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CHARACTERIZATIONS OF COMPLETE

INTERSECTIONS

J. M. LANDSBERG

Abstract
We characterize complete intersections in terms of local differential geom-
etry.

Let Xn C Q P n + α be a variety. We first localize the problem; we give a
criterion for X to be a complete intersection that is testable at any smooth
point of X. We rephrase the criterion in the language of projective dif-
ferential geometry and derive a sufficient condition for X to be a complete
intersection that is computable at a general point x £ X. The sufficient con-
dition has a geometric interpretation in terms of restrictions on the spaces
of osculating hypersurfaces at x. When this sufficient condition holds, we
are able to define systems of partial differential equations that generalize
the classical Monge equation that characterizes conic curves in QP2.

Using our sufficent condition, we show that if the ideal of X is generated
by quadrics and a < | [ n — (6 + 1) 4- 3], where b = dimXsing, then X is a
complete intersection.

0. Introduction

Local and global geometry
Projective differential geometry has been used to study the local ge-

ometry of subvarieties of projective space by various authors (e.g. [2],
[4], [6], [8], [15]). However, there are few examples where global conclu-
sions are drawn from the local picture.
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One (global) fact about projective varieties that has been encoded
into the infinitesimal geometry is the following: if there is a line on a
variety Xn C QPn + α along which the embedded tangent space is con-
stant, then X must be singular. Griffiths and Harris realized this fact
had implications for the projective second fundamental form (that its
singular locus must be empty at general points) which enabled them to
reprove Seven's theorem that the only smooth surface in P5 with de-
generate secant variety is the Veronese [6, (6.18)], using local methods.

In [9], we used Zak's theorem on tangencies [16, (1.8)], or equiva-
lently the Fulton-Hansen Connectedness theorem [5, (3.1)] to encode
additional global information about projective varieties into the local
differential geometry. We proved a rank restriction theorem [9, (6.1)]
that bounds from below the ranks of quadrics in the projective second
fundamental form. A general principle that the rank restriction theorem
illustrates is:

In order for a variety of small codimension to be smooth, it must
"bend enough77.

In the case of the rank restriction theorem, "bending enough" cor-
responds to genericity of the projective second fundamental form at
general points.

The rank restriction theorem enabled us to reprove Zak's theorem
on Severi varieties and to prove further results about varieties with
degenerate secant varieties using local methods in [10]. One consequence
of the rank restriction theorem that is particularly easy to apply is:

Theorem [9, (4.14)]. Let Xn C QPn+α be a variety with
a < | [ n — (6 + 1)] + 1, where b = d i m X ^ . Then at general points
of Xj the third fundamental form of X is zero.

In this paper we apply the results of [9] to obtain information about
the quadrics containing a variety. The results on quadrics follow from
an in-depth local study that occupies the bulk of this paper.

The local study shows precisely how one can detect the failure of a
variety to be a complete intersection from the differential invariants at
a general point x € X. Vaguely stated, the motivating principle is:

If X is not a complete intersection, it ί(bends less77 than expected.
Work of others (e.g. [13]) on complete intersections can be understood

in these terms when one uses a Kahler metric. In this paper, "bend-
ing less" will correspond to certain non-generic behavior of projective
differential invariants and the "expectation" from knowledge about the
generators of the ideal of X that is also computable from the projective
differential invariants.
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Osculating hypersurfaces
We use differential invariants to study the hypersurfaces containing

X via the osculating hypersurfaces at a point x G X. Osculating hy-
persurfaces are geometric objects of interest in their own right. There
are several equivalent definitions of what it means for a hypersurface to
osculate to order A: at a point x G I , an elementary one is as follows:

Definition 0.1. Let Xn C P n + α be a variety and let Z C P n + α

be a hypersurface. Let x G X Π Z. In an afiine open set A containing
x, Z is given locally by a function / which restricts to a function / on
XΓ\A. If we identify the completion of the local ring of X Π A at x with
C[[xx,..., α;n]], then Z osculates to order k at x if the power series of /
at x has no terms of degree less than or equal to k.

Let V = C n+α + 1 and let Xn CΨV = CPn + α be a variety of dimension
n. Let Ix C S*V* denote the ideal of X and let IX4 = Id = SdV* Π Ix

denote the d-th graded piece of Iχ.
Jd, the vector space of all hypersurfaces of degree d containing X, can

be characterized geometrically as follows: Let vd(X) C ΨSdV denote the
d-th Veronese re-embedding of X, and let < vd(X) > denote its linear
span. Id = < vd(X) >±C SdV*, the annhilator of the linear span of
vd(X). Similarly, the space of hypersurfaces of degree d osculating to
order k at a smooth point a G X i s k e r F F ^ ^ C SdV*, the kernel of
the k-th fundamental form of vd(X) at x. (See §2 for definitions of the
fundamental forms.)

Using the language of osculating hypersurfaces, [9, (4.14)], may be
restated as:

Restatement of [9, (4.14)]. Let Xn C QPn+α be a variety with
a < \[n — (b + 1)] + 1, where b = d imX s i n p . Let x G X be a general
point If a hyperplane H osculates to order two at x, then X C H.

In contrast, any surface in P6 has at least one hyperplane osculating
to order two at every point. There is also a class of smooth surfaces
in P5, the Legendrian surfaces, which have the property that at every
point there is at least one hyperplane osculating to order two. (This
class includes the ruled surfaces.)
Overview

The precise meanings of terms used in this overview are explained in
the sections.

In §1 we observe that if X is such that Ix = (Id) and /d_i = (0), then
X is a complete intersection if and only if every hypersurface Z G Id is
smooth at all the smooth points of X (1.1). We generalize (1.1) to a
local characterization of all complete intersections. The characterization
is simplified thanks to the following definition due to LVovsky [12]:
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Definition 1.2. Let X C ΨV be a variety. Let P G Id and let
Z = ZP C ΨV be the corresponding hypersurface. We will say Z
trivially contains X if P = lλPλ + ... + lkPk with P1,...,Pk G Jd_i and
Z1, ...,Zfc G V*, and otherwise that Z essentially contains X.

Proposition 1.6 A local characterization of complete inter-
sections. Let X C ΨV be a variety and let Xsm denote its smooth
points. The following are equivalent:

1. X is a complete intersection.

2. Every hypersurface essentially containing X is smooth at all x G

Xsm

3. Let x G X8m Every hypersurface essentially containing X is
smooth at x.

4. Let x G Xsm For all k, the map

[d]k : / f c/(4_i o V) -> NlX/dih-i o V)

[P] H4 [dPx]

is injective, which dP denotes the exterior derivative of the polynomial
P.

In fact, (1.6) not only localizes the question of whether or not X is a
complete intersection, it allows one to study the property one degree at
a time.

Definition 1.8. Fix a point x G Xsm- We will say X has no excess
equations in degree k at x, or that (CI)k holds at x, if [d\k is injective
at x. (Note that X is a complete intersection if and only if {CI)k holds
at x for all k.)

Unfortunately, to determine if X satisfies (CI)k at a point x is not
necessarily computable in a predictable number of steps. To avoid this
problem, we restrict attention to sufficient conditions for a variety to
be a complete intersection in the remainder of the paper. The sufficient
conditions are expressed geometrically in terms of the osculating hyper-
surfaces of X at x, and to deal with osculating hypersurfaces we need
to deal with the projective differential invariants of X.

In §2, we review the projective fundamental forms of a variety, de-
noted FFj£ in this paper. Of special importance is F F ^ = 77χ, the
projective second fundamental form. We also need to work with some
subtler differential invariants, which we denote Fk and call the (k — 2)-nd
variation of II.

In §3, we study the space of hypersurfaces of degree d osculating to
order A; at a smooth point x G X, taking advantage of their description
as kerFF* d ( X ) x mentioned above. We compute the fundamental forms
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of the Veronese re-embeddings of X and prove some generalities about
the osculating spaces. First we show that the dimension of the space
of hypersurfaces of degree d osculating to order k at x is fixed for all
k < d, generalizing the fact that there is an (a — l)-dimensional space
of hyperplanes osculating to order one at each smooth point:

Proposition 3.16. Let Xn C ΨV = CP n + α be a variety and let
x eXsm For allp< d,

,. ((not necessarily irreducible) hypersurfaces]^
\ of degree d osculating to order p at x j

For k > d, the dimensions depend on the geometry of X. For d+ 1 <
k < 2d — 1 there are lower bounds on the dimensions of the space of
hypersurfaces of degree d osculating to order k at x. For example:

Proposition 3.17. Let Xn C ΨV = QPn + α be any variety, and
x G X any smooth point.

,. ί (not necessarily irreducible) hypersurfaces of)
\ degree d osculating to order 2d — 1 at x J ~~

We rephrase (1.6) in a manner suitable for approximation by oscu-
lating hypersurfaces.

We include several examples, including a review of the classical Monge
equation; a fifth order differential equation that characterizes conic
curves in P2.

We define a condition denoted by (CI)2

k

k under which (CI)k is sat-
isfied (3.22). If the codimension of X is sufficiently small, (CI)lk is a
genericity condition. While only being a sufficient condition for (CΙ)k-,
(CI)lk has the advantage of being computable by taking at most 2k
derivatives.

Finally we describe generalizations of the classical Monge equation.
The classical Monge equation actually only classifies "nondegenerate"
conic curves, those that are not pairs of lines. The generalized Monge
systems described by (3.23) characterize "nondegenerate" complete in-
tersections whose ideals are generated in degrees dx < ... < dr, by a PDE
system of order 2dr + 1. In this case "nondegenerate" means that the
conditions (CI)2fλ\ ..., (CI)2

d

d

r

r hold, each of which is a natural genericity
condition in small codimension.

In §4 we study the osculating quadrics of X in detail. We utilize a
condition slightly stronger than (CI)\, which we call strong genericity
in degree two. Strong genericity in degree two is computable by taking
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two derivatives at a general point. It is a genericity condition on //χ,x;
namely that the system of quadrics \IIχ\x has no linear syzygies. Our
results are as follows:

We define a more precise generalized Monge system for complete in-
tersections of quadrics (4.17), in the sense that (4.17) is expressed in
terms of the invariants Fk instead of the fundamental forms of v2(X).

Theorem (4.18) states that if there are no linear syzygies in IIX at
general points, then there are upper bounds on the dimensions of the
spaces of quadrics osculating to orders three and four, complementing
(3.17). Moreover, these bounds are achieved if and only if the (fifth
order) generalized Monge system for quadrics holds, and the only way
such varieties can be cut out by quadrics is that the generalized Monge
system holds.

A consequence of (4.18) is:

Corollary 4.20. Let X C ΨV be a variety and x G X a general
point. Assume IIIχx = 0. If there are no quadric hypersurfaces singular
at x that osculate to order four at x, and Q is a quadric hypersurface
osculating to order five at x, then I C Q .

Theorem (4.28) describes a sufficient condition for Ix to be generated
by quadrics.

Theorem (4.33) describes the structure of varieties whose projec-
tive differential invariants of order greater than two are zero at general
points.

We observe that if IIIχ = 0 and the ideal of X is generated by
quadrics, it is extremely difficult for X to fail to be a complete inter-
section without being an intersection of a complete intersection with a
rational variety (4.39). We illustrate this principle with some examples.

In §5 we describe the equations of some familiar homogeneous vari-
eties in a manner that illustrates the results in §4. Among the varieties
treated are the Severi varieties and the ten-dimensional spinor variety,
S l o c P 1 5 .

In §6 we study systems of quadrics with linear syzygies and systems
with nonzero prolongations. In representation-theoretic language the
study is as follows: Let A C S2T* be a system of quadrics. We determine
rank restrictions that force the intersection of A ® T* with the two
irreducible Gl(T*) modules in S2T* ® T* to be the origin. We combine
the results here with the results of [9] and §4 to prove:

Theorem 6.26. Let Xn C P n + α be a variety and x G X a
general point Let b = dimX s i n p. (Set b = - 1 if X is smooth.) If
a<\[n- (6 + 1) + 3], then
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dim{ quadrics osculating to order three at x}

(6.27)

dim{ quadrics osculating to order four at x) < a — 1.

Equality occurs on the first (respectively second ) expression of (6.27)
if and only if (4.9.3)(resp.(4.9.4)) holds at x. If the generalized Monge
system (4.17) holds, then X is a complete intersection of the (a — 1)-
dimensional family of quadrics osculating to order four.

Corollary 6.28- Let Xn C P n + O be a variety and x £ X a
general point. Let b = dimX S i n 5 . (Set b = — 1 if X is smooth.) If
a < | [ n — (b + 1) + 3] then any quadric osculating to order four at x is
smooth at x, and any quadric osculating to order five at x contains X.

Corollary 6.29. Let Xn C P n + α be a variety with Ix gener-
ated by quadrics. Let b = dimX8ing. (Set b = — 1 if X is smooth.) If
a < | [ n — (b + 1) + 3], then X is a complete intersection.

Notation. We will use the following conventions for indices

0 < B,C <n + a,

1 <a,β<n,

n + 1 < μ,v <n + a.

Alternating products of vectors will be denoted with a wedge (Λ),
and symmetric products will not have any symbol (e.g., ω o β will be
denoted ωβ). TXX denotes the holomorphic tangent space to X at
x, and TXX the embedded tangent space. In general we will supress
reference to the base point of our manifold X when we abbreviate the
names of bundles, so T should be read as TPX for a general p G X, N
as NPX etc... . {ê } means the span of the vectors ê  over the index
range i. If Y C P m , then Ϋ C C m + 1 will be used to denote the cone
over Y (with the exception that the cone over the embedded tangent
space f will be denoted T). We will often ignore twists in bundles, so
T will be used to denote both TXX and TxX(ΐ) = f/x. If A e C ^ * 1 ,
its projection to P n + α will be denoted [A]. If V is a vector space and
W a subspace, and (eχ...en) a basis of V such that {eι...ep} = W, we
write {ep+1...en} modVF to denote the space V/W. For vector subspaces
W C V, we will use the notation WL C V* for the annihilator of W in
V*. We will use the summation convention throughout (i.e., repeated
indices are to be summed over). ΘaβΊ denotes cylic summation over the
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fixed indices aβj. In general, X will denote a variety, Xsm its smooth
points, and XSing its singular points. QP* will be denoted Ψk. F F ^
is the A -th fundamental form of X. We will often denote F F ^ by //
and F F ^ by III. Fk = FζAμ mod f is the differential invariant which
we call the (k — 2)-nd variation of II. By a general point x E X we
mean a smooth point of X such that all the discrete information in the
differential invariants of X is locally constant. The nongeneral points
of X are a codimension one subset of X

1. An elementary characterization of complete intersections

Let V = Cn+a+ι, and let Xn C ΨV = QPn+α be a variety of dimension
n. Let Xsm denote the smooth points of X. Let Ix C S*V* denote the
ideal of X and let IXid — Id — SdV* Π Ix denote the d-th graded piece
of Iχ. Fixing a smooth point x E X, there is a distinguished subspace
of 7d, namely the hypersurfaces of degree d that are singular at rr, i.e.,
P E Id such that (dP)x = 0, where dP denotes the exterior derivative
of the polynomial P.

Proposition 1.1. Let X C ΨV be a variety such that Ix = (Id)
(i.e., Ix is generated by Id) and Id-\ = (0). Then the following are
equivalent:

1. X is a complete intersection.

2. Every hypersurface of degree d containing X is smooth at all
x G Xsm.

3. Let x G Xsm Every hypersurface of degree d containing X is
smooth at x.

Proof. Say P € Id is nonzero and such that dPx = 0. Let
x E Xsm be a smooth point. Then there exist P l 7 . . . , P α 6 Id such
that (dPι)x,..., {dPa)x span the conormal space N*X C T*ΨV (actually
N*X{1) C T x*Py(l)). Since {dPλ)x,..., {dPa)x are linearly independent,
P is not in the ideal generated by Pi, . . . ,P α , and thus X is not a com-
plete intersection. Conversely, if X is not a complete intersection, one
can always find such a P. q.e.d.

The following definition is due to L'vovsky [12]:

Definition 1.2. Let X C ΨV be a variety. Let P 6 Id, and
let Z — ZP C PK be the corresponding hypersurface. We will say Z
trivially contains X if P = /xPi + ... + lmPm with P 1 ? . . . , P m G / r f-i and
Z1, ...,Zm G V*, and otherwise that Z essentially contains X.

Note that the space of hypersurfaces of degree k that trivially contain
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X is Ik-ι o V*. Fix x E Xsm and consider the map

(1.3.k) [d]k : h/ih^ o V*) -> NζX/dih^ o V)

[P] ^ [dPx],

where dP denotes the exterior derivative of the polynomial P. (Again,
here and in what follows, we really should be writing N*X(1).)

Definition 1.4. Fix x e Xsm. Let Nζ := {dPx\P G Ik} C N*X.
Let dχ,...,dr be the smallest integers such that

(1.5) 0 c N*di c N*d2 c ... C ̂  = N:X.

We will call (1.5) the natural filtration of N*X.
(1.1) generalizes to the following statement:

Proposition 1.6 A local characterization of complete inter-
sections. Let X C ΨV be a variety. The following are equivalent:

1. X is a complete intersection.

2. Every hypersurface of degree d containing X is smooth at all
x e Xsm.

3. Let x £ Xsm> Every hypersurface essentially containing X is
smooth at x.

4. Let x G Xsm be any smooth point of X. For all k, the map

[d]k -. /,/(/,_! o vη -»• N;x/d(ik^ o vη

[P] ̂  [dPx],

is injective. (dP denotes the exterior derivative of the polynomial P.)
Proof. Consider the sum of all the maps (1.3.k),

(i.7) [df: θ*/ f t/(/*-i o vη -> © * ( # ; / # ; _ ! ) ,

where N£ is as in (1.4)
The dimension of the target of [d]Θ is α, and [d]Θ is surjective so the

dimension of the source is a if and only if [d\θ is injective, i.e., all the
maps (1.3.k) are injective. On the other hand, the dimension of the
source is exactly the number of polynomials needed for a minimal set
of generators of 7χ, and the kernel of [d]Θ is exactly the hypersurfaces
that essentially contain X and are singular at x. q.e.d.

Definition 1.8. Fix a point x e XSm We will say X has no excess
equations in degree k at x, or that (CI)k holds at x, if (1.3.k) is injective.
The equivalence 1 «Φ 3 of (1.6) may be rephrased as: X is a complete
intersection iff {CI)k holds for all k at some x E Xsm.
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Although the following is clear from the discussion above, we record
it as a proposition.

Proposition 1.9. Let X C ΨV be a variety and x G X a smooth
point Let N^ C N%2 C ... C N^ = N* be the natural filtration of N*X
described in (1.4) and let a^ — dim(N^./N^._i). Then there is at least
an (αi — 1)-dimensional space of irreducible hypersurfaces of degree dλ

essentially containing X7 an (α2 — 1)-dimensional space of irreducible
hypersurfaces of degree d2 essentially containing X, ..., and an (ar — 1)-
dimensional space of irreducible hypersurfaces of degree dr essentially
containing X.

X is a complete intersection if and only if Ix is generated by the
equations for these hypersurfaces.

So far we have localized the study of complete intersections to a point,
and further, filtered the conormal bundle at that point to enable us to
study one degree at a time. Unfortunately, to determine if a hyper-
surface essentially contains X, one might need to take an arbitrarily
high number of derivatives. To have computable conditions, we will
work with osculating hypersurfaces rather than the hypersurfaces con-
taining X, The advantage will be that we will only need to study a
fixed number of derivatives for each fixed degree of hypersurface; the
disadvantage is that we will only obtain sufficient conditions to be a
complete intersection.

We first review some notions from projective differential geometry.

2. Frames, fundamental forms

Refer to [6],[9] for more detailed explanations of what follows.

Let X CΨV = Q P n + α be a variety and x G X a general point. We
will compute the fundamental forms of X using a method described in
[6], which will be useful for the computations of this paper. One may
take what follows as the definitions of the fundamental forms, although
more geometric definitions are given in [9].

Given X CΨV and x G Xsm, let x C V denote the line x determines
and let Ao G x. Extend Ao to a basis / = (Ao,..., A n + α ) = (Ao, Aa,Aμ)
of V adapted to the filtration x C f C V, where l < α , / 3 < n , n + l <
μ, v < n + α, so f = {Ao, Aa} is the cone over the embedded tangent
space to X at x. Let Tx -¥ Xsm be the bundle of all such bases.

The Maurer-Cartan form of Gl(V), defined by

(2.1) Ω, := Γ'df
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restricts to Tλ C Gl(V) and satisfies the Maurer-Cartan equation

(2.2) dfl = -Ω Λ Ω.

See ([6],[9]) for more on the Maurer-Cartan form.
Tι is a principal G\ -bundle over Xsrn where

(2.3) G1:=LeGl(V)\g =

Define inductively a series of maps:

(2.4) dkAQ : (TF1)®1* -

as follows: Let d denote exterior differentiation, let (fA0 = Ao and let
^AQ = dA0 mod Ao. If υu . . . ,^ G Ϊ/JΓ1, extend Vι,...,vk to holomor-
phic vector fields in some neighborhood of / which we denote t5χ,..., δfc.
Let

(2.5)

,...,v*) := Vι(\d(v2\...d(vk\dA0) mod π^"1 (Imagedfc *),

9°o
0
0

$
9aβ
0

9l

9ϋ

where πk : V —>- F/(Image{d0,^1, ...jd*"1}) is the projection, and J
denotes the contraction Γ x T*®1 -> Γ*®'"1. (2.5) is independent of the
extension of vu ..., v* to holomorphic vector fields. (The proof that (2.5)
is independent of the choice of extension to holomorphic vector fields is
the same as the standard argument in the real case; see e.g. [14].)

dkA0 descends to be a well defined element of

(2.6) SkT*xX ® 17Image(d°, . . . ,^" 1 )

called the k-th fundamental form of X (twisted by O(k — 1)) which we
will denote F F ^ , except that we will often denote F F ^ by //, and F F ^
by ///.

To fix notation, we will verify this assertion in the case k — 2. Given
/ G J 7 1, let (ωβ) = Ω = f~ιdf denote the entries of the Maurer-Cartan
form. Write ωB for cj<f. The first two terms of (2.5) expressed in frames
are

(2.7) d1 A) = ωa ® Aa mod x,

(2.8) d2A0 = ωaωμ

a ® Aμ mod f.

To see that d2A0 descends (modulo twisting) to a section of S2T*<8)N,
note that for g G Gι, Ω/g = g~1Ω/g + g~ιdg, where the expression dg is
to be understood as the matrix of differentials of the functions (g^), so
tensoring (2.8) with Al\ the fiber motions of cja,a;£,-AjJ and Aμ cancel.
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Note that as a form on Tλ, ωμ = 0 which implies dωμ = 0. (2.2)
implies dωμ = —ωμ Aωa. Since the forms {ωa} are all independent, the
Cartan Lemma (see e.g. [1]) implies that ωμ = q^βωβ for some functions
Qaβ = qpa defined on Tι. Thus (2.8) may be rewritten:

d2A0 = qμ

aβω
aωβ ® Aμ mod f.

For the purposes of this paper it will be useful to consider F F ^ =
// G S2T* ® N as a map

(2.9) II:N* -> S2T\

which is dual to the standard way of considering II as a map.

We will consider the fc-th fundamental form of X at x as a map

(2.10) FF^rkerFF^^^T;,

where kerFF^Γ1 C V* and k e r F F ^ = x x C V*. P(kerFF^) C ΨV*
is the space of hyperplanes osculating to order k at x.

Remark 2.11. We will often omit reference to the base point #,
ignore twists, and use T to denote both T/x and TXX = x* Θ T/x.

Another way of understanding fundamental forms is as follows:

The quotient map

(2.12) V* -> V/x1- = CW(l)z

gives rise to a spectral sequence of a filtered complex by letting

(2.13) F°K° = V\ F°Kι = Ox{l)x,

FιK° = 0, Fp = FvKι = mS(l).

The maps are

rf° : V* -+ FO/F1 = OXtX(l)/mx(l) ~ C,

£ : kerd°
( 2 1 4 ) <f

To study the space of hypersurfaces of degree d osculating to order
A; at a general point a G l i n terms of local differential invariants, we
need to compute the fundamental forms of the d-th Veronese embedding
of X, vd(X) C ΨSdV. We will do this in §3, and their expression will
involve more subtle invariants of X C ΨV which we now describe.
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Differentiating the equation ω£ - q^βω
β = 0 and using the Cartan

lemma, one obtains functions rμ

aβΊ (symmetric in their lower indices)
defined on T1 by the equation:

(2.15) τ%y = -dq»β - q%ωl - q^ω? + qμ

aδω
δ

β + qμ

βδω
δ

a,

(see [9]). The form

(2.16) F3 := rμ

aβΊω
aωβωΊ ® Aμ mod f

is a section of 5 3(T*J r l) ® π*(NX) (again, ignoring twists). F3 was
defined for hypersurfaces in [6] and called the cubic form there. In
[9], F3 was denoted dll. We will also call F3 the first variation of
II. F3 is actually a section of S3{SB) ® τr*iVX where SB C T * ^ 1 is
the subbundle of semi-basic forms, that is those that annhilate vertical
tangent vectors. As defined, F3 is a relative invariant in the sense that
it is defined as a section of a bundle over Tx instead of a bundle over X.
One can define F3 as a section of a bundle over X (see [9]). However it
is not advantageous to do so because there is a whole series of relative
invariants, of which F3 is the first, and none of the others can be defined
as a section of a bundle over X. (Given a particular variety, one can
make normalizations that enable one to define the relative invariants as a
section of a bundle over X, but the normalizations will not be canonical.)
On the other hand, certain combinations of relative invariants can be
defined as sections of natural bundles over X. In this paper we will
deal with combinations that are the fundamental forms of the Veronese
re-embeddings of X.

F3 is the projective analogue of the covariant derivative of the second
fundamental form of a metric connection, which we will denote V/J.
VII is defined as a section of a bundle over the original variety. One
may think of the projective structure as specifying an equivalence class
of connections, and the necessity of defining F3 over a principal bundle as
corresponding to the ambiguity in the choice of compatible connection.

Differentiating (2.15), one obtains functions rμ

βlδ defined on Tι by

(2.17) - &a0Ίq
μ

aSq
VβA + ©

which leads to a form

F4 =rμ

aβΊ&ωaωβωΊωδ ® Aμ mod f

(2.18) e Γ(5*(T*J"1) ® π*NX).
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Say we have defined Fk_ι by differentiating the equations defining
the coefficients of Fk-2 Then we can define Fk by differentiating the
defining equations of the coefficients of Fk-i

We will call Fk the (k — 2)-nd variation of II. Fk measures how X is
infinitesimally leaving its embedded tangent space to order (k — 1) at x.
We will use the notation Fo for the quotient map V* —ϊ V* /xx, ί\ for
the quotient map kerF0 -> Γ*, and F2 = F F ^ . On Tλ, Fk is a section
of SkT*Tι ® π*NX, in fact a section of Sk(SB) ® π*NX.

Proposition 2.19. The coefficients r^ α/ of Ft are defined by the
formula

- lrμ

"ai

(2.20) +'6α 1 , . . . ,α,_ 1 C. α ,_ 2 <_ 1

Σ
l-3 r» a v 0

p=l^αi,...,o;/_2/ ai...apβ' ap+i...an-2 v

Σ l — 3 (C~ ( o i iλ^μ

Proof. Say we have computed the coefficients for Fjt+1, i.e., that

0 =

(2.21)

, y Λ-2 /ς μ i/ 0 _ ι
"Γ Z j p=2yp,* : Ό a 1 , . . . ,a f c ' Q l . . .a p ' ap + i . . .a fc U ; i / ' a

where ak,...,gPyk are some constants independent of X. Taking the
exterior derivative of (2.21) the terms with semi-basic coefficients (we
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can ignore the others since they cancel out) are

Collecting terms, the coeίfeicient of ωah+1 is

(2.22)

4- rμ rv ωβ\
' ai...apβ' αp+i-Qfeαfc+rί/J

r ^/p.Λ'QittpQ^ . i ' α p + 1 α f c i'

Thus, comparing (2.22) with (2.15),(2.17) and (2.20), we have ak+x =

ak + 1 = k + 1, δfc+i = 6Λ = 1, c f c +i = ck = 1, efc+χ = ak = k, fp,k = 1,

^P,Λ = p - 2 + fc. q.e.d.
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To determine the actual geometric information in the invariants Fk

we must know how they vary in the fiber. F3,F± vary in the fiber as
follows: If (Ao, AQ, Aμ) is a new frame with

(2.23) i μ = 4 * + 0 ί ! A > + # A α ,

Aa =Aa+g°aA0,

then

(2.24)

We do not consider motions by g^g^g^ because they just conjugate
the coefficients by invertible matrices. We will use the notation Δ r ^ 7

to denote the change in r^βΊ by a fiber motion of the type in (2.23). By
(2.16), we have

(2.25) Δ r ^ 7 = eaβΊ(gUμ

βΊ + £<&&)•

We will occasionally write Fk = F*Aμ = r£χ akω
ai...ωakAμ with

the ambiguity understood. Because they are only relative invariants,
the invariants Fk are more difficult to deal with than the fundamental
forms.

Example 2.26. Invariants of curves in P2.
(This computation is originally due Monge, and in this language to

Cartan [2].) Take an adapted frame / = (Ao, Aχ,A2) defined up to the
action of G\. As long as our curve is not a line, at a general point we can
rescale the second fundamental form so that q\λ = 1. (e.g. by scaling
Ao). We restrict to frames on which q\λ = 1. The defining equation for
F3 becomes

(2.27) r\uω
ι = {-ω°0 - ω\ + 2ω\)

(ommiting the ® symbols here and in what follows) which we normalize
to zero by sending

(2.28) A1^Aι- -r2

luA0

(or by moving A2 by Aλ) and restricting to frames where r\n = 0.
Thus, for a curve in P2, F3 contains no geometric information. On our
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restricted frame bundle,

(2.29) r^ω1 = (<*>»+ω*),

which we normalize to zero by sending

(2.30) A2^A2-r2

nnA0,

so F4 does not contain any geometric information either. Restricting to
frames where r 2

m = 0,

(2.31) r2

lιlλlω
ι=ωl

r i m i cannot be normalized to zero, but if it is not zero, it can be made
constant by scaling A2. Making r 2

i m = 1 sets

(2.32) r^y^f,

which cannot be normalized, so F6 represents the first non-discrete dif-
ferential invariant of a nondegenerate curve in P 2 . Note that F5 = 0
implies F6 = 0, and in fact that all higher Fk = 0. In §4 we will con-
tinue this example.

Example 2.33. Surfaces in IP5 with zero third fundamental form.
We may adapt frames such that IIX — ωxωλ ® A3 + ωιω2 ® A4 +

ω2ω2 ® A5 modi 7 . The variability in F3 is

(2.34)

ΔrJu =
Δ^?i2 =

Δ Γ i 2 2

Δr 3

^ ' 2 2 2

91 + 9Ϊ 5

2̂ +^45

Δrίn
Δ r ί l 2 = 5l
Δr i 2 2 = g®

Δ r 2

4

2 2

+ A-
+ g\ -
= 9Ϊ,

Ϊ9l

ΔrJn

Δr? 1 2

Δ r ^ 2 2 =
Δr 2

5

2 2 =

=
=

5?
9°2

o,

+ s2
+ 55

2

Using the motions g% in (2.23), we can normalize six of the twelve
terms r ^ to zero. This uses up all our normalizations (the g°a cannot
contribute any additional normalizations in this case). Informally, we
will say F3 contains 6 functions worth of geometric information.

More generally, for Xn C F'+ί"* 1) with IIIX = 0, i.e., \IIX\ =

FS2T*, there are {n^ι)n effective normalizations g% so there are

O1^1) O^2) ~~ (nt1)n fu-πctions worth of geometric information in F3.
For an n-dimensional variety of codimension α, if F3 — 0, the equa-

tions for the coefficients of F4 are

(2.35)
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which is a(n^2) equations relating the n independent forms {ωδ} to the
n + an forms {ω^ωe

v}. (If one does not use the normalizations g°a, the
forms {ωa, ω^} are all independent, and the α(n^2) equations express the
an forms ω€

v in terms of the 2n forms {ωα, ω°}.) Thinking of // as given,
the equations for the coefficients of F3 are extremely overdetermined,
but sometimes they have solutions.

Example 2.36. Griffiths and Harris showed that for n > 2 and
a = 1, if one can restrict to a sub-bundle Tz C T2 on which the functions
rμ

aβΊ are all identically zero, then one can restrict to a further subbundle
JΓ4 c JF3, on which the coefficients of all the higher forms are also
identically zero ([6, B16]). To prove the n — 2 case one must compute
the equations of Fb to determine that the coefficients of F 4 are zero.

Example 2.37. Let Xn C P n + 2 and let x G X be a general point.
Assume there is a nonsingular quadric in |//χ|. (This will be the case
iff X has a nondegenerate dual variety. X* is nondegenerate if X is
smooth and n > 4 by [3].) We may normalize IIx such that

IIX= ((ω1)2 + ...(ω»)2)®An + 1

where \ G C. This case is the closest to the hypersurface case and is
still extremely overdetermined. If F3 = 0 we may let

(2-39) rμ

aβΊS = 6 ^ , 6 1 ; / ^ ,

where b$τ — b^v G C are constants. Some, but not all of these terms
can be normalized to zero. (E.g. one can set bμ

μμ — 0 via g°μ.) One can
check that (2.39) is a consistent solution to the equations, i.e.,

There exist varieties of arbitrary dimension and codimension two such
that it is possible to reduce to frames where the coefficients of F3 are all
identically zero, but that there is no frame such that the coefficients of
F 4 are also identically zero.

We will show that the equations above are consistent in (4.34) with
an easier, indirect proof. The reader may wish to contrast this with the
results of [8].

Remark 2.40. In the metric situation, if VII = 0 at a general
point, then it is always the case that VkII — 0, VA;, and the variety must
be a locally symmetric space. The reward of dealing with our subtler
invariants is that their vanishing will detect more general properties
than being a locally symmetric space.
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Although example (2.37) shows that being able to reduce to frames
where the coefficients of Fk are all zero does not imply that there is
a further reduction of frame such that the coefficients of Fk+λ are also
zero, one does have the following result:

Proposition 2.41. Let X C ΨV be a variety, and x E X any
smooth point. If there exists a framing where the coefficients o/Ffc,..., F2k

are all zero at x, then the coefficients of Fι are also zero at x VZ > 2k.
Proof. Examining (2.20), we see that if the coefficients r ^ αfc,...,

Z e Γ O '

3. Observations about the osculating hypersurfaces of X

As mentioned in the introduction,

ker F F ^ p ^ = {hypersurfaces of degree d osculating to order k at x).

We have kerFFj d ( x ) a j C kerFFjj^ ) a. and for sufficiently large k, the

maps FF^ d ( X ) are zero and the kernels stabilize to Id C SdV*.

In this section, we compute k e r F F * ^ ^ in terms of the invariants
Fι of X, make some observations about osculating hypersurfaces, and
describe a generalization of the classical Monge equation that charac-
terizes conic curves in P2.

The natural representation pd : Gl(V) -> Gl(SdV) allows us to com-
pute frames for Vd(X) using Tψy instead of Fψ<S

dv) More precisely, one
may compute the fundamental forms of υd(X) using any adapted frame
bundle over vd(X) that respects the filtration x C Txυd(X) C SdV*. In
particular, we may restrict to the frame bundle Pdi^x) C Fld(χy We
compute the A -th fundamental form of vd(X) by computing C[*(AQ).

In other words, we compute the fundamental forms of vd(X) by ap-
plying the operator d to sections of O(d) —> X. In the spectral sequence
perspective, one uses the quotient maps

(3.1) SdV* -> SdV*/{x^)d = Ox{d)x

and the analogous filtrations. The equality Oχ(d) = vd{OVd^χ)(l)) con-
nects the perspectives.

Example 3.2. The fundamental forms of υ2{X)
Assume IIx is injective, and write A% for A0A0. The fundamental
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forms of v2(X) expressed in frames are:

d}A2

0 = 2ωaAaA0 mod {A2

0},

£A\ = 2ωaω0{qμ

a0AμAo + AaAβ) mod {AaA0, A2

0},

d3A2

0 = 2ωaωβω^(rμ

a07AμAo + Z&a0Ίq
μ

a0AμAΊ),

(3.3) mod {qμ

a0AμAo + AaAβ, AaA0, A2

0},

= 2ωaωβω^ωs{rμ

a0ΊδAμAoΛ-A&a0Ίδr
μ

a0ΊAμAs

mod {Image(d3,d2,d\d°)},

or in invariant notation,

(3.4) F F 3

υ 2 ( x ) = 2(F3F0 + WFJ^

4 = 2(F4FO + 4F3FX + 3F 2 F 2 ) | k e r F F a

= 2(F5F0 + 5F4Fi + 10F3F2)|k e r F F4

Remark 3.5. If we had not assumed that IIχx was injective, then

the coefficients of IIIχ would have appeared beginning in d3, and its

infinitesimal variations would have appeared in higher order terms.

3.6. The classical Monge equation; Example 2.26 continued.
Examining (3.4), we see that Fb — 0 implies F F ^ C ) = 0 . If x is a

general point of C, this implies J2 = k e r F F ^ X ) . On the other hand,

dim(kerFF^2 ( c )) = 5 - j for j < 4, and therefore there is a Q E S2V*

osculating to all orders, i.e., C is a conic curve. F5 = 0 is exactly the

classical Monge equation for a curve in a plane to be a conic.

In fact, if we work in local affine coordinates [l,x,y] where the curve

is y = y(x) we can recover the original Monge equation. First take a lift

/I 0

f = (A(hAuA2)= [x 1 0
\y o
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and then solve for g G G\ such that

-1 [(3.7) (fg)-1d(fg)= [ωl ω\
1 9 9

\ω0 ωλ

satisfies ωl = ω\ — ω\ — ω\ + ω\ — ω% + ω\ — 2ω\ = 0. Let / = fg. In
our lift, ω\ = dx and u® = (*)((y")~3)'"dx, where (*) is a nonzero term
of lower order. Setting ω% = 0 yields the Monge equation

(3-8) ((»")-*)'" =0.

The computation above is a little involved, and is substantially simpli-
fied if one instead lifts such that ω1 = (y")~*dx (this makes ω1 have
unit "affine arc-length"). The computation in aίfine space is carried out
in detail in [2] and [14, Vol. II].

3.9 Example 2.36 continued. The actual Griffiths-Harris result
mentioned in (2.36) is that for n > 1, hypersurfaces with F 3 = 0 are
quadrics.

Proposition 3.10. The fundamental forms of υd(X) are

PP.*.
m o d ( E , < J k P F ' l ) - w ( 5 ' T ) ) | k e r P p ; - . x ) ,

where the cιlm,,ιd are nonzero constants.
Proof. The two main facts are

(3.12) dr{A oB) = Σa+b=r{daA) o (dbB) (Leibinitz rule),

and

(3.13) dTAo = Fr.

Thus computing dk(A0)
d is just like computing the A -th derivative of

a function of one variable raised to the d-th power. I.e., let f(x) be a
function of one variable. Then

(3.14) φkfd{x) = (/T> = Σll+_ld=kch...ldf^...f^.

In particular, all the chmmmld with l± + ... + ld = k are nonzero. One way
of computing the coefficients is to use induction via the formula

(3.15) (/')(r) Q

q.e.d.
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Note that as long as p < d, \FFp

Vd(x)\x = Ψ{SPT*) for all x e X
because of the FPFQ~P term in (3.11). This property is unchanged if
the higher fundamental forms of X C PV are nonzero. This observation
is a generalization of the statement that at smooth points x £ X there is
always exactly an (α — l)-dimensional family of hyperplanes osculating
to first order. It implies

Proposition 3.16. Let Xn C ΨV = CPn+α be a variety and let
x E Xsm. For all p <d,

,. ({not necessarily irreducible ) hypersurfacesλ
\ of degree d osculating to order p at x j

Proof.

-dim(ImageFF^ ( x ) x ) .

q.e.d.
The pattern in (3.16) does not continue. For example, it is not true

that the space of hypersurfaces of degree d osculating to order d + 1 is
of dimension

The actual dimensions of the spaces of osculating hypersurfaces depend
on properties of the differential invariants of X that we will discuss
shortly. However, independent of the structure of the invariants, there
are lower bounds on the dimensions for d + 1 < k < 2d — 1.

To see this, first note that the filtration x cf CV induces a (2d+1)-
step filtration of SdV. For example, the seven-step filtration of S3V
induced is

{x3} C {x2f} C {x2V,xf2} C {xTV,f3}

C {xV2,T2V} C {TV2} C {F 3},

where x3 = χoχoχ,xf = χof etc...
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Considering the fundamental forms dually as maps

: SkT* -> NMX)/ I m a g e F F ^

the image of FF*d^x^ lies in a quotient of the (k + l)-st term of the
filtration of SdV. Since the filtration has (2d+1) steps, it is not possible
for kerFFjj/XΛ to be zero for k < 2d. This leads to lower bounds on
dim(ker FFjd(X)) for d < k < 2d — 1. For example we have

Proposition 3.17. Let Xn C ΨV = QPn + α be any variety, and
x £ X be any smooth point. Then

j . ((not necessarily irreducible) hypersurfaces of) fa + d—l\
\ degree d osculating to order 2d — 1 at x j ~ \

Proof. The first term in any FF£d ( X) for which SdN* is not in the

kernel is (F2)d, which appears in F F ^ ( X ) . Thus SdN* C k e r P P ^ j .

Finally note that dim SdN* = ( α + ^ 1 ) . q.e.d.
Another way to phrase the upper bounds on the dimensions of the

space of osculating hypersurfaces is in terms of lower bounds on the
dimensions of the osculating spaces. For example,

dimί>2(X) < n + Γ + l J + o(l + n),

(3.18)

= dimFSPV,

and



DIFFERENTIAL-GEOMETRIC CHARACTERIZATIONS 55

dimf<%,(X) < „ + (» + ») + (» + 2 ) + „(! + „)

dimfj% (

We now rephrase (1.6) in a manner that will allow us to use projective
differential invariants to approximate it and interpret it geometrically.

There is a natural codimension a subspace of N*rX^ namely
(Nx^1)1-, which in particular contains all the hypersurfaces in Id that
are singular at x.

Proposition 3.19. Let x e X C ΨV be a smooth point. X is a
complete intersection if and only if for all A;,

hΠiNx^YΞΞO mod {Ik-ioV^niNx1*-1^.

Proof By (1.6), it is sufficient to show that

(3.20) ker[d]fc = Ik Π {Nx*'1)1- mod(Jfc_i o V*) Π (Nx^1^.

Let (xo,xa,xμ) be a basis of V* (which we also think of as linear
coordinates on V) such that [1,0, ...,0] = x, and f = {xμ = 0}. Then
N* is spanned by {dxμ}. Expressed in terms of our basis, elements of
(Nxk"ι)± have no ^ ( z 0 ) * " 1 terms. If P e h is such that dPx φ 0, then
P — y(x°)k~1 + ... where y = cμx

μ for some constants cμ, and therefore
P i \Nxk~λγ. If [dPx] = 0, but dPx φ 0, then P = x°P' + P" where
P' e Ik-λ and dPx' = 0. q.e.d.

One can define conditions that imply the condition (CI)d by requiring
that for some fixed k, the analog of (3.19) holds for the hypersurfaces
of degree d osculating to order k. More precisely, that

(3.21-ib) kerFF* d P 0 Π (AΓ^"1)-1 = 0mod(/d_! o V*) Π {Nx^1)^.

Definition 3.22. Let X C ΨV be a variety and x G Xsm We will
say X is known to have no excess equations of degree d after taking k
derivatives at x, or that X satisfies {CI)k

d at x, if (3.21.k) holds at x.
We will work with the condition {CIfd

d. By (3.10), k = 2d is the
smallest possible k for which (3.21.k) could hold. We have no reason to
believe this is the "correct" condition but it provides a useful starting
point. (By "correct" we mean that it will be possible to prove some
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global theorem that forces the condition to hold under suitable codi-
mension and smoothness hypotheses about X.) We will require these
restrictions hold at general points instead of all smooth points. This will
enable us to compute using only a fixed, finite number of derivatives.

Proposition 3.23 (generalized Monge systems). Fix positive
integers dλ < d2 < ... < dr and αχ,α2, ...,α r, where aλ + ... + ar = a.

If Xn C ΨV = QPn+α is a complete intersection and x E X is a
general point such that for all dj and for all k such that dj-i < k < dj
(set d0 = 0),

(3.24) dim{ker FF* f c ( x )} modiNx^'1^ = aλ + ... + aά

and

(3.25) (CI)2

k

k holds at x,

then X is a complete intersection of aλ hypersurfaces of degree dλ, a2

hypersurfaces of degree d2, ... , ar hypersurfaces of degree dr.
Moreover, {dPx\P G kerFF^ J

( x ) } = N^. where N%. is the j-th term

in the natural filtration of N*X (1.4).
Proof. The assumption of (CI)2

k

k at x implies that the only possible
elements of kerFFJ^^ x correspond to smooth hypersurfaces. (3.24)

implies F F ^ j x = 0 so Id = ker F F ^ J

( X ) x. Furthermore, (3.24) implies
dim(Idj/(Id*_ιoV*))=aj.

 d ' q.e.d.
Proposition (3.23) needs some explanation. (3.24) may be understood

as systems of partial differential equations. In fact, if one writes out
the differential invariants in terms of local coordinates, then (3.24) is a
system of PDE of order 2dr + 1 which specializes to the classical Monge
equation (3.6) when n = a = 1 and d = 2.

The conditions (CI)2

d

dj expressed in terms of local coordinates are
also conditions on the derivatives, but at least in small codimension,
they are open conditions and one might hope to prove that the open
conditions must be satisfied in certain geometric situations. The propo-
sition implies:

Among complete intersections that satisfy suitable genericity condi-
tions, if d is the largest degree of a hypersurface essentially containing
X, then the ideal of X can be recovered by taking 2d + 1 derivatives at
a general point.

In practice, it is actually useful to work with a stronger condition
than (C/)^d. To understand the stronger condition, interpret (CI)2/ as
saying that k e r F F ^ ( x ) is as small as possible modulo the differentials
of the polynomials that are smooth at x. The stronger condition will
be for d < k < 2d, that k e r F F ^ X ) be as small as possible modulo
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the differentials of the polynomials that are smooth at re. In this paper
we will only discuss this stronger condition in the case d = 2 and will
explain it in the next section.

4. Osculating quadrics

We now discuss the quadrics containing X C FV in detail. We assume
throughout this section that IIIχ — 0 at general points.

Consider the fundamental forms of υ2{X) at a point x restricted to the
conormal directions corresponding to the osculating quadrics singular at
x. Using the notation T — f/x, N = F/Γ, we have

F F ^ 2 ( Y ) : T*x* ->> T* (Identity on the first factor),
FF'2(X)l(Nχ)^ : S2T* -> S2T* (Identity map),

(4.1)

*μ : N*T* -> 53T* (// o Identity map),

(F3 o Identity map + II o II).

will be as small as possible if

(4.2) F2F1 : (NT)* -> ^ Γ *

is injective, and assuming (4.2) is injective, kerFF*,xJ(jvz)-L will be
empty if

(4.3) F2F2 : N2* -> SAT*

is also injective.
We will say that X satisfies strong genericity in degree two at x if

(4.2) and (4.3) are injective. One can similarly define strong genericity
in degree dat x, but it is more complicated because one needs to take
/d_i into account.

It will be useful to study (4.2), (4.3) in bases. Let [x°,xa,xμ) be an
adapted basis of V*, dual to (Ao, Aa, Aμ). We also think of (x°Jx

a

ix
μ)

as linear coordinates on V.
The induced basis of S2V* is (xoxo,xaxo,xμx°,xax(3,xμxβ,xμxί').

(3.4) implies

(4.4) k e r F F t 2 ( x ) = {xμx° ,xaxβ ,xμxβ ,xμxv),

( x ) = {xμx° - qμ

βx
ax^xμxβ,xμ



58 J. M. LANDSBERG

Beyond this, the spaces of osculating quadrics depend on the structure
of the invariants of X.

ΈΈ\,X^ maps its domain as follows:

μ 0 μ rr<*~β .

XX— qaβX X •—

(4.5) xμxΊ H

xμxv ^ 0,
where we have written Fμ = rμ

βΊω
aωβωηί etc ... (Here, since we have

chosen a particular frame, the coefficients rμ

OLβΊ etc... are well defined).

The failure of (4.2) to be injective means that there exists a nontrivial

equation lμq
μ = 0 with lμ G T*, qμ G \IIX\ We will call such an equation

a linear syzygy in IIX.
Similarly, (4.3) will fail to be injective if there exists a nontrivial

equation kμvq
μqv — 0 with kμv = kvμ G C. We will refer to such an

equation as a quadratic relation among the quadrics in \IIχ\.
In fact, requiring (4.3) to be injective is redundant:
L e m m a 4.6. Let T be a vector space. If a system of quadrics

A C S2T* satisfies a quadratic relation among the quadrics in A, i.e.,
an equation of the form cμvq

μqu = 0 with qμ a collection of independent
elements of A and cμv = cvμ constants (not all zero), then A has linear
syzygies.

Proof. Let v E T. Then

i.e.,

which is a nontrivial linear syzygy with lv = cμu(υ\qμ) as long as υ fi
Singloc(cμι/g

/x) for some v. Since not all the quadrics cμuq
μ are zero, we

can always find such a v.
In summary, we have
Proposition 4.7. Let X C ΨV be a variety. Let x G X be a general

point and assume IIIχx = 0 and IIχx has no linear syzygies. Then X
satisfies (C/) 2 at x, i.e., X has no excess equations in degree 2 at x.

Remark 4.8. One can compare (4.7) with the following two varieties:
The twisted cubic curve C C P 3 is cut out by quadrics and is not a
complete intersection, but IIIC φ 0. The Segre X = P 1 x IP2 C P 5 , or
any generic hyperplane section of it, is also cut out by quadrics and not
a complete intersection, but there is a linear syzygy among the quadrics
in IIX at any point due to the point in the base locus (see 5.4 for more
details).
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We now derive a more refined version of (3.23) for intersections of
quadrics.

In order that N* be spanned by differentials of quadratic polynomials,
it is necessary that

(4.9.k) {dPx\P € k e r F F ^ ) } = Nζ

for all k. (We supress reference to the base point x in what follows.)
For k < 2, (4.9.k) automatically holds; for k = 3, (4.9.3) will hold if and
only if

(4.10) F3

μ = 3a^F2»

for some constants a^Ί € C. Notice that if r ^ 7 = &aβ-y^Ίq^β in some
frame, it holds in any choice of frame (with different constants α£7), so
the expression (4.10) has intrinsic meaning. If (4.8) holds, then

(4.11)

Assuming (4.10), and that there are no linear syzygies in IIX,
maps its domain as follows:

(4.12)

- qμ

aβx
ax0 - aϊax"

xβx"

(4.9.4) is the condition

(4.13) F» = Wuaω«Fζ

for some constants b%τ = b^v G C (this expression also has intrinsic
meaning, in that if it holds in one choice of frame, it will hold in all
choices). If (4.10), (4.13) hold and there are no linear syzygies in IIX,
then

(4.14) 2 ( ) ^

^ maps its domain as follows:

(4.15) - > 2F5

μ -

(4.9.5) is the condition

(4.16) F5

μ = haζ^F

(which also has intrinsic meaning).



60 J. M. LANDSBERG

If (4.10),(4.13),(4.16) and strong genericity all hold, then F F * 2 ( X ) =
0. Since we are at a general point, this implies all higher fundamental
forms are zero and I2 = *

In summary: if

(4.17) Fμ =

where aμ

a,b
μ

τ = bμ

u G C, and strong genericity in degree 2 holds at x,
then N* is spanned by the differentials of a set of generators of J2, i.e.,
the only hypersurfaces that essentially contain X are of degree two. In
this case, we will call (4.17) the generalized Monge system for quadrics.

In summary, we have
Theorem 4.18. Let X C ΨV be a variety and x G X a general

point. Assume IIIχx — 0 and that there are no linear syzygies in \IIχ\x

Then

(4.19)
dim{ quadrics osculating to order three at x}

d\m{quadrics osculating to order four at x} < a — 1.

If the generalized Monge system (4.17) holds, then

— \x x — qaβ

-bμ

τx
vxτ, n + 1 <μ<n + a},

where q£β are the coefficients of the second fundamental form at x, and
aμ

ajb
μ

τ are coefficients expressing F3,F4 in terms of F2.
Equality occurs on the first (respectively second) expression of (4.19)

if and only if the first (resp. second) line of (4.17) holds at x. If the
generalized Monge system does not hold, then Iχ is not generated by
quadrics.

Theorem (4.18) implies:
Corollary 4.20. Let X C ΨV be a variety and x E X a general

point. Assume IIIχx = 0. If there are no quadric hypersurfaces singular
at x that osculate to order four at x, and Q is a quadric hypersurface
osculating to order five at x, then X C.Q.

Remark 4.21. The assumption of small codimension (which is
implicit in the hypotheses that F F ^ X = 0 and that there are no linear
syzygies in |//χ 1̂ ) is essential to being able to determine the quadratic
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equations of X by taking only five derivatives. One already needs more
derivatives for a curve in P 3 .

Corollary 4.22. X as in (4.18) is determined by IIX,F3,F4 at
one general point. In fact, the higher variations of II are given by the
formula:

(4.23)

+bμ

τ(Σ^m=kclmF^FJ) VA: > 2.

Example 4.24. Let X6 C P 1 2 , let x E X be a smooth point and
let

(4.25) IIXx =ωιω4A7 + ω2ω5As + ω3ω6A9 + ωλω5A10

+ ω2ω6An + ω3ω4A12.

Say in addition that F3 = F4 = 0. Then Ix is generated by

(4.26)

I X X """"" Jb Jb y Jb Jb ~~~ Jb Jb y Jb Jb ~~~ Jb Jb X X

- xιx\x°x11 - x2x\x°x12 - x3x\x7xsx9 - x10xnx12}.

The presence of relations or syzygies among the quadrics in \IIχ\
can produce equations of higher degrees, that are not elements of J2 o
SkV*, as in (4.26). Not all syzygies and relations actually produce such
equations, there are tautological ones, which we will call the Koszul
syzygies. For example, let \IIχ\ = {Qμ}, where Qμ = q^βωaωβ. For
each μ < v there are Koszul syzygies

(4.27) q:βω
aωPQ» - qμ

aβω
aω^Q^ = 0.

Theorem 4.28. Let X C ΫV be a variety. A sufficient condition
for Iχ to be generated by quadrics is that at a smooth point x G X the
following hold:

l. {dPx\Pei2} = N*x.

2. Any sygyzies or polynimials satisfied by \IIχ\x of the form

1 aμi aμhωait'"*ap — 0
*μi, ,μfc,αi,...,αpC/ •••(/ ω — V,

where /μi,...,μfc,αi,...,αp € C, other than the Koszul syzygies, are generated
by the linear syzygies and the quadratic relations among the quadrics in
\Πχ\x.

In particular, if X C ΨV is a variety, x G X is a general point, there
are no linear syzygies in \IIχ\x, no polynomials satisfied by the quadrics
in \IIχ\x, and the generalized Monge system (4.17) holds, then Iχ is
generated by quadrics; in fact X is a complete intersection of quadrics.
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Proof. Let (x°, xa,xμ) be an adapted basis of V* dual to (Ao, Act, Aμ).
Consider the case of cubics containing X. Condition 1 implies that

I2 contains quadrics of the form

(4.29) xμx° + ...

for each n + 1 < μ < n + α, so I2 o V* has cubics of the form

(4.30) xB(xμx° + ...)

V0 < B < n + a. Given P E /3, we may modify P by elements of I2 o V*
so that we may assume

(4.31) P(ABμ0) =0V0 <B<n + a.

That P vanishes to all orders on X implies that P ( F F * 3 ( X ) ) = OVA;,

where we have considered the pairing S3V* x F F j 3 ( x ) -)• SkT*. In
particular,

P ( P P i , w ) = 0 =» P(Aa00) = 0 Vα,

= O^P(Aaί30) = 0 Vα,/3,

= 0 =• P ( A ^ 7 ) = 0 Vα,/3,7,

P(FF 4

V 3 ( X ) ) = 0 =

(4.32) = Θ ^ 7 , ^ P ( A μ 7 ( 5 ) = 0 Vα, /?, 7 , δ,

P(FFl3(x)) = 0 =• P(6aβΊδeq
μ

aβq;δAμue)

= 0 Vα,/?,7,J,e,

P(FF^ 3 ( X ) ) = 0 =• P ( 6 Q l . . . α 6 ? : i t t 2 g ; α 4 4 α 6 V )

= 0 Vαi...α6,

where on each line we have used the line above and (4.31) to reduce
to only having one nonzero term to worry about. Using (4.32) and the
absense of polynomials and linear syzygies, we see that the modified P
is zero, i.e., that I3 = 0mod/2 o V*.

The proof for equations of degree d is the same. One may assume
that P contains no terms of the form xBl...xBd-2xμx°, and use the first
2d + 1 fundamental forms of υd(X). q.e.d.

We now explain what happens in the special case of (4.17) when
F3 = F4 = 0:

Theorem 4.33. Let X c ΨV be a variety and x € X a general
point. Assume IIIχx = 0. If F3 = F4 = 0 at x, then the minimal
number of generators of Iχ is a + the minimal number of generators of
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syzygies and polynomials in \IIχ\x modulo the Koszul syzygies. Further-
more, either X is a smooth homogeneous space or XSing C H, where H
is a hyperplane, and X\(X ΠH) is a homogeneous variety in the affine
space ΨV\H. In either case X is birationally equivalent to P n, and Ix

is generated by quadrics if and only if all the syzygies and polynomials of
\IIχ\ are generated by the linear syzygies and quadratic relations among
the quadrics in \IIχ\ and the Koszul syzygies and relations.

Proof. X is given by the following construction (see [11], [9]):
Fix any smooth point x £ X. Let Y = Baseloc|//χ|x C ΨΓX. Lin-

early embed T C C n + 1 . Let y°...yn be linear coordinates on C 1* 1 such
that T = {y° = 0}. Consider the rational map:

(4.34) BlγF
n > P{|77J,y°oT*}* C F{OFn®Xγ} c P ^ C ^ 1 ) .

To see that the image of this map is isomorphic to X, note that it has
the correct codimension and that all differential invariants at x are the
same (only IIχ is nonzero for both X and the image). Thus the varieties
are isomorphic.

Remark 4.35. If X is as in (4.33), let P 0 " 1 = {x° = 0,xa = 0}. X
will be singular in the space X Π Pα~x unless the number of generators
of syzygies and polynomials modulo Koszul is at least a — 1. In fact,
if there are no polynomials among the quadrics, then P 0 " 1 c X (see
(4.39)).

4.36. Example 2.37 continued. (2.39) may be rephrased as
F4 = Kr^n After normalizing 6 $ 1 ) { n + 1 ) = b^2Kn+2) = 0, all our
effective normalizations that keep F3 = 0 are used up and the equations
of X are

r n+1 0 y a a _ LΠ+1 n+1 n+2 _ LTI+1 n+2 n+2

\X X — λjaX X °( n +l)(n+2) X X °(n+2)(n+2)X X J
n+2 0

X X 0 y \ a a _ LΠ+2 n+1 n+1 _ ϊ,n+2 n+1 n+2Ί
X — ZjaΛaX X °(n+i)(n+l)j; X °(n+l){n+2)X X I'

Note that since it is impossible to normalize both the α£α's and the
6£r's to zero simultaneously, X cannot be rational.

Example 4.37. We describe the equations of varieties as in (4.33)
whose ideals are generated by quadrics. Write the map (4.34) as

x -> [y V , yV,..., y°yn, Q1 (*), - , Qa(*)} = [χ°, -, χn, -, χn+a]

Say there are r linear syzygies kι

μax
aQμ, 1 < I < r, and s quadratic

relations among the quadrics in |//χ|, k™vQ
μQv', 1 < m < s and as-

sume they and the Koszul syzygies generate the space of syzygies and
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relations. The a + r + s equations of X are

(4.38) {x°x" - qμ

aβx«xβ, kι

μax»x«, k™x"x"}.

4.39. An apparent dichotomy for varieties cut out
by quadrics.

It is extremely difficult for a variety X C ΨV with IIIχx = 0 at
general points x G X, and satisfying (4.17) to have extra equations
without X being rational. For example, say there is a linear syzygy of
the form

(4.40) kβaω«Fξ = 0,

where kμa E C. In order for this linear syzygy to produce an extra
equation, the constants CLμ

a ,b^τ must satisfy the equations

kmω«aμ

vβωVFv

2 = 0,

kμaω
a(a^a%ω^F2

τ + V^FζFζ) = 0,
(4.41)

k^W^ia^aUuSFZ + KOF;F2°)

δ

2 η = 0,

which are severely overdetermined, on the order of n5 equations for the
a2n + (aγ)a coefficients < α , bμ

vτ.
Question 4.42. Let X be a variety and let x £ X be a general

point. If Ix is generated by quadrics and F F ^ X = 0, is it necessarily
the case that X = Zx Π Z2 where Zλ is a complete intersection and Z2

is rational, and both Iz17 Iz2

 are generated by quadrics?
Remark 4.43. Note that if IIIX φ 0 then equations (4.41) are

replaced with a much less overdetermined system, so the validity of the
question is heavily dependent on IIIx = 0 . If a < \[n - (b + 1)], then
we are guaranteed IIIX — 0 by [9, (4.15)].

We will show the answer to question (4.42) is yes in the codimension
range a < I[n-(&+l)+2] in §6. If the answer to (4.42) is no, then (4.41)
gives a guide to all potential counter-examples to Hartshorne's conjec-
ture on complete intersections whose ideals are generated by quadrics.
The first intersesting case is for 11-folds in P 1 5.

The system one must solve to get a non-complete intersection is as
follows:

Let 1 < i, j , k < r, r + 1 < 5, t < n. One must find constants

n+i n+i n+i
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α n i* bn+i- , as follows: Let r n ί ι = & R an~*~iqμ

etc... be given as in (4.17). One needs

(4.44) Gijkq^k1 = 0> Q^ + C + ' = 0,

:* — n res... T-w+t _ π <rn+* j . τ. n +^ — n

and the analogous equations for F 4 and F 5 to hold. If one is looking for
smooth non-complete intersections, one also needs to check smoothness,
which amounts to genericity conditions on α^α,6ίίτ.

Proposition 4.45. The answer to (4.42) is yes for surfaces in P 4

and P 5 and for 3-folds in P 5 .
Proof. Case of surfaces in P 4. \IIχ\ must consist of two quadrics if

IIIχ = 0. In order for X to fail to be a complete intersection, there
must be a linear syzygy in \IIχ\. This implies that we can choose frames
such that IIx = ωιωι ® A3 +ωxω2 ® A4 in a neighborhood of our general
point x. The variablility in the coefficients of F3 is as follows:

= g\+ g\ + 5?,
? 2 2 \22=g\+gl

Ar3

222 = 0, Δr 4

2 2 = 0.

Using g°, set rln,rl12,rfu,rf12 = 0. If Ix is generated by quadrics,
(4.17) implies

τ 3 — In3 τ 3 — n3 -4- 9 / Ί 3 T 3 — 9 ^ 3 τ 3 — Π
' 111 ~ o α 3 1 5 Ί l 2 "~ α 3 2 "T" ^ a 415 ' 122 ~~ ^"425 ' 222 ~~ U5

(4.47)
r4 _ o Λ 4 r 3 _ n4 i o Λ 3 r 4 _ o Λ 4 ^3 _ η
' 111 — o α 3 1 ' '112 ~~ α 3 2 ' ^ α 415 ' 122 ~~ z α 4 2 5 ' 222 ~" U J

which implies α\x = α^ + 2α\λ = α^ = α3 1 = α^ + 2α^ = 0 in these
frames.

To have the syzygy persist, the relation ωxF3

4 — ω2F$ = 0 must also
hold, which forces all the α^α = 0 and thus F3 = 0.

Similarly, if Ix is generated by quadrics, then F4

μ = b^τF2F2 which,
after normalizing by #3,#4 and requiring ωιF% — ω2F4

3 = 0, implies
F 4 = 0 .

The case of a 3-fold in P 5 is similar; only there are two possibilities
for |//χ|, namely {u^α ^α/α;3} and {α/ω^α/α;3}. The case of a surface
in P 5 was proved in [10] (assuming even less than we assumed here).

5. Some homogeneous examples

In this section we write out the equations of some homogeneous va-
rieties in a manner that illuminates the computations of §4.
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Example 5.1, The Veronese. v2(FW) -+ ΨS2W.
Let W have basis (B0,Ba), 1 < α,/3 < n. Let Ao = Bo o B0,Aa =

BQ O Ba. Let /i = (α, /?), α < /? index the normal directions, i.e.,
Aμ= Bao Bβ. If 7 < 5 we may adapt frames such that

(5.2) IIX = ωaωβA(aβ) mod{AQ, A*},

i.e., q<°'0) = δ«δβ

δ. The equations are

{χOχ(atβ) _ X<xχβ^χ{«,0)χΊ _ χ(«,Ί)χβ _ χ(P>Ύ)χ<*,

(5.3)

(where in the second term we require a < β < 7) of which there are
a + (3) + [(4) + Sis)] = dimΛ2(52W). The first set of equations comes
from |//χ|, the second linear syzygies in \Πχ\, and the third quadratic
relations among the quadrics in \Hχ\-

Example 5.4, The Segre. ΨWX x ΨW2 -> V{Wχ ® W2)
Let (JBQΪ -Bα)? (Co> Cj) be respective adapted framings of Wι,W2, 1 <

i, j < m, 1 < α, β < n. Let Ao = Bo ® Co, Aα = Ba® Co, Aj = Cj ® J50

and Aα j = Ba ® Cj. So {Ao} C {Ao, Aα, Â  } C {A), Aα, A,-, Aαj} is a
first order adapted framing. Let {ωα}, {φ1} be the pullbacks of the semi
basic forms on ΨWi and ΨW2 respectively. Then

(5.5) IIχ = ω«φ> ® Aβ i mod {Λ, Aαj A,}.

The equations of the Segre are

{x°xaj - xaxj, xjxak - xkxaj, xβxak - xaxβk,
(5.6) x°3χβk-χMχak

where the first set of equations comes from IIX, the second and third
from linear syzygies in |//χ|, and the last set from quadratic relations
among the quadrics in \IIχ\, a total of mn + [(^)m + (™)n] + Q ) ^ )
equations.

Example 5.7, The Grassmannian G{2,W) C Ψ(A2W).
Identify the tangent space to G(2, W) with the 2 x (m - 2) matrices

(dimW = m) and index everything accordingly. Write the normal
indices as μ = (ij),i < j , 3 < i,j < m and the tangent indicies as
a = (lj) or (2,-). Then

(5.8) IIχ = (ωljω2k - ω2jωιk) ® Ajk mod {Ao, Aa}.
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The equations are

{ x°xij - (xux2j - xιjx2i), xlkxij + xuxjk - xljxik,
(5.9) x2kxij + x2ixjk - x2jxik, xijxkl + xilxjk - xikxjl},

where the first set of equations comes from IIχ, the second and third
from linear syzygies in |//χ|, (which comes from picking two columns
and a tangent vector) and the last set from quadratic relations among
the quadrics in \IIχ\ (which comes from picking pairs out of four co-
lumns), a total of a + 2(™) + (™) equations.

Example 5.10, The Severi Varieties. (In particular, E6/P C
P2 6).

Refer to [10] for notation. Let A be a division algebra over C. Let A2

have division algebra valued coordinates (u, υ). For X Severi, TXX ~ A2

and

(5.11) \IIX\ =Ψ{uϋ,uu,vϋ},

where the first expression gives dimcA quadrics, and the other two ex-
pressions give one each. The linear sygyzies are

(5.12) u(uv) — v(uu), v(uv) — u(vv),

where each expression gives dime A linear relations. There is a unique
quadratic relation among the quadrics in |//χ|;

(5.13) (uϋ)(uυ) - (uu)(υϋ),

where uv is the same set of quadrics as uv. In fact we can see how these
fit into the set of all equations by writing an element of y G % = V as

(
uι r2 u3 I , TiE C , Ui e A,

j
and taking

T h e equations for the Severi variety are just the 2 x 2 minors. Here

plays the role of x° in the previous examples. The equations are:

(5.15) - u2uϊi r2r3 -
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where the first three terms (2 +dime A equations) come from \Hχ\, and
using them to rewrite the rest without ri,r2,u3, we see the fourth and
fifth terms (2 dime A equations) are the linear syzygies in \IIχ\, and
the last term (1 equation) is the quadratic relation among the quadrics
in \IIχ\. The reader may find it amusing to explicitly correlate this
description of v2(f2), Segre(P2 x P2), and G(2,6) with the ones given
above.

Example 5.16, The Spinor variety S 1 0 C P 1 5 .
Let V = C5. Write C16 = AeυenV = A°V Θ A2V Θ A4V with basis

(A0,Aij,Ai), 1 < i < j < 5. Fixing x E S, we may identify x ~ [Ao] ^
P(Λ°V), T x§ ~ {A0,Aij} ~ (Λ°F Θ A2V), and the system of quadrics
obtained from the second fundamental form is the complete system of
quadrics with base locus the Grassmanian G(2,5) C P(Λ2F). We may
take

IIX =(ω12ω3i - ω13ω24 - ωuω23) ® A5

+ (ω12ω35 - ω13ω25 - ω15ω23) ® A4

(5.17) + (ω12ω45 - ωuω25 - ω15ω24) ® A3

+ (ωl3ω45 - ωuω35 - ω15ω34) ® A2

+ ( ω 2 3 ω 4 5 - ω2iω35 - ω25ω34) ® A1 mod{A0, Aiό}.

Here there are only linear syzygies. The equations are

{x*x° - (x12x34 - x13x24 - xux23),

x4x° - (x12x35 - x13x25 - x15x23)

x3x° - (x12x45 - x14x25 - x15x24),

x2x° - (z 1 V 5 - x14x35 - x15x34),

(5.18) xιx° - (x23x45 - x24x35 - x25x34),

x25x5 + x24x4 + x23x3-x12x\

x35x5 + x34x4-x23x3-x13x\

x45x5-x34x3-x24x2-xux1,

The reader may find it amusing to explicitly correlate these equations
with the system of quadrics (5.11) with A = O.
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6. Properties of systems of quadrics

In this section we study what the existence of a linear syzygy implies
about a system of quadrics and the implications of a companion condi-
tion. We then combine these observations with the results of [9] and §3
to draw some global conclusions.

Given \IIχ\ C S2T*, a system of quadrics arising from the second
fundamental form at a general point of a variety, any cubic in the third

fundamental form must be in its prolongation, \IIχ\ := (\IIχ\®T*) Π
S3T* (see [6, (1.47)], [9, (3.12)]). We will now define a complement to

.(i) - — .

\IIχ\ in |//χ| ® T* consisting of the space of linear syzygies. Recall
that as a Gl(T*) module, T* 0 3 naturally splits into three factors; S3T*Θ
Λ3T* Θ (5<21)T*)®2 where the last factor is two copies of the irreducible
Gl(T*) module obtained from the Young diagram with two boxes in
the first row and one in the second (hence the notation (21)). We can
choose two such copies as follows: Let

(6.1) Sί21)T* := ker(52Γ* ® T* -> S3T*),

(6.2) Si21)T* := ker(Λ2T* ® T* -> Λ3T*).

Then

(6.3) S2T* ® T* = S3T* Θ Sl21)T*.

Given Ac S2T\ define

(6.4) A[1] := (A ® T*) Π S<21)T*,

so

(6.5) A®T* = AWΘA[1].

.(1) ^ ^ [ 1 ] (1)

If | / / x | = 0, then J// x = 0, and if | / / x | = 0 and \IIX\ =
0, then by (4.18) the space of quadrics containing X is at most α-
dimensional.

We now show that if the codimension of X is sufficiently small, then

\IIX\ = 0 and \IIX\ = 0; i.e., that \IIX\ ® T* is disjoint from the
two Gl(T) invariant linear spaces in S2T* ®T*.

Theorem 6.6. Let Xn C P n + α be a variety and let x G X be any
smooth point. Let b — dimX s i n 5. (Set b = — 1 if X is smooth.) If a <

^—^(i) (i)

| [n + l - ( 6 + l ) ] , ίΛen 17^^ - 0, where \ΠX\X =
is £Λe prolongation of \IIχ\χ.
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-—(1)

Proof. Say there were a nonzero P G \IIχ\ Consider

(6.7) J P : T - H / J χ | .

Applying[9, (6.1)] with Ax = image(JP) gives

dim(Singloc(image(jP))

(6.8) < 2(o - 1) - (dimimage(JP) - 1) + (6 + 1).

Observe that

(6.9) n = dim(ker(JP)) + dim(image(JP))

and

(6.10) ker(JP) C Singloc(image(JP)),

so

(6.11) n - dim(imageQP)) < 2α - 1 - dim(image(jP)) + 6 + 1 ,

i.e.,

(6.12) o > i [ n + i _ ( 6 + i)].
Δ

Remark 6.13. (6.6) gives a new proof of [9, (4.15)] stated in
the introduction with refined information about what the structure of
the second and third fundamental forms of a variety must be in small
codimension.

[l] [l]

To study \IIχ\ is a bit more difficult. An R 6 \Hχ\ is a map
R : T —ϊ \IIχ\ and keri? C Baseloc|//χ|, so if we had a theorem
directly restricting the size of base loci of subsystems instead of singular
loci, we would be in better shape.

In general, we can think of IIX as

(6.14) it : T - > T ® JV

w*->IIχ(w,').

If we restrict ii to ker i?, we get a map

(6.15) ii' : keτR -> (ker R^ ® NR,

where NR := π(ker R)(T*). Now R e ker(|i7χ| ® T* -> S3T*) implies
(keri?)x ~ NR and moreover that ii' descends to a map

(6.16) ii' :keτR-+ A2(keri?)x ~ A2NR.
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In bases, the situation is as follows: Let L := keτRL C Γ* and let
M C T* be any complement to L. We may write S2T* = S2L ®{L®
M) Θ S2M.

Let A = R{T) C |7iχ|. Let {qj} be a basis of A and {lj} a basis of
L. Write qj = V'' + c?+ dj reflecting the decomposition of S2T*. Then

(6.17) V = b)kl
jlk, d = m^ Λ , ^ = 0,

with b)k e C, ©tjibδj Λ = 0, m} = -mj G M.

By rechoosing M if necessary, we may also assume

(6-18) b)k = Vik.

Lemma 6.19. Let Ap C S2T* be an p-dimensional system of
quadrics on an n-dimensional vector space. Say there is a linear syzygy

where both I1 G T* and Qι G A are independent sets of vectors. Then
VQeA,

rankQ<2(p-l).

Proof. Let

(6.20) Q = X1Q1 + ... + XPQP, X G C.

Let /p,..., lp be a dual basis to I1,..., lp. Observe that

(6.21) (λ1/1 + ... + λ%)JQ = O.

On the other hand, we may write

(6.22) Q = ZV + ...lpap

for some a1...a? G T*. Now change bases in L such that lp = (λ 1^ +
...λ%)*. Then ap = 0 and we see rank Q < 2(p - 1).

Taking the m^ all independent (for i < j), produces quadrics of rank
2(p — 1), so the result is sharp. q.e.d.

Applying [9, (6.1)] to (6.19),(4.18) yields:
Lemma 6.23. Let Xn C P n + α be a variety and let x G X be

a general point. Let b = dimX s i n p . (SW b = —1 if X is smooth.) If
a < | [n — (b + 1) + 3], then there are no linear syzygies in | J/χ | x .

Proof. Lemma 6.20 implies that if there is such a syzygy, then there
is a p-dimensional subsystem Ax C |//χ| x with the property that no
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quadric in Ax is of rank greater than 2(p — 1). Now [9, (6.1)] applied to
Ax gives

(6.24) 2(α - 1) + (b + 1) > n + p - 1 - 2(p - 1),

i.e.,

(6.25) 2(α - 1) + p > n - (6 + 1) + 1.

Finally just notice that p < a. q.e.d.
By Lemma 6.23 and Theorem 4.18 we thus obtain
Theorem 6.26. Let Xn C P n + α be a variety and x E X a

general point. Let b = d imX s i n 9 . (Set b = — 1 if X is smooth.) If
a< \[n- ( 6 + 1 ) + 3], then

dim{quadrics osculating to order three at x}

(6.27)

dim{ quadrics osculating to order four at x} < a — 1.

Equality occurs in the first (respectively second) expression of (6.27)
if and only if (4.9.3)(resp.(4.9.4)) hold at x. If the generalized Monge
system (4.17) holds, then X is a complete intersection of the (a — 1)-
dimensional family of quadrics osculating to order four.

Proof. It only remains to show there cannot be any hypersurfaces
of higher degree generating new elements of the ideal of X. The only
way to have an equation of higher degree is if there exists a nontrivial
polynomial P(Q X , . . . , Qa) = 0, which is not possible in this codimension
range as the existence of such a polynomial would imply the secant
variety of X is degenerate. q.e.d.

Corollary 6.28. Let Xn C P n + α be a variety and x e X a
general point Let b — <&mXsing. (Set b = — 1 if X is smooth.) If
a < | [ n — (b + 1) + 3] then any quadric osculating to order four at x is
smooth at x, and any quadric osculating to order five at x contains X.

Corollary 6.29. Let Xn C P n + α be a variety with Ix generated
by quadrics. Let b = d i m X s i n ί r (Set b = —1 if X is smooth.) If a <
| [ n — (b + 1) + 3], then X is a complete intersection.

Acknowledgements

The inspiration for this paper came from a series of conversations with
Mark Green, who has also provided substantial help at each step along



DIFFERENTIAL-GEOMETRIC CHARACTERIZATIONS 73

the way. After reading a preliminary version of this paper, S. L'vovsky

pointed out an error in Lemma 6.19 and explained how to correct it.

He also came up with some new terminology which is vastly superior

to the terminology that was in the old version. The referee has also

provided numerous suggestions and corrections which have hopefully

made the paper more readable. It is a pleasure to thank professors

Green, L'vovsky, and the referee for their help.

References

[I] R. Bryant, S. Chern, R. Gardner, H. Goldschmidt & P. Griffiths, Exterior
Differential Systems, Springer, Berlin, 1991, 475.

[2] E. Cartan, La methode du repere mobile, Oeuvres Completes. Vol. 3, Part.
2, 1955, 1259-1320.

[3] L. Ein, Varieties with small dual varieties. I, Invent. Math. 86 (1986) 63-
74.

[4] G. Fubini, // problema della deformazione proiettiυa delle ipersuperficie,
Atti. Acad. Naz. Lincei 27 (1918) 147-155.

[5] W. Fulton & R. Lazarsfeld, Connectivity and its applications in algebraic
geometry, Algebraic Geometry (Proc). Lect. Notes in Math. 862 (1987)
26-92.

[6] P. A. Griffiths &; J. Harris, Algebraic geometry and local differential geom-
etry, Ann. Sci. Ecole Norm. Sup. 12 (1979) 355-432.

[7] R. Hartshorne, Varieties of small codimension in protective space, Bull.
Amer. Math. Soc. 80 (1974) 1017-1032.

[8] G. Jensen & E. Musso, Rigidity of hypersurfaces in complex protective
space, Ann. Sci. Ecole Norm. Sup. 27 (1994) 227-248.

[9] J. M. Landsberg, On second fundamental forms of protective varieties,
Invent. Math. 117 (1994) 303-315.

[10] , On degenerate secant and tangential varieties and local differen-
tial geometry, Preprint available, alg-geom 9412012.

[II] R. Lazarsfeld & A. Van de Ven, Topics in the geometry of protective space,
Recent Work of F.L. Zak, DMV Seminar, Birkhauser, Boston, 1984.

[12] S. L'vovsky, On Landsberg's criterion for complete intersections, alg-geom
9408006.

[13] Z. Ran, On protective varieties of codimension 2, Invent. Math. 731 (1983)
333-336.

[14] M. Spivak, A comprehensive introduction to differential geometry, Publish
or Perish, Houstom, Vols. I-V, 1979.

[15] A. Terracini, Alcune question! sugli spazi tangenti e osculatori ad una
varieta, I, II, III. Atti Soc. Natur Mat. (1913) 214-247.

[16] F. L. Zak, Tangents and secants of algebraic varieties, Amer. Math. Soc.
Transl. Math. Monographs, Vol. 127, 1993.

COLUMBIA U N I V E R S I T Y




