.9)

where Ci(X)φ G H*(Y), and Titj(X)φ is contained in the /ij-eigenspace
of Δy. The existence of the expansion (3.9) follows from (4.20) in [16],
specialized to the Laplace operator. Let χ be the characteristic function
of R+ xY C Zλ and set

E(φ,X) - E{φ,\) -χ[e'iXuφ + e i λ u(d(λ)0 + duAC2(X)φ)].

It follows from (3.9) that there exists ε > 0 such that for λ < ε, we have

\E(φ:\(u,y))\ < Ce~c\ (u,y) G K+ x Zx.
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Put

ώΛφ,T)= t a(λ)e-χτE(φίλ)d\.
Jo

Let 1/Λ/T < ε. Since a e L 2(E+, λ^dλ), we get

< C ί |α(λ)|e-λ Tdλ
Jo

a l/SΓ \l/2

λe- 2 λ Γdλ) < C2Γ-3/4.
It remains to study the integral of the differential form

ί α(λ) e-χτχ[e-iXuφ + eίλu(CΊ(λ)^ + du A C2(\)φ)] dλ.

If we integrate this form over α?i5τ5 we get

T[(j ) Jf T[(j C2(λ)φ)a(λ)e-χτ J eiXudu\dλ

=iL ~^~ \LC2{λ

By Schwarz's inequality, this integral can be estimated by

C l « ( λ ) | 2 ^

ri/VT

Since α(λ) is square integrable with respect to the measure λ 1dλ, the
right-hand side converges to zero as T —>> oo. If we replace φ in (3.7) by
du Λ φ, we get the second type of forms which we have to consider. The
investigation of these forms integrated over Q^T is completely analogous
to the previous case. The corresponding integrals tend also to 0 as
T ^ oo. Together with (3.4) and (3.6), we get

limim / ψ = 0.
-+°°J*itτ

The same holds for f ψ. Hence, Ja ψ = 0 for all cycles a in dX0.

By Lemma 3.3, j induces a map

(3.10) j:U\

q.e.d.
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Now suppose that [φ] G H*(X) is represented by a closed C°° form φ
with compact support. In particular, φ is square integrable. Therefore,
by a theorem of de Rham-Kadaira [20, p. 169], we have

where ψ G L2,dψ = d*ψ = 0 and θ is a current. Since H*(X) can be
computed from the complex of currents, it follows that the map (3.10)
is surjective.

To deal with the injectivity, we observe that the manifold X has a
natural compactification X obtained by adjoining copies of Z l 5 Z2 and
Y at infinity. Putting r = 1/u and w — 1/v, we get natural coordinates
near the boundary.

Lemma 3.11. Each ψ G kerP extends to a C1 form on X.
Proof. Let ψ G kerD. Denote by φ{ the restriction of φ to

R+ x Z ί ?i = 1,2. Then ^ can be written in the form (3.4) with forms
ψi satisfying (3.5). Using Proposition 2.8, it is easy to generalize (3.5)
as follows: For all k G N, there exist Ck > 0 and c > 0 such that

s u p I Vktl>i{υ,z) | < Cke~c\ k e N , i = 1 , 2 .

Hence ψι and ψ2 extend to C°° forms onE x Zλ and M xZ 2 , respec-
tively. To finish the argument, we have to consider the forms ωλ(φ,v)
and ω2{φ,υ) defined by (3.7). Again, by referring to the Sobolev em-
bedding theorem, it is easy to show that

\Vkω2(φ,v,z)\<Cke-cυ, keN,

for constants Ck, c > 0. Thus, ω2 extends also to a C°° form on R x Zλ.
Since E(φ, λ, z) is analytic in λ and smooth in z, we get

λ|α(λ)| e~υX dλ

1 / 2 / ,iΛ/S d X \ ι / 2

(T -(λ)|'f)

which implies that ωλ extends to a Cι form on R x Zλ and hence, y?χ
does so. By the same argument φ2 extends to a C1-form on R x Z2.

q.e.d.
Now recall that H*(X) = H*(X) can be computed from the de Rham

complex of C1 forms on Ύ. Let φ G H*2)(X) and suppose that j(φ) = 0.
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Then there exists a C1 form on X such that φ — dθ. In particular, we
may assume that θ is bounded. Now we apply Green's formula to the
compact manifold Xτ, T > 0. Since d*φ = 0 and ψ = dθ, we get

/ φ A *φ — I dθ A*φ = I θ A *φ

(3.12) = / θ1Λ*φ1 + f Θ2A *φ2,
JZ\tτ JZ2,τ

where θ{ and ψ{ are the restrictions of θ and φ, respectively, to K+ x Zit

To estimate the boundary integrals we use again (3.4) and its analogue
for ψ2. Since ψi(T) decays exponentially while θ is bounded as T —> oo,
we get

r

θi Λ *ψi -> 0 as T —• oo.
r

The same argument applies to the forms ω2(φ,T) and ω2(du Λφ,T).
To determine the contribution of the forms ωι{φ,T), we observe that
\E(φ, λ, 2?)I < C, for 0 < λ < ε and z G Zx. Hence

/
JZ

< C T / |α(λ)|e" λ Tdλ
OZι,τ

a l/y/T

αvT \ 1 / 2 /

λβ- λdλ / | α ( λ ) | 2 ^ ] .
/ \ /

Since α(λ) is square integrable with respect to the measure λ^dλ, the
right-hand side converges to zero as T —> oo. The same holds for ωλ (duA
φ,T). By (3.12), we deduce that

/ ψ A *φ ->> 0
JχΎ

as T —> oo. This implies that y> = 0. Thus j is injective. We can now
summarize our results about the L2 harmonic forms by

Proposition 3.13. The canonical map %*^(X) -> H*(X) induces
an isomorphism

In particular, this proves Proposition 3.2.
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Next we shall investigate the L2-index of the signature operator. Sup-
pose that n — 21 and let τ be the involution of A*(X) which is defined

by

τφ = |P(P-I)+' * φ for φ e AP(X).

Let Λ±(X) denote the ±l-eigenspaces of r. Since d + d* anticommutes
with r,d + d* interchanges Λ+(X) and A*_(X) and hence, defines by-
restriction operators

The operator D+ is usually called signature operator. The involution r
acts on Ή,*^(X) and we denote the ±l-eigenspaces of τ by Ή*2),±(^0
Then it is easy to see that

L2-lnάD+ = dimΉ(*2)j+(X) - dimΉ*2))_(X).

By definition, τ maps HP

(2){X) onto Ή ^ p f ) . L e t ^(2),±P0 denote

the ±l-eigenspaces of τ acting in H(2)(X), and for p < I set

Then it is clear that

Since d im^ 2 ) +(X) = dim^ 2 ) _(X) for p < /, it follows that

(3.14) L2-lndD+ = dimH[2)i+(X) -

There are two cases that we have to distinguish depending on whether /

is odd or even. First, suppose that I = 2k + l. In this case, the mapping

r : Ή}^(X) -» Hl(2)(X) coincides with i*. Since * is a real operator,

it follows that the map φ \-> ψ induces an isomorphism of %(2),+ onto

U\2)_. Thus
2 + =0, if Z = 2Jfc + l.

So we can assume that n = Ak. Then on Ή?A(X), r coincides with *

which is a real operator. Furthermore under the isomorphism Ή?2) (X) —>

H?k(X), the quadratic form φ H> (φ, *φ) on H2^{X) corresponds to the

intersection form on Hfk(X). This quadratic form is induced by the de-

generate quadratic form on H2k(X) = H2k(Xo,dXo) given by the cup

product. Poincare duality for (Xo,dXo) shows that the radical is pre-

cisely the kernel of H2k(X0,dX0) -> H2k(X0). The signature Sign(X0)
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of the 4A;-dimensional manifold Xo is defined to be the signature of the
intersection form on H2k(X]R). Then the above argument shows that

which together with (3.14) yields
Proposition 3.15. Let D+ : Λ.+ (X) -¥ A*_(X) be the signature

operator. Then we have

4. The heat kernel

Let D : C°°{X,E) -> C°°{X,E) be a Dirac operator satisfying (2.1)
- (2.4) and consider the spinor Laplacian

A = D2.

The purpose of this section is to construct the fundamental solution for
the heat equation (d/dt + A)φ = 0.

Let Xλ be the manifold defined by (1.6) where T = 1. Then Xx

is also a manifold with a corner at Y, and the boundary of Xx is the
union of Z M and Z2,i> where ZiΛ = M; U ([0,1] x Y) (see Fig. 3). Let
V = X\ Uz2,i (—Xi) be the C°° manifold obtained by gluing two copies
of Xι along the submanifold Z2,i C dXi of the boundary. Note that V is
an oriented C°° manifold with smooth boundary, and the Riemannian
metric on X± induces a smooth Riemannian metric on V which is a
product near the boundary. Let V be the double of this manifold. Then
V is a closed oriented C°° Riemannian manifold, and we may identify
Xι with a submanifold of V. The bundle E\ = E\χ also extends to a

Clifford bundle E over V. Let D be the corresponding generalized Dirac
operator and set Δ = D2. Let K(x,y,t) be the fundamental solution
for d/dt + Δ o n 7 , and let KQ(x, j/, ί) be the restriction of the kernel K
to Xι. The kernel Ko is the interior part of the parametrix.

Next we have to construct the exterior part of the parametrix. By
(2.1) and (2.2), it follows that on M+ x Zu we have

(4.1) D2 = ^

We extend the right-hand side in the obvious way to a differential op-
erator Δj on R x Zj. Let Ki(x,y,t) be the fundamental solution for
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d/dt + Δ;. By (4.1), we have

c : : p ( ( " - « ) a

}

(4.2) Ki((u,w)Λv,z),t) = y=M Ki{w,z,t), i = l,2,

where K{ is the heat kernel for A\ acting on C°°(Z^E^). Finally, by
(2.3) and (2.4) it follows that on (R+)2 x Y, we have

<4 3> D ! = ^ 5
As above, we extend the right-hand side in the obvious way to a differ-
ential operator Δ 3 on E2 x 7, and we denote the fundamental solution
for d/dt + Δ 3 by K3(x,y, t). Then we have

K3((u1,u2,w),(v1,υ2,z),t)

/ (^i-^i)2 (u2-v2)
2

e x p (p ( dt ) p ( At ) ~

(4.4) = -=M —f K3(w,z,t),
V4πt V4πί

At

where K3 is the heat kernel for Dy.
The heat kernels Kι satisfy the standard short time asymptotic. Let

d(x,y) denote the geodesic distance of x,y 6 X.
Proposition 4.5. For allp,/ E N, there exist constants C,Ci,c2 > 0

fort>0, z = 0,l,2,3.
Proof. It is well-known that the heat kernel on a compact mani-

fold satisfies the estimate claimed by Proposition 4.5. Therefore, our
statement is obvious for Ko. Since Y is compact, we can use (4.4) to
derive the required estimate for K3. We are left with K\ and K2. By
(4.2), it is sufficient to prove the corresponding estimate for K\ and K2,
respectively. Since Kλ and K2 are the heat kernels for spinor Laplacians
on manifolds with cylindrical ends, the required estimate follows from
(3.5) and (3.3) of [16]. q.e.d.

We shall now use the kernels K{ to construct a parametrix for the
fundamental solution of d/dt + Δ. Let p(a, b) denote an increasing C°°-
function of the real variable u, such that p — 0 for u < a and p = 1 for
u> b. Define C°°-functions as follows:

= l-p(3/4,7/8), χ = p(0,l/4), ξ = p(3/8,5/8), φ = 1 - ξ.
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Let Ui be the normal direction to {0} x Z{ C X. We consider φ(uι),
Φ(uι) as functions on the cylinder [0,1] x Z\ C X and extend them in
the obvious way to functions y?i, ψι on X. Similarly, we regard φ(u2),
Φ(u2) as functions on the cylinder [0,1] x Z2. Again we extend these
functions in the obvious way to functions φ2, ψ2 on X. Then we set

Observe that the support of Φo and Φ o is contained in Xι.
Next we consider χ(iAi), ξ(uι) as functions on [0,1] x Zλ and extend

them by 1 to C°°-functions Φ l 5 Φx on IR+ x Zλ. In the same way we
define Φ 2, Φ 2 on R+ x Z2. Note that we may extend Φ 1 ? Φ 1 ? Φ2 and Φ 2

by zero to C°°-functions on X. Since (M+)2 x Y is contained in both
K x Z i and R x Z 2, we may restrict Φ 1 ? Φ 1 ? Φ2, Φ 2 to C°°-functions
Φi, Φi, Φ 2, Φ 2 on (E+)2 x Y. Set

Φ 3 = Φ x Φ 2 , Φ 3 = Φ i Φ 2 .

Again we extend Φ3, Φ 3 by zero to C°°-functions on X. Note that

Φi = 1 - φu Φ 2 = 1 - ψ2, Φ3 = Φx Φ 2 = (1 - φλ) (1 - ψ2),

implying that

(4.6) Φo + Φi + Φ2 - Φ3 = I-

Set

(4.7) Q(x,y,t) =Σ*i(x)Ki(x,y,t)*i(y) - Φ3(x)K3(x,y,t) Φ3(y).
i=0

Lemma 4.8. For every f G C£°(X,E) we have

lim / Q(x,y,t)f(y)dy = f(x).
x

The proof follows immediately from the construction of Q and (4.6).
Set

(4.9) Q1(x,y,t) = (- + Ax)Q(x,y,t),

where Δ is applied to the first variable. For every y E X, the support
of Qι ( , y, ί) is contained in

L e m m a 4.10. Let x0 G XQ> There exist C,Cχ,c2 > 0 5ί/cΛ that

(4.11) |Qi(aτ,y,ί)|
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for all x,y e X and 0 < t.

Proof. We shall estimate Qx(x,y,t) for x e [0,1] x Zx. The case
x e [0,1] x Z2 is similar. Fix T > 0. First observe that by Proposition
4.5, we have

(4.12) \Q1{x1y,t)\ < C Γ ( n + 1 ) / 2 e C l ί e - C 2 d 2 ( l ' y ) / ί .

Moreover, the definition of Φ;, Φj implies that there exists δ > 0 such
that

cf(supp (VΦO, supp (Φ0) > ί> i = 0,..., 3.

Hence

(4.13) d(x,y) > δ whenever Q1(x,y,t) φ 0.

Let x e Xλ. We also fix x0 e Xo Since Xλ is compact, (4.11) follows
from (4.12) and (4.13). Next assume that x E [0,1] x (Zλ - Z M ) , where
Z1Λ is defined by (1.5). For such x we have

(4.14) QΛX>V>*)= ^
-Φ3(x)K3(x,y,t)*3(y)}.

Therefore, we can assume that y £ R+ x Z\. We distinguish two cases:

a) y GM+ x Z u .
Let x = («, to) and y = (v,z) where u G [0,1], υ € R+, to € Zi, and

z G Z u . Prom (4.2), (4.4), (4.12) and (4.13), it follows that

(4.15) IQxίίu.ω), («,«),<)! < d e

c ' i - c = / t

e - c ^ " 2 + r f 2 ^ ) ) / i

for certain constants Cί,ci,C2 > 0. Using the compactness of Xι again,
we can easily see that there exists c3 > 0 such that

c3(d2(xo,x)+d2(xo,y) + 1) < 1 + v2 +d2(w,z),

which implies (4.11) in this case:

b) yG [l,oo) x Z 2 .
By definition, we have Φ3(a;) = $ι(x) and Φs(a ) = Φi(a ) for x G

[l,oo) x Z2. Thus (4.14) yields

1{x)[K1{x,y,t) - K3(x,y,t)] Φ
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Moreover, we may assume that x = (u1,u2,w), y = (vx,v2,z) where
u1,u2,v1,v2 e 1R+ and w,z € Y. Prom (4.2) and (4.4) we have

^l((^l5^2,^),K^2,^)^) ~ ί

exp(-^^-)

Furthermore, by the definition of Φ1? we obtain Φι((uι,u2,w)) = Φι(u2).
Combining these observations leads to

Φ l ( u a ) - ^ - J ^ ^ exp(

(4.16)

By (3.5) of [16], we have

(4.17)

for some m0 6 Mi and constants C2,c2 > 0. Since x0 € Xo> (4.16) and
(4.17) imply that (4.11) holds in this case too. q.e.d.

We can now proceed in the standard way and construct the funda-
mental solution K from Q. We define inductively

;,2/,t) = / / Qλ(x,w,t - τ)Qm(w,y,τ)dwdτ, m > 1.
./o Jx

Usually, a kernel obtained in this way is denoted by Qι * Qm. By
Lemma 4.10, the w-integral is absolutely convergent and the following
estimate holds

\Qm+i(χ,y,t)\

( l + d 2 ( ) + d 2 ( o , y ) ) x

r
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Set

m = l

By (4.18), this series is absolutely convergent and defines a smooth
kernel. Set

(4.19) K = Q + Q*P.

Then we have

Proposition 4.20. The kernel K is the fundamental solution for
d/dt + Δ on X. Moreover, the following estimate holds

\K(x,y,t) - Q(s,y,t)|
(4.21) ^

for t > 0 and certain constants C,Ci,c2 > 0. A similar estimate holds
for DxK(x,y,t) - DxQ(x,y,t).

The estimate (4.21) follows from (4.18). If we use Proposition 4.5,
then it is easy to extend (4.21) so that the derivatives are included. In
particular, (4.21) implies that K — Q is the kernel of a Hilbert-Schmidt
operator.

We shall now modify the heat kernels K\, K2 and K3 by introducing
Dirichlet boundary conditions. Let ΔiiD, i = 1,2, be the self-adjoint
extension of

which is obtained by introducing Dirichlet boundary conditions. Then
the kernel KiiD of exp(—tA{)jD) is given by

(4.22)

(u-vf

ΰ~] " e x p (

where K{ is the heat kernel for A2. Next consider

~^\2 v v 7?̂  __v Γ



130 WERNER MULLER

and introduce Dirichlet boundary conditions. Let A3^ be the corre-
sponding self-adjoint extension and let K3,D be the kernel of the heat
operator exp(—tA3yD). Then K3iD is given by

,υ2,z),t)

{uι+vι)

(4.23)

x ι e x p ( it—) " iί

where if3 has the same meaning as in (4.4). We extend the heat opera-
tors exp(—tΔi^), exp(—ίΔ2,£)) and exp(—tA3^) to bounded operators
in L2 (X, i?), and put them equal to zero on the orthogonal complement
of the subspaces L2(E+ x ZUE), L2(R+ x Z2,E) and L2((R+)2 x Y,E\
respectively. We can now prove

Theorem 4.24. Let the notation be as above. Then for each t > 0,
the operator

is a Hilbert-Schmidt operator.
Proof. We extend the kernels KiyD, i = 1,2,3, by zero to kernels on

X x X and we denote these kernels also by K^D. To prove the theorem,
we have to show that
(4.25)

/ / \K{x,y,t)-KltD(x,y,t)-K2,D{x,y,t)+K3jD(x,y,t)f dxdy
Jx Jx

< 00.

By (4.21), we may replace K by the parametrix Q. Since Xλ is compact,
we can remove Ko from the parametrix. Let χ i ? i = 1,2, be the char-
acteristic function of R+ x Zi C X and let χ3 denote the characteristic
function of (R+)2 x Y C X. Let Ku i = 1,2,3, be the kernels defined
by (4.2) and (4.4), respectively, and set

2

Q(x,y,t) ^Ύ.Xi^Kiix.y^x^y) - χ3(x)K3(x,y,t)χ3(y).
2 = 1

Now observe that

(4.26) ΦiK&i - XiKiXi = {Φi-xJKiΦi+XiKiiVi-Xi), i = 1,2,3.

Furthermore, by definition, the support of each of the functions Φ̂  — χι
and Φi - Xi, i = 1,2,3, is contained in ([0,1] x Zλ) U ([0,1] x Z2).
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Therefore, we may use Proposition 4.5 and proceed in essentially the
same way as in the proof of Lemma 4.10 to show that

(4.27) \Q(x,y,t) - Q(x,y,t)| < C exp(-c(d2(x0,x) + d2(x0,y))/t),

for some x0 € Xo Hence, in order to prove (4.25), we can replace K by
Q, that is, we have to investigate

(4.28) Q(x, x\ t) - KhD(x, x', t) - K2,D(x, x\ t) + K3tD(x, x\ t).

This kernel vanishes, unless x,x' E M+ x Z\ or r r ,x 'GR + xZ 2 . Consider
the first case, that is, x = (uuw)^ x' — (^1,2:), w,z G Zλ. Suppose that
w G Mλ. Then the kernel (4.28) equals

exp{-- — - — ) Kλ{w, z, t).

By (3.5) of [16], \kλ(w,z,t)\ belongs to L2{MX x Zx). Hence, the kernel
(4.28) is square integrable on (M+ x Mi) x (M+ xZi), and by symmetry,
it is also square integrable on (M+ x Zλ) x (E+ x Mi). It remains to
consider the case x — (uι>u2,y) and x' = (vι,v2,y'), y,y' G Y. Then
(4.28) equals

4ί

e x p ( - ( U l

1 /
4^ί e x p ( ~ At ] β X p ( 4 ί ) K 3 { y ' y '* }

Since F is compact, the third term is square integrable on (R+)2 x Y. To
deal with the first two terms, we refer again to the estimate (3.5) of [16]
from which we deduce that these two terms are also square integrable
on (R + ) 2 x Y. Combining our results yields the required (4.25). q.e.d.

By a more elaborate method one can improve the statement of The-
orem 4.24 by showing that the combination of the heat operators is the
trace class. This result will be important for the investigation of the
continuous spectrum.
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5. The analytic continuation of the resolvent

The notation will be the same as in the previous section. In particular,
Δ = D2 is the spinor Laplacian associated with some Dirac operator
D. Our purpose is to extend the resolvent (Δ — λ 2 )" 1 analytically as a
function of λ to a neighborhood of λ = 0. In the present paper we study
this problem only under the additional assumption that keτDγ = 0,
where Dγ is the Dirac operator attached to the corner Y.

Let Aj, j = 1,2, be the self-adjoint extension of the Dirac operator
Aj : C^iZj.Ej) -» I?{Zj,Ej) defined by (2.1). To begin with, we
construct a parametrix for (A2 — λ 2 )" 1 , Im(λ) > 0. Recall that on
R+ xYcZj, A2 takes the form

This follows immediately from (2.1)-(2.4). Let {φι}ι^ be an orthonor-
mal basis for L2(Y, S) consisting of eigensections of Ό\ with correspond-
ing eigenvalues 0 < μλ < μ2 < . For u φ v, we put

Im(λ)>0.

Then H(X) is the kernel of the parametrix at infinity. We glue it to
an interior parametrix which we construct as follows. Let ZjΛ = ZjΛ U
(—ZjΛ) be the double of the compact manifold Zjyl which is defined by
(1.5). The operator A2, restricted to ZjΛ, has a natural extension to

an elliptic operator on Z^i, and we denote its resolvent by Q;,i(λ). Let
p(α,6) e C°°(R) be the function introduced in §4 and put

Φj2 = ,9(1/4,5/16), Φ j 2 = p(3/8,5/8),

Φ i l = l -p(7/8,l), Φ i l = l - Φ i 2 .

We regard Φ ^ , * ^ , i,j G {1,2}, as functions on [0,1] x Y and extend
them to C°° functions on Zj in the obvious way. Put

(5.2) P,(λ) = Φ xQ^λJΦ,-! + Vj2H(\)Φj2, Im(λ) > 0.

Then we have

(5.3) Pj(\)(A2

j-λ2) = ld+Kj(\),

where Kj(λ) has a smooth kernel Kj(z,z',\) which satisfies

suppz,Kj(z,z',λ)c(0,l)xY
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and

Kj(z,z',λ)=0 for d(z,z') < 1/16.

This implies that Kj(λ) is a holomorphic family of compact operators
in ZΛ Moreover, from (5.1), it follows that there exists C > 0 such that
II Kj{i\) ||< C/λ, λ > 1. Thus ld+Kj{i\) is invertible for λ » 0 and
hence, (Id +Kj(X)) is a meromorphic function on Im(λ) > 0 [21]. By
(5.3), we get

(5.4) (^-λVHld+^POΓ^λ), Im(λ)>0.

L e m m a 5.5. For each λ in the half-plane Im(λ) > 0,
(A2 — A 2)" 1 — Pj{\) is a compact operator in L2.

Proof. By (5.4), we have

(5.6) (Λ'j-λ2)-1 - Pj(λ) = -(id+KjWy'K^Pjiλ), Im(λ) > 0,

and the claimed result follows from the compactness of Kj(\). q.e.d.
Now we construct a parametrix for (Δ — λ 2 )" 1 . Let Δ i ? i = 1,2,3, and

Δ be the differential operators introduced at the beginning of §4. Let
Δi be the unique self-adjoint extension of Δj. Note that Δ i ? i = 1,2,
are self-adjoint operators in L2(R x Zi,Ei), and Δ 3 is a self-adjoint
operator in L2(M2 x Y, S). Here E{ and S denote the pullbacks of the
corresponding bundles over Zi and Y, respectively, to vector bundles
over Rx Zι and R 2 x 7 , respectively. Put

Λi(λ) = (Δi - λ 2 )" 1 , Im(λ) > 0, i = 1,2,3.

Furthermore, let

Λo(λ) = ( Δ - λ 2 ) - \ Im(λ)>0.

Let Φ i? Φi e C°°(X), i = 0,..., 3, be the functions introduced in §4. Put

(5.7) P(λ) = Σ *Λ(λ)Φi " Φ3^3(λ)Φ3, Im(λ) > 0.
i=0

Then P(λ) is a bounded operator in L2, and we shall now verify that
P(λ) is a parametrix for (Δ - λ 2 )" 1 . Put

(5.8) G(λ) = P(λ)(Δ - λ2) - Id, Im(λ) > 0.

Then we have to show that G(λ) is a compact operator in ZΛ By (5.7)
we may write
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where

(5.9) Gj(λ) = ( Φ ^ λ J Φ XΔ - λ2) - Φ, Id.

Since Φo,Φo have compact support, it follows from Rellich's compact-
ness theorem that G0(X) is a holomorphic function on the upper half-
plane with values in the compact operators in L2. For j = 1,2 we
have

(MO)

and Rj(X) is given by the operator valued kernel

(5.11) Rj(u,v,λRj(u,v,λ) Γ e ^ A + ί ) ^ .
Z7Γ J_oo

Since || (Λ2

j-λ2+ξ2)-1 | |= l/dist(R+,λ 2-£ 2), the integral is absolutely
convergent. If u φ υ, we can integrate by parts for N G N, to get

Rj(u,v,X)

(5.12)

= ^ s r <«- υ)~" £ e*(u~υ) ( | ) " N - λ 2 + ^ 2 )
If A; > n, then ( ^ — λ2 + ξ2)~Λ has a continuous kernel. Let T > 0
and let Zj^ be defined by (1.5). Since dΦj/dvj and Φj have dis-
joint supports, from (5.10) and (5.12) it follows that the restriction
of Gj(X) to R+ x Zjtτ is Hilbert-Schmidt. Let χjiT be the characteristic
function of IR+ x ZjiT C M+ x Z7. Suppose that z £ Mj C Zj and
z' E [l,oo) x y C Zj. Then by (5.2) we get Pj(z,z\\) = 0. Hence, for
Γ > 1,

-χjtT)

(5.13)

First integrating by parts and then applying Lemma 5.5 show that
Xj,oGj(λ)(l — Xj,τ) is a compact operator in ZΛ

Let ^ be the characteristic function of (E+) 2 x Y C X. Then our
investigation of G(λ) is reduced to the study of Σ^ = 1 ΘGά{\)θ - ΘG3(λ)θ.
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Using the definiton of Φ3 and Ψ3, we get

3=1

(5.14) - Φ 2 { i ? 2 ( λ ) - Φ 1 Γ - ~ ' d 2 φ

-Φ 2 [{ i ϊ 2 (λ) -
d i dΦ2

We consider the first term. Let H(\) be the operator in L2(M+ x Y, £?i),
which is defined by the kernel (5.1). Then i?3(λ) can be represented by
the operator valued kernel

Im(λ) > 0.

The integral is absolutely convergent. Now observe that the paramet-
rices ^ ( λ ) and H(λ) differ by a compact operator. Hence, up to a
compact operator, the first term on the right of (5.14) can be written
as

(5.15) U e
2 π l u υ J d ζ

-UJ—L_ Γ e^
2π luι-υi J_QQ

The integral is absolutely convergent. Since

C (0,1) x Zu

and c?Φi/di>i, Φx have disjoint supports, it follows from Lemma 5.5 that
(5.15) is a compact operator in L2. The remaining terms in (5.14) can be
treated in the same way. Using (5.9) one can show that || G(iλ) \\< C/λ,
λ > 1. Thus we proved

Lemma 5.16. Let P(λ) be defined by (5.7). Then we have

P(λ)(Δ - λ2) = Id + G(λ), Im(λ) > 0,

where G(λ) is a holomorphic function on the upper half-plane with val-
ues in the compact operators in L2(X,E). Moreover, there exists C > 0
such that || G(iλ) ||< C/λ for λ > 1.

By Lemma 5.16, Id+G(zλ) is invertible for λ ^> 0. Hence λ ι->
(Id+(7(λ)) is a meromorphic function on the upper half-plane with
values in the bounded operators in L2(X,E) [21]. Thus we get

(5.17) ( Δ - λ 2 ) " 1 - (Id+G(A))-1P(A), Im(λ) > 0.
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We shall use (5.17) to extend the resolvent to a meromorphic function
in a neighborhood of zero.

Let Wi C X, i = 1,2, be the submanifolds defined by (1.2) and recall
the decomposition (1.3). Let pi E C°°(X) be such that pι\Wi = 1,
ρ(ui,Zi) = pi(ui) for (uuZi) e M+ x Zi and pi{uuZi) = ti< for m > 1.
Set

P = Λ + P2

Given ί GK, we define a weighted L2-space by

L2

δ(X,E) = {φ : X -+E \ φ a measurable section and

(5.18) / \φ(x)\2e2δ^x)dx<oo}.

Note that for δ > 0 the following inclusions hold:

(5.19) L*(X,E) C L2(X,E) c L2_,(X,£).

Given δ,δ' e R, we denote by £(L^(X,E),L^(X, JB)) the space of
bounded linear operators from L2

δ(X,E) into L2

δ,(X,E). Let /^ > 0
be the smallest positive eigenvalue of Λ|, i = 1,2. Put

δ0 = - minίvT^, >/«Γ> V ^ } '

and let

(5.20) Ω = {λ e C I Im(λ) > 0} U {λ <E C | |λ| < δ0}.

Lemma 5.21. Let 0 < δ < δ0. Suppose that kerDy = 0. Then the
parametrix P(X) extends from the upper half-plane to a meromorphic
function on Ω with values in the space C(L2

δ(X,E),L2_δ(X,E)).
Proof. Let δ < δ0. We have to show that each term on the right-

hand side of (5.7) extends to a meromorphic function on Ω. Since Δ is
an elliptic operator on a closed manifold, Φo#o(λ)Φo is a meromorphic
function on the whole complex plane with values in the bounded oper-
ators in L2(X,E). Using the inclusions (5.19), Φ0^o(λ)Φo becomes a
meromorphic family on C with values in C(Lj(X, E), L2_δ (X, E)). Next
consider R3{\). Let S be the pullback of S -> Y to R2 x Y. Given
φ G I/2(M2 x F, 5), let φ{ξ,y) denote the Fourier transform of φ(u,y)
with respect to the u-variables. Recall that Δ 3 = —d2/du\ — d2 jdu\ +
Dy. Hence, we may write i?3(λ) in the form

(R3(X)φ)(u,y)

(5.22)

= ^ lR/{ξ'u) (Dy+ II f II2 - λ V ' M ί . v J K , M λ ) > o.
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Since D\ is self-adjoint and nonnegative, we have

|| (D*γ+ || ξ II2 - A 2 ) " 1 | | = (d i s t (R+,λ 2 - || ξ | | 2 ) Γ \

which implies that the integral (5.22) is absolutely convergent for
Im(λ) > 0. If ker Dγ = 0, then the spectrum of Ό\ is contained
in [μi,oo), μλ > 0. Therefore, the right-hand side of (5.22) defines
a bounded operator in L2 for all λ E Ω. Let δ0 > δ > 0 be given.
Using (5.19), we obtain a holomorphic function on Ω with values in
C{L*s(X,E),Llδ(X,E)).

It remains to investigate Rj{X), j = 1,2. If ker Dy — 0, then it follows
from Theorem 4.10 of [16] that the continuous spectrum of J& equals
[μi,oo), where μλ > 0. Let U'iZ^Ej)1- be the orthogonal complement
of ker .A,- in L2(Zj,Ej), and let A^\ denote the restriction of Aj to
L2(Zj,Ej)L. Then the spectrum of (Aj,\)2 is contained in \μu oo). Since
Δj = — d2/du2 + A2, we get a corresponding decomposition for Δ^ ;
namely

(5.23) Έj = Δ i t i θ Δ i | 2 .

The spectrum of Δji is also contained in [/iχ,oo), and Δ J ) 2 is the self-
adjoint extension of d2/du2 ® Id, acting in C^°(M) ® ker Aj. Let

i, j G {1,2}. Then we have

(5.24) RjiX) = Λj i W θ ί ^ W , j = 1,2, Im(λ) > 0.

Since σ(Δ_7)1) C [μi, oo), it follows that i?j,i(λ) is a holomorphic function
on Ω with values in the bounded operators in L2(X, E). Using (5.19), we
get a holomorphic function on Ω with values in C(L2

δ(X, E), L2_δ(X, E)).
Let φi)...,φm. be an orthonormal basis for ker.Λj. Then for Uj ^ Vj,
the kernel of i?j)2(λ) is given by

( 5 ' 2 5 ) = \e^~^ Σφfa) ® ΪM4), Im(λ) > 0.
Λ ι=i

This kernel has an obvious extension to a meromorphic function on
C, and for 0 < δ < δ0 the extended kernel defines a meromorphic
function on Ω with values in the space C(L2

δ(X,E),L2_δ(X,E)). Thus
for all terms on the right-hand side of (5.7), we have constructed analytic
extensions with the desired properties. q.e.d.

Let

Ωx = {λ 6 C I Im(λ) > I Re(λ)|} U {λ e C | |λ| < δ0}.
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Lemma 5.26. Let 0 < δ < δ0 and suppose that keiDγ = 0.
Then the operator G(λ), defined by (5.8), extends from the upper half-
plane to a meromorphic function λ E Ωx H* G(λ) of compact opera-
tors in L2_δ(X,E). Moreover, there exists C > 0 such that for λ > 1,
|| G(iλ) | U < C/λ.

Proof. Let 0 < δ < δ0. First we show that G(λ) extends to a
meromorphic function λ E Ωi 4 G(X) E C((L2_δ(X,E)). As above,
we write G(λ) = £ 2

= 0 Ga(X) - G3(λ), where G,(λ) is defined by (5.9).
The statement of the lemma holds obviously for G0(λ). To treat i?3(λ),
we consider the weighted L2 space L2_δ(R2 x Y,S) defined as the space
of measurable sections which are square integrable with respect to the
weight function e

2δ^Ul+U2\ δ eR. For ψ G C£°(R2 xF, S) and δ0 > δ > 0,
put

= ^-2 ί ei

Since the spectrum of Ό\ is contained in [/il5oo), the integral is ab-
solutely convergent for λ E Ωχ Then Λ3(λ) extends to a bounded
operator in L ^ M 2 x7,S), which coincides with i?3(λ) on the subspace
L2(R2 x 7 , S ) . By (5.9) we get a holomorphic function

Next consider Gj(λ), j = 1,2. We use (5.10) to express Gj(X) in terms
of Rj(λ). If we substitute the decomposition (5.24) on the right-hand
side of (5.10), we obtain a corresponding decomposition

(5.27) Gj(λ) = GjΛ(λ)®Gj,2(λ).

Consider the kernel (5.25) of i?>|2(A). We observe that by (4.1) of [16],
each φ e keτAj, || φ \\= 1, satisfies \φ(u,y)\ < Ce~μiu foru € R+, y G Y.
Using (5.25), it follows that 6 ,̂2 (λ) extends from the upper half-plane
to a meromorphic function λ € Ω H-> G ί 2 (λ) G C(L2_S(X,E)). The
resolvent ^ ^ ( λ ) has the following operator valued kernel

RjA(u,υ, λ)

(5.28) = J- Γ e^-^dΛ^r + ξ2 - XT1 dξ, Im(λ) > 0.
zπ 7_oo

By definition, the spectrum of (Λ^i)2 is contained in [/ii, oo). Therefore
the right-hand side of (5.28) is convergent for λ E Ω. To study (5.28)
we introduce weighted L2 spaces for Zj. Let σ, E Coo(Zj) be such that
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σj(u,y) = u for (u,y) G [l,oo) x Y. For δ G K let

L2

δ(Zj,Ej) = {φ : Zj —>• J5j | <£ a measurable section and

\ψ(z)\2e2δσ^dz<oo).
IZά

Note that for δ > 0, we have the following inclusions:

ί K. OC^ T 2 / *7 J71 \ f— T 2 / Ύ ττ» \ f— r 2 ( Ύ ττi \
\O.Δ\j) J-js\Zjj*H/j] v 1J \Zjj.JZ/ji \ ±J rI ZJj, -C/ j )

Our goal is to extend ((Aj,\)2 + ξ2 — λ2) to a bounded operator in
L2__δ(Zj,Ej) for λ G Ω. Let L2_δ(R x Y, 5) be the corresponding local L2

space with weight function e~2δu. For φ G C^°(E x Y, S) let ψ(ξ,y) be
the Fourier transform oίφ(u,y) with respect to the ^-variable, and set

(H(\)φ)(u,y)

(5.30)

λ G Ωi.

Then -ff(λ) extends to a bounded operator in L2_δ(R x V, 5), which
coincides with H(\) on the subspace L2(IR x Y, 5). Being the resolvent
of an elliptic operator on a compact manifold, Qj^(λ) is a meromorphic
function on C If QjΛ (λ) has a pole at λ = 0, we remove the contribution
of this pole and denote the resulting kernel by Qj,i(λ). If we pick δ0 > 0
sufficiently small, then Qj,i(λ) is holomorphic in Ω. Put

P,(λ) = Φ j l Q j , 1 (λ)Φ j l + Φ j 2 i ϊ(λ)Φ j 2, λ € ίίx

Then Pj(λ), λ G Ωi, is a holomorphic family of bounded operators in
L2_δ(Zj,E ). It follows from (5.30) that there exists C > 0 such that

By the same argument one can prove that the operators Kj(X) in (5.3)
extend to a holomorphic family λ G Ω \-> Kj{\) of compact operators
in L2_δ(Zj,Ej), and for λ > 1 the norm of Kj(i\) is bounded by Cλ" 1.

Hence, λ G Ω ι-» (Id+Kj(\)) is a meromorphic function of bounded
operators in L2_δ(Zj1Ej) [21]. Moreover, for λ G Ω l5 |λ| > C we have

^ 1 | | _ ( 5 < 2 . Put

Combining our results with (5.4), we obtain
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Lemma 5.31. Let 0 < δ < δ0. The resolvent (A2 - A2)"1 extends
from the upper half-plane to a meromorphic function

Moreover, there exists C > 0 such that RZj (λ) is holomorphic in Ωx Π
{λ G C I |λ| > C} and satisfies

Suppose that λ 6 Ωi is a pole of Rz5(X) It follows from (5.3) that
there exists φ G L2_δ{Z^Ej) such that A2φ = X2φ. On R+ x F, we may
expand φ in terms of the eigensections {φι}ieN of Ό\\

1=1

Here the square root has been chosen such that Im(y/μι — λ2) > 0 for
all λ in the upper half-plane. If Im(λ) Φ 0, then Re(y/μι — λ2) φ 0 and
we may pick δ > 0 such that | Re(i//^/ — λ 2)| > δ for all / G N. Thus
ψ is square integrable and therefore, vanishes if Im(λ) φ 0. By Lemma
5.31, RZJW has only finitely many poles in Ωi. Hence, we may pick
δ0 > δ > 0 such that the only poles of RZj (λ) in Ωi are real. But, by
our choice of δ0, the only possible pole can occur at λ = 0. Let Rzj,i(λ)
be the operator obtained by removing the contribution of the pole at
λ = 0. Then Λzifi(λ) is still a bounded operator in L2_δ(Zj,Ej), which
is a holomorphic function of λ G Ωi. Put

(5.32) Λifl(tι,t;,λ) = -!- Γ e*l«-v)RZitl(y/λr=ξ?)dξ, λ G Ωβ.
Z7Γ J—oo

By Lemma 5.31, the integral is absolutely convergent, and for all
w,υ 6 M the kernel defines a bounded operator in L2_δ(Zj,Ej). Prom
the construction it is obvious that for λ G Ω1? Rjtι(X) is an extension
of i?:7ji(λ). Let Rj^(λ) be the extension of the operator defined by the
kernel (5.25), and put

We replace Rj{λ) by Rj{\) on the right-hand side of (5.10), and denote
the resulting kernel by Gj(X). Since the support ofdΦj/dVj is contained
in [0,1] x Zj, it follows from Lemma 5.31 that Gj(X) defines a bounded
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operator in L2_δ(X,E). Let

3=0

Summarizing our results, we have proved that

is a meromorphic function which extends G(λ).
It remains to verify that G(λ) is compact. To establish compactness,

we may proceed in essentially the same way as in the proof of Lemma
5.16. Let θ be the characteristic function of (R+)2 x F c I Let λ G Ω.
Then ΘG(X)Θ is given by

(5.33)

where Rj(λ), j = 1,2,3, are the operators introduced above. Consider
the first term. Observe that i23(λ) can be written as

2π V-

Now replace H{\) by the parametrix Pi(λ), (5.30) and (5.32) to show
that, up to a compact operator in L2_δ(X, JS), Rι (λ) — \J>2̂ 3(A)<I>2 equals

Since KΊ(λ), λ G Ω, is a compact operator in L2_δ(Zj,Ej), it follows that
the first term on the right-hand side of (5.33) is a compact operator in
Ltδ(Zj,Ej). The other terms can be treated in the same way. Thus, we
obtain that ΘG(X)Θ is a compact operator. Let χ^τ be the characteristic
functions defined above. By a similar argument, it can be shown that
χjiORj(λ)(l — Xj,τ)7 3 — 1,2, is compact. This completes the proof of
the compactness of G(λ). The claimed estimate of the norm follows
directly from the definiton of the analytic continuation of the operators
^ ( λ ) . q.e.d.
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By Lemma 5.26, Id+G(i\) is invertible for λ » 0. Since G(λ) is
compact, we get a meromorphic function

λ e Ωx .-> (Id+Gίλ))" 1 G £ ( £ ! , ( * , £ ) )

[21]. Together with (5.17) and Lemma 5.21, we obtain
Theorem 5.34. Suppose that kerDy = 0. For every ε > 0 there

exists δ, 0 < δ < δ0, such that the resolvent (Δ — λ 2 )" 1 admits an ana-
lytic continuation from the upper half-plane to a meromorphic function
λ G Ω ^ R(X) E C{L2(X,E),L2_δ(X,E)).

6. The continuous spectrum near zero

In this section we shall investigate the continuous spectrum of Δ = D2

near zero. Since our approach depends on the analytic continuation of
the resolvent, we can treat this problem only under the assumption that
ker Dγ = 0.

Let Λi be the self-adjoint extension of the Dirac operator
Ai : C™{ZuEi) -» L2{Zi,Ei) defined by (2.1). Our first result con-
cerning the continuous spectrum of Δ is

Proposition 6.1. Suppose that kerDy = 0 and k e r ^ = 0, i = 1,2.
Then the essential spectrum of Δ has a positive lower bound.

Proof. Let Δ ^ , i = 1,2,3, be the Dirichlet Laplacians introduced
in §4 (cf. Theorem 4.24). If kerLV = 0, then the spectrum of D\ has a
positive lower bound μx > 0, and from the definition of Δ3)£> it follows
that

(A3,Dφ,φ) >μi\\ψ | | 2 , Ψ e C0°°((IR+)2 x Y,E).

Thus, the spectrum of Δ 3 D is contained in [μχ,oo). Next observe that
by Theorem 4.10 of [16], the assumption ker Dγ = 0 implies also that
the continuous spectrum of Λi has a gap at zero. Since ker Ai = 0,
the spectrum of A2 has a positive lower bound. From the definition of
Δi,/), we deduce that the same holds for the spectrum of Δ^/?, i = 1,2.
Therefore, there exists c > 0 such that for every λ > 0, we have

I K Δ ^ + λ)" 1 | | < - ^ r , t = 1,2,3.
c + Λ

This estimate of the norm implies that the spectrum of

(Δ1) jD + λ)" 1 + (Δ2fjD + λ)" 1 - (Δ3fjD + A)"1

is contained in (—3/(c + λ), 3/(c + λ)). Let A be a positive self-adjoint
operator in some Hubert space. Then for Re(λ) > 0, the resolvent of A
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is given by
/ΌO

M + λ)""1 = / e~txe-tAdt
Jo

Prom this observation and Theorem 4.24, it follows that the operator

(Δ + λ)- 1 - [ ( Δ ^ + λ)" 1 + (Δ2>D + λ)" 1 - (Δa^ + λ)"1]

is compact. Applying Lemma 3, Ch. XIII, §4, of [19], we conclude
that the essential spectrum of (Δ + A)"1 is contained in [0,3/(c + λ)).
This fact combined with Lemma 2, Ch. XIII, §4, of [19] yields that the
essential spectrum of Δ is contained in [(c — 2λ)/3,oo). Since λ > 0
is arbitrary, the essential spectrum of Δ has the lower bound c/3 > 0.
q.e.d.

As Proposition 6.1 shows, the continuous spectrum of Δ near zero
is completely determined by ker Dγ, ker̂ 4χ and ker*42 We shall now
study the case where ker Dy = 0, but at least one of the spaces ker A^
z = l,2, is nonzero. Then the argument used in the proof of Propo-
sition 6.1 implies that the continuous spectrum of Δ extends down to
zero. Our purpose is to construct generalized eigensections of Δ, asso-
ciated with elements of ker*Aj, and to describe explicitly the continuous
spectrum of Δ near zero in terms of these eigensections.

Let φ G ker Aό and let λ G C. Define hά{φ, λ) G C°°(]R+ x Zά,E) by

hj{φ,\{uj,zj))=e-iXu'φ{zj).

Note that hj(φ,X) satisfies

(6.2) (~ + Afjhj{φ,λi(uj,zj))=\2hj(φ,X,(ujizj)^

Let / G C°°(R) be such that f(u) = 0 for u < 1 and f(u) = 1 for u > 2.
Define fά G C°°(R+ x Zά) by fj{uά,Zj) = f{uά) and then extend this
function by zero to a smooth function on X. Using (4.1) together with
(6.2), we obtain that (Δ — \2)(fjhj(φ, λ)) is a smooth section of E which
belongs to L2(X,E). Hence we can apply the resolvent (Δ — λ 2 )" 1 to
this section. Put

Fj(φ,λ) = f j h j ( φ , λ ) ( Δ λ V

Im(λ) > 0.

Then Fj(φ, λ) belongs to C°°{X,E) and satisfies

(6.4) AFj(φ, λ) = λ'Fjiφ, λ), Im(λ) > 0.
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Since φ E ker Aj, it follows from (4.6) in [16] that there exists C > 0
such that

\φ{u,y)\<Ce-^\ u>0,yeY,

where μλ > 0 is the smallest positive eigenvalue of Dγ. Let
0 < δ < min{μi/2,δ0}. Then (Δ - λ2){fjhj(φ,λ)) is contained in
L2

δ(X,E) for all λ E C. Since ker Dγ = 0, we can apply Theorem 5.34
which implies that the right-hand side of (6.3) extends to a meromor-
phic function A G Ω H Fj(φ,\) E L2_δ(X,E). In particular, Fj(φ,λ) is
locally integrable, and therefore we can apply Δ in the distributional
sense. By (6.4) we get (Δ - \2)Fj(φ,\) = 0 for Im(λ) > 0. Since
(Δ — X2)Fj(φ,X) is a meromorphic function, it vanishes for all λ E Ω.
By elliptic regularity, it follows that Fj(φ,\) E C°°(X,E). Thus we
have proved

Theorem 6.5. The section Fj(φ,\) defined by (6.3) extends to a
meromorphic function λ E Ω H> Fj(φ,λ) E Ltδ(X,E) with the following
properties:

1) Fj(φ, λ,x) is smooth in x E X and satisfies

{A-λ2)Fj{φ,λ)=0, λ E Ω .

2) For Im(λ) > 0, fjhj(φ1λ) — Fj(φ,λ) is square integrable.
Now consider the restriction of Fj(φ,λ) to M+ x Zj. For

Im(λ) > 0, Fj (</>, λ, (ίi, •)) is square integrable on Zj. Hence, we can ex-
pand Fj(φ, λ, (u, •)) in terms of the eigensections of A2. Let L\(Z^ Ej)
be the subspace of L2(Zj,Ej), which is spanned by all L2 eigensections
of A2. In the orthogonal complement of ker .A, in L2

d{Zj,Ei), we pick
an orthonormal basis {ψk}kei consisting of eigensections of A2 with
corresponding eigenvalues λfc, k E /. Furthermore, let {φι}ιeN be an
orthonormal basis of L2(Y,S) consisting of eigensections of Dy with
eigenvalues 0 < μ1 < μ2 < -» oo. For each I E N, let Ej(φh Λ) be the
generalized eigensection of A2 associated with φt (cf. [16, §4]). Using
the fact that (Δ - X2)Fj(φ, λ) = 0, we obtain the following expansion
of Fj(φ,\) onE+ x Zf

Fό{φ,\,{u,z)) = e-iXuφ(z) + eiXu(Cj(λ)φ)(z)

(6.6)

Here C, (λ) : ker Aj -> ker Aj is a linear operator which is a meromorphic
function of λ E Ω. We call Cj (λ) "scattering matrix". The measure dτt
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is given by

The convergence of the series and integrals on the right-hand side of (6.6)
is understood in the L2 sense. Moreover, the expansion (6.6) holds for
all λ e Ω. We define the constant term Fj0{φ,\) G C°°(IR+ x Z^E) of
Fj(φ,λ) by

(6.7)
{uj.Zj) G R + x ZJ.

Suppose that |λ| < l/2min{μi,λ1}. Let m > 1. Using (6.6), we get

We observe that the injectivity radius of Zj has a positive lower bound
and all covariant derivatives of the curvature tensor of E are uniformly
bounded on Zj. Hence, the norm of the Sobolev space Hm(Zj,Ej)
is equivalent to the norm || (/ + Aj)m/2φ ||, and the Sobolev embed-
ding theorem holds [9]. This implies that (6.6) is pointwise convergent.
Moreover, by the Sobolev embedding theorem we get

sup |F, (0,λ, («,*)) - {e~auφ(z) +ei*u{Cj{\)φ){z)}\<Ce-™,

(6.8) |λ| < -min{μi,λi}.

Next consider the restriction of Fj(φ, λ) to R+ x Zh I φ j . We shall now
expand Fj (</>, λ, (uh •)) in terms of the eigensections of A2. Let l?d{ZuEι)
be the subspace of L2(Z^Eι), which is spanned by all eigensections of
A2. Let {ψp}Pej be an orthonormal basis of L2

d{Z^Eι) consisting of
eigensections of A2 and denote the corresponding eigenvalues by vv,
p E J. Let {φk}keN and 0 < μi < μ2 < - — -^ oo be as above and let
Eι(φk,K) be the generalized eigensection of A2 associated with φk (cf.
[16, §4]). Suppose that Im(λ) > 0. Then by Theorem 6.5, Fj{φ,\) -
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fjFjiO(φ,X) is square integrable. Therefore on R+ xZ/, we may write
Fj(φ,λ)as

Fj(φ, λ, (uh Zi)) = fjFjfliΦ, \){uhzι) + Σ ap(uh
p€J

(6.9) + f ) Γ βk{uk,\λ)Eι{φklk,zι)dτk{K).

Again, the convergence of the series and integrals has to be understood
in the L2 sense. As functions of u, both ap and βk satisfy certain
differential equations which we describe now. First note that on Zh the
section (Δ — X2)(fjFji0(φ: λ))(ΐi, •) is square integrable for each w G l + .
Let

(6.10) gp(u,λ) = ((A- XηifjFj^X))^,-),^).

To proceed further, we need to know the asymptotic behaviour of gp(uλ)
as u —> oo. By definition, we have

(6.11)

where suppξ, C [1,2], j = 1,2. Since φ is square integrable on Zj and
satisfies Ajφ = 0, we can expand φ on M+ x Y C Zj in terms of the
eigensections φk of D\. Using that A2 = —d2/du2 +Dγ on R+ x F, we
obtain the following expansion

(6.12) φ(uhy) = ̂ c * e - ^ « ' φk(y)
k=l

A similar expansion holds for Cj(X)φ. Moreover, the eigensections ψp

have also an expansion of this type onK + x Y C Zt:

(6.13) ψp{uj,y)= Σ d™e ̂ μrn UpUj Φm{y)-

Using (6.10) - (6.13), we get the estimate

( p - v /μΓu/2 Ί. _ Γ).

which holds uniformly for λ in a compact subset of C.
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Since (Δ - X2)Fj(φ, X) = 0, (6.9) implies that the functions ap satisfy
the following differential equation:

(6.15) — -—ap(u,X) = (λ2 — up)ap(u, λ) + gp{u, λ).

Let Vι > 0 be the smallest positive eigenvalue of A2 and put

1

2

Let up > 0 and suppose that |λ| < δ. In view of (6.14), the general
solution of (6.15) has the form

(6.16)

ί \ i — I \ / P̂

g\Ap-* 2 W /ΌO
!υ5P(?;,λ)dt;

The branch of the square root has been chosen such that
ι/p — λ2) > 0 for λ as above. Since ap is square integrable as

a function of u, we get cp2(X) = 0. Hence, for each vp > 0, there exists

Cp > 0 such that

p
Now assume that vv = 0. Then for |λ| < 5, the general solution of

(6.15) is given by

(6.17)

Put

— iλu POO

α > , λ ) =dp(λ)eiλtι + t ^ Γe-iXυgp(v,λ)dv
Λλ Jo

POO

/ e i λ" 5 p( υ,λ)<fo.
-/it2λ

2

cp(X) = dp(λ) + —

Then (6.17) can be rewritten as

α p(«, λ) =c p(λ) e i λ " - i J^ gp(υ, λ) dv

o — i\u / oo

(6.18) + i 2λ
ΓeiXυgp(υ,X)dυ.

Ju
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By (6.14) we have

(6.19) |αp(u,λ) - cp{X)eiXu\ < Cpe~δu, u G R+, |λ| < δ,

for some constant Cp > 0. The coefficients /?*(u, λ, Λ) in (6.9) can be
determined in a similar way. If we proceed as above and use the Sobolev
embedding theorem, we get

(6.20) - £ cp(λ)φp(z)eiXu\ < Ce~cu, u G M+, |λ| <
up=0

for certain constants C, c > 0. Combined with (6.8), this estimate
implies that cp(λ) = 0 for vp — 0 and Im(λ) < 0. But cp(λ) is a
meromorphic function of λ and therefore vanishes identically. Putting
together (6.8) and (6.20), we can summarize our results by

Theorem 6.21. Suppose that ker Dy = 0. Let

δ0 = l^minί/ix,!/!^!}.

Let Xj be the characteristic function o/R+ x Zj C X, and for φ G ker Λj
let Fjy0(φ, λ) be the constant term of Fj(φ, λ), defined by (6.7). For each
φ E ker*4J7 the restriction of the generalized eigensection Fj(φ,λ) to
R+ x Zι C X, I = 1,2, satisfies

sup \Fj(φ,λ, {u,z)) - XjFjί0{φ,λ, (u,z))\<Ce~cu, u G R+, |λ| < δOy
z£Zι

for some constants C, c > 0.
We can now proceed in essentially the same way as in [17, §7] and

derive the basic properties satisfied by the generalized eigensections.
Suppose that |λ| < δ0 and Im(λ) < 0. Then from the estimations proved
above it follows that Fj(φ,λ) — fjhj(Cj(\)φ,—\) is square integrable.
Put u(X) = Fj(Cj{X)φ, -λ) - Fj(φ, λ) and assume that Im(λ) < 0 and
|λ| < δ0. Then u(X) is square integrable and satisfies (Δ — \2)u(X) = 0.
Since Δ is essentially self-adjoint, u(X) = 0, i.e., Fj(Cj(\)φ,—X) =
Fj(φ,λ). Comparing both sides of expansion (6.6) yields

Theorem 6.22. Let j = 1,2. The generalized eigensections Fj(φ, λ),
φ G ker Aj, satisfy the following functional equations

(6.23) Fj(Cj(λ)φ,-\)=Fj(φ,\), Cj(λ)Cj(-λ)=Id, |λ| < δ0.
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Given Γ > 0, let χτ be the characteristic function of
[T, oo) x Zj C X, where [T, oo) x Zj is regarded as a submanifold with
respect to the decomposition (1.3). Put

(6.24) Ff{φ,λ) = Fό{φ,λ) - χτFjt0(Φ,λ),

where F i fO(0,λ) is defined by (6.7). If λ G Ω, then F?(φ,λ) is square
integrable by Theorem 6.21, and the inner product of the Fps can be
computed as follows. Let φ,ψ £ keτAj and let λ,λ' G Ω be such that
λ φ ±λ'. Integrating by parts gives

(6.25)

λ + ;

Put T == 0, assume that 0 φ λ G R, |λ| < ί0, and let λ' -> λ. Then the
left-hand side stays bounded, and therefore the right-hand side must
stay bounded as well. This fact implies that Cj(r) is unitary for rGK,
0 < \r\ < <V For r = 0, the functional equation gives Cj(0)2 =Id.
Hence, Cj(r) is regular for r G (—50, δ0). Now let 0 Φ r,r' G R and sup-
pose that |r|, \r'\ < δ0 and r φ r'. Let r -> r' and apply the functional
equation (6.23). Then (6.25) leads to

(6.26) + ^ {

rGR, 0 < \r\ < δ0.

Since Cj(r) is regular on {-δo,δo) - {0}, Fj(φ,λ) is also regular on
(—ίoj ô) Using Cj(0)2 =Id, one may derive a similar formula for r = 0.
Summarizing, we have proved

Proposition 6.27. The scattering matrix Cj{λ), j = 1,2, is unitary
for λ G {-δo,δo). Both Cj(X) and Fj(φ,λ)J φ G ker A,, have no poles
on (—δo,δo).

We can now use the generalized eigensections Fj(φ,r), r G (—δo,δo),
to describe the continuous spectrum of Δ near zero. Let 0 < δ < δ0
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and let φ G keτAj. By Proposition 6.27, Fj(φ,λ) is square integrable
as function of λ G [0, δ]. Let / € £2([0, δ)) and put

Wjtφ(f) = -±= [δFj(φ,r)f(r)dr.
y Δπ Jo

Lemma 6.28. 1) For all f e L2([0, δ}), Wjtφ(f) belongs to L2(X, E),
and for any / , j E £2([0, ί]), φ,ψ € ker A,, Λ̂e inner product of
and Wjifp(g) is given by

2) Let L be the bounded operator in L2([0,5])7 which is defined by
Lf(r) = r2f(r). Then we have

(Δ - z)-ιWjtφ(f) = Wjtφ[{L - z)-1/), zeC-R+,fe L2([0,δ}).

3) For all φ € k e r ^ , ψ G ker^ 2 and f,g G L2([0,δ]), we have

Proof. Let T > 0 and put

W£(/) = J L f Fj{φ,r)f{r)dr,
y ΔTX Jo

where Fj(φ, λ) is defined by (6.24). Since Fj(φ, λ) is square integrable,
W?φ(f) is also square integrable. Using the inner product formula (6.25)
and the Riemann-Lebesgue lemma, we get

lim
1 ^^OO

Applying Lebesgue's theorem, it follows that Wjtφ(f) is square inte-
grable. The inner product formula can be derived in the same way. This
proves 1). Since AFj(φ,\) = X2Fj(φ,λ)1 we get 2). By Theorem 6.21,
we obtain

which implies 3). q.e.d.
Let rrij = dim(kerAj). Let ^ji? ...,ψjm. be an orthonormal basis for

ker Λj. Then we define the operator

k=l
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by

Wj({fk}) = Σ

By Lemma 6.28, Wj is an isometry onto a closed subspace Hδ, C L2(X, E)
and %{ is orthogonal to Ή.δ

2 Moreover, we have

(6.29) W]Wά=lά and WjW? = Pf,

where Pδ is the orthogonal projection of L2(X, E) onto %$. Lemma 6.28
implies that Hδ is an invariant subspace for Δ. Let Δ^ denote the
restriction of Δ to U]. Let a E C°°(R) be such that a(u) = 1 for
|u| < δ/2 and a(u) = 0 for \u\ > δ. From (6.29) it follows that the
kernel of α(Δ^) exp(—tAδ) is given by
(6.30)

mJ i /.oo

K«(x,x',t) = Σ— yo a(X2)e-tx Fj(φjkJKx) ® F^jk,\x') dλ.

We extend α(Δ*) exp(-tΔj), j = 1,2, to operators in L2(X,E), and
put them equal to zero in the orthogonal complement of T-Lδ .

Lemma 6.31. Let 0 < δ < δ0 and let a e C£°(R) be as above. For
j = 1,2 and t > 0, the operators

a(Aδ) exp(-tAδ) - a{AjiD) exp(-tΔ i f D)

are Hubert-Schmidt.
Proof. Let F^{φjk,λ) be defined by (6.24) where Γ = 0. Then we

may write

which induces a corresponding decomposition of the kernel (6.30), say

Now consider the individual kernels. Let ψ G L2(X,E). Then from
Lemma 6.28, 1) it follows that

m 2

dλ.

m J roo

^ i ( % U 2 = Σ / a(\2)e-tχ2\(F°

Hence, the Hilbert-Schmidt norm ||| K^(t) ||| of K?Λ(t) is finite and
given by

m i

I 2 = Σ / «



152 WERNER MULLER

In the same way one can show that K?2(t) has finite Hilbert-Schmidt
norm. Thus, it is sufficient to prove that K?3(t) — θί(AjiD) exp(—tAjiD)
is a Hilbert-Schmidt operator. Since keτDγ — 0, the spectrum of
Δ^£>, restricted to the orthogonal complement of L2(E+) ® k e r ^ in
L2(JR+ x Zj,E), is contained in [<50,oo). Therefore, the kernel of
a(Aj,D) exp(-tAjjD) is given by

o /.oo m i

(6.34) - / a{X2)e~tx sin(λti) sin(λt ) dλ Σψjk (z) ® ψjk(z').

Since Cj(\) is unitary for λ real, we have

i t = l

From (6.7), (6.33) and (6.34) it follows that the kernel of
K?3(t) — a(AjtD) exp(—tAjtD) equals

(6.35)

To obtain the equality, we made use of the relation Cj(\)* = Cj(—X)
which is a consequence of the functional equation (6.23). Integrating
by parts yields that the right-hand side can be estimated by
CN(U + v)~N for every N EN. This proves our claim. q.e.d.

If we use Theorem 4.24 together with Lemma 6.31 and proceed as in
the proof of Proposition 6.1, we obtain

Proposition 6.36. Suppose that kerDy = 0. Let

0 < δ < -min{μi,λi,i/i}

and let T-ί^ C L2(X,E), j — 1,2, be the A-invariant subspaces intro-
duced above. Let A be the restriction of A to the orthogonal complement
ofΉ( ΘΉ2 2 n L2{X,E). Then the essential spectrum of A is contained
in [ί, oo).

This result implies that for the case ker Dγ = 0, the generalized
eigensections constructed above give a complete description of the con-
tinuous spectrum of Δ near zero. Prom the spectral theorem together
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with Proposition 6.36, it follows that for every p G N, there exists Cp > 0
such that

\\Ape~tA \\< CpΓ
pe-tδ, t>0.

Applying Proposition 2.7 and Proposition 2.8, we get
Corollary 6.37. Suppose that ker Dγ = 0. Let Kf(x, x', t), j = 1,2,

be defined by (6.30) and let K(x,x',t) be the kernel ofexp(-tA). Then
there exist C, c > 0 such that

2

DxK(x,x',t) -ΣDxK«(x,x',t)\ <Ce~c\ for all x,x' eX, t> 1.

7. The L2-index formula

Let D : C°°(X,E) -> C°°{X,E) be a generalized Dirac operator
satisfying (2.1) - (2.4) and suppose that kerL^ = 0. Assume that n =
2k, k E N. Then the Clifford bundle E splits into the ±l-eigenspaces
E± of the canonical involution r, and our goal is to derive a formula for
the ZΛindex of D+ : C°°{X,E+) -> C°°(X,E_). The method that we
shall employ to prove the index theorem is based on the local version of
the McKean-Singer formula. This formula has been used, for example,
by Stern [22], [23] to derive a formula for the ZΛindex of the signatur
operator on locally symmetric spaces of finite volume.

Let h(x,y) be the kernel of the orthogonal projection of L2(X,E)
onto ker V where, as above, V denotes the unique self-adjoint extension
of D : C™(X,E) -> L2{X,E). Recall that by Corollary 2.23, kerV
is finite-dimensional. Let φu...,φm be an orthonormal basis of kerV.
Then h is given by

h{x,y) = Σφj(x) ®Φj{y)
i=i

Let K(x,y,t) be the heat kernel for Δ = D2 which was constructed in
§4. Then we have the following result.

Lemma 7.1. We have pointwise convergence of kernels

lim K(x,y,t) = h(x,y).
t—>-oo

The convergence is uniform in the C°° topology on compact subsets of
X xX.

Proof We may follow essentially the proof of Lemma 6.3 in [7].
For the sake of completeness we include details. Pick a parametrix P
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for exp(—tA) which is compactly supported in space and time, that is,
P(x, y, t) = 0 if d(x, y) > ε > 0 or t > t0 > 0. Set

By DuhameΓs principle we can write

K(x,y,t)=P(x,y,t) - f e^-^oP^ds.
Jo

As y varies in a compact subset Θ of X the functions Px (z, y, t) (viewed,
for each s, as function of z) vary in a compact subset of L2(X, E). Thus,
using the spectral theorem and the fact that P(t) is compactly supported
in time, we have pointwise convergence as t —> oo:

(7.2) K(x, y, t) -> - / / h(x, z)Pι (z, y, s) dz ds.
Jo Jx

Since X has uniformly bounded Ck geometry for all k £ N (see [7] for
the definition), it follows that the convergence is uniformly C°° as y
varies over θ and x varies over X. The right-hand side of (7.2) can be
written as

-Jim/
Γ°° f d

= - lim / / h(x, z)—P(z, y, s) dz ds
ε^° Jε Jx OS

= lim / h(x,z)P{z,y,ε)
ε~*° Jx

= h(x,y). q.e.d.

Next recall the local index theorem for generalized Dirac operators
[10]. Note that our Dirac operators are compatible. Therefore, we can
apply Theorem 5 of [10]. Let LJD(X) be the local index density for D+.
Then we have as t —> 0

(7.3) tτ(τK(x, x, ί)) dx = ωD{x) + O(t).

The constant occurring in O(t) is uniformly bounded on compact sub-
sets.

Now consider the compact submanifolds XT, T > 0, of X defined by
(1.6). Using Lemma 7.1 and (7.3), we obtain

/ tr(τ/ι(x,x)) dx = lim / tτ(τK(x,x,t)) dx
Jχτ

 t^°° JXT

(7.4) = / ωD + Γ ί ^tτ(τK(x,x,t))
Jx-r JO JX-Γ Ol
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If the spectrum of Δ has a gap at 0, then the t-integral is absolutely
convergent. In the following we shall prove that this holds in general.

As T —> oo, the left-hand side of (7.4) converges to the L2-index of
D+. Now consider the right-hand side. Prom Proposition 4.20 it follows
that in (7.3) we may replace K by the parametrix Q and we still get the
same asymptotic expansion as t -» 0. In particular, ω^ is determined by
Q. Since 7$ commutes with —d2/duf + A2, i = 1,2, and anticommutes
with r, it follows that ωD = 0 on M+ x Zu i — 1,2. Hence the limit as
T -> 00 of the double integral on the right-hand side of (7.4) exists and
we have

d
/ / /

Jx T->°°Jo Jχτ

To treat the double integral we use the following lemma which is the
local version of the McKean-Singer formula.

Lemma 7.6. Let D : C°°{X,E) -> C°°{X,E) be a generalized Dirac
operator and let r : E —> E be a bundle isomorphism which satisfies
r2 = Id andrD = —Dr. Let e~tr>2 (x,y) and De~tE>2 (x,y) be the kernels
of e~tD and De~tD , respectively. Then

jttτ{τe-tD\x,x))=άv<VD,

where VD is the vector field on X whose j-th component with respect to
an orthonormal moving frame {e^}^ is given by

ί ί°° ί d
(7.5) L2-Ind£>+ = / ωD + lim / / —tτ(τK{x,x,t))dxdt.

Jx T->°°Jo Jχτ σt

±tr(erτDe-tD2(x,x)).

Proof. We have

= -tτ(τDle-tD\x,y)\x=y)

+ ^tτ{DyτDxe-w2(x,y)\x=y).

Choose normal coordinates at x0 and pick a local frame field {ei}"=1

such that (Veiej)(x0) = 0 and ei(x0) = — U=*o

 τ h e n t h e right-hand
OX
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side can be rewritten as

1 n ,-tD2'
e i(z) Vei(x)τDxe-tD\x,y)\x=y)

2 tr((Vei(x)ei(x)) TD e~tD\x, x))
2 = 1

Iί2tv(vei{x)(ei(x) • τDxe-tD2(x,y)\χ=y))

t = l

The first sum on the right-hand side vanishes at x = x0, and the re-
maining two terms, evaluated at x = xOi give

= \ Σ ^ " tr(ei(x)re-tD2(x,x))\χo=χ = div VD(x0),\

where VD is the vector field which is given by

q.e.d.
The corresponding statement for a power of the resolvent has been

used by Stern in [22], [23]. We now apply Lemma 7.6 to (7.5). Let en

be the outward unit normal vector to the smooth part of ΘXT- Then

L2-lndD+

(7 7) = / ωD + lim I Γ ί tτ(en'τDe-tD\x,x))dxdt.

Jx T-+oo 2 Jo JdXτ

To compute the limit, we split the ί-integral as follows:

roo rVT / OO

/•OO />Vi /ΌO

/ = / + / •
Jo Jo JS/T
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Put

(7.8) R(T) = \ Γ t tr(en τDe~tD2 (x, x)) dx dt.
£ Jy/T JdXT

The convergence of this integral follows from the manipulations above.
In the following we shall see that the integral is indeed absolutely con-
vergent. Moreover recall that

dXτ = ({T} x Z l f T ) U ({T} x Z 2 ϊ T ) ,

and that 7, is the outward unit normal vector field to Z^, i = 1,2. Hence,
the double integral on the right-hand side of (7.7) can be written as

T I trUrDe-^<((T,z1),(T,zι)))dz1dt

(7.9)

+ \ I T I te(l2TDe-tD2 ((T, zt), (T, z2))) dz2 dt + R(T),
* Jo Jz2,τ

 V 7

and we have to investigate the limit as T -> 00 of the individual terms.
We begin with the first two terms.

As above, let Λi be the self-adjoint extension of the Dirac operator
Ai : C^iZiiEi) -> C°°{ZuEi) defined by (2.1). Since dimX is even,
we have

(7.10) τAi = AiT and Ίιτ — ~τΊu i = 1,2.

Let Ei = E~ ~ 0 E~ be the decomposition into the ±l-eigenspaces of
r. By (7.10), Ai and 7; take the following form with respect to this
decomposition:

(711) A-(Λt °

(7.11) ^ - ^ 0 A-,

In particular, on R+ x Zi we have

and Af is the Dirac operator associated with the Clifford bundle Ef.
Let Af be the self-adjoint extension of Af. Since Af is a compatible
Dirac operator [10], from [16, §6] it follows that the eta invariant of Af
can be defined by

(7.12) η(0,At) = 4=
y/π JQ

dzdt.
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Proposition 7.13. We have

lim ί
JZ.T

Proof. Let Q(x,y, t) be the parametrix defined by (4.7). It follows
from Proposition 4.20 that

ί
Jzi,

z^T^t)) } dzi

< d Vol(ZifT) / ecte~cT2/t dt
J

0

as Γ -> oo. Hence we may replace the heat kernel by the parametrix Q.
Now consider the integral over Z i ) T . Suppose that T > 1. Since the

supports of φ0 and ψ0 are contained in JΓ1} the term φoKoψo in (4.7)
makes no contribution. Hence, using the definition of Q, we get

/
zlίT

ί
JZχ

dzdt

Here we have used that φ'2 and φ2 have disjoint support. By (3.5) of
[16], the second integral on the right-hand side can be estimated by
Te~cT2/tect. Next observe that by (7.11), we have

tτ{τAie~
tΛ2(z,z)) =
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Moreover, using (2.2) and (7.11), we get Aϊ = — (τΓ)~1-i4iH7Γ Thus

f T ί tτ(Ίl-τDxQ{(T,z),(T,z),t))dzdt
JO JZuτ

 V '

(7.14)

= _L ί^Γ1'2 ( tτ{Ate-^Λ^2(z,z)) dzdt + O(e-ClT3/4).
V7Γ Jo JzltT

We are now exactly in the situation of Proposition 7.6 of [16], which
implies that the right-hand side of (7.14) tends to η(0,At) as Γ -> oo.
The same holds for i = 2. q.e.d.

We are left with the third term, -R(Γ), in (7.9). First, we shall derive
two further properties of the scattering matrix.

Lemma 7.15. Let j = 1,2. Then the scattering matrix Cj(X) satis-
fies

λ € Ω.

Proof. Let φ G kerΛ, and suppose that Im(λ) > 0. Then it
follows from Theorem 6.5 that τFj(φ,\) - Fό(τφ,λ) and DFά{φ,\) +
i\Fj(jjφ, λ) are square integrable eigensections of Δ with eigenvalue λ2

and both therefore must be zero. Hence, we get

(7.16) τFj{φ,\)=Fj(τφ,\) and DFά(φ,\) = -iXF^φ.X),

which hold for all λ E Ω. Comparing the constant terms of both sides
of these equations, the desired relations follow. q.e.d.

Given φ E ker Λj, put

Lemma 7.17. Let φ E k e r ^ and suppose that Cj(0)φ = ±φ. Then
for every compact subset U C X7 there exists Cu > 0 such that

\lj{<p) A, X)\ <: Of/Λ , |Λ| < 0(

Proof. First note that by (7.16), we have

•loj ij{φ, λ)X) = -

0,

Let φ E ker Aj and suppose that Cj(0)φ = —φ. Then the functional
equation (6.23) implies that Fj{φ,ϋ) = 0. Furthermore, if φ satisfies
Cj(0)φ = ±φ, then by Lemma 7.15, we get CJ(0)(TJ^) = ψτjjφ.
Hence, under the given assumption, it follows that either Fj(φ,0) = 0
or Fjiτjjφ.O) = 0. Therefore, by (7.18), we get Iά(φ,\,x) = O(λ2),
uniformly on compact subsets. q.e.d.
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Let φ E kerAj be an eigenvector of Cj(0). Then Lemma 7.17 yields
that

(7.19) <C(T)X\ | λ | < ί 0 ,

for some constant C(T) > 0 depending on T. By the functional equation
(6.23), we have Cj(0)2 =Id. Thus Cj(0) is a symmetric operator with
eigenvalues equal to +1 or —1. Let ^ji, •• <>Ψjmj be an orthonormal basis
for keτAj consisting of eigenvectors of Cj(0), i.e., Cj(0)ψjk =
Prom Corollary 6.37 and (6.30), it follows that as T -> oo,

R(T) = 4 ^

(7.20) O(e~cT).

We note that by (7.19), each of the integrals is absolutely convergent.
Let Fj>0(φ, X) be the constant term of Fj(φ, λ), defined by (6.7), and

put

Ijl0(Φ,X,x) = <7i τ(DFj>0)(φ,λ,x),Fjfi(φ,λ,x)).

Consider the expansion (6.6). If φ E kerAj is such that Fj(φ,0) = 0,
then all coefficients in this expansion must vanish, i.e., αfc(0) = 0, k E /,
and 6/(0,Λ) = 0, / E N. Now suppose that Cj(0)φ = ±φ. As above,
from the functional equation (6.23) and Lemma 7.15 it follows that
either Fj(φ,0) — 0 or Fj(ηfjφ,O) = 0. Hence, if we proceed as in the
proof of (6.8), we may deduce that there exist C, c > 0 such that

sup

Therefore, in (7.20) we can replace Ij(φ,λ) by IjiO(φ,\), and the re-
sulting expression equals R(T) up to an exponentially small term in
T as T -> oo. Next observe that by (6.12), each φ E k e r ^ satisfies
|</>(w,ί/)| < C exp(—yfμ{u), y E V, for some constant C > 0. Using
(6.7), this estimate implies

o (φ, λ, (T, z))dz- I Ijfi (φ, λ, (T, z)) dz
JZ

<CX2Te
2Te-cT

|λ| < δ0.
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Furthermore, by (6.7) and (2.1), we get

Ijfi{φ,X,(T,z))dz

= -iλ{(τφ,φ) - {rCj{\)φ,Cj{\)φ)+e-2iXT{τφ,Cj{\)φ)

(7.21)

Applying Lemma 7.15 and using the fact that Cj(X) is unitary for
λ e (-δo,δo), we get

(τφ,φ) = (τCj{λ)φ,Cj{λ)φ), φekeτAj,

i.e., the first two terms on the right-hand side of (7.21) cancel. The
remaining terms on the right of (7.21) are equal to

(e-2iλT _

Putting these remarks together, we get

2

d\

The first integral can be treated as follows:

i W ) -ΊHτCΛ-X» 1

= Γ U \ ' ^ ΊV(rC,(λ))
Jo

Jo

Applying Fourier's integral formula, we get

Now observe that

(7.22) ker A, = ker A] Θ ker Aj, j = 1,2,

is the decomposition of ker Aj into the ±l-eigenspaces of

r : ker Aj —> ker Aj.
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By Lemma 7.15, Cj(\) preserves the decomposition (7.22). Let Cf(\)
be the restriction of Cj(X) to ker Af. Then

Ύr(τCj(0))=Tr(C;(0)) - Ίr(Cj{ϋj).

By Lemma 7.15, we know that JJCJ(0) = —CJ(0)ΎJ. Since jjT = —
we obtain

(7.23) C~(0) = — ^ + / π \ . . - i

Hence, as the final result we have

1
lim R(T) = —

T-KX) 2

We note that C+(0) : k e r ^ —> ker.A+, |λ| < δ0, may be regarded
as scattering matrix associated with the continuous spectrum of D_D+

near zero. Indeed, let φ e ker .4+. Then Fά(φ, λ) belongs to C°°(X, E+)
and hence is a generalized eigenfunction for D_D+. The scattering
operator Cj~(\) is determined by the constant term of Fj(φ, λ).

Summarizing our results, we have proved Theorem 0.1.
According to Theorem 0.1 of [16], the eta invariant 7/(0, X^) can also

be described in terms of the restriction of A* to the compact submani-
fold Mj C Zj. On E+ x Y C Z i ? At has the form

where Vj is the outward normal coordinate, σ̂  : Bf\Y -> Ej \Y is
a bundle isomorphism and Bj : C°°(Y,Et\Y) -+ C°°(Y,Et\Y) is a
generalized Dirac operator on Y. By (2.3), Gj and Bj can be expressed
in terms of 71, 72 and Dγ as follows: σλ = (7271)+, σ2 = (7i72)+,
Bλ = (Dγj2)* and B2 — (£>y7i)+, where " + " denotes the restriction
of the corresponding operator to the +l-eigenspace of r. Let Pj be the
negative spectral projection with respect to Bj. Using P J ? we impose
spectral boundary conditions on dMj. More precisely, put

= 0},

and let

be defined by (At)Pjφ = Atφ. Since ker Bj = 0, (-A+)p. is self-adjoint.
Moreover, (A^)p. has pure point spectrum, and the eta invariant of
(At)Pj, which we denote by η(At\ P̂  ), can be defined in the same way
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as in the closed case. Since A+ is a compatible operator of Dirac type,
it follows from Corollary 1.29 of [16] that

(7.24) η{Ap,Pϊ) =

Thus by Theorem 0.1 of [16], we have

The term Tr(C+(0)) has also an alternative description analogous to
[1]. As observed above, the scattering matrix satisfies Cj(0)2 =Id. Let
£f be the ±l-eigenspaces of Cj(0). Then

= £ θ £ .

Let φ G £/ and put ψ = \Fj(φ,ϋ). Then we have

2Dψ = DFj(φ,λ)\χ=Q = - i λ F ^ λ ) ! ^ = 0.

Let Xj be the characteristic function of E"1" x Zj C X. It follows from
Theorem 6.21 that

Ψ = XjΦ + Ψτ

where φ G L2(X, E). In analogy with [1, p.58], we call ψ an extended
L2-solution of D with limiting value φ G ker Aj. Let Cj C ker Aj be
the subspace consisting of all limiting values of extended L2-solutions
of/λ

Lemma 7.25. We have Cj = £/, j = 1,2.
Proof. Above we have seen that £+ C Cj. To prove the reverse

inclusion, let φ G Cj and suppose that ψ G C°°(X,E) is an extended
L2-solution of D with limiting value φ. Write φ = φ+ + φ_ where
Cj(0)φ± = φ±. Put ξ = ^F j(7J^_,0). Then ξ satisfies Dξ = 0 and
f - *j7i^- 6 i 2 ( ^ , ^ ) Let Xj)T = X - ((T,oo) x Z, ). Applying
Green's formula, we get

0 = / (Dφ(xU(x))dx
Jxj>τ

),ξ(Z,z))cfo+ / (φ{x),Dξ{x))dx

= \\Ίjφ_\\+O(e-<τ).

Hence φ- = 0. q.e.d.



164 WERNER MULLER

The space Cj decomposes according to the decomposition (7.22). Let
Cf C ker .4^ be the subspace of all limiting values of extended L2-
solutions of D±. Then we have

r — r+ π\ r- A _ i o
L,j — L,j t±7 L,j J — 1 , Δ.

Lemma 7.26. Let hf = dim£*, j = 1,2. Then

Tr{C+(0))=h+-hJ, J = 1,2.

Proof. Using Lemma 7.25, we get

Cf = Cj Π kerΛf = Ef Π ker .Λf, j = 1,2.

Since Cj^O) is the restriction of Cj(0) to ker ,4*, it follows that
hf = dimker(Cf(O) - Id). Moreover, (7.23) implies that
dim ker(C~(0) - Id) = dim ker(C/(0) + Id). Putting everything to-
gether, we obtain

ΊΪ(C+(O)) = dim ker(Ct(0) - Id) - dim ker(C/(0) + Id)

=Λt - hJJ = 1,2. q.e.d.

Finally observe that by Proposition 3.11 of [1], we have ker Λf =
ker^^p,., j = 1,2. We can now rewrite the index formula (0.10) in the
following way:
(7.27)

r 1 2

L2- Ind D+ = / ωD+ - - Σ{η(A+; Pά) + dim(ker(i4+)Pi} + Λf + K.
JXo * j = 1

Theorem 0.2 follows directly from (7.27). There is an obvious extension
of this result to the case of several corners of codimension two.

8. A splitting formula for eta invariants

In this section we apply our index formula to derive a splitting formula
for eta invariants.

Let X be a 2fc-dimensional compact oriented Riemannian manifold
with C°° boundary M. Let Z ̂  J be a compact oriented hypersurface
with C°° boundary Y such that Z intersects the boundary of X transver-
sally in Y and devides X in two submanifolds Xι and X2 (see Fig.4). We
assume that the metric on X is a product in a neighborhood (—e, 0] x M
of the boundary and in a tubular neighborhood (—ε, ε) x Z of Z. Let E
be a Clifford bundle over X and assume that the metric and the connec-
tion of E are products near M and Z. Let D : C°°{X, E) -> C°°(X, E)
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M

FIGURE 4. Cutting X in two pieces Xλ and X2.

be the associated Dirac operator, and denote the restriction of D to X{
by Di : C°°(XuEi) -> C 0 0 ^ , ^ ) , i = 1,2. Then A and JD2 are Dirac
operators which satisfy (2.1)-(2.4). Let D+ and Df, i = 1,2, be the
restriction of Z) and A , to JK+ and Ef, respectively. Near the boundary
and the hypersurface we have

(8.1)

(8.2)

on (-

o n (~

x M,

where A and D z are the induced Dirac operators on M and Z, re-
spectively, 7i denotes Clifford multiplication by the inward unit nor-
mal vector field to M, and 72 denotes Clifford multiplication by the
unit normal vector field to Z, which points into Xλ. Furthermore, on
(—ε,0] x (—ε,ε) x y, D takes the form

(8.3)

where Dγ : C°°{Y,E\Y) -> C°°(y,£;|y) is a Dirac operator on y, and
the commutation relations (2.4) hold. We assume that kerDy = 0.
From (8.3) it follows that

Dz = σλ ^ + B^J on (-ε, 0] x y,

and

= σ2
(— + B2j on (-ε,ε)χy,

where Bλ and JB2 are the restrictions to E+\Y of —72̂ ?̂  and —7iJDy,
respectively. In particular, the assumption kerJDy = 0 implies that
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ker Bi = 0, t = 1,2. Let P+ (resp. P~) be the positive (resp. negative)
spectral projection for B2, and let P be the negative spectral projection
for J5χ. Finally, let Aι be the restriction of A to M<, i = 1,2. If we apply
our index formula of Theorem 0.2 to Df, then we get

(8.4) - i{»?(I>z,P) + dimker(Dz)p},

= I
J X

I ω2 - ~{η{A2,P
+) + dimkeψl2)p+}

X2

(8.5) + hη(Dz,P) + dimker(Dz)P},

where ωι is the Atiyah-Singer index density of Df, and (Aχ)p-, (A2)P+

and (Dz)p are the self-adjoint extensions of A l5 A2 and J9^, respec-
tively, defined by the corresponding spectral projections. On the other
hand, the index theorem of Atiyah, Patodi and Singer [1] applied to X
gives

(8.6) Ind£>+ = [ ω - l{η{A) + dim ker A},
Jx 2

where ω is the Atiyah-Singer index density of D + , and IndD + is the
index of the APS-boundary value problem. The index formulae suggest
the introduction of the ^-invariant

[η(A) + dimkerA].

Similarly, we denote by £(Aχ,P~) and ξ(Λ2,P+) the ^-invariants for
Aλ and A2 with respect to APS boundary conditions defined by P~ and
P+, respectively. Since CJ, ωλ and ω2 are locally computable, we have

/ ω = / CJI + / ω2.
7x JXi Jx2

Hence, if we compare (8.4), (8.5) and (8.6), we obtain
Theorem 8.7. Let the assumptions be as above. Then the following

splitting formula holds for the ξ-invariants

ξ(A) =ξ(AltP~) + ξ(A2,P
+) + ΪMD

f - Ind D+ + dimker(£>z)P.
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Note that the same result holds if X has additional C°° boundary
components which are disjoint from the hypersurface Z.

We shall now employ this result to derive a mod Z splitting formula
for the ξ-invariant. Such formulae were recently proved by various au-
thors [4], [8], [14], [25].

Let M be a closed oriented (2k — 1)-dimensional spin manifold. This
means that M is equipped with a Riemannian metric and a spin struc-
ture is fixed. Let 7 4 M be a closed oriented hypersurface which
devides M into two pieces Mλ and M2, that is, Mx and M2 are subman-
ifolds of M with boundary Y, and M is obtained by gluing Mi and M2

along the common boundary Y. We assume that the metric of M is a
product in a tubular neighborhood (—ε, ε) x Y of the hypersurface Y.
Let DM be the Dirac operator on M. On (—ε,ε) x Y we have

where 7 is Clifford multiplication by the unit normal vector field to Y
which points into M2.

We shall now construct two 2fc-dimensional manifolds Xλ and X2

with a corner at Y. Let Mit£ = M» — ((—ε,0] x Y), i = 1,2, and let

Xe = ([-ε,0] x Mh£) U ([-ε,0]2 x Y) U ([-ε,0] x M2,ε),

where the three manifolds are glued together along pieces of their bound-
aries in the following manner: We identify [—ε,0] x dMit£ with
{-ε} x [-ε, 0] x Y and [-ε, 0] x dM2,ε with [-ε, 0] x {-ε} x Y. Then Xε is
a manifold with two boundary components which are piecewise smooth.
One component equals Mf = Mλ U M2 and the other component equals
Mε — Mif£ Uy M2 je. Both boundary components are homeomorphic to
M. The product metrics on [—ε, 0] x Mλ and [—ε, 0] x M2 coincide on
the common submanifold [—ε, 0]2 x Y and therefore extend to a metric
on Xε in the obvious way. We smooth Xε at the corner of Mε. The
manifold X'e, obtained in this way, is isometric to Xε in a neighborhood
of M1. The other boundary component M'ε of X'ε is diίfeomorphic to
M. Next we glue the cylinder [0,1] x M to X'ε by identifying {1} x M
and M'ε by a diffeomorphism. Let Xx be the manifold obtained in this
way. Finally, we patch together the product metric on the cylinder and
the given metric on Xε to get a smooth metric on Xι. Then dX\ is the
disjoint union of M and M'. Moreover, in a neighborhood of M, the
metric of Xγ is a product, and in a neighborhood of M1 the metric has
the structure described in §1 (see Fig.5 below).

Then Xι is also a spin manifold and we can pick the spin structure
such that it extends the given spin structures on the boundaries.
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FIGURE 5. The manifold Xλ with corner Y.

Now let N = M2 U (—M2). Then TV is a spin manifold, and using the
same construction as above we get a spin manifold X2 with boundary
NUN1, where N is the smooth boundary component and N1 is home-
omorphic to N with a corner at Y. We glue Xι and X2 at the corner
along their boundary components M2 C M1 and — M2 C Nf. In this
way we get a spin manifold X with three smooth boundary components
M, —M and — N. Applying Theorem 8.7, we obtain

Theorem 8.8. Let M be α closed odd-dimensionαl spin manifold.
Let Y <—> M be a closed oriented hypersurface which deυides M into
two submanifolds Mi and M2. We assume that the metric is a product
near Y and that keτDγ = 0. Let P+ (resp. P~) be the positive (resp.
negative) spectral projection of Dγ. Furthermore, letDM, DMl andDM2

be the Dirac operators on M, Mx and M2, respectively. Then we have

ξ(DM) =

+ dimker (DM2)P-,

where D\, Djζi and Dχ2 are the Dirac operators on half-spinors of X,

Xι and X2, respectively, (DM2)P- denotes the self-adjoint extension of

DM2 with respect to P~, and Ind is defined by (0.11).

A similar result holds for twisted Dirac operators. In particular, we
recover in this way the mod Z splitting formulae of [4], [8], [14], [25] in
the case where the Dirac operator Dy is invertible.

9. An example

In this section we consider the case where X is the product of two
manifolds with cylindrical ends, and the Clifford bundle is the exterior
tensor product of Clifford bundles over the factors. Then we compare
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our index formula with the result obtained by using the product struc-
ture.

Let Xι and X2 be two oriented Riemannian manifolds with cylindrical
ends of dimension 2kλ and 2fc2, respectively, and let X = Xλ x X2. The
manifold Xi has a decomposition as X{ = ΛΓ; Uy;. (R+ x Yj) where Ni
is a compact manifold with boundary Yim Let Eι —> Xiy i = 1,2, be
a Clifford bundle over X{ and assume that on R+ x Yu the connection
and the Hermitian metric of Eι are products. Let

be the corresponding chiral Dirac operators. Our assumption implies
that on R+ x Yί, D+ takes the form

(W)

where ji denotes Clifford multiplication by the outward unit normal
vector field, and B4: C°°{YuEt\γ.) -> C~(y i,£ί"|y<) is a Dirac oper-
ator on Yi. Let 25 = Ex ® £ 2 be tίie tensor product of Ex and J52 over
X = Xι x X2 ) that is, the fibres are given by E(XΛ) = {Eι)x

Now recall that the Clifford algebras satisfy

This implies that i? is a Clifford bundle over X. Let r, be the canonical
involution of Ei. Then T = rx ® τ2 is the corresponding involution of E,
and therefore the ±1 eigenspaces E± of τ are given by

Let D: C°°(X,E) -»• C°°(X,J5) be the Dirac operator of £ and let
D± be the restriction of D to C 0 0 ^ , ^ * ) . Then with respect to the
decomposition (9.2), we have

n + _ (Dt ® Id -

(9.3)

n _ _

Lemma 9.4. The following equality holds:

L2-IndD+ = (L2-Ind£>+) (L2-Ind£>+).
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Proof. From (9.3) it follows that

Id +
\ 0

(9.5)

+ Id +

0V

Let Δ ± and Δ f denote the closures of D : F

J D
± and D f A * i n ^2>

respectively. By Corollary 2.23 and Theorem 4.1 of [16], the kernels of
these operators are all finite-dimensional, and (9.5) implies

ker Δ + = (ker Δ ^ ® ker Δ j ) 0 (ker Δf ® ker Δ^),

ker Δ~ = (ker Δf ® ker Δ j ) ® (ker Δ f ® ker Δ^").

Hence, we get

L2-Ind D+ = dim ker Δ + - dim ker Δ~

= (dim ker A* — dim ker Δ f ) (dim ker Δ j — dim ker

= (L2-Ind D+) (L2-Ind

q.e.d.
Suppose that ker B{ = 0. Then by Corollary 3.14 of [1], the L2-index

of Df is given by the index of the APS boundary problem, that is, it
equals (0.3). Using Lemma 9.4, we get

L2-Ind D+ = ωDl / ωD2 - -η(B2) / ωDl

(9.6)

ωD2 + \η(Bι)η(B2).
x2 4

We shall now compare (9.6) with the result obtained by applying our
index formla (0.10). Firstly, it follows from (9.5) that

tτe-tA\x,x)-tτe-tA~{x,x)

By Theorem 5 of [10], this equality implies that the local index densities
are related by ωr> = ωoλ Λ ωD2, and therefore we obtain

Jx JX
ωDl - / ωD
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It remains to compute the eta invariants. If we use the terminology of §1,
then the hypersurfaces Zi are given by Zx = Yi x X2 and Z2 = X\ x Y2-
We may use jι to identify Ef\γ, with E^~\γ. which we call Si. Prom
(9.3) it follows that on R+ xZj, D+ can be written as

u = pi

where

IdΘDj
(9.7)

and pi denotes Clifford multiplication by the inward unit mormal vector
field. Let A* be the unique self-adjoint extension of A{ in ZΛ The
eta-invariant η{Ai) of Ai is defined as in (0.9). To compute ^(^4^),
we introduce the following function defined in terms of the spectrum
S p e c ^ ) of Bi. Let

(9.8) θi(t)= y
λeSpec(Bi)

where erfc(a ) is the complementary error function defined by

erfc(rr) = - = / e~u du.
y π Jx

The series (9.8) is absolutely convergent, and as t -> oo we have

(9.9) \θi{t)\<Ce-c\

for some constants C, c > 0. The small time behaviour of θi(t) is de-
scribed by

Lemma 9.10. As t —> 0, we have

θi(t) = ~η(Bi) + O(t), * = 1,2.

Proof. Differentiating (9.8) yields

( 9 π ) % *

Since Y{ is odd-dimensional, it follows from Theorem 2.4 of [3] that
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as t —> 0. Hence, we get

θi(t) = α< + ctt + O(t2)

as ί —> 0. The constant term of this expansion can be computed in the
same way as in [1, p.53], which gives a{ = -l/2η(Bi). q.e.d.

Lemma 9.12. The eta invariants of Λι and Λ2 are given by

r 1 r°
η(Λ1)=η(B1) ωD2--η(B1)η(B2)-2

Jχ2 I Jo

and

r 1 ί°° c)0
ω D i - η(Bl)η(B2)-2 θλ(t)^{

Jχλ 2 Jo ot

Proof. First, observe that by (9.9) and Lemma 9.10, the infinite in-
tegrals are absolutely convergent. We consider A\. Prom (9.7) it follows
that

(9.13)

for y € Yi and x e X2. Integration over Yλ gives Tr(J5ie"ίβi) on the
right-hand side. It remains to investigate the integral over X2.

Let Qf be a parametrix for e~tA* defined as by (3.3) in [16]. Prom
(9.1) it follows that tr Qt(x,x,t) = tr Q^(z,α;,t) for x e [2,oo) x Y2.
Together with (3.5) in [16], this implies that

is absolutely integrable on X2, and with respect to t we can differen-
tiate under the integral sign. Using Lemma 7.6 together with these
observations, it is easy to prove that

^ j {tr(e-**i(x,x)) -
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Hence, by (9.13) and (9.11) we get

j {tr(e-tAi(x,x)) - tτ(e-tA>(x,x))}dx

(9.14)

= L2- Ind £>+ --J^J u-φ IV {B2e~^) du

= L2-Ind D+ + Θ2(t).

As observed above, the L2-index of D2 can be computed by the index
formula (0.3). Hence, the right-hand side of (9.14) equals

iχ2

and we obtain in consequence of (9.13) and (9.11),

=4= Γ*'Φ I I te(Aie-tΛH(y,x),(y,x))) dy dx dty/π Jo Jγλ Jχ2

 v /χ2

ωD 2 - \η(B

4= Γ r l / 2 T r (Bie-tB") Θ2{t) dt
γ7r JQ v /

ωD2--η(B1)η(B2)-2 ?-L(t)θ2(t)dt.
Jx2 t JQ atx2

The computation of η{Λ2) is similar. q.e.d.
Applying our index formula together with Lemma 9.12 yields

L2-Ind D+ = ί ωDl / ωD2 - -η{Bλ) ί ωD2 - -η(B2) ί ωDl
JXi Jx2 * Jχ2 * Jχ\

2 η { )
x2 * Jχ2

+ J™ ̂ (<?i(ί)02(ί)) dt.

By Lemma 9.10, the last integral equals — \η{B1)η{B2) and, after re-
placing the integral by this term, our index formula coincides with (9.6),
as it should.

Remark. We observe that by our assumption ker Bi = 0, the con-
tinuous spectrum of Δ* has a positive lower bound. Therefore, if we
modify the manifold X and the Clifford bundle E on a compact set, the
boundary contribution in the index formula for the corresponding Dirac
operator will be the same. This follows from a relative index formula
as proved in [11].

The boundary contribution in the index formula (9.6) has a natural
decomposition where each term is associated with a particular stratum
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of the boundary at infinity. As the formula suggests, one may regard
η(Bi) fχm u)Dj, i φ j , as being associated with Y{ x X,-, and \ η(B1)η(B2)
as being attached to the corner Yx xY2. We do not know if such a
natural decomposition exists in general. If it exists, it must be related
to a natural splitting of the eta invariants 77(̂ 1") and η{A2) occurring
in (0.10).

One possible approach of obtaining such a splitting is to use the de-
composition of the spectrum of Af into the point spectrum and the
continuous spectrum. Let Z be an odd-dimensional Riemannian man-
ifold with cylindrical ends. Let A : C°°(Z,F) -> C°°(Z,F) be a Dirac
operator on Z, and let A be the unique self-adjoint extension of A in L2.
By Theorem 4.1 of [16], the point spectrum of A consists of real eigen-
values of finite multiplicity and the number of eigenvalues, counted with
multiplicity, in (—μ,μ), μ > 0, is bounded by (7(1 + μ2n). Therefore,
the series

(9.15) - " -̂  - ^ S i g n λ

where λ runs over the nonzero eigenvalues of A, is absolutely convergent
in the half-plane Re(s) > 2n. We do not know if, for general A, this se-
ries admits a meromorphic continuation to C. Now consider the special
case where, for example, Z — Yλ x X2 and A = Ax as defined by (9.7).
Let A\4 be the restriction of A\ to the subspace of L2(Yχ xX2,Sι®E2)
which is spanned by all L2 eigensections of A\. Furthermore, let Δ^d be
the restriction of Af to the subspace of L2(X2,Ef) which corresponds
to the point spectrum of Af. Then from (9.7) it follows that

= tτ(B1e-u*(v,y)){tr(e-t*t<(x,x)) -

for y €Y\ and x G X2. The right-hand side is absolutely integrable and
we have

J Jχ tτ(A1e-t^{(y,x),(y,x))) dydx =J Jχ ( 1 { ( y , ) , ( y , ) ) ) y [ i ) L2Λnd

This implies that ηd(Ai,s) has a meromorphic continuation which is
regular at s = 0, and the value at zero, which we denote by ηd(Ai), is
given by

(9.16) ηd(Λi) =η(B1)L2-lndP+ = η{Bλ) f
Jχ2
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Set

ηc(A,s) = η{A,s) — ηd(A, s), Re(s) > 2n.

This is the contribution of the continuous spectrum to the eta function
of A. Again we do not know if, in general, ηc{A, s) has an analytic
continuation to C. For A = Ax, however, by the above results, ηc(Aι, s)
has an analytic continuation which is regular at s = 0. Let ηc(Aι) =
ηc{Aι,0) be the corresponding eta invariant. From Lemma 9.12 and
(9.16) it follows that

Mi ^ Λ

JO 01

A similar formula holds for A2 and we have

r/c(Λ) + Vc(A2) = ^

Thus the decomposition of the spectrum of Ai leads to the splitting

η{Ai) = ηd{Ai) + Vc{Ai)

of the eta invariants which in turn induces a natural decomposition of
the boundary term in (9.6). It has to be seen if this approach can be
generalized.
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