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HARMONIC MEASURES, HAUSDORFF MEASURES
AND POSITIVE EIGENFUNCTIONS

URSULA HAMENSTADT

Abstract

Let M be a compact negatively curved Riemannian manifold with universal
covering M, and let dop > 0 be the negative of the bottom of the positive
spectrum of the Laplacean A on M. We use methods from ergodic theory
to show that A + do admits a Green’s function which decays exponentially
with the distance. Moreover for almost every point { € &M with respect to
a suitable Borel-measure which is positive on open sets, the unique minimal
positive A + Jo — e-harmonic functions on M with pole at ¢ normalized at
a point £ € M converge as € — 0 uniformly on compact sets to a minimal
positive A + dp-harmonic function.

1. Introduction

Let M be an n-dimensional compact manifold of negative sectional
curvature, and let M be its universal covering. For every z € M the
harmonic measure w® at z is a Borel-probability measure on the ideal
boundary M of M, which via the canonical identification can be viewed
as a measure on the fibre T} M at z of the unit tangent bundle T'M of
M.

Let I" be the fundamental group of M acting as a group of isometries
on M and T*M. For ¥ € T we then have w¥* = w? o (d¥)~!, and hence
the measures w® can be transported to measures on the fibres of the
unit tangent bundle T'M of M.

Denote by DTM (resp. DTM) the smooth fibre bundle over M
(resp. M) whose fibre DTM, at = € M (resp. DTM, at z € M)
equals T'M xT! M (resp. T'M xT!M). We call a function 8 on DT M
symmetric if § is invariant under the natural involution (v,w) = (w,v).
In Section 2 of this note we show:
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2 URSULA HAMENSTADT

Theorem A. There is a Hoélder-continuous symmetric function
d: DTM — [0,00) with the following properties:

1) There is a number k > 0 such that for every x € M the restric-
tion of 6% to DT M, is a quasi-distance on T:M defining the
usual topology.

2) For every x € M the measure w® is the 1/k—dimensional spher-
ical measure on Ty M induced by 6~.

Denote by A the Laplacean on M, and let & > 0 be the negative
of the bottom of the positive spectrum of A on M, which equals the
top of the spectrum of A acting on square-integrable functions on M
(see [21]). For every e > 0 the differential operator A, = A + o — €
is weakly coercive in the sense of Ancona [1], and hence the Martin
boundary of A, can naturally be identified with the ideal boundary oM
of M (see [1]). In other words, A, admits a Green’s function G. on
M x M —{(z,z) | z € M}, and the Martin kernel K, of A, is a Holder-
continuous functlon on M x M x OM such that for every z € M and
every ( € OM the assignment y — K(z,y,() is the unique minimal
positive A.-harmonic function on M with pole at ¢, which is normalized
to be 1 at z. Since A, is in fact coercive the results of Ancona imply
that there are numbers ¢, > 0, x. > 0 such that G.(z,y) < c.e X« dist(v)
whenever the distance dist(z,y) of z,y € M is not smaller than 1.

The operator Ay = A + & fails to be weakly coercive in the sense
of Ancona. In fact, Ancona gave an example of a simply connected
manifold N; of bounded negative curvature for which A, does not even
admit a Green’s function [2]. Ancona also constructed a simply con-
nected manifold N, of bounded negative curvature such that A, admits
a Green’s function, but the Martin boundary of A, consists of a unique
point. However, under our assumption that M is the universal covering
of a compact manifold, these cases can not occur. More precisely, we
denote for p € M and R > 0 by S(p, R) the distance sphere of radius R
about p in M, and let A\, g be the Lebesgue measure on S(p, R) induced
by the restriction of the Riemannian metric on M to S(p, R). In Section
3 and Section 5 we show

Theorem B. Assume that M is the universal covering of a compact
manifold M. Then the operator A + dy admits a Green’s function Go
with the following properties:

1) There are constants a > 0,x > 0 such that Go(z,y) < ae~Xdist=v)
for all z,y € M with dist(z,y) > 1.
2) There is a number ¢ > 0 such that Jsp.r) Go(P,y)?dApr(Y) < €

forallpe M,R>1.
3) liminfr oo [5, gy Go(P,y)* “dNp,r(Y) = 00 for every e > 0.
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Moreover we obtain in Section 5:

Theorem C. There is a m (M)-invariant measure class v(oo) on M
such that for v(co)-almost every ( € M and every z € M the functions
y = K.(z,y,¢) converge as € — 0 uniformly on compact subsets of M
to a minimal positive Ag-harmonic function on M.

Recall that d equals the infimum of the Rayleigh-quotients
[IV¢|I?dz/ [ $? dz over all nontrivial smooth functions ¢ on M with
compact support. However do can also be expressed via a variational
equation on the unit tangent bundle T'M of M. For its formula-
tion recall that the geodesic flow ®* is a smooth dynamical system on
T'M, generated by the geodesic spray X. There is a Holder-continuous
®t-invariant decomposition TT'M = RX @ TW** & TW** where TW **
(resp. TW**) is the tangent bundle of the strong stable foliation W**
(resp. the strong unstable foliation W**). The leaves of the stable
foliation W* with tangent bundle TW*® = RX & TW?** are smoothly
immersed submanifolds of 7'M which are mapped by the canonical
projection P: T'M — M locally diffeomorphically onto M. Thus the
Riemannian metric on M induces a Riemannian metric ¢* on TW* and
a family A* of Lebesgue measures on the leaves of W*. Write also (,)
instead of g° .

The stable Laplacean A® is a second order differential operator on
T'M with Holder continuous coefficients. For a smooth function ¢
on T'M the value of A’} at v € T*M just equals the value at v of
the Laplacean of the Riemannian manifold (W#(v), ¢°) applied to the
restriction of ¢ to the leaf W*(v) of W* through v. Moreover denote
the gradient of ¢|(W*(v),¢°) at v by (V*¢)(v) € T,W>°.

Let n be a Borel-probability measure on T*M which is absolutely
continuous with respect to the stable and strong unstable foliation, with
conditionals on stable manifolds in the Lebesgue measure class. Recall
from [12] the definition of the g° - gradient of n (if this exists). It is the
unique section Y of TW* which satisfies

[o@ 7)) dn= [wa*+Y)(6) dn

for all smooth functions ¢, on T M.

Call a section Z of TW* of class C}* for some o > 0 if Z is Holder-
continuous of class o and differentiable along the leaves of the stable
foliation, with leafwise first order jets of class C®. If Z is of class C},
then for every v € T'M the divergence div Z(v) of Z|(W?*(v), A?) is
defined at v and the assignment v — div Z(v) is of class C*.

With thise notation in Section 4 of this note we show
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Theorem D. Let ) be a Borel-probability measure on T* M, which is
absolutely continuous with respect to the stable and unstable foliations,
with conditionals on stable manifolds in the Lebesgue measure class.
Assume that the g°-gradient Y of n is of class C>* for some o > 0.
Then

~6o = sup{ [ $(A*(¢) + ¥ (¢) + gl div(Y) + 7IYIP]) dn |
pec=(T M), [ ¢ dn=1).

As a corollary, we find a new proof of a result of Ledrappier; namely,
let o be the unique Borel-probability measure on T'M such that
J(A*¢) do = 0 for every smooth function ¢ on T* M (see [18], [12]). The
g°-gradient Y of o satisfies div (Y)) = —||Y||?, and [||Y'||?> do equals the
Kaimanovich-entropy hy of the Brownian motion on M. In [19] Ledrap-
pier showed:

Corollary. § < ;hx with equality if and only if M is asymptotically
harmonic and hence locally symmetric.

Proof. Using the constant function 1 in Theorem D we obtain
—dp > —3hg. Assume that the equality holds and let ¢ be a smooth
function on T* M with [ ¢ do = 0. Then

& [A+9)A6H) + Y (6) — (1 +t9) Y1) dor oo

= [(A%(8) +Y(¢) — 38IIY?) do = -3 [ IV do,

since o is a harmonic measure for A* 4+ Y. But ¢ = 0 is a maximum for
the assignment

J(L+19)[A%(tg) + Y (tg) — (1 +14)lIY1]%] do
J#2$? +1) do ’

and hence the differentiation at ¢ = 0 yields 0 = —1 [ ¢||Y||* do. Since ¢
was arbitrarily chosen such that [¢do = 0, we conclude that
IY|I? = hg.

Now write Y = (X,Y )X +Y** where Y** is a section of TW**. Let u
be the Bowen-Margulis measure on T' M, i.e., the unique ®*-invariant
Borel-probability measure whose entropy equals the topological entropy
h of the geodesic flow. Since the pressure of the function (X,Y) vanishes
[16] we have

hs [V du< ([ 1Y) de < ([ IVIP duy” =

t—
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with equality if and only if Y** = 0. But hx < h? [16], and hence Y =
VhxX. Thus div(X) = —/hk implying that the mean curvature of the
horospheres in M is constant, i.e., that M is asymptotically harmonic.

By the results of Benoist, Foulon, Labourie, Besson, Courtois, Gallot
[7], [4], [5], the manifold M is therefore in fact locally symmetric.

Let now Z be the g°-gradient of the Lebesgue-Liouville measure A on
T'M. In the same way as above we obtain that 6y < [ ;[ Z||* dX with
equality if and only if M is locally symmetric.

Let P: T'M — M be the canonical projection. For every z € M
the restriction , of the natural projection m: T*M — &M to TIM isa
homeomorphism. For v € T'M, denote moreover by 6, the Busemann
function at m(v) which is normalized by 6,(Pv) = 0.

2. Harmonic Gromov - distances

For € > 0, again let K,: M x M x &M — (0,00) be the Martin ker-
nel of the operator A, = A+d,—e. Recall that 7" M (resp. T" M) admits
a natural embedding into DTM (resp. DTM) by mapping
v € T'M (resp. v € T* M) to the element (v,v) of the diagonal in DTM
(resp. DT'M). With the notation from the introduction we then have:

Lemma 2.1. For everyp € M andv # w € TI}M the limit

1
Be(w,w) =  lim  —[logGe(z,y) — log Ge(p,y) — log G(2,p)]
y—mw(v),z—m(w) 2
ezists. The function B: DTM -Tf]\;.f — R is continuous and invariant
under the action of (M) on DT M. Moreover for (v,w),(z,u) € DTM
with z € W*(v),u € W*(w) we have

Bulv,w) — Bu(u,2) = 5l10g K.(Pv, Pu,7(0)) + log K. (Pv, Pu, ()]

Proof. By the Harnack inequality at infinity of Ancona and the ar-
guments in the proof of Theorem 6.2 of Anderson-Schoen [3], for fixed

_ Ge(zy) -
P,y € M the function z — RCXACED) has a Holder continuous exten

sion to the boundary, uniformly in p,y € M. From this we conclude as
in [17] that the limit 3. (v, w) as above exists and depends continuously

on (v,w) € DTM. But also
lim(log G (p,y) ~ log G(g,y)) = log Kc(4,p,¢)

and from this we obtain the required formula for S (v, w) — Bc(u, 2).



6 URSULA HAMENSTADT

Recall that we have a Holder continuous foliation DW*® on DTM
and DT M with the property that the leaf DW*(v, w) of DW* through a
point (v,w) € DT M consists of all points (u,2) € DTM withu € W*(v)
and z € W*(w). Then the first factor projection R,: DTM — T'M
maps the foliation DW* to the stable foliation. Moreover the natural
embedding of 7'M into DTM is an embedding of the foliated space
(T*M, W*) into the foliated space (DT'M, DW?*).

Recall the definition of the Gromov products on M (see [9]); namely
for z € M and v # w € T'M define

(vlw) = lim —l—(dist(:l:,y) + dist(z, z) — dist(y, 2)).

y=r(v),zom(w) 2
Clea,rly (vlw) > 0 for all (v,w) € DTM, (vlw) = 0 if and only if
w = —v, and for (v,w) € DTM — T'M and (u,2) € DW*(v,w) we
have (vlw) (u|z) = 3H(6,(Pu) + 0, (Pu)). Now the functions (|) and
B. on DTM - T'M are clearly invariant under the action of 7, (M) on
DTM — T'M, and hence they project to functions on DTM — T*M
which we denote by the same symbols. These functions can be compared
as follows:

Lemma 2.2. There is a number a > 0 and for every € € (0,d]
there is a number ¢, > 0 such that e~ ®P<(v») > c.e (1w for qll
(v,w) € DTM - T'M.

Proof.  Define A = {(v,w) € DTM|Z(v,—w) < Z}. Then A is
a compact subset of DTM — T'M, and hence by continuity of the
functions g, for fixed € € (0,d] there is a number a. > 0 such that
B:(v,w) < a, for all (v,w) € A.

Recall that the Riemannian metric on M can be lifted to a metric on
the leaves of DW?* C DTM in such a way that the norm of the leafwise
gradient of the function (|) with respect to this metric is bounded on
DTM —{T" M UA} pointwise from below by a universal constant b > 0.
Moreover by Lemma 2.1 and the Harnack inequalities the norm of the
leafwise gradient of 5, with respect to this metric is pointwise uniformly
bounded on DT M —T* M by some constant ¢ > 0 which is independent
of € € (0,0o). Let now (v,w) € DTM — {AUT'M} and let ¢: [0,00) —
DW?(v,w) be the flow line of the gradient flow of the restriction of
—(|) to DW#(v,w). Then there is a minimal number 7 > 0 such that
#(7) € A and we can estimate

(v]w) > /0 IO dt > b

On the other hand, in the same way we see that 3 (v, w) < B.(¢(7))+cT.
With o = b*/c it follows that af.(v,w) < (v|w) + a.a for all (v,w) €
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DTM — T*M. This shows the lemma.

Lemma 2.3. For every e € (0,8,] there are numbers @, > 0,2, > 0
such that e=(*1*) > ¢ e=%P(»¥) for all (v,w) € DTM — T'M.

Proof. Fix again a number € > 0. The function (|) on DTM —T'M
assumes its minimum 0 precisely on the set {(v,—v) | v € T*M}. By
compactness and continuity for fixed € € (0, §p] there is further a number
a. > 0 such that 3.(v,—v) > —a, for all v € T* M.

Let now (v,w) € DT'M — T'M and identify the leaf DW* (v, w) of
DW* through (v,w) with M via the projection P o R'. Write z = Pv
and let A be the convex subset of M of all points which lie on a geodesic
joining 7(v) to m(w). Denote by y the unique projection of = to A, let
7 = dist(z,y) = dist(z, A) and let 2 € T, M be such that n(z) = n(v);
then € C(z,3r) N C(—z,37), where for u € T'M and v € (0,7] we
denote by C(u,<y) the cone of angle v and direction u in M.

Now the operator A, is coercive and hence its Green’s function decays
exponentially at infinity ([1]). Thus the Harnack inequality at infinity
of Ancona together with continuity in v implies that there are numbers
be > 0, > 0 such that }(log K.(y,z,n(v)) + log K.(y,z,n(w))) <
—a,T + b,.

This shows that S (v,w) > a.7 — a. — b.. On the other hand, the
norm of the gradient of 1(f, + 6_.) is bounded from above by 1 and
consequently we obtain (v|w) < 7. Thus S (v,w) > a.(v|lw) — a. — b,
which implies the lemma.

Recall that M x OM is naturally homeomorphic to the unit tan-
gent bundle T*M of M by assigning the point (Pv,7(v)) € M x OM
to v € T*M. Thus for € > 0 there is a unique section & of TW*
over T'M with the property that for every v € T'M the restriction
of £, to W*(v) projects to the gradient of the logarithm of the func-
tion y = K (Pv,y,7(v)). As in Section 3 of [10] we deduce that &, is
Holder continuous. Moreover &, is clearly equivariant under the action
of (M) and hence projects to a Holder continuous section &, of TW*
over T'M. In particular the assignment v — (X,§.)(v) is a Holder
continuous function on 7" M.

Let M be the space of ®*-invariant Borel-probability measures on
T'M. M is a compact convex subset of the dual of the Banach space
C°(T*M) of continuous functions on 7'M equipped with the weak*-
topology. For n € M, denote by h,, the entropy of n as a ®*-invariant
measure on 7! M. Recall that for a continuous function f on 7'M the
pressure pr(f) of f is defined by pr(f) = sup{h, — [ fdn|n € M}.

For € > 0 let g(€) (resp. r(€)) be the pressure of the Holder continuous
function 2(X, &,) (resp. (X,£.) ) on T M.
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Lemma 2.4. The assignments € — q(€) and € — r(€) are continuous
and strictly decreasing on (0, do].
Proof. The considerations of Ancona [1] show that the assignment

T'M x (0,0,] = R, (v,€) = (X, &) (v)

is continuous, and hence the function q : € € (0,d0] — g(¢) € R is
continuous as well (see [22]). To show that g is strictly decreasing for
v € T'M and € > 0, denote by u¢ the A.-harmonic function

y € M = ui(y) = K.(Pv,y,7(v))

with pole at 7(v). Let € > § > 0; the Harnack-inequality at infinity of
Ancona [1] and his estimates for the Green’s functions G, G5 of A, A
show that there is a number ¢ > 0 depending on € and ¢ but not on
v € T*M such that

cul (P® ') < G, (Pv, P& 'v) < c'e™Gs(Pv, P9 )
< cZe "l (PO M)
for all ¢ > 1. If w is the projection of v to T*M then

log ut (P&~*v) / (X, £.)(®*w)ds
<logul(P® *v) —ct — 3logc
t
- / (X, &) (P *w)ds — ct — 3logec.
0

Now let n € M be ergodic with respect to ®*; by the Birkhoff ergodic
theorem there is then w € T' M such that

1 t
"/(X;fe>d77 = tlj}g¥/0 (X, &) (P °w)ds
and L
- [ix&yin = fim 7 [(X, &)@ w)ds
and consequently
- [1x,&ddn < - [(X b —

by the above estimate. Since ergodic measures in M are just the ex-
tremal points of M this inequality then holds for every ®!-invariant
Borel-probability measure 7 on 7' M. In other words we have
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by — [2X,€dn < hy — [ 20X, &5)dn — 2

for all n € M and consequently g(e) < ¢(6) — 2¢ < ¢(d). The proof for
r(€) is completely analogous.

Recall from [12] and the introduction the definition of the g*-gradient
of a Borel measure p on T* M which is absolutely continuous with respect
to the stable and strong unstable foliation, with conditionals on stable
manifolds in the Lebesgue measure class; namely, let p be the lift of
p to T*M, and let 5(co) be a Borel-probability measure on &M which
defines the measure class of the projections of the conditionals of g on
strong unstable manifolds. For v € T'M we can represent p near v
in the form djp = ad)® x dp(co) where a : T'M — (0,00) is a Borel
function, and we identify p(co) with its projections to the leaves of W**
via the canonical projection = : T*M — OM.

For
(v,w) € D ={(v,2) €T'M x T'M | z € W*(u)}

define (v, w) = a(w)/a(v). Then the function ! : D — (0,00) is in-
dependent of the choice of j(oc). If for p-almost every v € T'M the
function I, : W*(v) = (0,00),w — I,(w) = I(v, w) is differentiable, then
we obtain a measurable section Z of TW?* over T'M by assigning to
v € T'M the gradient at v of log I, with respect to the Riemannian
metric g° on W*(v). This section of TW* over T*M is equivariant un-
der the action of 7, (M), and hence projects to a measurable section Z
of TW* over T*M which we call the g°-gradient of p. We then have
J(div(Y) + (Z,Y))dp = 0 for every leafwise differentiable section Y of
TW? (see [12]) where for v € T' M we denote by div Y (v) the divergence
at v of the restriction of Y to a vector field on (W*(v), (,)) = (W*(v), ¢°).

Lemma 2.5. q(e) < 0 for all € € (0, ).

Proof. Ledrappier showed in [16] that the pressure of the function
(X,&5,) vanishes; this implies ¢(dp) < 0.

Assume to the contrary that g(€) > 0 for some € > 0. By continuity
we then can find some € € (0, §p] such that g(e) = 0.

Let v** be a family of conditional measures on strong unstable man-
ifolds of the Gibbs equilibrium state v, for the function 2(X,¢.) with
the property that £v° o ® |,_o= 2(X,{.). Let v be the finite Borel
measure on T* M which satisfies dv = d\* x dv*¥; then the g°-gradient
of v equals 2¢..
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Let d € (0,¢); then div &+ || &5 ||* +d0 — 0 = 0 and consequently
0= [(divies — ) + 2 s — £D)dv
= [ 1€ 1P +6 == I & 17 +2(6, €a))av
= [(-l& =6 1P +5 - v,

which is possible only if § > €. From this we derive a contradiction to
our assumption g(e) = 0.

Corollary 2.6. For every e € (0,8,] there is a unique number a(e) €
[1,2) such that pr(a(e)(X,&)) = 0, and moreover a(dp) = 1.

Proof.  The fact that pr((X,&s,)) = 0 follows from the results of
Ledrappier [16]. Let € € (0,d); then r(¢) > 0 and ¢(¢) < 0 by Lemma
2.4 and Lemma 2.5. On the other hand, the function s — pr(s(X,&,)) is
continuous and hence has to vanish for some a(e) € (1,2). This number
a(e€) is unique (a fact that is not needed in the sequel).

For € > 0 let w, be the unique Gibbs-equilibrium state of the function
a(e)(X,€&). Then w, admits a family w® of conditional measures on
strong unstable manifolds with the following properties:

1) The measures w?* are locally finite, positive on open sets and
absolutely continuous with respect to the stable foliation.

2) The measure w, on T'M which is defined by dw, = d)\* x dw?*
has total mass 1 and its g*-gradient equals a(€)é,.

For every £ € M the projection 7: T M — OM restricts to a home-
omorphism =, of TlM onto M, and for every v € TIM the restriction
of t;lom to W (v ) is a homeomorphlsm of W**(v) onto T*M — {—v}.
Thus the measure @ on W**(v) which is lifted from the measures
w? on the leaves of W** C T'M projects under 7, o m|wsu(y) to a
Borel-measure w? on T} M, whose restriction to TIM — {—v} is locally
finite. The measures w?,w? (v, w € T} M) are absolutely continuous on
TM — {—v, —w}, wlth continuous Radon-Nikodym-derivative. More
prec1sely, for w € Ty M — {—v} the Radon-Nikodym-derivative J¢(w) at
w of w? with respect to w? is defined and the function J: w — J;(w)
is continuous on T!M — {—v}. Thus we obtain a Borel—mea,sure w? on
T!M by defining w® = Jéw?. Since w? = Jw? for every w € T1M
the measure w? is deﬁned 1ndependent of the chome ofveT'M and is
finite.

For v € T'M and t > 0 the homeomorphism Tppty © TPy TPuM —

T}:, M is absolutely continuous with respect to the measures w??, wP®?,

and its Jacobian at v equals ¢2(0) [y XEN® D s Nroresver the measures
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w? (z € M) are equivariant under the action of the fundamental group
7 (M) of M on T* M, and hence induce for every p € M a finite measure
w? on T} M. The measures w}, (p € M) just coincide with the harmonic
measures w? from the introduction up to a universal constant.

Let p > 0. Following Margulis [20] we call two subsets B, B, of
T'M which are contained in leaves T, M, T, M of the vertical foliation
of T* M into the fibres of the fibration T'M — M p-equivalent if there is

a continuous map f : By x [0,1] = T'M with the following properties:

i) For every v € B, the set f({v} x [0,1]) is a smooth curve of
length smaller than p in W*(v).
ii) f(v,0) =v and f(v,1) € B, for all v € B;.
iii) The map v € B; = f(v,1) € B, is a homeomorphism.

With this notation we then have:
Lemma 2.7. For every é > 0 there is a number p = p(6) > 0 such
that

W?(A)/wi(B) < & +1

for all € € (0,d00) and all p-equivalent nontrivial open subsets A, B of
leaves of the vertical foliation. In particular, there is for every v >0 a
number ¢ = c(y) > 0 such that

wP{w e Tp, M | £L(v,w) <~} € [c7}, (]

for allv € T*M and all € € (0, 6).

Proof. Let C C T'M be a set with a local product structure,
given by a vector v € T'M, a number r > 0, the open ball B*(v,r) of
radius r about v in (W*(v), (,)), the open ball B*(v,r) = {w € Tp,M |
Z(v,w) < r} of radius r about v in T, M with respect to the angular
metric and a homeomorphism [, ] : B*(v,r) X B*(v,7) — C with the
following properties:

i) [w,v] =w for all w € B*(v, 7).
ii) [v,2] = 2z for all z € B*(v,r).
iii) [w, 2] € W*(2) N Tp,M for all w € B*(v,r), all z € B*(v, 7).

Let € > 0; then for every z € B*(v,r) the canonical map which
assigns to w € BY(v,r) the point [z,w] € Tp,M is absolutely contin-
uous with respect to the measures w?, and its Jacobian J(z,w) at w
equals the value at z of the unique function ¢, on [B*(v,r),w] which
satisfies ¢, (w) = 1 and whose gradient with respect to the metric (,)
on W#(w) D [B*(v,r),w] equals a(e)é.. Since by the Harnack inequal-
ity for positive A.-harmonic functions the vector fields £, are pointwise
uniformly bounded in norm, independent of € € (0, dy], the first part of
the lemma follows from the definition of p-equivalence.
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Choose now r > 0 sufficiently small that for every v € T*M there
is a subset of 7'M with a local product structure containing B*(v,r)
and B*(v,r). Define a finite Borel measure @, on T*M by dw,(v) =
d)* x dwP?(v) (in fact this measure coincides with the Borel probability
measure- equally denoted by @.- which was defined after Corollary 2.6,
see [14]). Thus there is a number a > 0 such that

a”™' X (B (v, r))w;*(B" (v,7)) < @[B*(v,7), B"(v,7)]
< aX*(B*(v,r))wi* (B (v,7))

for all v € T'M and all € > 0. Since by the definition of A* there
is a number b > 0 such that \*(B*(v,r)) € [b71,b] for all v € T'M
and moreover 0 < @ (T'M) < oo, we obtain the existence of a number
Co > 0 not depending on € € (0,dy] such that wF*(B*(v,r)) < C, for
allve T'M. )

Now let @, be the lift of @, to T'M. Since every leaf of W* is dense
in T*M, there is a number R > 0 such that for every o € T'M the
subset C of T'M with a local product structure which is defined by
CNW?*(#) = B*(#, R) and CNT},M = B*(v,r) projects onto T M. The
above arguments applied to @, then show Gze(é’) < const. ~wf "BY(v,r)
where the constant does not depend on ¥ and €. But @.(C) > const.
and this implies that the measures w”?(B?(v,r)) are bounded from be-
low by a universal constant as well. These arguments are valid for all
sufficiently small > 0 and from this the lemma follows.

For € € (0, o] let again 3,: DTM — T'M — [0,00) and a(e) € [1,2)
be as before. For v € T*M and p > 0 let

B(v,p) = {w € Tp,M|e~P*) < p};

this is a closed neighborhood of v in TL, M. For p € M and a Borel-
subset A of T) M write

¢r(4) = supinf{ 3= 05 | p; <1/ (j 2 1)
1 j=1

and A C U2, B.(vj,p;) for some v; € TPIM}.

Then (P is a Borel-measure on T;M (which a priori might be zero or
infinite). Moreover the measures (? project to families of Borel measures
on the fibres of 7'M — M which we denote by the same symbols.
Now we obtain the following generalization of Theorem A from the
introduction:
Proposition 2.8. For every e > 0 there is a number b, > 0 such
that (P = bw? for allp € M.
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Proof. We show first that the measures (? are finite, and define the
same measure class as the measures w? (p € M). For this let ¢ > 0 be
such that for every v € T'M, every t > 0 and every w € Th,M with
Z(v,w) < 7/4 we have

K.(Pv,P® v, 7(v))/K.(Pv, P® tv,n(w)) € [c7!,];

such a number exists by the Harnack inequality at infinity of Ancona.

Fix a number r > 0 which is small enough that for every v € M
we have B.(v,r) C {w € Tp,M|Z(v,w) < §}; such a number exists
by Lemma 2.2. By Lemma 2.3 there is then a number o > 0 such
that B.(v,c7'r) D {w € Tp,M|Z(v,w) < «a} for all v € T*M, and
consequently Lemma 2.7 shows that w?(B.(v,c7'r)) > & > 0 for all
peEMve TlM where £ is a universal constant.

Letpe M,v e TI}M and let p < c!r. By continuity there is a num-
ber 7 > 0 such that K. (Pv, P®"v,n(v))p = r. For w € B(®"v,c!r)
and u = 7! (7(w)) we then have

e P = K (Pv, P®"v,7(v)) 2K, (Pv, P®"v, m(w)) /2 P(w:27v)
< K.(Pv, P¥"0,7(v))"'r = p,

and consequently m,(B(®"v,c"!r)) C Be(v, p). Lemma 3.6 of [10] and
the Harnack inequality at infinity of Ancona thus imply that there is a
number x > 0 such that

w?(B(v,p)) > K.(Pv, P®v, 7(v)) =2y = xp*(©).

On the other hand, choose s > 0 such that K.(Pv, P®*v,7(v))p = c™'r.
Let w € Tpg., M with e P<(®"v¥) = r and let u = m,(w). Then

e P > 1K (Pv, P®*v, 7(v))"'r = p,

and consequently B(v,p) C m,B(®*v,7). As before this means that
there is ¥ > 0 such that w?(B(v, p)) < xp*). In other words, for every
v € T'M and every p < r we have xp™© < w?(B(v,p)) < xp*). This
implies in particular that (? > ¥ 'w? for all p € M.

Let k > 0 be sufficiently small that e"‘ﬁe satisfies the quasi-ultrametric
inequality [14] on the fibres TlM (p € M); such a number exists by
Lemma 2.2 and Lemma 2.3. Let p > 0 and let vy,...,vk(,) € T;M be

a maximal system of points such that the balls B,(v;,p) C T;}M are
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pairwise disjoint. Then the balls B, (v;,4'/%p) cover T} M and hence

¢P(Ty M) < limsup k(p) - 4!/%p*®

p—0
< 4Mrxt limil_l)}gwf(Ufg;)Be (v, p)) < 4/Fx7L,
In other words, the measures ¢ (p € M) are finite and define the same
measure class as the measures w?.

We are left with showing that (? = b.w? with a universal constant
be > 0. Since by their definition the measures (? are equivariant under
the action of m; (M) it suffices for this to prove that for p € M,v € TlM
and ¢ € R the Jacobian of the projection m, with respect to the measures
(P and (P at ®'v equals K,(P®'v, Pv,r(v))*©. But this is a direct
consequence of the definitions and the fact that

lim e P2 jg=P(m(w)¥) — K(Pdty, Pv, m(v)).

w—Pty

3. Asymptotic properties of the Green’s
function for A + &g

This section is devoted to the proof of the first part of Theorem B in
the introduction. We resume the assumptions and notation of Sections
1 and 2. In particular recall the definition of the Holder-continuous
sections (X,&,) of TW?® over T*M for € > 0.

First we estimate for a € [1,4] and ¢ € (0,dp] the entropy of the
unique Gibbs equilibrium state for the function a(X,&.).

Lemma 3.1. There is a number x > 0 such that for every a € [1,4]
and every € € (0,8, the entropy of the unique Gibbs equilibrium state
for the function a(X,&.) is not smaller than x.

Proof. By the Harnack-inequality the functions a(X,¢,) are point-
wise uniformly bounded in norm, independent of a € [1,4] and € €
(0,6]. Thus if we define p(a,e) to be the pressure of the function
a{X,&,), then this defines a continuous function p: [1,4] x (0,d] = R
which is uniformly bounded by a number p > 0.

Identify the diagonal {(v,v) € DTM | v € T*M} of DTM with T* M.
For (v,w) € DTM —T'M, again let (v|w) be the Gromov-product of v
and w, and for (a,€) € [1,4] x (0,d] and (v,w) € DTM — T'M define
6(a,€)(v,w) = e~Pe(vw)=p(a)(vlw) The function d(a,€) is continuous,
symmetric and admits a continuous extension by zero to the diagonal.

We claim that there is a number b > 0 and for every (a,¢€) € [1,4] x
(0, 8] a number c(a, €) > 0 such that §(a, €)(v, w) > c(a,e)e~*I*) for all
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(v,w) € DT M. For this simply recall from Lemma 2.2 that e=#(v») >
cce” /e for all € € (0,8] and all (v,w) € DTM, where a > 0 is a
universal constant and ¢, > 0 depends on e.

For p € M let now v(a,€)? be the measure on T, M obtained as in
Section 2 from the conditionals of the Gibbs-equilibrium state v(a, €) for
a(X,&.), and let p? be the measure induced from the conditionals of the
Bowen-Margulis measure. The arguments in the proof of Proposition
2.8 then show that up to a universal constant the measure v(a, €)? is just
the 1-dimensinal spherical measure induced by the ”distance” d(a, €) on
TI}M , while p? is up to a universal constant the h-dimensional spherical
measure induced by the ”distance”

p: (v,w) = e~

where h > 0 is the topological entropy of the geodesic flow on T M.
Since d(a,€) > c(a, €)p® this means that the Hausdorff dimension of the
measure v(a, €)? with respect to the "distance” p on T} M is not smaller
than 1/b. On the other hand, by [11] this Hausdorff dimension (which is
independent of p € M) is just the entropy of the Gibbs-measure v(a, €).
This shows the lemma.

Corollary 3.2. For every € > 0 the pressure of the function 4(X,¢&.)
is not larger than —x, where x > 0 is as in Lemma 3.1.

Proof. Let € > 0 and let v be the unique Gibbs-equilibrium state of
the function 4(X,&.); then h, > x by Lemma 3.1. On the other hand,
by Lemma 2.5 the pressure of the function 2(X,&,) is non-positive and
consequently 0 > h, — 2 [(X,&)dv > x — 2 [(X, &) dv. From this we
conclude that

hu —4/<Xa€e)dl/ =p7‘(4(X,£6)) S hv _2/(X,€e)d’/—x S —X

which shows the corollary.

Corollary 3.3. [(X,&)dn > x/4 for every n € M and every € €
(Oa 60]

Proof. Let n be a ®!-invariant Borel-probability measure on T M.
Then h, > 0 and h, — 4 [(X, &) dn < —x by Corollary 3.2 from which
the corollary follows.

Corollary 3.4. The operator A + 6, admits a Green’s function Gy,
and the A + & - Martin boundary does not consist of a single point.

Proof. Let 7: R — M be a geodesic in M whose projection to
M is closed of length 7 > 0. For ¢ > 0, denote by f* the unique
minimal positive A.-harmonic function on M with pole at 7(c0) which
is normalized by fr(y(0)) = 1. Let w € T'M be the projection of
4'(0) € T*M. Then w is a periodic point for ® of period 7 > 0, and
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f(y(m) = eJo (Xi€) (@ w) ds > e™X/4 > 1 by Corollary 3.3. Since the space
of positive A,-harmonic functions (e € (0, d]) on M which are normalized
at (0) is precompact with respect to uniform convergence on compact
sets, we can find a sequence {¢;} C (0,dp] such that ¢, = 0 (5 — 00)
and that the functions f;:, converge uniformly on compact subsets of M
to a Ag-harmonic function f". Clearly fif (v(7))/fs (v(0)) > e™/4 > 1.
On the other hand, the same argument applied to the geodesic t —
v (=t + 7) whose tangent projects to the periodic orbit of ®* through
—w, yields a positive Ap—harmonic function f;- on M which satisfies

fo () fg (1(0)) S e < 1.

But this means that f; and fi are not constant multiples of each other.
By the results of Sullivan [21] we conclude from this that A, admits a
Green’s function and further that the Ao-Martin boundary of M does
not consist of a single point.

Write now p(e) = pr(4(X,&.)) and let n. be the Gibbs equilibrium
state of the function 4(X,{.). Then 7, admits a unique family 7
of conditional measures on strong unstable manifolds which transform
under the geodesic flow via % {n* o ®}|;= = 4(¢., X) — p(€) and such
that the measure 7, on 7'M which is defined by d7ij, = dA* x dn®* has
total mass 1.

We use these measures to define as in Section 2 a family of finite
Borel-measures 7? (p € M) on the leaves of the vertical foliation of
T'M. As in Section 2 we arrive at

Lemma 3.5. For every § > 0 there is a number p = p(6) > 0 such
that

n(A)/mi(B) < §+1
for all € > 0 and all p-equivalent nontrivial open subsets A, B of leaves
of the vertical foliation. In particular, there is a number ¢ > 0 such that
(T, M) € [c™!,c] for allp € T'M and all € > 0.

For p € M and R > 0 let S(p, R) be the distance sphere of radius R
about p in M and let )\,  be the Lebesgue measure on S(p, R). Write

p(0) = limp(e) < —x.
Corollary 3.6. There is a number ¢ > 0 such that

| Gpy)eOmdr, <
S(p,R)

forallp € M, all R>1 and all € € [0, &).
Proof. By the maximum principle for positive A -harmonic functions
on M (e € [0,8]) there is a number a > 0 not depending on € such that
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for all p,z € IEI with dist(p,z) > 1 and every positive A.-harmonic
function f on M with f(p) =1 we have G.(p,z) < a™! f(z).

For w € T'M the Jacobian J,(w, t) of ®~* at ®*w with respect to the
measures 7P on the leaves of the vertical foliation equals

K.(P®'w, Pw, n(w))*e )t > oG (Pw, POw)te POt (¢t > 1),

and hence Lemma 3.5 together with the Harnack inequalities shows that
there is a constant b > 0 not depending on € € [0,6],w € T'M and
t > 1 such that for every v € T'M and every t > 1 we have

nF*{w € T}, M | dist(P®‘w, P®'v) < 1} > be )G (Pv, PO'v)*.

Since the total mass nf(Tle ) of TPIM with respect to 7 is bounded
from above by a positive constant not depending on € € [0,d,] and
p € M, a further application of the Harnack inequality for the Green’s
function yields the corollary (compare the proof of Corollary 3.13 in
(10]).

Now we are ready for the proof the first part of Theorem B:

Corollary 3.7. There is a number ¢ > 0 such that Go(z,y) <
ce~xdist@)/4 for gll x,y € M with dist(z,y) > 1.

Proof.  Since p(0) < —yx, Corollary 3.6 implies that the integrals
Jse.m) Ga(z,y)ext d); r(y) are bounded from above by a constant a > 0

which is independent of z € M and R > 1. Let Ry > 1 be sufficiently
large that A\, gS(z,R) > 1 for every z € M and R > R,.

The Harnack-inequality for positive Ag-harmonic functions on balls
shows that for z,y € M with R = dist(z,y) > Ry, there is a ball B about
y in S(z, R) with A, r(B) = 1 and such that Gy(z,2) > pGo(z,y) for
all z € B, where p > 0 is a universal constant. Now if Go(z,y) >
2a!/4p=1/4e~xdist=¥)/4 then this implies [, G(z,y)eXItEV ), p >
8a, a contradiction to the above.

4. A variational equation for §,

The purpose of this section is to prove Theorem D. For this let 7
as in the introduction be a Borel-probability measure on T*M which
can be written with respect to a local product structure in the form
dn = dX\* x dn**, where n** is a family of locally finite Borel measures
on the leaves of the strong unstable foliation, such that the g°-gradient
Y of 7 is of class C}*. Since (X,Y) = L7 o &' |,=¢, the family n°* is
in fact a family of conditional measures on strong unstable manifolds of
the unique Gibbs equilibrium state induced by the Hoélder continuous
function (X,Y). In other words, there is a family 7* of conditional
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measures on strong stable manifolds such that the Borel-probability
measure 77 on T M, which is defined with respect to a local product
structure by dij = dn*® x dn** x dt, is invariant under the geodesic flow.

Forv € T'M, and t € R, define ((v,t) = (;(v) = el (XN@) . then
(¢ is a multiplicative cocyle with respect to the geodesic flow.

Let v € T*M and let A C W*(v) be a compact ball with nonempty
interior whose boundary is a set of measure zero with respect to n*:.
Denote by A*® the Lebesgue measure on the leaves of W*° defined by
the lift of the Riemannian metric on M. For every t € R we then can
view the restriction of A\** to ®*A as a finite Borel measure on T' M.
The arguments of Ledrappier in [17] then imply the following:

Proposition 4.1. The measures ((_; o ®*)A\** |g-:4 converge as
t — oo weakly to the measure n**(A)n.

This is used to show:

Lemma 4.2. Let

o = sup{ [ $(A%(8) + Y (9) + 4l div(¥) + 7IYI?) d |

0% ¢ €C=(T'M), [ ¢ dn =1},

then —éo > ay,.
Proof. Define o, as in the statement of the lemma; we show first
that a, < oco. For this recall that the function

1 .. 1
v (5 div(Y) + IV 1))
is continuous and hence bounded on T'M, and consequently
1 .. 1
[ #1 divy) + ZIv I dn/ [ ¢ dn

is uniformly bounded for all nontrivial continuous functions ¢ on T M.
On the other hand, for every smooth function ¢ on 7'M we have

[#@@) +Y@) dn=- 14l dn <o

(see [12]), and consequently a;, < co.

Let C>°(M) be the vector space of smooth functions on M with com-
pact support. Recall that §, > 0 equals the infimum of the Raleigh-
quotients of nonvanishing elements of C£°°(M )- If Ay denotes the Lebes-
gue measure on M, then for 1 € C°(M) this Rayleigh quotient is just

- [wawdrg/ [warg.
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Thus it suffices to find a function ¥ € C®°(M) such that for every € > 0
/ W(AY) Ay > (ay —€) / W2 dar.

For this we choose v € T'M and identify M with (W*(v),g°). As be-
fore we denote by A*° the Lebesgue measures on the leaves of the strong
stable foliation induced by the Riemannian metric on M, and write
d)\* = dt x d\*° where dt is the 1-dimensional Lebesgue measure on the
flow lines of the geodesic flow. We denote moreover by Vi (resp. Awp)
the gradient (resp. Laplacian) of a function ¢ on the smooth Rieman-
nian manifold (W*(v), g°).

Let € > 0 and choose a smooth function ¢ on 7'M with [ ¢*dn =1
in such a way that

a= [$8%(8) +Y (@) +dlz dv() + ZIVIP) dn 2 0y e

Denote again by ¢ the restriction to W*(v) of the lift of ¢ to T*M, and
choose ¢ > 0 sufficiently large that ||Y||+ |3 div(Y) +||Y[|?*|(w) < c and

[V ()47 AHIY I)HHA S+ (D) 8715 div(¥ )+ I¥ 7 ) < e

for every w € T* M. ;

Let Y be the lift of Y to T'M, and let f be a positive function on
W*(v) which satisfies Vlog f = Y |w.(,). Then f is a function of class
C?, and ||V ] + |A(f)] < ¢f pointwise on W*(v).

Let B, D B; be compact balls of radius r, > r; > 0 about v in
W+#*(v), whose boundaries have measure zero with respect to n** and

such that
F2dn® < (1+¢/20) / 2 dn®.
Bg Bl

We then may renormalize f in such a way that | i Zdn*s =1.
Choose a smooth ®‘-invariant function p on W*(v) with values in
[0,1] and such that p(w) = 0 for w € W*(v) — B, and p(w) = 1 for
w € B;. Since p is ®'-invariant, there is then a number t, > 0 such
that |A®p(w)| < 1 and |Vp(w)|| < 1 for every w € |J ®~tW**(v). By

t>to
Proposition 4.1 there is a number ¢; > ¢, such that for every ¢t > t; the
following are satisfied:

A n, (6f2)(A(¢) + 2(V log f, V) + ¢ div(V log f) + ||V log f||?]) dA*®

M = [ @na@n axe > [ finta-g=a-q
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@) / LN <efe,
@"(Bz—-Bl)
3) / G2 > (146
Q-‘Bl
The support of the function p@f is contained in |J ®*B; and
teR

(o81)A(p81)| <F11805(0)] + PIVl2I6V ] + [7167)
P (1(A@) + V@) + 6 | 5 div(P) + ZITIP1))

and consequently |(pdf)A(pdf)| < cf? on U, @*W**(v). Thus for
t > t, we obtain

IR
@ > [ wnsena- | of? dx*

~t(Bz—B1)
> a— 2.

Choose a smooth function ¢: R — [0,1] such that £(f) = 0 for
t <0, &t) =1fort > 1. For an integer £k > 0, define functions
€, Ce: W*(v) — [0, 1] by &(®w) = £(~t—k) and C(8'w) = £(k+¢+1)
for w € W*(v) and ¢t € R. Then the norms of the gradients of &, (i
and the absolute values of A(€x), A((x) are pointwise uniformly bounded
independent of £ > 0.

From the above estimates and Proposition 4.1 it then follows:

(5) There is a number A > 0 such that

L (p6FGEApoSGiER) AN IS A
I-tWes(v)

for all 5,k >0 and all t > ¢,.

Choose an integer m > 2A/e, let k > ¢, +1 and define a function ¢ on
W?*(v) by ¢ = &xCmyrpdf. Then 9 is a smooth function with compact
support, and [y, $(AY) dX° = a, + a; + a3 where

lasl = |f, coomewes o) W (AY) dA’| < A,
a2 = fuf:,:"@-tw-u(v) Y(AY) dX° > m(a, — 3¢) and
|0:3| = ‘fu,zk_*_mq)—twu(v) '¢'(A¢) d\° < A.

Together we obtain that [¢(Ay) dX\* > m(a, — 4¢), in particular o, —
4e < 0.




HARMONIC MEASURES, HAUSDORFF MEASURES 21
On the other hand we have
/¢2 d)\?® Z/ ¢2f2 d)\z 2 m(l +6)_1,
Ukt a5,
and consequently
[ o) dx/ [ ax 2 (@ - 4901 +e).

Thus also —dp > (a, — 4€)(1 + €), which implies that —d, > «, since
€ > 0 was arbitrary.

The next lemma then shows that a, = —d, for every measure 7 as
above:

Lemma 4.3. —§, < o, for every measure 1 induced as above by the
Gibbs-equilibrium state of a Holder continuous function on T* M.

Proof. If suffices to construct a function ¢ on T" M of class C? such
that [¢% dp = 1 and [ $(A%(@) + Y(@) + $[L div(Y) + L[Y|]) dn >
—dp — € for every € > 0.

For this we recall that —&, equals the top of the L2-spectrum of M,
and hence for € > 0 there is a compact ball B in M and a smooth
function 0 # f on M with support in B such that

— [18() drg < G+ o) [ 12 dr,

where )y is the Lebesgue measure on M.

Recall that every leaf of the stable foliation of T M projects diffeo-
morphically onto M.

Let IT: T*M — T'M be the canonical projection. If v € T* M is such
that IIW*(v) does not contain a periodic orbit of the geodesic flow, then
the restriction of IT to W*(v) is injective. This implies that we can find
a vector v € T'M with P(v) € B, an open neighborhood A of v in
W*(v), an open neighborhood D of v in W**(v) and a homeomorphism
A of Ax D onto an open neighborhood C of v in T* M with the following
properties:

1) A(w,v) = w for every w € A.
2) A(v,2) = z for every z € D.
3) A(A x {z}) is contained in W*(z) for every z € D and
PA(A x {z}) D B.
4) A({w} x D) is contained in W**(w) for every w € A.
5) The restriction of IT to C is a diffeomorphism into T M.
Recall that the measures 7°* on the leaves of the strong unstable

foliation induce a nonzero measure n° on D. Denote again by A° the
family of Lebesgue measures on the manifolds A x {z} C'A x D induced
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via A from the Lebesgue measures on the leaves of the stable foliation.
Let p be the measure on A x D defined by dp = d)\* x dn®. Then A
is absolutely continuous with respect to the measure p on A x D and
the measure  on C. The square root a of the Jacobian of A with
respect to these measures is Holder continuous. If Y denotes the lift
of the vector field Y to T'M, then oo A™' is of class C7 on C' and
Vilog(aoA™l) =1Y.

Choose a smooth function % on D with compact support and values
in [0,1] such that 1(v) = 1. Define a function ¢ on C by ¢(A(w,z)) =
P(z)a H(w, 2) f(P(A(w, 2))). Then ¢ is a function on C with compact
support and hence induces a function ¢ on 7'M with compact support
in II(C). Moreover ¢ is of class C2.

Write @ = aoA~! and f = f o P; then

x = [Fa@) + Y@ + 35 div(y) + 7 1Y) d
= [ #(a%(@) + ¥(9) + ol div(T) + 7IVIFD d

= (FoAal[A*(fa)oA+Y(Fa ) oA

AxD

+(FoM)a™ (3 div(?) + 7 I7I) o Ala? dX* x dn”.

Now V*log@ = 1Y and consequently we obtain from the above formula
that
X = (F o A)(A*(F) o A)9p? dA® x dnP

AxD

> (=bp — €) / (F o A)24? dX* x dn®
AxB
by the choice of f. But clearly
[Fdai=[ (Fonyyrar xdn®
AxD

and therefore o, > —dp — € by the definition of a,. Since ¢ > 0 was
arbitrary, the lemma follows.

Recall that the Lebesgue Liouville measure A on 7'M is the Gibbs
equilibrium state of the Holder continuous function v — ¢r U(v) where
tr U(v) is the trace of the second fundamental form at Pv of the hor-
sphere PW**(v). Denote the g*-gradient of A by Z. Then we have:

Lemma 4.4. The differential operator L = A*+Z+1 div(Z)+3|Z|?
1s self-adjoint with respect to A\, and the top of its spectrum equals d,.
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Proof. Since Z is the g*-gradient of \, the operator L is self-adjoint
with respect to A by Corollary 2.6 of [12].

Let A" be the leafwise Laplacean of the vertical foliation, i.e., for a
smooth function f on T'M and every v € T'M the evaluation of A”
on f at v is obtained by restricting f to the fibre T},,,M of the fibration
T'M — M through v and evaluating the Laplacean of the round sphere
T}, M on this restriction. Then A? is a second order differential operator
on T'M with smooth coefficients, which is subordinate to the vertical
foliation and leafwise elliptic. Moreover A" is self-adjoint with respect
to the invariant measure ), i.e., for smooth functions f,¢ on T'M we
have [ f(AY¢) d\ = [ $(AYf) dX = — [(Vf, V@) d)\ where V" f is the
section of the vertical bundle T whose restriction to a fibre T,}M equals
the gradient of the restriction of f to the (totally geodesic) submanifold
T, M of T'M, and by abuse of notation (,) is the natural Riemannian
metric on 1.

Since the vertical foliation and the stable foliation of 7' M are transver-
sal, for every € > 0 the operator L, = L + €A" is elliptic and moreover
self-adjoint with respect to A. In particular the spectrum of L. is a
pure point spectrum, and its top is an eigenvalue a, whose correspond-
ing eigenspace is one-dimensional and spanned by a positive function
fe: T'M — (0,00) of class C?. We assume f, to be normalized in such
a way that [ f. d\ = 1. First we note:

Lemma 4.5. lim._,q a, = —&g.

Proof. Let Q. be the quadratic form on the space of smooth functions
on T'M associated to L.; for every smooth function ¢ on T* M we have

Q9 = [ $(Lep) dr= [ ¢(Lg) dr—c [ V4l a

and consequently Q. > Qs for € < d. Now the space of smooth functions
on T'M is a form core for the quadratic form @, defined by L; since
Q. = Qo(e — 0) on this form core, the operators L. converge as € — 0
in the strong resolvent sense to L (see [6]).

This implies in particular that lim,_,o @ = —J,.

Lemma 4.6. Let 7 be a weak limit of the measures f A on T*M as
€ = 0. Then 7 is a harmonic measure for the operator L + 4.

Proof. Let ¢ be a smooth function on T'M; then ¢ and A?¢ are
continuous. Hence [€(A¥¢)f. dA — 0 and

(a5+60)/¢f6 dX\ = 0 (e = 0)

by Lemma 4.5. Let {¢;}; be a sequence such that ¢; = 0 and that the
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measures f. A converge weakly as ¢ — oo to a measure 7. We then have

J (& + 66 dn = Jim [IL+ )iz, ax

= lim / (L + &A° — a)d]f.. dX

1—00

= lim [ ¢(L., — a.,)(f,)dA =0,
1—00
since L., is self-adjoint with respect to A. This shows the lemma.
Corollary 4.7. Let n be as in Lemma 4.6, and let { be the section
of TW* such that { + 3 Z is the g°-gradient of . Then

div(¢) + lIS|I* + 6o = 0.

Proof. Let v € T'M and let f be a function on W*(v) such that
Velog f = 3Z |ws() - For a smooth function ¢ on W*(v) with compact
support we then have FIA(fp) = A%(P)+Z(P)+df *A(f) = Lo, and
hence the formal adjoint L* of Ly, is given by L*(¢) = fA*(f~'¢).
In other words, if L*(¢) = —do¢, then f~1¢ is a solution of A*(f~1¢) =
—bof7'¢.

From this and Lemma 2.2 of [12] the corollary follows.

5. Pressure computation

In this section we use the results in Section 4 to prove the second
part of Theorem B and Theorem C. For this we continue to use the
assumptions and notation of Sections 1-4. Recall in particular that we
denoted the pressure of the functions 2(X, &) for € € (0, ] by g(e) < 0.
Our theorem will be a consequence of the fact that lim,_,o g(e) = 0. As
in Section 4 let Ly = A® 4+ Z + ; div(Z) + 3Z]|* + 6A", and let f;
be an eigenfunction of Ls; with respect to the largest eigenvalue a;. In
contrast to Section 4 however we assume now that f5 is normalized in
such a way that [ f2d\ = 1. Then we have:

Lemma 5.1. Let v be a weak limit of the measures fZ\ on T'M as
6 — 0. Then the following are satisfied:

i) The vector fields &, converge as € — 0 in the Hilbert space of
sections of TW* over T'M, which are square integrable with
respect to v to a section & of TW?®.

it) div(€) + ||€]|*> + do = O almost everywhere on (T*M,v).

iii) v is a self-adjoint harmonic measure for A® + 2¢.
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iv) Every v-measurable section ( of TW*® over T'M, which satisfies
div(¢) + |I¢||12 + o < 0 almost everywhere, coincides with &.

Proof.  Let {4;}; be a sequence such that §; = 0 (: = oo) and
that the measures f? X converge as i — oo weakly to a measure v. For
i > 0 write f; = f5,, = a5, and Q; = V°log f; + 1 Z. The differential
equation for f; then yields

(1) div(Q;) + |Qill> — e + 6: fTT A (fi) = 0,
and consequently
(2) div(é — Qi) = |Qill* — l€lI* — do + € — o + 8: fT A (£:)

for every € > 0. Since f?) is a self-adjoint harmonic measure for A*+2Q);
(see [12]), integration of equation (2) shows

0= [(ivie. - @) +2(Qu &~ QIS dA
= [(l6 = Qul* = 8o+ ¢ = 0 = &V log £il) 12 dx,

since [(fi'AY(f:))f2 d\ = — [||V®log fi||>f? dX by self-adjointness of
A". From this we obtain

3) timsup [ [ - QulI*f? dr < e
Since the above equation is valid for every ¢ > 0 we further conclude
that

(4) lim sup é; IV* log f:||* f7 dX = 0.

1—00

Now by the definition of v we have
J e~ &l av = tim [l - &I ax
<timsup2( [ I, — QuIPf2 dA+ [ 1165 = Qulf? d)

1—00

=2¢ + 26

by the above estimates for all €,d > 0. Hence for every sequence {¢; };>0
with €; — 0 (j = o0o) the vector fields {{;}; form a Cauchy sequence
in the Hilbert space H of sections of TW?® over T M, which are square
integrable with respect to v. In other words, there is a section £ € H
such that £ — £ (6 — 0) in H which yields i) above.



26 URSULA HAMENSTADT

Next we want to show that v is a self-adjoint harmonic measure for
A* + 2¢, and for this it is sufficient to show that

/ (div(Y) + (2,Y)) dv =0

for every section Y of TW?* of class C;. Let Y be a section of TW* of
class C! and let € > 0; since {5 — € in H there is a number § < € such
that

(5) | [eey) av— [gY) avi<e

Now the functions (2£;,Y) and div(Y) are continuous on 7" M and the
measures f2)\ converge as 1 — 0o weakly to v. This means that we can
find a number 7, > 0 such that

©) | [@iv(Y)+ (265, Y)) dv — [(@v(Y) + (265, Y)f? dA|< ¢

for all 4 > 4y5. On the other hand, by (4) above we may further assume
that

(7) |6,~/f,-A”(fi) ) —a; — 6 |< €

for all ¢ > 4. The equation preceding (3) then implies that
S I€s — Q:illf2 dX < 2€ so that

(8) | [ )52 ax= [@2Quy)f? dxI< 2o

where ¢ = max{||Y||(v) | v € T*M}.
Since f? d) is a self-adjoint harmonic measure for A + 2Q);, integra-
tion and (6), (7), (8) yield

I/dlv + (2, Y))du|<2e+2cx/_+|/ (div(Y) + (205, Y))? d\ |
=2e+cx/—.

Since € > 0 was arbitrary we obtain that indeed

/ (div(Y) + (2¢,Y)) dv =0,

and hence iii).

Now v is a self-adjoint harmonic measure for a leafwise elliptic second
order differential operator subordinate to W*, and hence v is absolutely
continuous with respect to the stable and strong unstable foliation, with
conditionals on stable manifolds in the Lebesgue measure class. But
this means that for v-almost every v € T* M the restriction of the vector
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fields &; to the open ball B of radius 1 about v in W#(v) converge almost
everywhere pointwise with respect to the Lebesgue measure A* on W*(v)
to the restriction of ¢ by i) above, and ||&;]|* — ||€]|* almost everywhere
pointwise on (W*(v),A*) as well. But div(&) + ||&]|? + 6 — 0 = 0
and consequently via partial integration we obtain that div(¢) + ||€]|* +
do = 0 on B in the sense of distributions. Regularity theory for elliptic
equations then implies that in fact the restriction of £ to B is a strong
solution of div(¢) + ||€]|* + do = 0 and hence div(¢) + ||€]|> + 6o = 0
almost everywhere with respect to v.

We are left with statement iv) in the lemma. For this let x be any v-
measurable square integrable section of TW* over T* M, which satisfies
div(x) + |lx|I* + do < 0 almost everywhere with respect to v. As before
we then have

0> / (divix — &) + IxII2 = ll€]f?) dv
= [ =0+ P = 1€1?) dv
= [1e=xI a,

since v is a self-adjoint harmonic measure for A® + 2£. Hence £ = x
almost everywhere.

By Lemma 5.1 iii) the measure v is harmonic for the leafwise elliptic
differential operator A® + 2¢. Therefore by the result of Garnett [8] we
can write dv = d\* x dv®* where v** is a family of locally finite Borel-
measures on the leaves of W**, which are absolutely continuous under
canonical maps, and where A°* is the family of Lebesgue measures on
the leaves of W* for all € > 0.

In other words, the measures v** induce a m;(M)-invariant measure
class v(co) on M. This measure class has the properties mentioned in
Theorem C: _

Corollary 5.2. For every z € M and v(oco)-almost every ( € OM
the functions y — K.(z,y,() converge as € = 0 uniformly on compact
subsets of M to a minimal positive Ag-harmonic function.

Proof. Let U be the lift of v to a locally finite measure on T'M, and
let £ be the lift of £. Then Lemma 5.1 implies that for 7-almost every
v € T*M the functions y — K.(z,y, 7(v)) converge as ¢ — 0 uniformly
on compact subsets of M to a positive Ag-harmonic function f*. The
gradient of log f¥ is just the projection to M of the restriction of £ to
We(v). \ 3

We are left with showing that for 7-almost every v € T' M the func-
tion f? is in fact minimal Ay-harmonic. Since for every smooth function
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¢ on M we have
FoIA(SSY) + do¢p = A(9) +2(VIog f*, V),

this is equivalent to saying that every bounded A + 2V log f*-harmonic
function on M is constant. Now v is a self-adjoint harmonic measure for
A® + 2¢, and hence the Kaimanovich-entropy of the diffusion on T'M
induced by (A® + 2¢,v) vanishes (see [12], [15]). But this just means
that v-almost every leaf of W* is Liouville with respect to A®+2¢, which
yields the corollary.

Consider now again the measures v** on the leaves of the strong
unstable foliation. The arguments in the proof of Lemma 3.5 then show
that there is a number ¢ > 0 such that v**(B®%(v,1)) € [¢7},¢] for all
v € T*M, where B(v,d) denotes the open ball of radius § > 0 about
v in the manifold W#(v) equipped with the metric g* which is induced
from the Riemannian metric on M (i = s, su, ss).

Recall that the unique Gibbs equilibrium state v, of the function
2(X,&.) admits a family v#* of conditional measures on strong unstable
manifolds such that $1*0®* |,—o= 2(X, {.)+¢(€). By the arguments in
the proof of Lemma 2.7 we have v**(B**(v,1)) € [c™!,c] for allv € T'M
independent of €. Let F: v — —v be the flipon T* M and define for e > 0
a measure v; on the leaves of W* by dv? = dt x dv?* where v* = v!“o F.
Clearly there is a number a > 0 such that v*(B*(v,1)) € [a~?, a] for all
v € T'M and all € € (0,8]. Thus we obtain a finite Borel measure
o. on T'M by defining do. = dv? x dv** which we may assume to
be normalized in such a way that o (T"M) = 1 for all € > 0. Then
the section ¢ of TW?* over T'M is contained in the Hilbert space of
sections which are square integrable with respect to o, for all € > 0, with
Hilbert norm bounded independent of e. Moreover o, is quasi-invariant
under the action of the geodesic flow, and we have L0, 0 ®* |, (v) =
2(X, &) (v) — 2(X, & )(—v) — q(e) where as before g(e) < 0 is the pressure
of the function 2(X,¢.) on T' M.

Lemma 5.3. For every 6 > 0 there is a number €(d) > 0 such that
[ léc = €llPdo. < § for all € < €(6).

Proof.  Recall that the vector fields &,,£ are pointwise uniformly
bounded in norm, independent of e. Lemma 5.1 together with the pre-
compactness of the space of positive locally bounded A,-harmonic func-
tions on M then implies the following: Let #** be the lift of the mea-
sures v°* to the leaves of W** C T'M. Then for every v € T'M and
p*“-almost every w € W**(v) the restriction of £ to W*(w) converges
uniformly on compact sets to the restriction of £.

Let C C T'M be a set with a local product structure, given by a
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vector v € T' M, a compact ball B C W**(v) about v, a compact ball
A C W*(v) about v and a homeomorphism A: A x B — C such that
A(w,z) € W*(z) N W**(w) as in the proof of Lemma 4.3. We assume
that the projection of C to T M is surjective.

Since C' can be covered by a finite number of fundamental domains
for the action of m; (M) on T'M, there is a number ¢, > 0 such that
0.(C) < ¢ for all € € (0, 6], where we denote the lift of o, to T'M again
by o.. By the infinitesimal Harnack inequality we can further choose a
number m > 0 such that ||£]|?>(v) and ||€]|?(v) is not larger than m for
allv € T'M and all € € (0, &]-

Let 6 > 0 be given. By the properties of the measures v there is then
a number p > 0 such that 0. (A(A x E)) < §/8m whenever E C B is
Borel and #**(E) < p. On the other hand, for #*“-almost every w € B
the sections £, converge on A(A x {w}) uniformly to £ as € — 0; hence
there is a number €(d) > 0 such that 7**(E) < p where E = {w € B |
l€ — ElI2(A(z,w)) > 8/2¢ for some z € A and e < €(d)}.

For € < €(d) we then have

[ e = elido. < [ fe. - el

=[  le-eldo+ [ Ié. - ¢lPdo,
A(AXE) A(Ax(B—E))
<4mo (A(A x E)) + o (A(A x B))6/2¢o < 6

by the above. This shows the lemma.

Corollary 5.4. ¢(0) = lim._, g(¢) = 0.

Proof. Assume to the contrary that ¢(0) = lim._0q(e) < 0; recall
that g(e) < ¢(0) for every ¢ > 0. By Lemma 5.3 we then can find a
number € > 0 such that [ ||£. — €||*do. < {59(0)?. Since the norm of the
geodesic spray X is constant 1, from this it follows that

| /(X’£ - {e)do'c I.<_ / “E - ge“dae S (/ “§ —£€||2d0‘€)1/2 < _Z]i'q(o)

But %G‘ o Pt |;_o= 2(X,€ — &) — q(€) and consequently
1
0= / %05 o &t 't:o do, = /Q(X,f - €e)dae — q(e) > _Eq(o)

by the above estimates, a contradiction to our assumption ¢(0) < 0.
Hence the corollary is proved.
As a corollary we obtain the second part of Theorem B.
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Corollary 5.5.
1) There is a number ¢ > 0 such that [5, gy Go(p,y)*dApr(y) < c

forallpe M, all R > 1.
2) liminfr oo [, ry Go(P, y)2~¢d)\, r = 00 for every e > 0.

Proof.  Statement 1) follows from the arguments in the proof of
Corollary 3.6. To show 2) let € > 0; by the first part of Theorem B there
is then a number o > 0 such that Go(p,y)?~¢ > a~le~*distP¥ Gy (p, y)?
for all y,p € M with dist(p,y) > 1. Choose now € > 0 sufficiently small
that g(e) > —a/2; such a number exists by Corollary 5.3. The Harnack-
inequality at infinity of Ancona for the operator A, implies that there
is a number c(€) > 0 such that [, g Ge(p, y)2e~1ORd)\, p(y) > c(e) for
all R > 1. But the maximum principle yields that Go(p,y) > €G(p,y)
for all p,y € M with dist(p,y) > 1, where € > 0 is a universal constant.

Hence

| G drr) 207 [ Gulpy)e R dAna(y)
S(p,R) S(p,R)

>a~'ec(e)e*F/?

for all R > 1, and the corollary is proved.
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