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HARMONIC MEASURES, HAUSDORFF MEASURES
AND POSITIVE EIGENFUNCTIONS

URSULA HAMENSTADT

Abstract
Let M be a compact negatively curved Riemannian manifold with universal
covering M, and let δo > 0 be the negative of the bottom of the positive
spectrum of the Laplacean Δ o n M . We use methods from ergodic theory
to show that Δ + δo admits a Green's function which decays exponentially
with the distance. Moreover for almost every point ζ € dM with respect to
a suitable Borel-measure which is positive onopen sets, the unique minimal
positive Δ + δo — €-harmonic functions on M with pole at ζ normalized at
a point x E M converge as e —> 0 uniformly on compact sets to a minimal
positive Δ + δo -harmonic function.

1. Introduction

Let M be an n-dimensional compact manifold of negative sectional
curvature, and let M be its universal covering. For every x G M the
harmonic measure ωx at x is a Borel-probability measure on the ideal
boundary dM of M, which via the canonical identification can be viewed
as a measure on the fibre T\M at x of the unit tangent bundle TιM of
M.

Let Γ be the fundamental group of M acting as a group of isometries
on M and TιM. For Φ G Γ we then have ω*x = ωx o (dΦ)"1, and hence
the measures ωx can be transported to measures on the fibres of the
unit tangent bundle TιM of M.

Denote by DTM (resp. DTM) the smooth fibre bundle over M
(resp. M) whose fibre DTMX at x G M (resp. DTMX at x G M)
equals Γx

xMxT^M (resp. T\M x ΓjM). We call a function β on DTM
symmetric if β is invariant under the natural involution {v,w) —> (w^v).
In Section 2 of this note we show:
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2 URSULA HAMENSTADT

Theorem A. There is a Holder-continuous symmetric function
δ: DTM -> [0, oo) with the following properties:

1) There is a number K > 0 such that for every x G M the restric-
tion of δκ to DTMX is a quasi-distance on T\M defining the
usual topology.

2) For every x £ M the measure ωx is the 1 /n—dimensional spher-
ical measure on T^M induced by δκ.

Denote by Δ the Laplacean on M, and let δ0 > 0 be the negative
of the bottom of the positive spectrum of Δ on M, which equals the
top of the spectrum of Δ acting on square-integrable functions on M
(see [21]). For every e > 0 the differential operator A€ = A + δ0 — e
is weakly coercive in the sense of Ancona [1], and hence the Martin
boundary of Δ e can naturally be identified with the ideal boundary dM
of M (see [1]). In other words, Δe admits a Green's function Ge on
M x M — {(x,x) I x G M}, and the Martin kernel K€ of Δe is a Holder-
continuous function on M x M x dM such that for every x G M and
every ζ E dM the assignment y —> Ke(x,y,ζ) is the unique minimal
positive Δe-harmonic function on M with pole at £, which is normalized
to be 1 at x. Since Δ e is in fact coercive the results of Ancona imply
that there are numbers ce > 0,χ£ > 0 such that Ge(x,y) < cce"~*βdiβt(aj'l')

whenever the distance dist(x, y) of #, y £ M is not smaller than 1.
The operator Δ o = Δ + δ0 fails to be weakly coercive in the sense

of Ancona. In fact, Ancona gave an example of a simply connected
manifold Nι of bounded negative curvature for which Δ o does not even
admit a Green's function [2]. Ancona also constructed a simply con-
nected manifold N2 of bounded negative curvature such that Δ o admits
a Green's function, but the Martin boundary of Δ o consists of a unique
point. However, under our assumption that M is the universal covering
of a compact manifold, these cases can not occur. More precisely, we
denote for p e M and R > 0 by S(p, R) the distance sphere of radius R
about p in M, and let XPiR be the Lebesgue measure on S(p, R) induced
by the restriction of the Riemannian metric on M to S(p, R). In Section
3 and Section 5 we show

Theorem B. Assume that M is the universal covering of a compact
manifold M. Then the operator Δ + δ0 admits a Green's function Go

with the following properties:

1) There are constants a > 0, χ > 0 such that G0(x, y) < αe" χ d i β t( a ! ' y )

for all x,y G M with dist(x,y) > 1.
2) There is a number c > 0 such that fSrpRΛ Gf

0(p,y)2rfλP)jR(y) < c

for allpe M,R> 1.
3) liminf^oo / 5 ( P f Λ ) G0(p,y)2~edλp,R(y) = oo for every e > 0.
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Moreover we obtain in Section 5:
Theorem C. There is a πχ(M)-invariant measure class ẑ (oo) on dM

such that for v(oo)-almost every ζ G dM and every x G M the functions
y —>> Ke(x,y,ζ) converge as e —> 0 uniformly on compact subsets of M
to a minimal positive A0-harmonic function on M.

Recall that δQ equals the infimum of the Rayleigh-quotients
/ ||V0||2 dxj J φ2 dx over all nontrivial smooth functions φ on M with
compact support. However δ0 can also be expressed via a variational
equation on the unit tangent bundle TιM of M. For its formula-
tion recall that the geodesic flow Φι is a smooth dynamical system on
TλM, generated by the geodesic spray X. There is a Holder-continuous
ΦMnvariant decomposition TTιM = RX @ TWSS Θ TWSU where TW88

(resp. TWSU) is the tangent bundle of the strong stable foliation W88

(resp. the strong unstable foliation Wsu). The leaves of the stable
foliation W8 with tangent bundle TW8 = K θ TW88 are smoothly
immersed submanifolds of TιM which are mapped by the canonical
projection P: TιM -» M locally diffeomorphically onto M. Thus the
Riemannian metric on M induces a Riemannian metric gs on TWS and
a family λs of Lebesgue measures on the leaves of W8. Write also (,)
instead of g8 .

The stable Laplacean As is a second order differential operator on
TλM with Holder continuous coefficients. For a smooth function φ
on TλM the value of Asφ at υ G TιM just equals the value at v of
the Laplacean of the Riemannian manifold {Ws{v)-,g8) applied to the
restriction of φ to the leaf Ws(υ) of W8 through υ. Moreover denote
the gradient of φ\(Ws{v),g8) at υ by {V8φ)(v) G TυW

8.
Let 77 be a Borel-probability measure on TιM which is absolutely

continuous with respect to the stable and strong unstable foliation, with
conditionals on stable manifolds in the Lebesgue measure class. Recall
from [12] the definition of the gs - gradient oΐη (if this exists). It is the
unique section Y of TWS which satisfies

dη = J<ψ(A8
dη

for all smooth functions φ,ψ on TιM.
Call a section Z of TW8 of class C^a for some a > 0 if Z is Holder-

continuous of class a and differentiate along the leaves of the stable
foliation, with leafwise first order jets of class Ca. HZ is of class CJ>αt,
then for every υ G TιM the divergence div Z(v) of Z\{W8(v),\8) is
defined at v and the assignment υ —> div Z(v) is of class Ca.

With thise notation in Section 4 of this note we show
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Theorem D. Let η be a Borel-probability measure on TιM, which is
absolutely continuous with respect to the stable and unstable foliations,
with conditionals on stable manifolds in the Lebesgue measure class.
Assume that the gs-gradient Y of η is of class C\i€t for some a > 0.
Then

- ί 0 = sup{Jφ(As(φ) + Y(φ) + φ[\ div(y) + \\\Y||2]) dη \

φeC°°(T1M)Jφ2 dη = l}.

As a corollary, we find a new proof of a result of Ledrappier; namely,
let σ be the unique Borel-probability measure on TιM such that
f(Δsφ) dσ = 0 for every smooth function φ on TιM (see [18], [12]). The
^'-gradient Y of σ satisfies div (Y) = -\\Y\\2, and / | |y| |2 dσ equals the
Kaimanovich-entropy hκ of the Brownian motion on M. In [19] Ledrap-
pier showed:

Corollary. δ0 < \hκ with equality if and only if M is asymptotically
harmonic and hence locally symmetric.

Proof. Using the constant function 1 in Theorem D we obtain
—δ0 > —\hκ. Assume that the equality holds and let φ be a smooth
function on TιM with Jφ dσ = 0. Then

+ tφ)[A*(tφ) + Y(tφ) - (1 + tφ)\\\Y||2] dσ U

= f(A (φ) + Y(φ) - ^ | | r | | 2 ) dσ = -\fφ\\Y\\2 dσ,

since σ is a harmonic measure for As + Y. But ί = 0 is a maximum for
the assignment

J{l+tφ)[A'(tφ) + Y(tφ) - (1 + ^ ) | | | F | | 2 ] dσ
J(t2φ2 + \)dσ

and hence the differentiation at t = 0 yields 0 = - |/(/>| |y | | 2 dσ. Since φ
was arbitrarily chosen such that J φ dσ = 0, we conclude that
\\Y\\2 s hκ.

Now write Y = {X, Y)X + Yss where Yss is a section of TW8S. Let μ
be the Bowen-Margulis measure on TιM, i.e., the unique Φ*-invariant
Borel-probability measure whose entropy equals the topological entropy
h of the geodesic flow. Since the pressure of the function (X, Y) vanishes
[16] we have

h < J(X,Y) dμ<(J\ (X,Y) |2 dμ)1'2 < {j \\Y\\2 dμ)1'2 = hψ
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with equality if and only if Yss = 0. But hκ < h2 [16], and hence Y =
y/hχX. Thus div(X) = —y/ϊϊκ implying that the mean curvature of the
horospheres in M is constant, i.e., that M is asymptotically harmonic.

By the results of Benoist, Foulon, Labourie, Besson, Courtois, Gallot
[7], [4], [5], the manifold M is therefore in fact locally symmetric.

Let now Z be the #s-gradient of the Lebesgue-Liouville measure λ on
TXM. In the same way as above we obtain that δ0 < J \\\Z\\2 dλ with
equality if and only if M is locally symmetric.

Let P: TλM —ϊ M be the canonical projection. For every x G M
the restriction πx of the natural projection π: TιM —> dM to T\M is a
homeomorphism. For v G TλM, denote moreover by θv the Busemann
function at π(υ) which is normalized by θv(Pv) = 0.

2. Harmonic Gromov - distances

For e > 0, again let Ke: M x M x dM -» (0, oo) be the Martin ker-
nel of the operator Δe = Δ+δ o -e . Recall that TιM (resp. TιM) admits
a natural embedding into DT'M (resp. DTM) by mapping
v e TιM (resp. v G TXM) to the element {υ,v) of the diagonal in DTM
(resp. DTM). With the notation from the introduction we then have:

Lemma 2.1. For every p G M and v φ w G TpM £Λe limit

βe{v,w)= lim -[logGc(z,y) - logGe(p,y) - logGc(z,p)]
y-+π(v),z-ϊπ(w) Z

exists. The function βt: DTM — TλM -> R zs continuous and invariant
under the action ofττι(M) on DTM. Moreover for (v, w), (z, u) G DTM
with z G Ws(ι;),u G Ws(iί;) it e

/3e(t;,tι;) - A(u,z) = ipog/feίP^Pu,^!;)) +logϋΓe(Pt;lPtilπ(tι;))].

Proof. By the Harnack inequality at infinity of Ancona and the ar-
guments in the proof of Theorem 6.2 of Anderson-Schoen [3], for fixed
p,y e M the function z -> G ^C{\Q\Z \ has a Holder continuous exten-
sion to the boundary, uniformly in p, y G M. From this we conclude as
in [17] that the limit βe(v,w) as above exists and depends continuously
on (υ, tϋ) G J9TM. But also

lim(logGe(p,y) - log G€(q,y)) = logKe(q,p,ζ)

and from this we obtain the required formula for βe(v,w) — β€(u,z).
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Recall that we have a Holder continuous foliation DW8 on DTM
and DTM with the property that the leaf DWs(v, w) of DW8 through a
point (v, w) G DTM consists of all points {u, z) G DTM with u G W'(υ)
and z G W5(w). Then the first factor projection Rλ: £>TM -• Ϊ^Af
maps the foliation DW8 to the stable foliation. Moreover the natural
embedding of TιM into DTM is an embedding of the foliated space
(Γ1 Af, W ) into the foliated space {DTM, DW8).

Recall the definition of the Gromoυ products on dM (see [9]); namely
for x G M and υ φ w G ΓjjM define

(v|tϋ) = lim -(dist(α;, y) + dist(x, z) — dist(y, z)).
y—*π(υ),z—ϊπ(w) 2

Clearly (υ\w) > 0 for all (υ,w) G J5TM, (υ|iϋ) = 0 if and only if
w = -v, and for (υ,ιu) G DTM - TιM and (u,z) G IW(v,tu) we
have (v|tϋ) - (u\z) = :γ(θυ(Pu) + θw{Pu)). Now the functions (|) and
βt on DTM — TXM are clearly invariant under the action of τri(M) on
DTM - TιM, and hence they project to functions on DTM -TιM
which we denote by the same symbols. These functions can be compared
as follows:

Lemma 2.2. There is a number a > 0 and for every e G (0,ίo]
there is a number ce > 0 such that e-

aβ<{v>w) > cee~Mw) for all
(y,w) eDTM-TλM.

Proof Define A = {(υ,w) G DTM\Z(v,-w) < f}. Then A is
a compact subset of DTM — TιM^ and hence by continuity of the
functions βe for fixed e G (0,ίo] there is a number ae > 0 such that
βe(v,w) < a€ for all (υ,w) G A.

Recall that the Riemannian metric on M can be lifted to a metric on
the leaves of DW8 C DTM in such a way that the norm of the leafwise
gradient of the function (|) with respect to this metric is bounded on
DTM — {T1 M U A} pointwise from below by a universal constant b > 0.
Moreover by Lemma 2.1 and the Harnack inequalities the norm of the
leafwise gradient of βe with respect to this metric is pointwise uniformly
bounded on DTM — TιM by some constant c > 0 which is independent
of e G (0,<$0] Let now (υ,w) G DTM-{A\JTιM} and let φ: [0,oo) ->
DW8{υ,w) be the flow line of the gradient flow of the restriction of
— (I) to DWs(υ,w). Then there is a minimal number r > 0 such that
φ(τ) G A and we can estimate

(v\w)> Γ\\φ'(t)\\2dt>b2τ.
Jo

On the other hand, in the same way we see that /3e(υ, w) < β€(φ(τ))+cτ.
With α = b2/c it follows that aβt(v,w) < (v\w) + a€a for all (υ,w) G
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DTM - TιM. This shows the lemma.
Lemma 2.3. For every e G (0, δ0] there are numbers ae > 0,cc > 0

such that e-(υM > cee~^^v^ for all (υ,w) G DTM - TλM.
Proof. Fix again a number e > 0. The function (|) on DTM — TιM

assumes its minimum 0 precisely on the set {(v, — υ) \ υ G Γ 1M}. By
compactness and continuity for fixed e G (0, δ0] there is further a number
ae > 0 such that βe(υ, -v) > -ae for all v G TιM.

Let now (υ,w) G DTιM - TιM and identify the leaf DWs(v,w) of
DWS through (v,w) with M via the projection P o R1. Write x = Pv
and let A be the convex subset of M of all points which lie on a geodesic
joining π(υ) to π(w). Denote by y the unique projection of x to A, let
r = dist(a;,y) = dist(x, A) and let z G T*M be such that π( z) = π(υ);

then α; G C{z, fπ) Π C(-z, | π ) , where for u G ΓXM and 7 G (0,π] we
denote by C(u, 7) the cone of angle 7 and direction u in M.

Now the operator Δ e is coercive and hence its Green's function decays
exponentially at infinity ([1]). Thus the Harnack inequality at infinity
of Ancona together with continuity in υ implies that there are numbers
be > 0,αe > 0 such that ^(logKe(y,x,π(υ)) + logK€(y,x,π(w))) <
-aeτ + bt.

This shows that β€(v,w) > aer — ae — be. On the other hand, the
norm of the gradient of \(βz + 0_z) is bounded from above by 1 and
consequently we obtain (v\w) < r. Thus β€(v,w) > ae(υ\w) — ae — be

which implies the lemma.
Recall that M x dM is naturally homeomorphic to the unit tan-

gent bundle TλM of M by assigning the point (Pv,π(v)) G M x dM
to v G TιM. Thus for e > 0 there is a unique section ξe of TWS

over TιM with the property that for every υ G TλM the restriction
of ξe to Ws(v) projects to the gradient of the logarithm of the func-
tion y —>> K€(Pv,y,π(v)). As in Section 3 of [10] we deduce that £c is
Holder continuous. Moreover ξe is clearly equivariant under the action
of τri (M) and hence projects to a Holder continuous section £e of TWS

over TιM. In particular the assignment v —ϊ (X,ξe)(v) is a Holder
continuous function on ΓXM.

Let M be the space of Φ*-invariant Borel-probability measures on
TλM. M is a compact convex subset of the dual of the Banach space
C°(TιM) of continuous functions on TιM equipped with the weak*-
topology. For η G Λί, denote by hη the entropy of 77 as a ΦMnvariant
measure on TιM. Recall that for a continuous function / on TιM the
pressure pr(f) of / is defined by pr(f) = snp{hη — J fdη \ η G M}.

For e > 0 let q(e) (resp. r(e)) be the pressure of the Holder continuous
function 2(X,ξe) (resp. (X,ξe) ) on TXM.
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Lemma 2.4. The assignments e -» q(e) and e -> r(e) are continuous
and strictly decreasing on (0, δ0].

Proof. The considerations of Ancona [1] show that the assignment

is continuous, and hence the function q : e E (0, <S0] -> <7(e) £ R is
continuous as well (see [22]). To show that q is strictly decreasing for
v eTxM and e > 0, denote by u% the Δe-harmonic function

yeM-> <(y) = K€(Pv,y,π(υ))

with pole at π(υ). Let e > δ > 0; the Harnack-inequality at infinity of
Ancona [1] and his estimates for the Green's functions GC5 G$ of Δe, Δ$
show that there is a number c > 0 depending on e and J but not on
v eTxM such that

'υ) < Ge(Pυ,Pφ-*v) < c ^ e ' ^ ί P

for all ί > 1. If w is the projection of v to TιM then

log<(Pφ-^)=- ί\x,ξe)(φ-sw)ds
Jo

< log itj (PΦ~*τ;) - ct - 3 log c

= - / (X,&)(φ-Sκ;)d5 - ct - 3 log c.

Now let η G Λί be ergodic with respect to Φ*; by the Birkhoff ergodic
theorem there is then w €TιM such that

- J(X,ξe)dη = Urn j J\x,ξe)(φ-Sw)ds

and

- f(X,ξδ)dη = lim i [\x,ξδ)(φ-°w)ds
J t-+oo t Jo

and consequently

-J(X,ξ€)dη<-J(X,ξδ)dη-c

by the above estimate. Since ergodic measures in M are just the ex-
tremal points of M this inequality then holds for every ΦMnvariant
Borel-probability measure η on TιM. In other words we have
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hη- 12(X, ξ€)dη <hη- 12(X, ξδ)dη - 2c

for all η E M and consequently q(e) < q(δ) -2c < q(δ). The proof for
r(e) is completely analogous.

Recall from [12] and the introduction the definition of the gs-gradient
of a Borel measure p on TιM which is absolutely continuous with respect
to the stable and strong unstable foliation, with conditionals on stable
manifolds in the Lebesgue measure class; namely, let p be the lift of
p to ΓXM, and let p(oo) be a Borel-probability measure on ΘM which
defines the measure class of the projections of the conditionals of p on
strong unstable manifolds. For v E TιM we can represent p near υ
in the form dp — ad\s x dp(oo) where a : TιM -» (0, oo) is a Borel
function, and we identify p(oo) with its projections to the leaves of W8U

via the canonical projection π :TιM -» dM.

For

(v, w)eD = {(u, z) E TιM x TλM \ z E Ws(u)}

define l(υ,w) = a(w)/a(v). Then the function I : D -> (0,oo) is in-
dependent of the choice of p(oo). If for p-almost every v E TλM the
function lv : VFS(Ϊ;) -> (0,oo), w -> Zυ(tί;) = l(υ,w) is differentiate, then
we obtain a measurable section Z of TWS over TXM by assigning to
v E TXM the gradient at ?; of log lυ with respect to the Riemannian
metric gs on ^ ( υ ) . This section of TWS over TιM is equivariant un-
der the action of τri(M), and hence projects to a measurable section Z
of 7W 5 over TιM which we call the <75-gradient of p. We then have
/(div(y) + (Z,Y))dp = 0 for every leafwise differentiate section y of
TVΓ5 (see [12]) where for v E TιM we denote by div Y(υ) the divergence
at v of the restriction of y to a vector field on (Ws(v), (,)) = (W8(v),gs).

Lemma 2.5. ς(e) < 0 for all e E (0, δ0].
Proof. Ledrappier showed in [16] that the pressure of the function

(X,ξδo) vanishes; this implies q(δ0) < 0.
Assume to the contrary that q(e) > 0 for some e > 0. By continuity

we then can find some e E (0, δ0] such that q(e) = 0.
Let vsu be a family of conditional measures on strong unstable man-

ifolds of the Gibbs equilibrium state vt for the function 2(X,ξe) with
the property that ftu

su o Φ* | ί = 0 = 2(X,ξc). Let v be the finite Borel
measure on TXM which satisfies dv = dλs x dv8U\ then the gs-gradient
of v equals 2£e.



10 URSULA HAMENSTADT

Let δ 6 (0, e); then div ξg+ || ξs ||2 +δ0 — δ = 0 and consequently

0 = J(div(ξs-ξt)+2(ξt,ξs-ξt))dv

= J(-Πs\\2+δ-e-U(\\2+2(ξe,ξs))dv

= J(-Us-ξe\\2+δ-e)du,

which is possible only if δ > e. Prom this we derive a contradiction to
our assumption q(e) = 0.

Corollary 2.6. For every e G (0,£0] there is a unique number α(e) G
[1,2) such that pr(a(e)(X)ξe)) = 0, and moreover a(δ0) = 1.

Proof. The fact that pr((X,ξδo)) = 0 follows from the results of
Ledrappier [16]. Let e G (0, δQ); then r(e) > 0 and g(e) < 0 by Lemma
2.4 and Lemma 2.5. On the other hand, the function 5 -» pr(s(X, ξe)) is
continuous and hence has to vanish for some α(e) G (1,2). This number
α(e) is unique (a fact that is not needed in the sequel).

For e > 0 let ωe be the unique Gibbs-equilibrium state of the function
a(e)(X,ξ€). Then ωe admits a family ω\u of conditional measures on
strong unstable manifolds with the following properties:

1) The measures ωs

t

u are locally finite, positive on open sets and
absolutely continuous with respect to the stable foliation.

2) The measure ωe on TιM which is defined by dω€ = d\s x dω\u

has total mass 1 and its #s-gradient equals α(e)£e.

For every x G M the projection π: TιM —> dM restricts to a home-
omorphism πx oΐT^M onto 9M, and for every v (zT^M the restriction
of π~x o π to Wsu(υ) is a homeomorphism of Wsu(v) onto T\M — {—v}.
Thus the measure ώs

e

u on Wsu(v) which is lifted from the measures
ω\u on the leaves of Wsu C TιM projects under π " 1 o π\w^(v) to a
Borel-measure ωv

t on T\M, whose restriction to T\M — {—v} is locally
finite. The measures ω^ω™(υ,w G T*M) are absolutely continuous on
T\M — {—υ, — w}, with continuous Radon-Nikodym-derivative. More
precisely, for w G T\M — {—v} the Radon-Nikodym-derivative Jl{w) at
ω of ω™ with respect to ωv

e is defined and the function J*: w -> Jl{w)
is continuous on T\M — {—v}. Thus we obtain a Borel-measure ωf on
TIM by defining ωc

x = J χ υ . Since ωc

x = J^ω™ for every ti; G T\M,
the measure ωf is defined independent of the choice of v G TιM and is
finite.

For υ G TιM and ί > 0 the homeomorphism πpφty o πP t,: TpυM ->
TpφtvM is absolutely continuous with respect to the measures α fυ, α f φ*υ,
and its Jacobian at v equals e°(c)/0(

χ '^>(φ β υ)d s Moreover themeasures
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ωx

t (x G M) are equivariant under the action of the fundamental group
7Γχ (M) of M on TλM, and hence induce for every p G M a finite measure
ωP on T*M. The measures ωp

0(p G M) just coincide with the harmonic
measures ωp from the introduction up to a universal constant.

Let p > 0. Following Margulis [20] we call two subsets Bι,B2 of
TιM which are contained in leaves T\M^M of the vertical foliation
oίTxM into the fibres of the fibration TιM —ϊ M p-equiυalent if there is
a continuous map / : B\ x [0,1] —> TιM with the following properties:

i) For every υ G Bλ the set f{{v} x [0,1]) is a smooth curve of
length smaller than p in Ws(υ).

ϋ) / ( V ϊ 0) = υ and /(υ, 1) G B2 for all υ e Bλ.
iii) The map υ E Bι -» /(υ, 1) G i?2 is a homeomorphism.

With this notation we then have:
Lemma 2.7. For every δ > 0 £Λere is α number p = ρ(δ) > 0 5wcΛ

that
ωp

e(A)/ωq

e{B)<δ + l

for all e G (0, δ0) and all p-equivalent nontrivial open subsets A,B of
leaves of the vertical foliation. In particular, there is for every 7 > 0 a
number c = c(j) > 0 such that

ωfυ{w G Tι

PvM I Z{v,w) < 7} 6 [c~\c]

for all v G TιM and all e G (0, ί0]-
Proof. Let C C TιM be a set with a local product structure,

given by a vector υ G TιM, a number r > 0, the open ball Bs(υ,r) of
radius r about υ in (W5(υ), (,)), the open ball Bv(υ,r) = {w G Γj,υM |
Z(υ,tί;) < r} of radius r about υ in TpυM with respect to the angular
metric and a homeomorphism [ , ] : B8(v,r) x ί?υ(τ;,r) —>• C with the
following properties:

i) [w, v] = w for all w G Bs(v, r).
ii) [v,2r] = z for all z G S ^ r ) .

iii) [u;,z] G Ws{z)ΠT^wM for all tu G Bs(υ,r), all z G Bv(ί;,r).

Let 6 > 0; then for every z G Bs(v,r) the canonical map which
assigns to w G Bv(v,r) the point [2,10] G TpzM is absolutely contin-
uous with respect to the measures CJ£, and its Jacobian J(;z,w) at w
equals the value at z of the unique function φw on [2?s(υ,r),ii/| which
satisfies φw(w) — 1 and whose gradient with respect to the metric (,)
on Ws(w) D [Bs(υ,r),w] equals a(e)ξ€. Since by the Harnack inequal-
ity for positive Δe-harmonic functions the vector fields £e are pointwise
uniformly bounded in norm, independent of e G (0, Jo]5 the first part of
the lemma follows from the definition of p-equivalence.
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Choose now r > 0 sufficiently small that for every υ G TιM there
is a subset of TιM with a local product structure containing Bv(y,r)
and Bs(υ,r). Define a finite Borel measure ω€ on TιM by dω€(υ) =
dX8 x dωfv{v) (in fact this measure coincides with the Borel probability
measure- equally denoted by ωe- which was defined after Corollary 2.6,
see [14]). Thus there is a number a > 0 such that

<aXs(Bs(v,r))ω?v(Bv(v,r))

for all v G TιM and all e > 0. Since by the definition of Xs there
is a number b > 0 such that Xs(Bs(v,r)) G [b'1^] for all υ G TιM
and moreover 0 < ωe(TιM) < oo, we obtain the existence of a number
Co > 0 not depending on e G (0, <50]

 s u c h that ωf^β^Vjr)) < Co for
all t; G ΓXM.

Now let ώe be the lift of ωe to TιM. Since every leaf of W8 is dense
in T^M, there is a number i? > 0 such that for every ϋ G TιM the
subset (7 of TιM with a local product structure which is defined by
CΠWs{ϋ) = Bs(v,R) and CΠT^M = Bv(υ,r) projects onto TλM. The
above arguments applied to ώ€ then show ώe(C) < const. ω[vBv(v,r)
where the constant does not depend on ϋ and e. But ώ€(C) > const,
and this implies that the measures ωζv(Bv(υ,r)) are bounded from be-
low by a universal constant as well. These arguments are valid for all
sufficiently small r > 0 and from this the lemma follows.

For e G (0,ί0] let again.βe: DTM - TιM -> [0,oo) and α(e) G [1,2)
be as before. For υ eTλM and p > 0 let

this is a closed neighborhood of v in TpvM. For p G M and a Borel-
subset A of TpM write

ζf (A) = supinfί f > f > I P j < l/< ϋ > 1)
i>0 ^ -.

and AcU°°.,BJυi,pΛ for some v, eTll

Then ζf is a Borel-measure on Tp

xM (which a priori might be zero or
infinite). Moreover the measures ζf project to families of Borel measures
on the fibres of TιM -» M which we denote by the same symbols.

Now we obtain the following generalization of Theorem A from the
introduction:

Proposition 2.8. For every e > 0 there is a number be > 0 such
that C? = b€ω

p

e for all peM.
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Proof. We show first that the measures ζf are finite, and define the
same measure class as the measures ωP (p e M). For this let c > 0 be
such that for every υ G TιM, every t > 0 and every w G TpvM with
Z(υ,w) < π/4 we have

ϋΓβ(Pt;lPφ-tt;ϊπ(t;))//iΓe(Pt;ϊPΦ"tt;lπ(tι;)) G [c'\c]i

such a number exists by the Harnack inequality at infinity of Ancona.
Fix a number r > 0 which is small enough that for every v G TιM

we have B€(υ,r) C {w G TpvM\Δ(v,w) < | } ; such a number exists
by Lemma 2.2. By Lemma 2.3 there is then a number a > 0 such
that Be(v,c-ιr) D {w G T}>υM\Δ{v,w) < a} for all υ e TιM, and
consequently Lemma 2.7 shows that ω*!(B€(v,c~ιr)) > K > 0 for all
p G M, v ETpM where K is a universal constant.

Let p G M, Ϊ; G T^M and let p < c~ιr. By continuity there is a num-
ber r > 0 such that Ke(Pv,PΦτv,π(υ))p = r. For w G 5€(Φrv,c'"1r)
and ΪX = πp1(π(w)) we then have

πίt JJ-V = p,

and consequently πp(J5e(ΦTiy,c~ιr)) C Be(v,p). Lemma 3.6 of [10] and
the Harnack inequality at infinity of Ancona thus imply that there is a
number χ > 0 such that

ωp
€(B(υ,p)) > Ke{Pv,P&v,π{v))-a^r«Uχ = χpa^\

On the other hand, choose s > 0 such that Ke(Pv, PΦ8v, π(v))ρ = c~xr.
Let w; G TPΦsvM with β - Λ < φ # t ' lι;) = r and let u = πp(tι;). Then

and consequently B€(v,p) C πpβ e(Φ sv,r). As before this means that
there is x > 0 such that ωξ(B(υ,ρ)) < χpα ( e ). In other words, for every
υ G TιM and every p < r we have χp o ( c ) < ωξ{B{v,p)) < χp o ( e ) . This
implies in particular that ζ* > χ~ιωp

t for allpe M.
Let K > 0 be sufficiently small that e"κ(3e satisfies the quasi-ultrametric

inequality [14] on the fibres T^M (p G M); such a number exists by
Lemma 2.2 and Lemma 2.3. Let p > 0 and let vx,... ,^(p) G T^M be
a maximal system of points such that the balls Be(vi,p) C T^M are
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pairwise disjoint. Then the balls Be(vi,41/κρ) cover T^M and hence

< limsupλ (p) 41//cpα(e)

U^B t {υ u p)) < ^χ'1.

In other words, the measures ζf (p G M) are finite and define the same
measure class as the measures ω\.

We are left with showing that ζf — btω
v

t with a universal constant
be > 0. Since by their definition the measures ζf are equivariant under
the action of πλ (M) it suffices for this to prove that for p G M, υ G T£M
and ί E R the Jacobian of the projection πp with respect to the measures
Cfφ*v and ζf at Φιv equals iT£(PΦ^,P?;,π(ί;))α^. But this is a direct
consequence of the definitions and the fact that

lim e-W^'tO/e-WM").*)

3. Asymptotic properties of the Green's
function for Δ + δ0

This section is devoted to the proof of the first part of Theorem B in
the introduction. We resume the assumptions and notation of Sections
1 and 2. In particular recall the definition of the Holder-continuous
sections (X,ξe) of TWS over TιM for e > 0.

First we estimate for α G [1,4] and e E {0,δ0] the entropy of the
unique Gibbs equilibrium state for the function α(X,£e).

Lemma 3.1. There is a number χ > 0 such that for every a G [1,4]
and every e G (0, δ0] the entropy of the unique Gibbs equilibrium state
for the function a(X,ξe) is not smaller than χ.

Proof. By the Harnack-inequality the functions a(X, ξe) are point-
wise uniformly bounded in norm, independent of a G [1,4] and e G
(0,ίe] Thus if we define p(α,e) to be the pressure of the function
a(X,ξe), then this defines a continuous function p: [1,4] x (0, δ0] -> R
which is uniformly bounded by a number p > 0.

Identify the diagonal {(υ, υ) G DTM \ v G TιM} oϊDTM with TιM.
For (v, w) G DTM — TιM, again let (υ\w) be the Gromov-product of v
and tϋ, and for (α,e) G [1,4] x (0,<Σ] and (υ,w) G DΓM - TιM define
ί(α,e)(v,ιy) = e-

ttΛ(v^)-p(β.O(f|t«)# The function δ(a,e) is continuous,
symmetric and admits a continuous extension by zero to the diagonal.

We claim that there is a number b > 0 and for every (α, e) G [1,4] x
(0, δ0] a number c(a, e) > 0 such that ί(α, e)(υ, tu) > c(α, e)e-6(vlω;) for all
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(υ,w) G DTM. For this simply recall from Lemma 2.2 that e~β^v^ >
c^e-(v\w)/a for a l l c G (O j ί o] a n d au (t,)tI,) G i?ΓM, where α > 0 is a
universal constant and ce > 0 depends on e.

For p G M let now v(a, e)p be the measure on T*M obtained as in
Section 2 from the conditionals of the Gibbs-equilibrium state î (α, e) for
α(X, ξe), and let μp be the measure induced from the conditionals of the
Bowen-Margulis measure. The arguments in the proof of Proposition
2.8 then show that up to a universal constant the measure v(a, e)p is just
the 1-dimensinal spherical measure induced by the "distance" <5(α, e) on
T£M, while μp is up to a universal constant the /ι-dimensional spherical
measure induced by the "distance"

where h > 0 is the topological entropy of the geodesic flow on TιM.
Since δ(α, e) > c(a, e)pb this means that the Hausdorίf dimension of the
measure ι/(α, e)p with respect to the "distance" p on T^M is not smaller
than 1/6. On the other hand, by [11] this Hausdorff dimension (which is
independent of p G M) is just the entropy of the Gibbs-measure i/(α, e).
This shows the lemma.

Corollary 3.2. For every e > 0 the pressure of the function 4(X,£C)
is not larger than — χ, where χ> 0 is as in Lemma 3.1.

Proof. Let e > 0 and let v be the unique Gibbs-equilibrium state of
the function 4(X,fe); then hv > χ by Lemma 3.1. On the other hand,
by Lemma 2.5 the pressure of the function 2(X,ξc) is non-positive and
consequently 0 > hv — 2 J(X,ξt)dv > χ — 2f(X,ξe)dι>. From this we
conclude that

which shows the corollary.
Corollary 3.3. f(X,ξe)dη > χ/4 for every η G M and every e G

(0A]
Proof. Let η be a ΦMnvariant Borel-probability measure on TλM.

Then hη > 0 and hη -4f(X,ξt)dη < - χ by Corollary 3.2 from which
the corollary follows.

Corollary 3.4. The operator Δ + δ0 admits a Green's function Go,
and the Δ + δ0 - Martin boundary does not consist of a single point.

Proof. Let 7: K —> M be a geodesic in M whose projection to
M is closed of length r > 0. For e > 0, denote by /c+ the unique
minimal positive Δe-harmonic function on M with pole at 7(00) which
is normalized by /e

+(7(0)) = 1. Let w G TιM be the projection of
7;(0) G TλM. Then w is a periodic point for Φ* of period r > 0, and
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/€(7(r)) = eJo

r(χ^)(*a™)ds > erχ/4 > 1 b y Corollary 3.3. Since the space
of positive Δc-harmonic functions (e G (0, δ]) onM which are normalized
at 7(0) is precompact with respect to uniform convergence on compact
sets, we can find a sequence {ê } C (0, Jo] such that βj —> 0 (j' —» 00)
and that the functions /+ converge uniformly on compact subsets of M
to a Δo-harmonic function /0

+. Clearly /o+(τ(r))//0

+(7(0)) > eτχ'A > 1.
On the other hand, the same argument applied to the geodesic t ->

7 (—t + r) whose tangent projects to the periodic orbit of Φ* through
—w, yields a positive Δo—harmonic function /0~ on M which satisfies

But this means that /0~ and /Q~ are not constant multiples of each other.
By the results of Sullivan [21] we conclude from this that Δ o admits a
Green's function and further that the Δ0-Martin boundary of M does
not consist of a single point.

Write now p(e) = pr(4(X,ξc)) and let ηe be the Gibbs equilibrium
state of the function 4(X,ξc). Then ηe admits a unique family ηs

t

u

of conditional measures on strong unstable manifolds which transform
under the geodesic flow via jι{ηs

e

u o Φ*}|t=o = 4(£c,^0 — p(c) and such
that the measure ηe on TιM which is defined by dηe = dλ8 x dηsu has
total mass 1.

We use these measures to define as in Section 2 a family of finite
Borel-measures ήζ (p G M) on the leaves of the vertical foliation of
TιM. As in Section 2 we arrive at

Lemma 3.5. For every δ > 0 there is α number p = p(δ) > 0 such
that

ήζ(A)h9ΛB)<δ + l
for all e > 0 and all p-equivalent nontriυial open subsets A, B of leaves
of the vertical foliation. In particular there is a number c > 0 such that
ήζ{T^M) E [c~\c] for allpe TιM and all e > 0.

For p G M and R > 0 let 5(p, R) be the distance sphere of radius R
about p in M and let λP)Λ be the Lebesgue measure on S(p,R). Write

Corollary 3.6. There is a number c > 0 such that

/.S(P,R)

for all peM, all R>1 and all e G [0, δ0].
Proof. By the maximum principle for positive Δc-harmonic functions

on M (e G [0, δ0]) there is a number a > 0 not depending on e such that
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for all p,x G M with dist(p, x) > 1 and every positive Δ€-harmonic
function / on M with f(p) = 1 we have G€(p,x) < a~1f(x).

For w G TιM the Jacobian Je(w, t) of Φ~ι at Φtw with respect to the
measures 7/f on the leaves of the vertical foliation equals

H ) 4 e - p ( e ) ί > aG^Pw^PΦ'w)^-^1 (t > 1),

and hence Lemma 3.5 together with the Harnack inequalities shows that
there is a constant b > 0 not depending on e G [0, δo],w £ TιM and
t > 1 such that for every v eTιM and every t > 1 we have

ηζυ{w G Tλ

PvM I dist(PΦ^,PΦ^) < 1} > be-^'G^Pv.PΦ'v)4.

Since the total mass ηξ (T*M) of T^M with respect to ηξ is bounded
from above by a positive constant not depending on e G [0, δ0] and
p G M , a further application of the Harnack inequality for the Green's
function yields the corollary (compare the proof of Corollary 3.13 in
[10]).

Now we are ready for the proof the first part of Theorem B:
Corollary 3.7. There is a number c > 0 such that G0(x,y) <

c e - χ d i s t ( a , ί , ) / 4 for d l χ ^ y e M With d i s t ( z , y ) > 1.

Proof. Since p(0) < — χ, Corollary 3.6 implies that the integrals
Is(χ R) ̂ o(x> y)eχR dλXjR(y) are bounded from above by a constant a > 0
which is independent ofxEM and R > 1. Let Ro > 1 be sufficiently
large that XXIRS(X, R) > 1 for every x G M and R > RQ.

The Harnack-inequality for positive Δ0-harmonic functions on balls
shows that for x,y G M with R = dist(x, y) > i?0? there is a ball B about
y in S(x,R) with λXyR(B) = 1 and such that G0{x,z) > pG0{x,y) for
all z G JB, where p > 0 is a universal constant. Now if G0(x7y) >
2αi/4p-i/4e-χdiSt(z,3/)/4j t h e n t h i s i m p l i e s fBG

4

o{x,y

8α, a contradiction to the above.

4. A variational equation for δ0

The purpose of this section is to prove Theorem D. For this let η
as in the introduction be a Borel-probability measure on TλM which
can be written with respect to a local product structure in the form
dη = dλ8 x dτ751x, where ηsu is a family of locally finite Borel measures
on the leaves of the strong unstable foliation, such that the ρs-gradient
Y of η is of class C^a. Since (X, Y) = j-tη

8U o Φι | ί = 0 , the family ηsu is
in fact a family of conditional measures on strong unstable manifolds of
the unique Gibbs equilibrium state induced by the Holder continuous
function (X, Y). In other words, there is a family ηss of conditional
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measures on strong stable manifolds such that the Borel-probability
measure η on TιM, which is defined with respect to a local product
structure by dη = dηss x dη8U x dί, is invariant under the geodesic flow.

For v e TιM, and t β R, define ζ(υ,t) = ζt(v) = e^x^^v) d8 then
ζ is a multiplicative cocyle with respect to the geodesic flow.

Let v 6 T 2 M and let A C Wss(v) be a compact ball with nonempty
interior whose boundary is a set of measure zero with respect to ηss.
Denote by Xss the Lebesgue measure on the leaves of Wss defined by
the lift of the Riemannian metric on M. For every ί G R w e then can
view the restriction of λ5S to ΦιA as a finite Borel measure on TιM.
The arguments of Ledrappier in [17] then imply the following:

Proposition 4.1. The measures (ζ-t ° Φ*)λss |Φ-M converge as
t —> oo weakly to the measure ηss(A)η.

This is used to show:
Lemma 4.2. Let

aη = sup{Jφ(A°(φ) + Y(φ) + φ[± div(y) + \\\Y\\2]) dη \

then —δ0 > aη.
Proof. Define aη as in the statement of the lemma; we show first

that aη < oo. For this recall that the function

|
is continuous and hence bounded on TXM, and consequently

J dη

is uniformly bounded for all nontrivial continuous functions φ on TλM.
On the other hand, for every smooth function φ on TλM we have

φ(A°(φ) + Y{φ)) dη = -J || WH a dη < 0

(see [12]), and consequently aη < oo.
Let C£°(M) be the vector space of smooth functions on M with com-

pact support. Recall that δ0 > 0 equals the infimum of the Raleigh-
quotients of nonvanishing elements of C£°(M). If λ^ denotes the Lebes-
gue measure on M, then for φ e C™(M) this Rayleigh quotient is just
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Thus it suffices to find a function φ G C£° (M) such that for every e > 0

Jφ(Aφ)d\ύ>(aη-e)Jφ2d\M.

For this we choose v G TιM and identify M with (Ws(υ),gs). As be-
fore we denote by λss the Lebesgue measures on the leaves of the strong
stable foliation induced by the Riemannian metric on M, and write
dX3 = dtx dλss where dt is the 1-dimensional Lebesgue measure on the
flow lines of the geodesic flow. We denote moreover by Vφ (resp. Aφ)
the gradient (resp. Laplacian) of a function φ on the smooth Rieman-
nian manifold (W8(y),g8).

Let e > 0 and choose a smooth function φ on TXM with / φ2dη = 1
in such a way that

a = J φ(A°(φ) + Y(φ) + φ[\ div(F) + i||Y||2]) dη > aη - e.

Denote again by φ the restriction to W(υ) of the lift of φ to TιM, and
choose c > 0 sufficiently large that | | F | | + \\ div(F) + ||F||2 |(u;) < c and

[\\V°(Φ2)\\+Φ2(I+\\Y\\)+\Φ(ΔSΦ+Y(Φ))\+Φ2\1 div(y)+i| |yf |]H < c

for every w eTλM.
Let Ϋ be the lift of Y to TιM, and let / be a positive function on

Ws(v) which satisfies Vlog/ = \Ϋ \wa(v)- Then / is a function of class
C2, and HV/II + |Δ(/)| < cf pointwise on Ws(v).

Let B2 D Bι be compact balls of radius r2 > r\ > 0 about i? in
P^55(υ), whose boundaries have measure zero with respect to ηss and
such that

/ f dηss < (1 + e/2c) / / 2 dr/ss.

We then may renormalize / in such a way that fB f2 dηss = 1.
Choose a smooth ΦMnvariant function p on Ws(v) with values in

[0,1] and such that ρ(w) = 0 for w G VFSS(?;) - £ 2 and p(tι ) = 1 for
w E B1. Since /9 is ΦMnvariant, there is then a number t0 > 0 such
that |Δ*p(w)| < 1 and ||Vp(w)|| < 1 for every w G IJ Φ"W s s(v). By

t>t0

Proposition 4.1 there is a number tλ > t0 such that for every t > tx the
following are satisfied:

{φf2)(A(φ) +2(Vlog/,V<£) + <£[div(Vlog/) + ||Vlog/||2]) dλs

(1) = / (Φf)A(φf) d\°° > f f dη"(a - e) = a - e,
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( 2 )
 JΦ-*B B / 2 d λ " - € / C '

(3) / t φ2f2dλ8a>(l + ey1.

The support of the function pφf is contained in (J ΦtB2 and

\(ρφf)A(ρφf)\ <f2[\φ2ρA(ρ)\ + p||V/9||(2||(^V0|| + II^H^2)

+ p2(\φ(A(φ) + Ϋ(φ))\ + φ2\\ div(y) +

and consequently \{pφf)A(pφf)\ < cf2 on Ut> f lφ-*W"(t;). Thus for
t > t\ we obtain

/ (pφf)A(pφf) dλ8S

(4) > / (φf)A(φf) dλss - / cf2 dXss

7φ-*Bi Jφ-t(B2-Bι)

> a - 2e.

Choose a smooth function ξ: R -> [0,1] such that ξ(t) = 0 for
t < 0, ξ(t) = 1 for ί > 1. For an integer k > 0, define functions
ί*,C*: WSW "> [0,1] b y ^ ( Φ ^ ) = ί ( - t - f c ) and C*(Φ*tι;) = ί(fc + t + l)
for iϋ G W S S (Ϊ;) and ί E R Then the norms of the gradients of ξkXk
and the absolute values of Δ(£fc), A(ζk) are pointwise uniformly bounded
independent of k > 0.

Prom the above estimates and Proposition 4.1 it then follows:

(5) There is a number A > 0 such that

(pφfζiξk)Δ(pφfζiξk) dλ°° \< AL/φ-tWaa(v)

for all j,k>0 and all t > tλ.
Choose an integer m > 2A/e, let k > tι +1 and define a function φ on

Ws(v) by V7 = ξkζm+kPΦf- Then ^ is a smooth function with compstct
support, and fWs^ Ψ(Δφ) dXs = α± + α2 + α3 where

dX8 > m(aη — 3e) and

< A.

Together we obtain that fψ(Aψ) dλs > m(αη — 4e), in particular αη —
4e<0.
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On the other hand we have

φ2 dλs > [ φ2f2 dλ2 > m(l + e)"\

and consequently

Jφ(Aφ) dλ8/ Jψ2 dλs > (aη - 4€)(1 + e).

Thus also — δ0 > {aη — 4e)(l + e), which implies that — δ0 > aη since
e > 0 was arbitrary.

The next lemma then shows that aη — — δ0 for every measure η as
above:

Lemma 4.3. — δ0 < aη for every measure η induced as above by the
Gibbs-equilibrium state of a Holder continuous function on TιM.

Proof. If suffices to construct a function φ on TιM of class C2 such
that fφ2 dη = 1 and fφ(A*(φ) + Y(φ) + φ[±div(Y) + \\\Y\\2]) dη >
—δ0 — e for every e > 0.

For this we recall that — δ0 equals the top of the ZΛspectrum of M,
and hence for e > 0 there is a compact ball B in M and a smooth
function 0 ψ f on M with support in B such that

where λ^ is the Lebesgue measure on M.
Recall that every leaf of the stable foliation of TιM projects diffeo-

morphically onto M.
Let Π: TιM -> TιM be the canonical projection. If v e TιM is such

that UWs(υ) does not contain a periodic orbit of the geodesic flow, then
the restriction of Π to Ws(v) is injective. This implies that we can find
a vector υ E TιM with P(υ) E -B, an open neighborhood A of υ in
W8(v), an open neighborhood D of υ in Wsu(υ) and a homeomorphism
Λ of A x D onto an open neighborhood C of v in TιM with the following
properties:

1) A(w, v) = w for every w E A.
2) A(v,z) = z for every z E D.
3) A(A x {z}) is contained in Ws(z) for every z e D and

PA(A x {z}) D B.
4) A({w} x D) is contained in Wsu(w) for every w E A.
5) The restriction of Π to C is a diffeomorphism into TιM.

Recall that the measures ηsu on the leaves of the strong unstable
foliation induce a nonzero measure ηD on D. Denote again by λs the
family of Lebesgue measures on the manifolds A x {z} C Ax D induced
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via Λ from the Lebesgue measures on the leaves of the stable foliation.
Let p be the measure on A x D defined by dp = dλs x dηD. Then Λ
is absolutely continuous with respect to the measure p on A x D and
the measure η on C. The square root a of the Jacobian of Λ with
respect to these measures is Holder continuous. If Ϋ denotes the lift
of the vector field Y to TιM, then a o Λ"1 is of class C2

S on C and

Choose a smooth function φ on D with compact support and values
in [0,1] such that ψ(v) = 1. Define a function φ on C by φ(A(w,z)) =
ψ(z)a~ι(w,z)f(P(A(w,z))). Then φ is a function on C with compact
support and hence induces a function φ on TXM with compact support
in Π(C). Moreover φ is of class C2

S.
Write α = α o Λ"1 and / = / o P ; then

φ[± div(F) + i | |y | | 2]) <*7

Ϋ(φ) + φ\\ div(y) + i||yii2]) dη

[ [)
AxD

+ (JoA)^1^ div(F) + ^\\Ϋ\\2) o A]a2ψ2 dλs x dηD.

Now Vs logα = \Ϋ and consequently we obtain from the above formula
that

χ= ί (foA)(As(7)oA)<ψ*dλsxdηD

JAxD

> (-δ0 -e) ί (7 o Λ) V d\s x dηD

JAxB

by the choice of /. But clearly

ίφ2 dη= ί (/ o Λ) V dλs x rfr/D

and therefore aη > — δ0 — e by the definition of aη. Since e > 0 was
arbitrary, the lemma follows.

Recall that the Lebesgue Liouville measure X on TXM is the Gibbs
equilibrium state of the Holder continuous function v -> tr U(v) where
tr U(v) is the trace of the second fundamental form at Pυ of the hor-
sphere PW8U(v). Denote the #s-gradient of λ by Z. Then we have:

Lemma 4.4. The differential operator L = Δs+Z+\ div(Z) + | | | Z | | 2

is self-adjoint with respect to \, and the top of its spectrum equals δ0.
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Proof. Since Z is the (^-gradient of λ, the operator L is self-adjoint
with respect to λ by Corollary 2.6 of [12].

Let Av be the leafwise Laplacean of the vertical foliation, i.e., for a
smooth function / on TιM and every υ E TιM the evaluation of Av

on / at v is obtained by restricting / to the fibre TpυM of the fibration
TιM —» M through υ and evaluating the Laplacean of the round sphere
TpυM on this restriction. Then Av is a second order differential operator
on TιM with smooth coefficients, which is subordinate to the vertical
foliation and leafwise elliptic. Moreover Av is self-adjoint with respect
to the invariant measure λ, i.e., for smooth functions /, φ on TιM we
have / f(Avφ) dX = J φ(Avf) dX = - f(Vυf, VVΦ) dX where Vv f is the
section of the vertical bundle Tv whose restriction to a fibre T^M equals
the gradient of the restriction of / to the (totally geodesic) submanifold
T*M of TιM, and by abuse of notation (,) is the natural Riemannian
metric on Tv.

Since the vertical foliation and the stable foliation of TιM are transver-
sal, for every e > 0 the operator Le = L + eAv is elliptic and moreover
self-adjoint with respect to λ. In particular the spectrum of L€ is a
pure point spectrum, and its top is an eigenvalue a€ whose correspond-
ing eigenspace is one-dimensional and spanned by a positive function
fe: T

λM -> (0, oo) of class C2. We assume f€ to be normalized in such
a way that / f€ dX = 1. First we note:

Lemma 4.5. lim^oαe = — δ0.
Proof. Let Qe be the quadratic form on the space of smooth functions

on TιM associated to L€; for every smooth function φ on TιM we have

Q€(φ) = I φ(Leφ) d\ = J φ(Lφ) dX-ej \\Vυφf dλ,

and consequently Q€ > Qs for e < δ. Now the space of smooth functions
on TιM is a form core for the quadratic form Qo defined by L; since
Qe —> Qo(t -> 0) on this form core, the operators L€ converge as e -> 0
in the strong resolvent sense to L (see [6]).

This implies in particular that limc_^0^e = — <V
Lemma 4.6. Let η be a weak limit of the measures f€X on TιM as

e —> 0. Then η is a harmonic measure for the operator L + δ0.
Proof. Let φ be a smooth function on TιM\ then φ and Avφ are

continuous. Hence J e(Avφ)f€ dX —> 0 and

(a€+δo)fφf€d\-+0{e->0)

by Lemma 4.5. Let {e^ be a sequence such that e; ->• 0 and that the
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measures /Ciλ converge weakly as i -> oo to a measure η. We then have

ί(L + δo)φ dη = lim ί[(L + δo)φ]f€i d\
J I-+OO J

= lim

= lim fφ(Lei-au)(fti)dλ = 0,

since L€i is self-adjoint with respect to λ. This shows the lemma.
Corollary 4.7. Let η be as in Lemma 4-6, and let ζ be the section

ofTW8 such that ζ + \Z is the gs-gradient of η. Then

Proof. Let υ E TιM and let / be a function on Ws(υ) such that
Vs log/ = \Z \wa(v) For a smooth function φ on W^v) with compact
support we then have f^A^fφ) = As(φ)+Z(φ)+φf-1A(f) = Z#, and
hence the formal adjoint L* of L\w.{v) is given by L*(φ) = fA8(f~1φ).
In other words, if L*(0) = — Jo</>, then f~ιφ is a solution of As(f~xφ) =

Prom this and Lemma 2.2 of [12] the corollary follows.

5. Pressure computation

In this section we use the results in Section 4 to prove the second
part of Theorem B and Theorem C. For this we continue to use the
assumptions and notation of Sections 1-4. Recall in particular that we
denoted the pressure of the functions 2(X, £€) for e G (0, δ0] by q(e) < 0.
Our theorem will be a consequence of the fact that lim e^ 0 q(ε) = 0. As
in Section 4 let Lδ = As + Z + \ div(Z) + \\\Z\\2 + δA\ and let fδ

be an eigenfunction of Lδ with respect to the largest eigenvalue α^. In
contrast to Section 4 however we assume now that f$ is normalized in
such a way that / βdλ = 1. Then we have:

L e m m a 5.1. Let v be a weak limit of the measures / | λ on TιM as
δ —> 0. Then the following are satisfied:

i) The vector fields ξe converge as e —>> 0 in the Hilbert space of
sections of TWS over TιM, which are square integrable with
respect to v to a section ξ ofTWs.

ii) div(£) + | |£ | | 2 + δ0 = 0 almost everywhere on (TιM,v).
iii) v is a self-adjoint harmonic measure for As + 2ξ.
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iv) Every v-measurable section ζ ofTWs overTιM, which satisfies
div(C) + IIC||2 + δQ < 0 almost everywhere, coincides with ξ.

Proof. Let {δi}i be a sequence such that ί, —» 0 (i -> oo) and
that the measures f$. λ converge as i —> oo weakly to a measure v. For
i > 0 write f{ = fδi,ai = aδi and Q{ = Vslog fc + \Z. The differential
equation for fc then yields

(1) div(Qέ) + l l ^ f - cti + δifΓ'Δ'ifi) = 0,

and consequently

(2) div(6 - g θ = HQill2 - ll&f - δ0 + e - α4 + ίi/Γ

for every c > 0. Since /t

2λ is a self-adjoint harmonic measure for
(see [12]), integration of equation (2) shows

0 = |(div(& - Qi) + 2(Qi,ξ( - Qi))ff d\

= J(-\\ξ< - Qi\\2 -δo + e-ctt- δ,\\ V" logΛH2)/2 dλ,

since /(/Γ'Δ^Λ))/? dλ = -/HVMog/iH2/2 dλ by self-adjointness of
Δ". FVom this we obtain

(3) limsup ί\\ξt-Qi\\3ffdλ<e.

Since the above equation is valid for every e > 0 we further conclude
that

(4) limsup 5,
i—>oo

Now by the definition of v we have

< limsup 2( / ||ξe - Qifίl dλ + ί \\ξδ - Qtfff dλ)

=2e + 2δ

by the above estimates for all e, δ > 0. Hence for every sequence {ej}j>o
with €j -> 0 (j —̂  oo) the vector fields {£€j j ^ form a Cauchy sequence
in the Hubert space H of sections of TWS over Ϊ^M, which are square
integrable with respect to v. In other words, there is a section ξ E H
such that ξδ -> ξ ((5 -> 0) in H which yields i) above.
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Next we want to show that v is a self-adjoint harmonic measure for
Δ 5 + 2£, and for this it is sufficient to show that

< e

for every section Y of TW* of class C\. Let Y be a section of TWS of
class C] and let e > 0; since & -ϊ ξ in Ή there is a number δ < e such
that

(5) \J(2ξ,Y)dv-J(2ξδ,Y)dv\<e.

Now the functions (2ξδ,Y) and div(y) are continuous on TιM and the
measures f?\ converge as i —> oo weakly to ZΛ This means that we can
find a number iQ > 0 such that

(6) I | (d iv(y) + (26, y » ^ - /(div(y) + (26, Y))f? dλ

for all i > i0- On the other hand, by (4) above we may further assume
that

(7) {

for all i > i0. The equation preceding (3) then implies that
/ H 6 - Q i l l 2 / i 2 d λ < 2 e s o t h a t

(8) I J(2ξs,Y)fϊ dλ - J(2Qi,Y)ff dλ |< 2cV2~e,

where c = max{||Y||(t;) | v e r x M } .
Since ff dλ is a self-adjoint harmonic measure for Δ* + 2QU integra-

tion and (6), (7), (8) yield

I J(div(Y) + {2ξ,,Y))dv I < 2e + 2c\/2~e+ | J{ div(Y) + {2QitY))ff dλ \

= 2(e + cV2e).

Since e > 0 was arbitrary we obtain that indeed

and hence iii).
Now v is a self-adjoint harmonic measure for a leafwise elliptic second

order differential operator subordinate to Ws, and hence v is absolutely
continuous with respect to the stable and strong unstable foliation, with
conditionals on stable manifolds in the Lebesgue measure class. But
this means that for lA-almost every v eTλM the restriction of the vector
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fields ξδ to the open ball B of radius 1 about υ in Ws(v) converge almost
everywhere pointwise with respect to the Lebesgue measure Xs on Ws(υ)
to the restriction of ξ by i) above, and ||&||2 -^ | |£| |2 almost everywhere
pointwise on (Ws(v),λs) as well. But div(^) + ||&||2 + δ0 - δ = 0
and consequently via partial integration we obtain that div(£) + | |£| |2 +
δ0 = 0 on B in the sense of distributions. Regularity theory for elliptic
equations then implies that in fact the restriction of ξ to B is a strong
solution of div(O + | |£| |2 + δ0 = 0 and hence div(ξ) + ||ξ||2 + δ0 = 0
almost everywhere with respect to v.

We are left with statement iv) in the lemma. For this let χ be any im-
measurable square integrable section of TWS over TιM, which satisfies
div(χ) + ||χ||2 + #o < 0 almost everywhere with respect to v. As before
we then have

= / lie - xf A,,

since v is a self-adjoint harmonic measure for Δ s + 2£. Hence ξ = χ
almost everywhere.

By Lemma 5.1 iii) the measure v is harmonic for the leafwise elliptic
differential operator Δ s + 2ξ. Therefore by the result of Garnett [8] we
can write dv — dλs x dvsu where vsu is a family of locally finite Borel-
measures on the leaves of W8U, which are absolutely continuous under
canonical maps, and where λs is the family of Lebesgue measures on
the leaves of Ws for all e > 0.

In other words, the measures vsu induce a πx (M)-invariant measure
class z/(oo) on dM. This measure class has the properties mentioned in
Theorem C:

Corollary 5.2. For every x G M and v(oo)-almost every ζ G dM
the functions y —> Ke(x,yX) converge as e -> 0 uniformly on compact
subsets of M to a minimal positive A0-harmonic function.

Proof. Let v be the lift of v to a locally finite measure on TιM, and
let I be the lift of ξ. Then Lemma 5.1 implies that for P-almost every
υ E TιM the functions y -> Ke(x,y,π(υ)) converge as e -> 0 uniformly
on compact subsets of M to a positive Δ0-harmonic function fv. The
gradient of log fv is just the projection to M of the restriction of ξ to
Ws(v).

We are left with showing that for z>-almost every v ETιM the func-
tion fv is in fact minimal Δ0-harmonic. Since for every smooth function



28 URSULA HAMENSTADT

φ on M we have

f^AiφΓ) + δoφ = A(Φ) + 2<VlogΛ Vφ),

this is equivalent to saying that every bounded Δ + 2 V log /"-harmonic
function on M is constant. Now v is a self-adjoint harmonic measure for
Δ s + 2£, and hence the Kaimanovich-entropy of the diffusion on TιM
induced by (As + 2ξ,v) vanishes (see [12], [15]). But this just means
that zA-almost every leaf of Ws is Liouville with respect to Δ s+2£, which
yields the corollary.

Consider now again the measures v8U on the leaves of the strong
unstable foliation. The arguments in the proof of Lemma 3.5 then show
that there is a number c > 0 such that v8U{B8U{y, 1)) G [c~l,c] for all
υ G TλM, where B^υ^δ) denotes the open ball of radius δ > 0 about
v in the manifold Wi{v) equipped with the metric g{ which is induced
from the Riemannian metric on M (i = 5, su, ss).

Recall that the unique Gibbs equilibrium state vt of the function
2(X, ξ€) admits a family u8U of conditional measures on strong unstable
manifolds such that j i/^oφ* | t = = 0= 2(^,£c) + 9(e) By the arguments in
the proof of Lemma 2.7 we have v8U(Bsu(v, 1)) G [c~\c] for all υ G TιM
independent of e. Let T\ v -> — v be the flip on TιM and define for e > 0
a measure v\ on the leaves of Ws by dvs

e = dtx dvs

e

s where v\8 = v\uoT.
Clearly there is a number a > 0 such that v8(B8(υ, 1)) G [α~\α] for all
v G TιM and all e G (0,50] Thus we obtain a finite Borel measure
σ€ on T^M by defining dσ€ = dv8 x dv8U which we may assume to
be normalized in such a way that σe(TιM) = 1 for all e > 0. Then
the section ξ of TW8 over TXM is contained in the Hubert space of
sections which are square integrable with respect to σ€ for all e > 0, with
Hubert norm bounded independent of e. Moreover σ€ is quasi-invariant
under the action of the geodesic flow, and we have ^σ£ o Φ* | t = 0 (v) =
2(X,ξ)(υ) — 2(X,ξe)(—υ) — q(e) where as before g(e) < 0 is the pressure
of the function 2{X,ξ€) on TιM.

Lemma 5.3. For every δ > 0 there is a number e(δ) > 0 such that
JUe-ξ\\2dσe<δforalU<e(δ).

Proof. Recall that the vector fields ξc,£ are pointwise uniformly
bounded in norm, independent of e. Lemma 5.1 together with the pre-
compactness of the space of positive locally bounded Δ€-harmonic func-
tions on M then implies the following: Let v8U be the lift of the mea-
sures v8U to the leaves of W8U C TιM. Then for every υ G TιM and
z/su-almost every w G W8U(v) the restriction of ξ€ to Ws(w) converges
uniformly on compact sets to the restriction of ξ.

Let C C TιM be a set with a local product structure, given by a
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vector υ G TιM, a compact ball B C Wsu(υ) about v, a compact ball
A C Ws(v) about v and a homeomorphism A i x B - ^ C such that
A(w,z) G W^s(^) Π W8U(w) as in the proof of Lemma 4.3. We assume
that the projection of C to TιM is surjective.

Since C can be covered by a finite number of fundamental domains
for the action of ττ1(M) on TXM, there is a number CQ > 0 such that
&e(C) < Q) for all e G (0, 50], where we denote the lift of σe to T^M again
by σ£. By the infinitesimal Harnack inequality we can further choose a
number ra > 0 such that | |£e | |

2(v) and | | £ | | 2 ( Ϊ ; ) is not larger than m for
all v G TιM and all e G (0,ίo]

Let £ > 0 be given. By the properties of the measures v\ there is then
a number p > 0 such that σe(A(A x E)) < δ/8m whenever E C B is
Borel and ί>su(E) < p. On the other hand, for Z>5U-almost every w e B
the sections £e converge on A(A x {w}) uniformly to £ as e —> 0; hence
there is a number e(<5) > 0 such that DSU(E) < p where E = {w G B |
||ξβ - ξ||2(Λ(*, w)) > <ty2c0 for some z G Λ and e < c(ί)}.

For e < e(ί) we then have

/ I l 6 ^ l | / \\ξt-ξ\\2dσt
A(AxE) JA(AX(B-E))

<4mσe(A(A x E)) + σe(A(A x B))δ/2co < δ

by the above. This shows the lemma.
Corollary 5.4. q(0) = limc^o ^(^) = 0.
Proof. Assume to the contrary that g(0) = limc_>o q{t) < 0; recall

that q(e) < q(0) for every e > 0. By Lemma 5.3 we then can find a
number e > 0 such that / \\ξe — ξ\\2dσe < ^g(O)2. Since the norm of the
geodesic spray X is constant 1, from this it follows that

I J(X, ξ - Qdσt |< I \\ξ - adσ( < (J ||e - aW* < -\q(0).

But ^ σ e o Φ* | t = 0 = 2(X,ξ - ξt) - q(e) and consequently

0 = I jtσ( o Φ4 | f = 0 dσt = j 2(X, ξ - Qdσe - q(e) > ~q(0)

by the above estimates, a contradiction to our assumption q(0) < 0.
Hence the corollary is proved.

As a corollary we obtain the second part of Theorem B.
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Corollary 5.5.

1) There is a number c > 0 such that $SιpR\ G0(p,y)2d\PyR(y) < c

for dip eM, allR> 1.
2) liminf^oo Js{pR) G0(p,y)2~edλPiR = oo for every e > 0.

Proof. Statement 1) follows from the arguments in the proof of
Corollary 3.6. To show 2) let e > 0; by the first part of Theorem B there
is then a number a > 0 such that G0(p,y)2"e > a-ιe-aάist^y)G0{p,y)2

for all y,p E M with dist(j?, y) > 1. Choose now e > 0 sufficiently small
that q(e) > —a/2; such a number exists by Corollary 5.3. The Harnack-
inequality at infinity of Ancona for the operator Δ e implies that there
is a number c(e) > 0 such that /5(P) jR) Ge(p,y)2e~q(e)Rdλ^R(y) > c(e) for
all R > 1. But the maximum principle yields that G0(p,y) > cGe(p,y)
for all p, y G M with dist(p, y) > 1, where c > 0 is a universal constant.
Hence

G0{p,yγ-*d\p,R{y) >a~ιc ί Gt(p,yfe-aRd\p,R{y)
S(p,R) JS(PiR)

>a-ιcc{e)e«R>2

for all R > 1, and the corollary is proved.
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