HARMONIC MEASURES, HAUSDORFF MEASURES AND POSITIVE EIGENFUNCTIONS

URSULA HAMENSTÄDT

Abstract

Let M be a compact negatively curved Riemannian manifold with universal covering M, and let $\delta_{0}>0$ be the negative of the bottom of the positive spectrum of the Laplacean Δ on \tilde{M}. We use methods from ergodic theory to show that $\Delta+\delta_{0}$ admits a Green's function which decays exponentially with the distance. Moreover for almost every point $\zeta \in \partial \bar{M}$ with respect to a suitable Borel-measure which is positive on open sets, the unique minimal positive $\Delta+\delta_{0}-\epsilon$-harmonic functions on \tilde{M} with pole at ζ normalized at a point $x \in \tilde{M}$ converge as $\epsilon \rightarrow 0$ uniformly on compact sets to a minimal positive $\Delta+\delta_{0}$-harmonic function.

1. Introduction

Let M be an n-dimensional compact manifold of negative sectional curvature, and let \tilde{M} be its universal covering. For every $x \in \tilde{M}$ the harmonic measure ω^{x} at x is a Borel-probability measure on the ideal boundary $\partial \tilde{M}$ of \tilde{M}, which via the canonical identification can be viewed as a measure on the fibre $T_{x}^{1} \tilde{M}$ at x of the unit tangent bundle $T^{1} \tilde{M}$ of \tilde{M}.

Let Γ be the fundamental group of M acting as a group of isometries on \tilde{M} and $T^{1} \tilde{M}$. For $\Psi \in \Gamma$ we then have $\omega^{\Psi x}=\omega^{x} \circ(d \Psi)^{-1}$, and hence the measures ω^{x} can be transported to measures on the fibres of the unit tangent bundle $T^{1} M$ of M.

Denote by $D T M$ (resp. $D T \tilde{M}$) the smooth fibre bundle over M (resp. \tilde{M}) whose fibre $D T M_{x}$ at $x \in M$ (resp. $D T \tilde{M}_{x}$ at $x \in \tilde{M}$) equals $T_{x}^{1} M \times T_{x}^{1} M$ (resp. $\left.T_{x}^{1} \tilde{M} \times T_{x}^{1} \tilde{M}\right)$. We call a function β on $D T M$ symmetric if β is invariant under the natural involution $(v, w) \rightarrow(w, v)$. In Section 2 of this note we show:

Received May 8, 1995.
1991 Mathematics Subject Classification. 58F17, 58G03.

Theorem A. There is a Hölder-continuous symmetric function $\delta: D T M \rightarrow[0, \infty)$ with the following properties:

1) There is a number $\kappa>0$ such that for every $x \in M$ the restriction of δ^{κ} to $D T M_{x}$ is a quasi-distance on $T_{x}^{1} M$ defining the usual topology.
2) For every $x \in M$ the measure ω^{x} is the $1 / \kappa$-dimensional spherical measure on $T_{x}^{1} M$ induced by δ^{κ}.
Denote by Δ the Laplacean on \tilde{M}, and let $\delta_{0}>0$ be the negative of the bottom of the positive spectrum of Δ on \tilde{M}, which equals the top of the spectrum of Δ acting on square-integrable functions on \tilde{M} (see [21]). For every $\epsilon>0$ the differential operator $\Delta_{\epsilon}=\Delta+\delta_{0}-\epsilon$ is weakly coercive in the sense of Ancona [1], and hence the Martin boundary of Δ_{ϵ} can naturally be identified with the ideal boundary $\partial \tilde{M}$ of \tilde{M} (see [1]). In other words, Δ_{ϵ} admits a Green's function G_{ϵ} on $\tilde{M} \times \tilde{M}-\{(x, x) \mid x \in \tilde{M}\}$, and the Martin kernel K_{ϵ} of Δ_{ϵ} is a Höldercontinuous function on $\tilde{M} \times \tilde{M} \times \partial \tilde{M}$ such that for every $x \in \tilde{M}$ and every $\zeta \in \partial \tilde{M}$ the assignment $y \rightarrow K_{\epsilon}(x, y, \zeta)$ is the unique minimal positive Δ_{ϵ}-harmonic function on \tilde{M} with pole at ζ, which is normalized to be 1 at x. Since Δ_{ϵ} is in fact coercive the results of Ancona imply that there are numbers $c_{\epsilon}>0, \chi_{\epsilon}>0$ such that $G_{\epsilon}(x, y) \leq c_{\epsilon} e^{-\chi_{\epsilon} \operatorname{dist}(x, y)}$ whenever the distance $\operatorname{dist}(x, y)$ of $x, y \in \tilde{M}$ is not smaller than 1 .

The operator $\Delta_{0}=\Delta+\delta_{0}$ fails to be weakly coercive in the sense of Ancona. In fact, Ancona gave an example of a simply connected manifold \tilde{N}_{1} of bounded negative curvature for which Δ_{0} does not even admit a Green's function [2]. Ancona also constructed a simply connected manifold \tilde{N}_{2} of bounded negative curvature such that Δ_{0} admits a Green's function, but the Martin boundary of Δ_{0} consists of a unique point. However, under our assumption that \tilde{M} is the universal covering of a compact manifold, these cases can not occur. More precisely, we denote for $p_{\tilde{\sim}} \in \tilde{M}$ and $R>0$ by $S(p, R)$ the distance sphere of radius R about p in \tilde{M}, and let $\lambda_{p, R}$ be the Lebesgue measure on $S(p, R)$ induced by the restriction of the Riemannian metric on \tilde{M} to $S(p, R)$. In Section 3 and Section 5 we show

Theorem B. Assume that \tilde{M} is the universal covering of a compact manifold M. Then the operator $\Delta+\delta_{0}$ admits a Green's function G_{0} with the following properties:

1) There are constants $a>0, \chi>0$ such that $G_{0}(x, y) \leq a e^{-\chi \operatorname{dist}(x, y)}$ for all $x, y \in \tilde{M}$ with $\operatorname{dist}(x, y) \geq 1$.
2) There is a number $c>0$ such that $\int_{S(p, R)} G_{0}(p, y)^{2} d \lambda_{p, R}(y) \leq c$ for all $p \in \tilde{M}, R \geq 1$.
3) $\liminf _{R \rightarrow \infty} \int_{S(p, R)} G_{0}(p, y)^{2-\epsilon} d \lambda_{p, R}(y)=\infty$ for every $\epsilon>0$.

Moreover we obtain in Section 5:
Theorem C. There is a $\pi_{1}(M)$-invariant measure class $\nu(\infty)$ on $\partial \tilde{M}$ such that for $\nu(\infty)$-almost every $\zeta \in \partial \tilde{M}$ and every $x \in \tilde{M}$ the functions $y \rightarrow K_{\epsilon}(x, y, \zeta)$ converge as $\epsilon \rightarrow 0$ uniformly on compact subsets of \tilde{M} to a minimal positive Δ_{0}-harmonic function on \tilde{M}.

Recall that δ_{0} equals the infimum of the Rayleigh-quotients $\int\|\nabla \phi\|^{2} d x / \int \phi^{2} d x$ over all nontrivial smooth functions ϕ on \tilde{M} with compact support. However δ_{0} can also be expressed via a variational equation on the unit tangent bundle $T^{1} M$ of M. For its formulation recall that the geodesic flow Φ^{t} is a smooth dynamical system on $T^{1} M$, generated by the geodesic spray X. There is a Hölder-continuous Φ^{t}-invariant decomposition $T T^{1} M=\mathbb{R} X \oplus T W^{s s} \oplus T W^{s u}$ where $T W^{s s}$ (resp. $T W^{s u}$) is the tangent bundle of the strong stable foliation $W^{s s}$ (resp. the strong unstable foliation $W^{s u}$). The leaves of the stable foliation W^{s} with tangent bundle $T W^{s}=\mathbb{R} X \oplus T W^{s s}$ are smoothly immersed submanifolds of $T^{1} M$ which are mapped by the canonical projection $P: T^{1} M \rightarrow M$ locally diffeomorphically onto M. Thus the Riemannian metric on M induces a Riemannian metric g^{s} on $T W^{s}$ and a family λ^{s} of Lebesgue measures on the leaves of W^{s}. Write also \langle, instead of g^{s}.

The stable Laplacean Δ^{s} is a second order differential operator on $T^{1} M$ with Hölder continuous coefficients. For a smooth function ϕ on $T^{1} M$ the value of $\Delta^{s} \phi$ at $v \in T^{1} M$ just equals the value at v of the Laplacean of the Riemannian manifold $\left(W^{s}(v), g^{s}\right)$ applied to the restriction of ϕ to the leaf $W^{s}(v)$ of W^{s} through v. Moreover denote the gradient of $\phi \mid\left(W^{s}(v), g^{s}\right)$ at v by $\left(\nabla^{s} \phi\right)(v) \in T_{v} W^{s}$.

Let η be a Borel-probability measure on $T^{1} M$ which is absolutely continuous with respect to the stable and strong unstable foliation, with conditionals on stable manifolds in the Lebesgue measure class. Recall from [12] the definition of the g^{s} - gradient of η (if this exists). It is the unique section Y of $T W^{s}$ which satisfies

$$
\int \phi\left(\Delta^{s}+Y\right)(\psi) d \eta=\int \psi\left(\Delta^{s}+Y\right)(\phi) d \eta
$$

for all smooth functions ϕ, ψ on $T^{1} M$.
Call a section Z of $T W^{s}$ of class $C_{s}^{1, \alpha}$ for some $\alpha>0$ if Z is Höldercontinuous of class α and differentiable along the leaves of the stable foliation, with leafwise first order jets of class C^{α}. If Z is of class $C_{s}^{1, \alpha}$, then for every $v \in T^{1} M$ the divergence $\operatorname{div} Z(v)$ of $Z \mid\left(W^{s}(v), \lambda^{s}\right)$ is defined at v and the assignment $v \rightarrow \operatorname{div} Z(v)$ is of class C^{α}.

With thise notation in Section 4 of this note we show

Theorem D. Let η be a Borel-probability measure on $T^{1} M$, which is absolutely continuous with respect to the stable and unstable foliations, with conditionals on stable manifolds in the Lebesgue measure class. Assume that the g^{s}-gradient Y of η is of class $C_{s}^{1, \alpha}$ for some $\alpha>0$. Then

$$
\begin{gathered}
-\delta_{0}=\sup \left\{\left.\int \phi\left(\Delta^{s}(\phi)+Y(\phi)+\phi\left[\frac{1}{2} \operatorname{div}(Y)+\frac{1}{4}\|Y\|^{2}\right]\right) d \eta \right\rvert\,\right. \\
\left.\phi \in C^{\infty}\left(T^{1} M\right), \int \phi^{2} d \eta=1\right\}
\end{gathered}
$$

As a corollary, we find a new proof of a result of Ledrappier; namely, let σ be the unique Borel-probability measure on $T^{1} M$ such that $\int\left(\Delta^{s} \phi\right) d \sigma=0$ for every smooth function ϕ on $T^{1} M$ (see [18], [12]). The g^{s}-gradient Y of σ satisfies $\operatorname{div}(Y)=-\|Y\|^{2}$, and $\int\|\underset{\sim}{Y}\|^{2} d \sigma$ equals the Kaimanovich-entropy h_{K} of the Brownian motion on \tilde{M}. In [19] Ledrappier showed:

Corollary. $\delta_{0} \leq \frac{1}{4} h_{K}$ with equality if and only if M is asymptotically harmonic and hence locally symmetric.

Proof. Using the constant function 1 in Theorem D we obtain $-\delta_{0} \geq-\frac{1}{4} h_{K}$. Assume that the equality holds and let ϕ be a smooth function on $T^{1} M$ with $\int \phi d \sigma=0$. Then

$$
\begin{aligned}
& \left.\frac{d}{d t} \int(1+t \phi)\left[\Delta^{s}(t \phi)+Y(t \phi)-(1+t \phi) \frac{1}{4}\|Y\|^{2}\right] d \sigma\right|_{t=0} \\
& \quad=\int\left(\Delta^{s}(\phi)+Y(\phi)-\frac{1}{2} \phi\|Y\|^{2}\right) d \sigma=-\frac{1}{2} \int \phi\|Y\|^{2} d \sigma
\end{aligned}
$$

since σ is a harmonic measure for $\Delta^{s}+Y$. But $t=0$ is a maximum for the assignment

$$
t \rightarrow \frac{\int(1+t \phi)\left[\Delta^{s}(t \phi)+Y(t \phi)-(1+t \phi) \frac{1}{4}\|Y\|^{2}\right] d \sigma}{\int\left(t^{2} \phi^{2}+1\right) d \sigma}
$$

and hence the differentiation at $t=0$ yields $0=-\frac{1}{2} \int \phi\|Y\|^{2} d \sigma$. Since ϕ was arbitrarily chosen such that $\int \phi d \sigma=0$, we conclude that $\|Y\|^{2} \equiv h_{K}$.

Now write $Y=\langle X, Y\rangle X+Y^{s s}$ where $Y^{s s}$ is a section of $T W^{s s}$. Let μ be the Bowen-Margulis measure on $T^{1} M$, i.e., the unique Φ^{t}-invariant Borel-probability measure whose entropy equals the topological entropy h of the geodesic flow. Since the pressure of the function $\langle X, Y\rangle$ vanishes [16] we have

$$
h \leq \int\langle X, Y\rangle d \mu \leq\left(\int|\langle X, Y\rangle|^{2} d \mu\right)^{1 / 2} \leq\left(\int\|Y\|^{2} d \mu\right)^{1 / 2}=h_{K}^{1 / 2}
$$

with equality if and only if $Y^{s s} \equiv 0$. But $h_{K} \leq h^{2}[16]$, and hence $Y=$ $\sqrt{h_{K}} X$. Thus $\operatorname{div}(X) \equiv-\sqrt{h_{K}}$ implying that the mean curvature of the horospheres in \tilde{M} is constant, i.e., that M is asymptotically harmonic.

By the results of Benoist, Foulon, Labourie, Besson, Courtois, Gallot [7], [4], [5], the manifold M is therefore in fact locally symmetric.

Let now Z be the g^{s}-gradient of the Lebesgue-Liouville measure λ on $T^{1} M$. In the same way as above we obtain that $\delta_{0} \leq \int \frac{1}{4}\|Z\|^{2} d \lambda$ with equality if and only if M is locally symmetric.

Let $P: T^{1} \tilde{M} \rightarrow \tilde{M}$ be the canonical projection. For every $x \in \tilde{M}$ the restriction π_{x} of the natural projection $\pi: T^{1} \tilde{M} \rightarrow \partial \tilde{M}$ to $T_{x}^{1} \tilde{M}$ is a homeomorphism. For $v \in T^{1} \tilde{M}$, denote moreover by θ_{v} the Busemann function at $\pi(v)$ which is normalized by $\theta_{v}(P v)=0$.

2. Harmonic Gromov - distances

For $\epsilon>0$, again let $K_{\epsilon}: \tilde{M} \times \tilde{M} \times \partial \tilde{M} \rightarrow(0, \infty)$ be the Martin kernel of the operator $\Delta_{\epsilon}=\Delta+\delta_{0}-\epsilon$. Recall that $T^{1} M$ (resp. $T^{1} \tilde{M}$) admits a natural embedding into $D T M$ (resp. DT \tilde{M}) by mapping $v \in T^{1} M$ (resp. $v \in T^{1} M$) to the element (v, v) of the diagonal in $D T M$ (resp. $D T \tilde{M}$). With the notation from the introduction we then have:

Lemma 2.1. For every $p \in \tilde{M}$ and $v \neq w \in T_{p}^{1} \tilde{M}$ the limit

$$
\beta_{\epsilon}(v, w)=\lim _{y \rightarrow \pi(v), z \rightarrow \pi(w)} \frac{1}{2}\left[\log G_{\epsilon}(z, y)-\log G_{\epsilon}(p, y)-\log G_{\epsilon}(z, p)\right]
$$

exists. The function $\beta_{\epsilon}: D T \tilde{M}-T_{\tilde{1}} \tilde{M} \rightarrow \mathbb{R}$ is continuous and invariant under the action of $\pi_{1}(M)$ on DT \tilde{M}. Moreover for $(v, w),(z, u) \in D T \tilde{M}$ with $z \in W^{s}(v), u \in W^{s}(w)$ we have

$$
\beta_{\epsilon}(v, w)-\beta_{\epsilon}(u, z)=\frac{1}{2}\left[\log K_{\epsilon}(P v, P u, \pi(v))+\log K_{\epsilon}(P v, P u, \pi(w))\right] .
$$

Proof. By the Harnack inequality at infinity of Ancona and the arguments in the proof of Theorem 6.2 of Anderson-Schoen [3], for fixed $p, y \in \tilde{M}$ the function $z \rightarrow \frac{G_{\epsilon}(z, y)}{G_{\epsilon}(p, y) G_{\epsilon}(z, p)}$ has a Hölder continuous extension to the boundary, uniformly in $p, y \in \tilde{M}$. From this we conclude as in [17] that the limit $\beta_{\epsilon}(v, w)$ as above exists and depends continuously on $(v, w) \in D T \tilde{M}$. But also

$$
\lim _{y \rightarrow \zeta}\left(\log G_{\epsilon}(p, y)-\log G_{\epsilon}(q, y)\right)=\log K_{\epsilon}(q, p, \zeta)
$$

and from this we obtain the required formula for $\beta_{\epsilon}(v, w)-\beta_{\epsilon}(u, z)$.

Recall that we have a Hölder continuous foliation $D W^{s}$ on $D T \tilde{M}$ and $D T M$ with the property that the leaf $D W^{s}(v, w)$ of $D W^{s}$ through a point $(v, w) \in D T M$ consists of all points $(u, z) \in D T M$ with $u \in W^{s}(v)$ and $z \in W^{s}(w)$. Then the first factor projection $R_{1}: D T M \rightarrow T^{1} M$ maps the foliation $D W^{s}$ to the stable foliation. Moreover the natural embedding of $T^{1} M$ into $D T M$ is an embedding of the foliated space $\left(T^{1} M, W^{s}\right)$ into the foliated space ($D T M, D W^{s}$).

Recall the definition of the Gromov products on $\partial \tilde{M}$ (see [9]); namely for $x \in \tilde{M}$ and $v \neq w \in T_{x}^{1} \tilde{M}$ define

$$
(v \mid w)=\lim _{y \rightarrow \pi(v), z \rightarrow \pi(w)} \frac{1}{2}(\operatorname{dist}(x, y)+\operatorname{dist}(x, z)-\operatorname{dist}(y, z))
$$

Clearly $(v \mid w) \geq 0$ for all $(v, w) \in D T \tilde{M},(v \mid w)=0$ if and only if $w=-v$, and for $(v, w) \in D T M-T^{1} \tilde{M}$ and $(u, z) \in D W^{s}(v, w)$ we have $(v \mid w)-(u \mid z)=\frac{-1}{2}\left(\theta_{v}(P u)+\theta_{w}(P u)\right)$. Now the functions ($\left.\mid\right)$ and β_{ϵ} on $D T \tilde{M}-T^{1} \tilde{M}$ are clearly invariant under the action of $\pi_{1}(M)$ on $D T \tilde{M}-T^{1} \tilde{M}$, and hence they project to functions on $D T M-T^{1} M$ which we denote by the same symbols. These functions can be compared as follows:

Lemma 2.2. There is a number $\alpha>0$ and for every $\epsilon \in\left(0, \delta_{0}\right]$ there is a number $c_{\epsilon}>0$ such that $e^{-\alpha \beta_{\epsilon}(v, w)} \geq c_{\epsilon} e^{-(v \mid w)}$ for all $(v, w) \in D T M-T^{1} M$.

Proof. Define $A=\left\{(v, w) \in D T M \left\lvert\, \angle(v,-w) \leq \frac{\pi}{2}\right.\right\}$. Then A is a compact subset of $D T M-T^{1} M$, and hence by continuity of the functions β_{ϵ} for fixed $\epsilon \in\left(0, \delta_{0}\right.$] there is a number $a_{\epsilon}>0$ such that $\beta_{\epsilon}(v, w) \leq a_{\epsilon}$ for all $(v, w) \in A$.

Recall that the Riemannian metric on M can be lifted to a metric on the leaves of $D W^{s} \subset D T M$ in such a way that the norm of the leafwise gradient of the function (\mid) with respect to this metric is bounded on $D T M-\left\{T^{1} M \cup A\right\}$ pointwise from below by a universal constant $b>0$. Moreover by Lemma 2.1 and the Harnack inequalities the norm of the leafwise gradient of β_{ϵ} with respect to this metric is pointwise uniformly bounded on $D T M-T^{1} M$ by some constant $c>0$ which is independent of $\epsilon \in\left(0, \delta_{0}\right]$. Let now $(v, w) \in D T M-\left\{A \cup T^{1} M\right\}$ and let $\phi:[0, \infty) \rightarrow$ $D W^{s}(v, w)$ be the flow line of the gradient flow of the restriction of $-(\mid)$ to $D W^{s}(v, w)$. Then there is a minimal number $\tau>0$ such that $\phi(\tau) \in A$ and we can estimate

$$
(v \mid w) \geq \int_{0}^{\tau}\left\|\phi^{\prime}(t)\right\|^{2} d t \geq b^{2} \tau
$$

On the other hand, in the same way we see that $\beta_{\epsilon}(v, w) \leq \beta_{\epsilon}(\phi(\tau))+c \tau$. With $\alpha=b^{2} / c$ it follows that $\alpha \beta_{\epsilon}(v, w) \leq(v \mid w)+a_{\epsilon} \alpha$ for all $(v, w) \in$
$D T M-T^{1} M$. This shows the lemma.
Lemma 2.3. For every $\epsilon \in\left(0, \delta_{0}\right]$ there are numbers $\bar{\alpha}_{\epsilon}>0, \bar{c}_{\epsilon}>0$ such that $e^{-(v \mid w)} \geq \bar{c}_{\epsilon} e^{-\bar{\alpha}_{\epsilon} \beta_{\epsilon}(v, w)}$ for all $(v, w) \in D T M-T^{1} M$.

Proof. Fix again a number $\epsilon>0$. The function (|) on $D T M-T^{1} M$ assumes its minimum 0 precisely on the set $\left\{(v,-v) \mid v \in T^{1} M\right\}$. By compactness and continuity for fixed $\epsilon \in\left(0, \delta_{0}\right]$ there is further a number $a_{\epsilon}>0$ such that $\beta_{\epsilon}(v,-v) \geq-a_{\epsilon}$ for all $v \in T^{1} M$.

Let now $(v, w) \in D T^{1} \tilde{M}-T^{1} \tilde{M}$ and identify the leaf $D W^{s}(v, w)$ of $D W^{s}$ through (v, w) with \tilde{M} via the projection $P \circ R^{1}$. Write $x=P v$ and let A be the convex subset of \tilde{M} of all points which lie on a geodesic joining $\pi(v)$ to $\pi(w)$. Denote by y the unique projection of x to A, let $\tau=\operatorname{dist}(x, y)=\operatorname{dist}(x, A)$ and let $z \in T_{y}^{1} M$ be such that $\pi(z)=\pi(v)$; then $x \in C\left(z, \frac{3}{4} \pi\right) \cap C\left(-z, \frac{3}{4} \pi\right)$, where for $u \in T^{1} \tilde{M}$ and $\gamma \in(0, \pi]$ we denote by $C(u, \gamma)$ the cone of angle γ and direction u in \tilde{M}.

Now the operator Δ_{ϵ} is coercive and hence its Green's function decays exponentially at infinity ([1]). Thus the Harnack inequality at infinity of Ancona together with continuity in v implies that there are numbers $b_{\epsilon}>0, \alpha_{\epsilon}>0$ such that $\frac{1}{2}\left(\log K_{\epsilon}(y, x, \pi(v))+\log K_{\epsilon}(y, x, \pi(w))\right) \leq$ $-\alpha_{\epsilon} \tau+b_{\epsilon}$.

This shows that $\beta_{\epsilon}(v, w) \geq \alpha_{\epsilon} \tau-a_{\epsilon}-b_{\epsilon}$. On the other hand, the norm of the gradient of $\frac{1}{2}\left(\theta_{z}+\theta_{-z}\right)$ is bounded from above by 1 and consequently we obtain $(v \mid w) \leq \tau$. Thus $\beta_{\epsilon}(v, w) \geq \alpha_{\epsilon}(v \mid w)-a_{\epsilon}-b_{\epsilon}$ which implies the lemma.

Recall that $\tilde{M} \times \partial \tilde{M}$ is naturally homeomorphic to the unit tangent bundle $T^{1} \tilde{M}$ of \tilde{M} by assigning the point $(P v, \pi(v)) \in_{\tilde{M}} \tilde{M} \times \partial \tilde{M}$ to $v \in T^{1} \tilde{M}$. Thus for $\epsilon>0$ there is a unique section $\tilde{\xi}_{\epsilon}$ of $T W^{s}$ over $T^{1} \tilde{M}$ with the property that for every $v \in T^{1} \tilde{M}$ the restriction of $\tilde{\xi}_{\epsilon}$ to $W^{s}(v)$ projects to the gradient of the logarithm of the function $y \rightarrow K_{\epsilon}(P v, y, \pi(v))$. As in Section 3 of [10] we deduce that $\tilde{\xi}_{\epsilon}$ is Hölder continuous. Moreover $\tilde{\xi}_{\epsilon}$ is clearly equivariant under the action of $\pi_{1}(M)$ and hence projects to a Hölder continuous section ξ_{ϵ} of $T W^{s}$ over $T^{1} M$. In particular the assignment $v \rightarrow\left\langle X, \xi_{\epsilon}\right\rangle(v)$ is a Hölder continuous function on $T^{1} M$.

Let \mathcal{M} be the space of Φ^{t}-invariant Borel-probability measures on $T^{1} M . \mathcal{M}$ is a compact convex subset of the dual of the Banach space $C^{0}\left(T^{1} M\right)$ of continuous functions on $T^{1} M$ equipped with the weak*topology. For $\eta \in \mathcal{M}$, denote by h_{η} the entropy of η as a Φ^{t}-invariant measure on $T^{1} M$. Recall that for a continuous function f on $T^{1} M$ the pressure $\operatorname{pr}(f)$ of f is defined by $\operatorname{pr}(f)=\sup \left\{h_{\eta}-\int f d \eta \mid \eta \in \mathcal{M}\right\}$.

For $\epsilon>0$ let $q(\epsilon)$ (resp. $r(\epsilon)$) be the pressure of the Hölder continuous function $2\left\langle X, \xi_{\epsilon}\right\rangle$ (resp. $\left.\left\langle X, \xi_{\epsilon}\right\rangle\right)$ on $T^{1} M$.

Lemma 2.4. The assignments $\epsilon \rightarrow q(\epsilon)$ and $\epsilon \rightarrow r(\epsilon)$ are continuous and strictly decreasing on $\left(0, \delta_{0}\right]$.

Proof. The considerations of Ancona [1] show that the assignment

$$
T^{1} M \times\left(0, \delta_{0}\right] \rightarrow \mathbb{R},(v, \epsilon) \rightarrow\left\langle X, \xi_{\epsilon}\right\rangle(v)
$$

is continuous, and hence the function $q: \epsilon \in\left(0, \delta_{0}\right] \rightarrow q(\epsilon) \in \mathbb{R}$ is continuous as well (see [22]). To show that q is strictly decreasing for $v \in T^{1} \tilde{M}$ and $\epsilon>0$, denote by u_{v}^{ϵ} the Δ_{ϵ}-harmonic function

$$
y \in \tilde{M} \rightarrow u_{v}^{\epsilon}(y)=K_{\epsilon}(P v, y, \pi(v))
$$

with pole at $\pi(v)$. Let $\epsilon>\delta>0$; the Harnack-inequality at infinity of Ancona [1] and his estimates for the Green's functions G_{ϵ}, G_{δ} of $\Delta_{\epsilon}, \Delta_{\delta}$ show that there is a number $c>0$ depending on ϵ and δ but not on $v \in T^{1} \tilde{M}$ such that

$$
\begin{aligned}
c u_{v}^{\epsilon}\left(P \Phi^{-t} v\right) & \leq G_{\epsilon}\left(P v, P \Phi^{-t} v\right) \leq c^{-1} e^{-c t} G_{\delta}\left(P v, P \Phi^{-t} v\right) \\
& \leq c^{-2} e^{-c t} u_{v}^{\delta}\left(P \Phi^{-t} v\right)
\end{aligned}
$$

for all $t \geq 1$. If w is the projection of v to $T^{1} M$ then

$$
\begin{aligned}
\log u_{v}^{\epsilon}\left(P \Phi^{-t} v\right) & =-\int_{0}^{t}\left\langle X, \xi_{\epsilon}\right\rangle\left(\Phi^{-s} w\right) d s \\
& \leq \log u_{v}^{\delta}\left(P \Phi^{-t} v\right)-c t-3 \log c \\
& =-\int_{0}^{t}\left\langle X, \xi_{\delta}\right\rangle\left(\Phi^{-s} w\right) d s-c t-3 \log c .
\end{aligned}
$$

Now let $\eta \in \mathcal{M}$ be ergodic with respect to Φ^{t}; by the Birkhoff ergodic theorem there is then $w \in T^{1} M$ such that

$$
-\int\left\langle X, \xi_{\epsilon}\right\rangle d \eta=\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t}\left\langle X, \xi_{\epsilon}\right\rangle\left(\Phi^{-s} w\right) d s
$$

and

$$
-\int\left\langle X, \xi_{\delta}\right\rangle d \eta=\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t}\left\langle X, \xi_{\delta}\right\rangle\left(\Phi^{-s} w\right) d s
$$

and consequently

$$
-\int\left\langle X, \xi_{\epsilon}\right\rangle d \eta \leq-\int\left\langle X, \xi_{\delta}\right\rangle d \eta-c
$$

by the above estimate. Since ergodic measures in \mathcal{M} are just the extremal points of \mathcal{M} this inequality then holds for every Φ^{t}-invariant Borel-probability measure η on $T^{1} M$. In other words we have

$$
h_{\eta}-\int 2\left\langle X, \xi_{\epsilon}\right\rangle d \eta \leq h_{\eta}-\int 2\left\langle X, \xi_{\delta}\right\rangle d \eta-2 c
$$

for all $\eta \in \mathcal{M}$ and consequently $q(\epsilon) \leq q(\delta)-2 c<q(\delta)$. The proof for $r(\epsilon)$ is completely analogous.

Recall from [12] and the introduction the definition of the g^{s}-gradient of a Borel measure ρ on $T^{1} M$ which is absolutely continuous with respect to the stable and strong unstable foliation, with conditionals on stable manifolds in the Lebesgue measure class; namely, let $\tilde{\rho}$ be the lift of ρ to $T^{1} \tilde{M}$, and let $\tilde{\rho}(\infty)$ be a Borel-probability measure on $\partial \tilde{M}$ which defines the measure class of the projections of the conditionals of $\tilde{\rho}$ on strong unstable manifolds. For $v \in T^{1} \tilde{M}$ we can represent $\tilde{\rho}$ near v in the form $d \tilde{\rho}=\alpha d \lambda^{s} \times d \tilde{\rho}(\infty)$ where $\alpha: T^{1} \tilde{M} \rightarrow(0, \infty)$ is a Borel function, and we identify $\tilde{\rho}(\infty)$ with its projections to the leaves of $W^{s u}$ via the canonical projection $\pi: T^{1} \tilde{M} \rightarrow \partial \tilde{M}$.

For

$$
(v, w) \in D=\left\{(u, z) \in T^{1} \tilde{M} \times T^{1} \tilde{M} \mid z \in W^{s}(u)\right\}
$$

define $l(v, w)=\alpha(w) / \alpha(v)$. Then the function $l: D \rightarrow(0, \infty)$ is independent of the choice of $\tilde{\rho}(\infty)$. If for $\tilde{\rho}$-almost every $v \in T^{1} \tilde{M}$ the function $l_{v}: W^{s}(v) \rightarrow(0, \infty), w \rightarrow l_{v}(w)=l(v, w)$ is differentiable, then we obtain a measurable section \tilde{Z} of $T W^{s}$ over $T^{1} \tilde{M}$ by assigning to $v \in T^{1} \tilde{M}$ the gradient at v of $\log l_{v}$ with respect to the Riemannian metric g^{s} on $W^{s}(v)$. This section of $T W^{s}$ over $T^{1} \tilde{M}$ is equivariant under the action of $\pi_{1}(M)$, and hence projects to a measurable section Z of $T W^{s}$ over $T^{1} M$ which we call the g^{s}-gradient of ρ. We then have $\int(\operatorname{div}(Y)+\langle Z, Y\rangle) d \rho=0$ for every leafwise differentiable section Y of $T W^{s}$ (see [12]) where for $v \in T^{1} M$ we denote by $\operatorname{div} Y(v)$ the divergence at v of the restriction of Y to a vector field on $\left(W^{s}(v),\langle\rangle,\right)=\left(W^{s}(v), g^{s}\right)$.

Lemma 2.5. $q(\epsilon)<0$ for all $\epsilon \in\left(0, \delta_{0}\right]$.
Proof. Ledrappier showed in [16] that the pressure of the function $\left\langle X, \xi_{\delta_{0}}\right\rangle$ vanishes; this implies $q\left(\delta_{0}\right)<0$.

Assume to the contrary that $q(\tilde{\epsilon}) \geq 0$ for some $\tilde{\epsilon}>0$. By continuity we then can find some $\epsilon \in\left(0, \delta_{0}\right]$ such that $q(\epsilon)=0$.

Let $\nu^{s u}$ be a family of conditional measures on strong unstable manifolds of the Gibbs equilibrium state ν_{ϵ} for the function $2\left\langle X, \xi_{\epsilon}\right\rangle$ with the property that $\left.\frac{d}{d t} \nu^{s u} \circ \Phi^{t}\right|_{t=0}=2\left\langle X, \xi_{\epsilon}\right\rangle$. Let ν be the finite Borel measure on $T^{1} M$ which satisfies $d \nu=d \lambda^{s} \times d \nu^{s u}$; then the g^{s}-gradient of ν equals $2 \xi_{\epsilon}$.

Let $\delta \in(0, \epsilon)$; then $\operatorname{div} \xi_{\delta}+\left\|\xi_{\delta}\right\|^{2}+\delta_{0}-\delta=0$ and consequently

$$
\begin{aligned}
0 & =\int\left(\operatorname{div}\left(\xi_{\delta}-\xi_{\epsilon}\right)+2\left\langle\xi_{\epsilon}, \xi_{\delta}-\xi_{\epsilon}\right\rangle\right) d \nu \\
& =\int\left(-\left\|\xi_{\delta}\right\|^{2}+\delta-\epsilon-\left\|\xi_{\epsilon}\right\|^{2}+2\left\langle\xi_{\epsilon}, \xi_{\delta}\right\rangle\right) d \nu \\
& =\int\left(-\left\|\xi_{\delta}-\xi_{\epsilon}\right\|^{2}+\delta-\epsilon\right) d \nu
\end{aligned}
$$

which is possible only if $\delta \geq \epsilon$. From this we derive a contradiction to our assumption $q(\epsilon)=0$.

Corollary 2.6. For every $\epsilon \in\left(0, \delta_{0}\right.$] there is a unique number $a(\epsilon) \in$ $[1,2)$ such that $\operatorname{pr}\left(a(\epsilon)\left\langle X, \xi_{\epsilon}\right\rangle\right)=0$, and moreover $a\left(\delta_{0}\right)=1$.

Proof. The fact that $\operatorname{pr}\left(\left\langle X, \xi_{\delta_{0}}\right\rangle\right)=0$ follows from the results of Ledrappier [16]. Let $\epsilon \in\left(0, \delta_{0}\right)$; then $r(\epsilon)>0$ and $q(\epsilon)<0$ by Lemma 2.4 and Lemma 2.5. On the other hand, the function $s \rightarrow \operatorname{pr}\left(s\left\langle X, \xi_{\epsilon}\right\rangle\right)$ is continuous and hence has to vanish for some $a(\epsilon) \in(1,2)$. This number $a(\epsilon)$ is unique (a fact that is not needed in the sequel).

For $\epsilon>0$ let ω_{ϵ} be the unique Gibbs-equilibrium state of the function $a(\epsilon)\left\langle X, \xi_{\epsilon}\right\rangle$. Then ω_{ϵ} admits a family $\omega_{\epsilon}^{s u}$ of conditional measures on strong unstable manifolds with the following properties:

1) The measures $\omega_{\epsilon}^{s u}$ are locally finite, positive on open sets and absolutely continuous with respect to the stable foliation.
2) The measure $\bar{\omega}_{\epsilon}$ on $T^{1} M$ which is defined by $d \bar{\omega}_{\epsilon}=d \lambda^{s} \times d \omega_{\epsilon}^{s u}$ has total mass 1 and its g^{s}-gradient equals $a(\epsilon) \xi_{\epsilon}$.
For every $x \in \tilde{M}$ the projection $\pi: T^{1} \tilde{M} \rightarrow \partial \tilde{M}$ restricts to a homeomorphism π_{x} of $T_{x}^{1} \tilde{M}$ onto $\partial \tilde{M}$, and for every $v \in T_{x}^{1} \tilde{M}$ the restriction of $\pi_{x}^{-1} \circ \pi$ to $W^{s u}(v)$ is a homeomorphism of $W^{s u}(v)$ onto $T_{x}^{1} \tilde{M}-\{-v\}$. Thus the measure $\tilde{\omega}_{\epsilon}^{s u}$ on $W^{s u}(v)$ which is lifted from the measures $\omega_{\epsilon}^{s u}$ on the leaves of $W^{s u} \subset T^{1} M$ projects under $\left.\pi_{x}^{-1} \circ \pi\right|_{W^{s u}(v)}$ to a Borel-measure ω_{ϵ}^{v} on $T_{x}^{1} \tilde{M}$, whose restriction to $T_{x}^{1} \tilde{M}-\{-v\}$ is locally finite. The measures $\omega_{\epsilon}^{v}, \omega_{\epsilon}^{w}\left(v, w \in T_{x}^{1} \tilde{M}\right)$ are absolutely continuous on $T_{x}^{1} \tilde{M}-\{-v,-w\}$, with continuous Radon-Nikodym-derivative. More precisely, for $w \in T_{x}^{1} \tilde{M}-\{-v\}$ the Radon-Nikodym-derivative $J_{v}^{\epsilon}(w)$ at ω of ω_{ϵ}^{v} with respect to ω_{ϵ}^{v} is defined and the function $J_{v}^{\epsilon}: w \rightarrow J_{v}^{\epsilon}(w)$ is continuous on $T_{x}^{1} \tilde{M}-\{-v\}$. Thus we obtain a Borel-measure ω_{ϵ}^{x} on $T_{x}^{1} \tilde{M}$ by defining $\omega_{\epsilon}^{x}=J_{v}^{\epsilon} \omega_{\epsilon}^{v}$. Since $\omega_{\epsilon}^{x}=J_{w}^{\epsilon} \omega_{\epsilon}^{w}$ for every $w \in T_{x}^{1} \tilde{M}$, the measure ω_{ϵ}^{x} is defined independent of the choice of $v \in T^{1} \tilde{M}$ and is finite.

For $\underset{\tilde{M}}{v} \in T^{1} \tilde{M}$ and $t>0$ the homeomorphism $\pi_{P \Phi^{t} v}^{-1} \circ \pi_{P v}: T_{P v}^{1} \tilde{M} \rightarrow$ $T_{P \Phi^{t} v}^{1} \tilde{M}$ is absolutely continuous with respect to the measures $\omega_{\epsilon}^{P v}, \omega_{\epsilon}^{P \Phi^{t} v}$, and its Jacobian at v equals $e^{a(\epsilon) \int_{0}^{t}\left\langle X, \bar{\xi}_{\epsilon}\right\rangle\left(\Phi^{s} v\right) d s}$. Moreover the measures
$\omega_{\epsilon}^{x}(x \in \tilde{M})$ are equivariant under the action of the fundamental group $\pi_{1}(M)$ of M on $T^{1} \tilde{M}$, and hence induce for every $p \in M$ a finite measure ω_{ϵ}^{p} on $T_{p}^{1} M$. The measures $\omega_{\delta_{0}}^{p}(p \in M)$ just coincide with the harmonic measures ω^{p} from the introduction up to a universal constant.

Let $\rho>0$. Following Margulis [20] we call two subsets B_{1}, B_{2} of $T^{1} M$ which are contained in leaves $T_{x}^{1} M, T_{y}^{1} M$ of the vertical foliation of $T^{1} M$ into the fibres of the fibration $T^{1} M \rightarrow M \rho$-equivalent if there is a continuous map $f: B_{1} \times[0,1] \rightarrow T^{1} M$ with the following properties:
i) For every $v \in B_{1}$ the set $f(\{v\} \times[0,1])$ is a smooth curve of length smaller than ρ in $W^{s}(v)$.
ii) $f(v, 0)=v$ and $f(v, 1) \in B_{2}$ for all $v \in B_{1}$.
iii) The map $v \in B_{1} \rightarrow f(v, 1) \in B_{2}$ is a homeomorphism.

With this notation we then have:
Lemma 2.7. For every $\delta>0$ there is a number $\rho=\rho(\delta)>0$ such that

$$
\omega_{\epsilon}^{p}(A) / \omega_{\epsilon}^{q}(B)<\delta+1
$$

for all $\epsilon \in\left(0, \delta_{0}\right)$ and all ρ-equivalent nontrivial open subsets A, B of leaves of the vertical foliation. In particular, there is for every $\gamma>0 a$ number $c=c(\gamma)>0$ such that

$$
\omega_{\epsilon}^{P v}\left\{w \in T_{P v}^{1} M \mid \angle(v, w)<\gamma\right\} \in\left[c^{-1}, c\right]
$$

for all $v \in T^{1} M$ and all $\epsilon \in\left(0, \delta_{0}\right]$.
Proof. Let $C \subset T^{1} M$ be a set with a local product structure, given by a vector $v \in T^{1} M$, a number $r>0$, the open ball $B^{s}(v, r)$ of radius r about v in $\left(W^{s}(v),\langle\rangle,\right)$, the open ball $B^{v}(v, r)=\left\{w \in T_{P v}^{1} M \mid\right.$ $\angle(v, w)<r\}$ of radius r about v in $T_{P v}^{1} M$ with respect to the angular metric and a homeomorphism [,]: $B^{s}(v, r) \times B^{v}(v, r) \rightarrow C$ with the following properties:
i) $[w, v]=w$ for all $w \in B^{s}(v, r)$.
ii) $[v, z]=z$ for all $z \in B^{v}(v, r)$.
iii) $[w, z] \in W^{s}(z) \cap T_{P w}^{1} M$ for all $w \in B^{s}(v, r)$, all $z \in B^{v}(v, r)$.

Let $\epsilon>0$; then for every $z \in B^{s}(v, r)$ the canonical map which assigns to $w \in B^{v}(v, r)$ the point $[z, w] \in T_{P z}^{1} M$ is absolutely continuous with respect to the measures ω_{ϵ}^{p}, and its Jacobian $J(z, w)$ at w equals the value at z of the unique function ϕ_{w} on $\left[B^{s}(v, r), w\right]$ which satisfies $\phi_{w}(w)=1$ and whose gradient with respect to the metric \langle, on $W^{s}(w) \supset\left[B^{s}(v, r), w\right]$ equals $a(\epsilon) \xi_{\epsilon}$. Since by the Harnack inequality for positive Δ_{ϵ}-harmonic functions the vector fields ξ_{ϵ} are pointwise uniformly bounded in norm, independent of $\epsilon \in\left(0, \delta_{0}\right]$, the first part of the lemma follows from the definition of ρ-equivalence.

Choose now $r>0$ sufficiently small that for every $v \in T^{1} M$ there is a subset of $T^{1} M$ with a local product structure containing $B^{v}(v, r)$ and $B^{s}(v, r)$. Define a finite Borel measure $\bar{\omega}_{\epsilon}$ on $T^{1} M$ by $d \bar{\omega}_{\epsilon}(v)=$ $d \lambda^{s} \times d \omega_{\epsilon}^{P v}(v)$ (in fact this measure coincides with the Borel probability measure- equally denoted by $\bar{\omega}_{\epsilon}$ - which was defined after Corollary 2.6, see [14]). Thus there is a number $a>0$ such that

$$
\begin{aligned}
a^{-1} \lambda^{s}\left(B^{s}(v, r)\right) \omega_{\epsilon}^{P v}\left(B^{v}(v, r)\right) & \leq \bar{\omega}_{\epsilon}\left[B^{s}(v, r), B^{v}(v, r)\right] \\
& \leq a \lambda^{s}\left(B^{s}(v, r)\right) \omega_{\epsilon}^{P v}\left(B^{v}(v, r)\right)
\end{aligned}
$$

for all $v \in T^{1} M$ and all $\epsilon>0$. Since by the definition of λ^{s} there is a number $b>0$ such that $\lambda^{s}\left(B^{s}(v, r)\right) \in\left[b^{-1}, b\right]$ for all $v \in T^{1} M$ and moreover $0<\bar{\omega}_{\epsilon}\left(T^{1} M\right)<\infty$, we obtain the existence of a number $C_{0}>0$ not depending on $\epsilon \in\left(0, \delta_{0}\right]$ such that $\omega_{\epsilon}^{P v}\left(B^{v}(v, r)\right) \leq C_{0}$ for all $v \in T^{1} M$.

Now let $\tilde{\omega}_{\epsilon}$ be the lift of $\bar{\omega}_{\epsilon}$ to $T^{1} \tilde{M}$. Since every leaf of W^{s} is dense in $T^{1} M_{2}$ there is a number $R>0$ such that for every $\tilde{v} \in T^{1} \tilde{M}$ the subset \tilde{C} of $T^{1} \tilde{M}$ with a local product structure which is defined by $\tilde{C} \cap W^{s}(\tilde{v})=B^{s}(\tilde{v}, R)$ and $\tilde{C} \cap T_{P v}^{1} \tilde{M}=B^{v}(v, r)$ projects onto $T^{1} M$. The above arguments applied to $\tilde{\omega}_{\epsilon}$ then show $\tilde{\omega}_{\epsilon}(\tilde{C}) \leq$ const. $\omega_{\epsilon}^{P \tilde{v}} B^{v}(\tilde{v}, r)$ where the constant does not depend on \tilde{v} and ϵ. But $\tilde{\omega}_{\epsilon}(\tilde{C}) \geq$ const. and this implies that the measures $\omega_{\epsilon}^{P v}\left(B^{v}(v, r)\right)$ are bounded from below by a universal constant as well. These arguments are valid for all sufficiently small $r>0$ and from this the lemma follows.

For $\epsilon \in\left(0, \delta_{0}\right]$ let again $\beta_{\epsilon}: D T \tilde{M}-T^{1} \tilde{M} \rightarrow[0, \infty)$ and $a(\epsilon) \in[1,2)$ be as before. For $v \in T^{1} \tilde{M}$ and $\rho>0$ let

$$
B_{\epsilon}(v, \rho)=\left\{w \in T_{P v}^{1} \tilde{M} \mid e^{-\beta_{\epsilon}(v, w)} \leq \rho\right\}
$$

this is a closed neighborhood of v in $T_{P v}^{1} \tilde{M}$. For $p \in \tilde{M}$ and a Borelsubset A of $T_{p}^{1} \tilde{M}$ write

$$
\begin{aligned}
\zeta_{\epsilon}^{p}(A)=\sup _{i>0} \inf \{ & \sum_{j=1}^{\infty} \rho_{j}^{a(\epsilon)} \mid \rho_{j} \leq 1 / i(j \geq 1) \\
& \text { and } \left.A \subset \cup_{j=1}^{\infty} B_{\epsilon}\left(v_{j}, \rho_{j}\right) \text { for some } v_{j} \in T_{p}^{1} \tilde{M}\right\}
\end{aligned}
$$

Then ζ_{ϵ}^{p} is a Borel-measure on $T_{p}^{1} \tilde{M}$ (which a priori might be zero or infinite). Moreover the measures ζ_{ϵ}^{p} project to families of Borel measures on the fibres of $T^{1} M \rightarrow M$ which we denote by the same symbols.

Now we obtain the following generalization of Theorem A from the introduction:

Proposition 2.8. For every $\epsilon>0$ there is a number $b_{\epsilon}>0$ such that $\zeta_{\epsilon}^{p}=b_{\epsilon} \omega_{\epsilon}^{p}$ for all $p \in \tilde{M}$.

Proof. We show first that the measures ζ_{ϵ}^{p} are finite, and define the same measure class as the measures $\omega_{\epsilon}^{p}(p \in \tilde{M})$. For this let $c \geq 0$ be such that for every $v \in T^{1} \tilde{M}$, every $t \geq 0$ and every $w \in T_{P v}^{1} \tilde{M}$ with $\angle(v, w)<\pi / 4$ we have

$$
K_{\epsilon}\left(P v, P \Phi^{-t} v, \pi(v)\right) / K_{\epsilon}\left(P v, P \Phi^{-t} v, \pi(w)\right) \in\left[c^{-1}, c\right] ;
$$

such a number exists by the Harnack inequality at infinity of Ancona.
Fix a number $r>0$ which is small enough that for every $v \in T^{1} \tilde{M}$ we have $B_{\epsilon}(v, r) \subset\left\{w \in T_{P v}^{1} \tilde{M} \left\lvert\, \angle(v, w)<\frac{\pi}{4}\right.\right\} ;$ such a number exists by Lemma 2.2. By Lemma 2.3 there is then a number $\alpha>0$ such that $B_{\epsilon}\left(v, c^{-1} r\right) \supset\left\{w \in T_{P v}^{1} \tilde{M} \mid \angle(v, w) \leq \alpha\right\}$ for all $v \in T^{1} \tilde{M}$, and consequently Lemma 2.7 shows that $\omega_{\epsilon}^{p}\left(B_{\epsilon}\left(v, c^{-1} r\right)\right) \geq \kappa>0$ for all $p \in \tilde{M}, v \in T_{p}^{1} \tilde{M}$ where κ is a universal constant.

Let $p \in \tilde{M}, v \in T_{p}^{1} \tilde{M}$ and let $\rho \leq c^{-1} r$. By continuity there is a number $\tau>0$ such that $K_{\epsilon}\left(P v, P \Phi^{\tau} v, \pi(v)\right) \rho=r$. For $w \in B_{\epsilon}\left(\Phi^{\tau} v, c^{-1} r\right)$ and $u=\pi_{p}^{-1}(\pi(w))$ we then have

$$
\begin{aligned}
e^{-\beta_{\epsilon}(v, u)} & =K_{\epsilon}\left(P v, P \Phi^{\tau} v, \pi(v)\right)^{-1 / 2} K_{\epsilon}\left(P v, P \Phi^{\tau} v, \pi(w)\right)^{-1 / 2} e^{-\beta_{\epsilon}\left(w, \Phi^{\tau} v\right)} \\
& \leq K_{\epsilon}\left(P v, P \Phi^{\tau} v, \pi(v)\right)^{-1} r=\rho,
\end{aligned}
$$

and consequently $\pi_{p}\left(B_{\epsilon}\left(\Phi^{\tau} v, c^{-1} r\right)\right) \subset B_{\epsilon}(v, \rho)$. Lemma 3.6 of [10] and the Harnack inequality at infinity of Ancona thus imply that there is a number $\chi>0$ such that

$$
\omega_{\epsilon}^{p}(B(v, \rho)) \geq K_{\epsilon}\left(P v, P \Phi^{t} v, \pi(v)\right)^{-a(\epsilon} r^{a(\epsilon)} \chi=\chi \rho^{a(\epsilon)} .
$$

On the other hand, choose $s>0$ such that $K_{\epsilon}\left(P v, P \Phi^{s} v, \pi(v)\right) \rho=c^{-1} r$. Let $w \in T_{P \Phi^{\bullet} v} \tilde{M}$ with $e^{-\beta_{\epsilon}\left(\Phi^{s} v, w\right)}=r$ and let $u=\pi_{p}(w)$. Then

$$
e^{-\beta_{\epsilon}(v, u)} \geq c^{-1} K_{\epsilon}\left(P v, P \Phi^{s} v, \pi(v)\right)^{-1} r=\rho,
$$

and consequently $B_{\epsilon}(v, \rho) \subset \pi_{p} B_{\epsilon}\left(\Phi^{s} v, r\right)$. As before this means that there is $\bar{\chi}>0$ such that $\omega_{\epsilon}^{p}(B(v, \rho)) \leq \bar{\chi} \rho^{a(\epsilon)}$. In other words, for every $v \in T^{1} \tilde{M}$ and every $\rho \leq r$ we have $\chi \rho^{a(\epsilon)} \leq \omega_{\epsilon}^{p}(B(v, \rho)) \leq \bar{\chi} \rho^{a(\epsilon)}$. This implies in particular that $\zeta_{\epsilon}^{p} \geq \bar{\chi}^{-1} \omega_{\epsilon}^{p}$ for all $p \in \bar{M}$.

Let $\kappa>0$ be sufficiently small that $e^{-\kappa \beta_{c}}$ satisfies the quasi-ultrametric inequality [14] on the fibres $T_{p}^{1} \tilde{M}(p \in \tilde{M})$; such a number exists by Lemma 2.2 and Lemma 2.3. Let $\rho>0$ and let $v_{1}, \ldots, v_{k(\rho)} \in T_{p}^{1} \tilde{M}$ be a maximal system of points such that the balls $B_{\epsilon}\left(v_{i}, \rho\right) \subset T_{p}^{1} \tilde{M}$ are
pairwise disjoint. Then the balls $B_{\epsilon}\left(v_{i}, 4^{1 / \kappa} \rho\right)$ cover $T_{p}^{1} \tilde{M}$ and hence

$$
\begin{aligned}
\zeta_{\epsilon}^{p}\left(T_{p}^{1} \tilde{M}\right) & \leq \lim \sup _{\rho \rightarrow 0} k(\rho) \cdot 4^{1 / \kappa} \rho^{a(\epsilon)} \\
& \leq 4^{1 / \kappa} \chi^{-1} \limsup \sup _{\rho \rightarrow 0}^{p} \omega_{\epsilon}^{p}\left(\cup_{i=1}^{k(\rho)} B_{\epsilon}\left(v_{i}, \rho\right)\right) \leq 4^{1 / \kappa} \chi^{-1}
\end{aligned}
$$

In other words, the measures $\zeta_{\epsilon}^{p}(p \in \tilde{M})$ are finite and define the same measure class as the measures ω_{ϵ}^{p}.

We are left with showing that $\zeta_{\epsilon}^{p}=b_{\epsilon} \omega_{\epsilon}^{p}$ with a universal constant $b_{\epsilon}>0$. Since by their definition the measures ζ_{ϵ}^{p} are equivariant under the action of $\pi_{1}(M)$ it suffices for this to prove that for $p \in \tilde{M}, v \in T_{p}^{1} \tilde{M}$ and $t \in \mathbb{R}$ the Jacobian of the projection π_{p} with respect to the measures $\zeta_{\epsilon}^{P \Phi^{t} v}$ and ζ_{ϵ}^{p} at $\Phi^{t} v$ equals $K_{\epsilon}\left(P \Phi^{t} v, P v, \pi(v)\right)^{a(\epsilon)}$. But this is a direct consequence of the definitions and the fact that

$$
\lim _{w \rightarrow \Phi^{t} v} e^{-\beta_{\epsilon}\left(w, \Phi^{t} v\right)} / e^{-\beta_{\epsilon}\left(\pi_{p}(w), v\right)}=K\left(P \Phi^{t} v, P v, \pi(v)\right)
$$

3. Asymptotic properties of the Green's function for $\Delta+\delta_{0}$

This section is devoted to the proof of the first part of Theorem B in the introduction. We resume the assumptions and notation of Sections 1 and 2. In particular recall the definition of the Hölder-continuous sections $\left\langle X, \xi_{\epsilon}\right\rangle$ of $T W^{s}$ over $T^{1} M$ for $\epsilon>0$.

First we estimate for $a \in[1,4]$ and $\epsilon \in\left(0, \delta_{0}\right]$ the entropy of the unique Gibbs equilibrium state for the function $a\left\langle X, \xi_{\epsilon}\right\rangle$.

Lemma 3.1. There is a number $\chi>0$ such that for every $a \in[1,4]$ and every $\epsilon \in\left(0, \delta_{0}\right.$] the entropy of the unique Gibbs equilibrium state for the function $a\left\langle X, \xi_{\epsilon}\right\rangle$ is not smaller than χ.

Proof. By the Harnack-inequality the functions $a\left\langle X, \xi_{\epsilon}\right\rangle$ are pointwise uniformly bounded in norm, independent of $a \in[1,4]$ and $\epsilon \in$ $\left(0, \delta_{\epsilon}\right]$. Thus if we define $p(a, \epsilon)$ to be the pressure of the function $a\left\langle X, \xi_{\epsilon}\right\rangle$, then this defines a continuous function $p:[1,4] \times\left(0, \delta_{0}\right] \rightarrow \mathbb{R}$ which is uniformly bounded by a number $\rho>0$.

Identify the diagonal $\left\{(v, v) \in D T M \mid v \in T^{1} M\right\}$ of $D T M$ with $T^{1} M$. For $(v, w) \in D T M-T^{1} M$, again let $(v \mid w)$ be the Gromov-product of v and w, and for $(a, \epsilon) \in[1,4] \times(0, \delta]$ and $(v, w) \in D T M-T^{1} M$ define $\delta(a, \epsilon)(v, w)=e^{-a \beta_{\epsilon}(v, w)-p(a, \epsilon)(v \mid w)}$. The function $\delta(a, \epsilon)$ is continuous, symmetric and admits a continuous extension by zero to the diagonal.

We claim that there is a number $b>0$ and for every $(a, \epsilon) \in[1,4] \times$ $\left(0, \delta_{0}\right.$] a number $c(a, \epsilon)>0$ such that $\delta(a, \epsilon)(v, w) \geq c(a, \epsilon) e^{-b(v \mid w)}$ for all
$(v, w) \in D T M$. For this simply recall from Lemma 2.2 that $e^{-\beta_{\epsilon}(v, w)} \geq$ $c_{\epsilon} e^{-(v \mid w) / \alpha}$ for all $\epsilon \in\left(0, \delta_{0}\right]$ and all $(v, w) \in D T M$, where $\alpha>0$ is a universal constant and $c_{\epsilon}>0$ depends on ϵ.

For $p \in M$ let now $\nu(a, \epsilon)^{p}$ be the measure on $T_{p}^{1} M$ obtained as in Section 2 from the conditionals of the Gibbs-equilibrium state $\nu(a, \epsilon)$ for $a\left\langle X, \xi_{\epsilon}\right\rangle$, and let μ^{p} be the measure induced from the conditionals of the Bowen-Margulis measure. The arguments in the proof of Proposition 2.8 then show that up to a universal constant the measure $\nu(a, \epsilon)^{p}$ is just the 1-dimensinal spherical measure induced by the "distance" $\delta(a, \epsilon)$ on $T_{p}^{1} M$, while μ^{p} is up to a universal constant the h-dimensional spherical measure induced by the "distance"

$$
\rho:(v, w) \rightarrow e^{-(v \mid w)}
$$

where $h>0$ is the topological entropy of the geodesic flow on $T^{1} M$. Since $\delta(a, \epsilon) \geq c(a, \epsilon) \rho^{b}$ this means that the Hausdorff dimension of the measure $\nu(a, \epsilon)^{p}$ with respect to the "distance" ρ on $T_{p}^{1} M$ is not smaller than $1 / b$. On the other hand, by [11] this Hausdorff dimension (which is independent of $p \in M)$ is just the entropy of the Gibbs-measure $\nu(a, \epsilon)$. This shows the lemma.

Corollary 3.2. For every $\epsilon>0$ the pressure of the function $4\left\langle X, \xi_{\epsilon}\right\rangle$ is not larger than $-\chi$, where $\chi>0$ is as in Lemma 3.1.

Proof. Let $\epsilon>0$ and let ν be the unique Gibbs-equilibrium state of the function $4\left\langle X, \xi_{\epsilon}\right\rangle ;$ then $h_{\nu} \geq \chi$ by Lemma 3.1. On the other hand, by Lemma 2.5 the pressure of the function $2\left\langle X, \xi_{\epsilon}\right\rangle$ is non-positive and consequently $0 \geq h_{\nu}-2 \int\left\langle X, \xi_{\epsilon}\right\rangle d \nu \geq \chi-2 \int\left\langle X, \xi_{\epsilon}\right\rangle d \nu$. From this we conclude that

$$
h_{\nu}-4 \int\left\langle X, \xi_{\epsilon}\right\rangle d \nu=p r\left(4\left\langle X, \xi_{\epsilon}\right\rangle\right) \leq h_{\nu}-2 \int\left\langle X, \xi_{\epsilon}\right\rangle d \nu-\chi \leq-\chi
$$

which shows the corollary.
Corollary 3.3. $\int\left\langle X, \xi_{\epsilon}\right\rangle d \eta \geq \chi / 4$ for every $\eta \in \mathcal{M}$ and every $\epsilon \in$ $\left(0, \delta_{0}\right]$.

Proof. Let η be a Φ^{t}-invariant Borel-probability measure on $T^{1} M$. Then $h_{\eta} \geq 0$ and $h_{\eta}-4 \int\left\langle X, \xi_{\epsilon}\right\rangle d \eta \leq-\chi$ by Corollary 3.2 from which the corollary follows.

Corollary 3.4. The operator $\Delta+\delta_{0}$ admits a Green's function G_{0}, and the $\Delta+\delta_{0}-M a r t i n ~ b o u n d a r y ~ d o e s ~ n o t ~ c o n s i s t ~ o f ~ a ~ s i n g l e ~ p o i n t . ~$

Proof. Let $\gamma: \mathbb{R} \rightarrow \tilde{M}$ be a geodesic in \tilde{M} whose projection to M is closed of length $\tau>0$. For $\epsilon>0$, denote by f_{ϵ}^{+}the unique minimal positive Δ_{ϵ}-harmonic function on \tilde{M} with pole at $\gamma(\infty)$ which is normalized by $f_{\epsilon}^{+}(\gamma(0))=1$. Let $w \in T^{1} M$ be the projection of $\gamma^{\prime}(0) \in T^{1} \tilde{M}$. Then w is a periodic point for Φ^{t} of period $\tau>0$, and
$f_{\epsilon}(\gamma(\tau))=e^{\int_{0}^{\tau}\left\langle X, \xi_{\epsilon}\right\rangle\left(\Phi^{s} w\right) d s} \geq e^{\tau \chi / 4}>1$ by Corollary 3.3. Since the space of positive Δ_{ϵ}-harmonic functions $(\epsilon \in(0, \delta])$ on \tilde{M} which are normalized at $\gamma(0)$ is precompact with respect to uniform convergence on compact sets, we can find a sequence $\left\{\epsilon_{j}\right\} \subset\left(0, \delta_{0}\right]$ such that $\epsilon_{j} \rightarrow 0 \quad(j \rightarrow \infty)$ and that the functions $f_{\epsilon_{j}}^{+}$converge uniformly on compact subsets of \tilde{M} to a Δ_{0}-harmonic function f_{0}^{+}. Clearly $f_{0}^{+}(\gamma(\tau)) / f_{0}^{+}(\gamma(0)) \geq e^{\tau \chi / 4}>1$.

On the other hand, the same argument applied to the geodesic $t \rightarrow$ $\gamma(-t+\tau)$ whose tangent projects to the periodic orbit of Φ^{t} through $-w$, yields a positive Δ_{0}-harmonic function f_{0}^{-}on \tilde{M} which satisfies

$$
f_{0}^{-}(\gamma(\tau)) / f_{0}^{-}(\gamma(0)) \leq e^{-\tau \chi / 4}<1
$$

But this means that f_{0}^{-}and f_{0}^{+}are not constant multiples of each other. By the results of Sullivan [21] we conclude from this that Δ_{0} admits a Green's function and further that the Δ_{0}-Martin boundary of \tilde{M} does not consist of a single point.

Write now $p(\epsilon)=\operatorname{pr}\left(4\left\langle X, \xi_{\epsilon}\right\rangle\right)$ and let η_{ϵ} be the Gibbs equilibrium state of the function $4\left\langle X, \xi_{\epsilon}\right\rangle$. Then η_{ϵ} admits a unique family $\eta_{\epsilon}^{s u}$ of conditional measures on strong unstable manifolds which transform under the geodesic flow via $\left.\frac{d}{d t}\left\{\eta_{\epsilon}^{s u} \circ \Phi^{t}\right\}\right|_{t=0}=4\left\langle\xi_{\epsilon}, X\right\rangle-p(\epsilon)$ and such that the measure $\bar{\eta}_{\epsilon}$ on $T^{1} M$ which is defined by $d \bar{\eta}_{\epsilon}=d \lambda^{s} \times d \eta_{\epsilon}^{s u}$ has total mass 1 .

We use these measures to define as in Section 2 a family of finite Borel-measures $\eta_{\epsilon}^{p}(p \in M)$ on the leaves of the vertical foliation of $T^{1} M$. As in Section 2 we arrive at

Lemma 3.5. For every $\delta>0$ there is a number $\rho=\rho(\delta)>0$ such that

$$
\eta_{\epsilon}^{p}(A) / \eta_{\epsilon}^{q}(B)<\delta+1
$$

for all $\epsilon>0$ and all ρ-equivalent nontrivial open subsets A, B of leaves of the vertical foliation. In particular, there is a number $c>0$ such that $\eta_{\epsilon}^{p}\left(T_{p}^{1} M\right) \in\left[c^{-1}, c\right]$ for all $p \in T^{1} M$ and all $\epsilon>0$.

For $p \in \tilde{M}$ and $R>0$ let $S(p, R)$ be the distance sphere of radius R about p in \tilde{M} and let $\lambda_{p, R}$ be the Lebesgue measure on $S(p, R)$. Write

$$
p(0)=\lim _{\epsilon \rightarrow 0} p(\epsilon) \leq-\chi
$$

Corollary 3.6. There is a number $\tilde{c}>0$ such that

$$
\int_{S(p, R)} G_{\epsilon}(p, y)^{4} e^{-p(\epsilon) R} d \lambda_{p, R} \leq \tilde{c}
$$

for all $p \in \tilde{M}$, all $R \geq 1$ and all $\epsilon \in\left[0, \delta_{0}\right]$.
Proof. By the maximum principle for positive Δ_{ϵ}-harmonic functions on $\tilde{M}\left(\epsilon \in\left[0, \delta_{0}\right]\right)$ there is a number $a>0$ not depending on ϵ such that
for all $p, x \in \tilde{M}$ with $\operatorname{dist}(p, x) \geq 1$ and every positive Δ_{ϵ}-harmonic function f on \tilde{M} with $f(p)=1$ we have $G_{\epsilon}(p, x) \leq a^{-1} f(x)$.

For $w \in T^{1} \tilde{M}$ the Jacobian $J_{\epsilon}(w, t)$ of Φ^{-t} at $\Phi^{t} w$ with respect to the measures η_{ϵ}^{p} on the leaves of the vertical foliation equals

$$
K_{\epsilon}\left(P \Phi^{t} w, P w, \pi(w)\right)^{4} e^{-p(\epsilon) t} \geq a G_{\epsilon}\left(P w, P \Phi^{t} w\right)^{4} e^{-p(\epsilon) t} \quad(t \geq 1)
$$

and hence Lemma 3.5 together with the Harnack inequalities shows that there is a constant $b>0$ not depending on $\epsilon \in\left[0, \delta_{0}\right], w \in T^{1} \tilde{M}$ and $t \geq 1$ such that for every $v \in T^{1} M$ and every $t \geq 1$ we have

$$
\eta_{\epsilon}^{P v}\left\{w \in T_{P v}^{1} \tilde{M} \mid \operatorname{dist}\left(P \Phi^{t} w, P \Phi^{t} v\right) \leq 1\right\} \geq b e^{-p(\epsilon) t} G_{\epsilon}\left(P v, P \Phi^{t} v\right)^{4}
$$

Since the total mass $\eta_{\epsilon}^{p}\left(T_{p}^{1} \tilde{M}\right)$ of $T_{p}^{1} \tilde{M}$ with respect to η_{ϵ}^{p} is bounded from above by a positive constant not depending on $\epsilon \in\left[0, \delta_{0}\right]$ and $p \in \tilde{M}$, a further application of the Harnack inequality for the Green's function yields the corollary (compare the proof of Corollary 3.13 in [10]).

Now we are ready for the proof the first part of Theorem B:
Corollary 3.7. There is a number $c>0$ such that $G_{0}(x, y) \leq$ $c e^{-\chi \operatorname{dist}(x, y) / 4}$ for all $x, y \in \tilde{M}$ with $\operatorname{dist}(x, y) \geq 1$.

Proof. Since $p(0) \leq-\chi$, Corollary 3.6 implies that the integrals $\int_{S(x, R)} G_{0}^{4}(x, y) e^{\chi R} d \lambda_{x, R}(y)$ are bounded from above by a constant $a>0$ which is independent of $x \in \tilde{M}$ and $R \geq 1$. Let $R_{0} \geq 1$ be sufficiently large that $\lambda_{x, R} S(x, R) \geq 1$ for every $x \in \tilde{M}$ and $R \geq R_{0}$.

The Harnack-inequality for positive Δ_{0}-harmonic functions on balls shows that for $x, y \in \tilde{M}$ with $R=\operatorname{dist}(x, y) \geq R_{0}$, there is a ball B about y in $S(x, R)$ with $\lambda_{x, R}(B)=1$ and such that $G_{0}(x, z) \geq \rho G_{0}(x, y)$ for all $z \in B$, where $\rho>0$ is a universal constant. Now if $G_{0}(x, y) \geq$ $2 a^{1 / 4} \rho^{-1 / 4} e^{-\chi \operatorname{dist}(x, y) / 4}$, then this implies $\int_{B} G_{0}^{4}(x, y) e^{\chi \operatorname{dist}(x, y)} d \lambda_{x, R} \geq$ $8 a$, a contradiction to the above.

4. A variational equation for δ_{0}

The purpose of this section is to prove Theorem D. For this let η as in the introduction be a Borel-probability measure on $T^{1} M$ which can be written with respect to a local product structure in the form $d \eta=d \lambda^{s} \times d \eta^{s u}$, where $\eta^{s u}$ is a family of locally finite Borel measures on the leaves of the strong unstable foliation, such that the g^{s}-gradient Y of η is of class $C_{s}^{1, \alpha}$. Since $\langle X, Y\rangle=\left.\frac{d}{d t} \eta^{s u} \circ \Phi^{t}\right|_{t=0}$, the family $\eta^{s u}$ is in fact a family of conditional measures on strong unstable manifolds of the unique Gibbs equilibrium state induced by the Hölder continuous function $\langle X, Y\rangle$. In other words, there is a family $\eta^{s s}$ of conditional
measures on strong stable manifolds such that the Borel-probability measure $\bar{\eta}$ on $T^{1} M$, which is defined with respect to a local product structure by $d \bar{\eta}=d \eta^{s s} \times d \eta^{s u} \times d t$, is invariant under the geodesic flow.

For $v \in T^{1} M$, and $t \in \mathbb{R}$, define $\zeta(v, t)=\zeta_{t}(v)=e^{\int_{0}^{t}\langle X, Y\rangle\left(\Phi^{s} v\right) d s}$; then ζ is a multiplicative cocyle with respect to the geodesic flow.

Let $v \in T^{1} M$ and let $A \subset W^{s s}(v)$ be a compact ball with nonempty interior whose boundary is a set of measure zero with respect to $\eta^{s s}$. Denote by $\lambda^{s s}$ the Lebesgue measure on the leaves of $W^{s s}$ defined by the lift of the Riemannian metric on M. For every $t \in \mathbb{R}$ we then can view the restriction of $\lambda^{s s}$ to $\Phi^{t} A$ as a finite Borel measure on $T^{1} M$. The arguments of Ledrappier in [17] then imply the following:

Proposition 4.1. The measures $\left.\left(\zeta_{-t} \circ \Phi^{t}\right) \lambda^{s s}\right|_{\Phi^{-t} A}$ converge as $t \rightarrow \infty$ weakly to the measure $\eta^{s s}(A) \eta$.

This is used to show:
Lemma 4.2. Let

$$
\begin{gathered}
\alpha_{\eta}=\sup \left\{\left.\int \phi\left(\Delta^{s}(\phi)+Y(\phi)+\phi\left[\frac{1}{2} \operatorname{div}(Y)+\frac{1}{4}\|Y\|^{2}\right]\right) d \eta \right\rvert\,\right. \\
\left.0 \not \equiv \phi \in C^{\infty}\left(T^{1} M\right), \int \phi^{2} d \eta=1\right\}
\end{gathered}
$$

then $-\delta_{0} \geq \alpha_{\eta}$.
Proof. Define α_{η} as in the statement of the lemma; we show first that $\alpha_{\eta}<\infty$. For this recall that the function

$$
v \rightarrow\left(\frac{1}{2} \operatorname{div}(Y)+\frac{1}{4}\|Y\|^{2}\right)(v)
$$

is continuous and hence bounded on $T^{1} M$, and consequently

$$
\int \phi^{2}\left[\frac{1}{2} \operatorname{div}(Y)+\frac{1}{4}\|Y\|^{2}\right] d \eta / \int \phi^{2} d \eta
$$

is uniformly bounded for all nontrivial continuous functions ϕ on $T^{1} M$. On the other hand, for every smooth function ϕ on $T^{1} M$ we have

$$
\int \phi\left(\Delta^{s}(\phi)+Y(\phi)\right) d \eta=-\int\left\|\nabla^{s} \phi\right\|^{2} d \eta \leq 0
$$

(see [12]), and consequently $\alpha_{\eta}<\infty$.
Let $C_{c}^{\infty}(\tilde{M})$ be the vector space of smooth functions on \tilde{M} with compact support. Recall that $\delta_{0}>0$ equals the infimum of the Raleighquotients of nonvanishing elements of $C_{\mathcal{E}}^{\infty}(\tilde{M})$. If $\lambda_{\tilde{M}}$ denotes the Lebesgue measure on \tilde{M}, then for $\psi \in C_{c}^{\infty}(\tilde{M})$ this Rayleigh quotient is just

$$
-\int \psi(\Delta \psi) d \lambda_{\bar{M}} / \int \psi^{2} d \lambda_{\bar{M}}
$$

Thus it suffices to find a function $\psi \in C_{c}^{\infty}(\tilde{M})$ such that for every $\epsilon>0$

$$
\int \psi(\Delta \psi) d \lambda_{\tilde{M}} \geq\left(\alpha_{\eta}-\epsilon\right) \int \psi^{2} d \lambda_{M}
$$

For this we choose $v \in T^{1} \tilde{M}$ and identify \tilde{M} with $\left(W^{s}(v), g^{s}\right)$. As before we denote by $\lambda^{s s}$ the Lebesgue measures on the leaves of the strong stable foliation induced by the Riemannian metric on M, and write $d \lambda^{s}=d t \times d \lambda^{s s}$ where $d t$ is the 1-dimensional Lebesgue measure on the flow lines of the geodesic flow. We denote moreover by $\nabla \psi$ (resp. $\Delta \psi$) the gradient (resp. Laplacian) of a function ψ on the smooth Riemannian manifold ($W^{s}(v), g^{s}$).

Let $\epsilon>0$ and choose a smooth function ϕ on $T^{1} M$ with $\int \phi^{2} d \eta=1$ in such a way that

$$
\alpha=\int \phi\left(\Delta^{s}(\phi)+Y(\phi)+\phi\left[\frac{1}{2} \operatorname{div}(Y)+\frac{1}{4}\|Y\|^{2}\right]\right) d \eta \geq \alpha_{\eta}-\epsilon
$$

Denote again by ϕ the restriction to $W^{s}(v)$ of the lift of ϕ to $T^{1} \tilde{M}$, and choose $c>0$ sufficiently large that $\|Y\|+\left|\frac{1}{2} \operatorname{div}(Y)+\|Y\|^{2}\right|(w) \leq c$ and $\left[\left\|\nabla^{s}\left(\phi^{2}\right)\right\|+\phi^{2}(1+\|Y\|)+\left|\phi\left(\Delta^{s} \phi+Y(\phi)\right)\right|+\phi^{2}\left|\frac{1}{2} \operatorname{div}(Y)+\frac{1}{4}\|Y\|^{2}\right|\right](w) \leq c$ for every $w \in T^{1} M$.

Let \tilde{Y} be the lift of Y to $T^{1} \tilde{M}_{2}$ and let f be a positive function on $W^{s}(v)$ which satisfies $\nabla \log f=\left.\frac{1}{2} \tilde{Y}\right|_{W^{s}(v)}$. Then f is a function of class C^{2}, and $\|\nabla f\|+|\Delta(f)| \leq c f$ pointwise on $W^{s}(v)$.

Let $B_{2} \supset B_{1}$ be compact balls of radius $r_{2}>r_{1}>0$ about v in $W^{s s}(v)$, whose boundaries have measure zero with respect to $\eta^{s s}$ and such that

$$
\int_{B_{2}} f^{2} d \eta^{s s} \leq(1+\epsilon / 2 c) \int_{B_{1}} f^{2} d \eta^{s s}
$$

We then may renormalize f in such a way that $\int_{B_{1}} f^{2} d \eta^{s s}=1$.
Choose a smooth Φ^{t}-invariant function ρ on $W^{s}(v)$ with values in $[0,1]$ and such that $\rho(w)=0$ for $w \in W^{s s}(v)-B_{2}$ and $\rho(w)=1$ for $w \in B_{1}$. Since ρ is Φ^{t}-invariant, there is then a number $t_{0}>0$ such that $\left|\Delta^{s} \rho(w)\right| \leq 1$ and $\|\nabla \rho(w)\| \leq 1$ for every $w \in \bigcup_{t \geq t_{0}} \Phi^{-t} W^{s s}(v)$. By Proposition 4.1 there is a number $t_{1} \geq t_{0}$ such that for every $t \geq t_{1}$ the following are satisfied:

$$
\begin{align*}
& \int_{\Phi^{-t} B_{1}}\left(\phi f^{2}\right)(\left.\Delta(\phi)+2\langle\nabla \log f, \nabla \phi\rangle+\phi\left[\operatorname{div}(\nabla \log f)+\|\nabla \log f\|^{2}\right]\right) d \lambda^{s s} \\
&(1) \quad=\int_{\Phi^{-t} B_{1}}(\phi f) \Delta(\phi f) d \lambda^{s s} \geq \int_{B_{1}} f^{2} d \eta^{s s}(\alpha-\epsilon)=\alpha-\epsilon \tag{1}
\end{align*}
$$

$$
\begin{equation*}
\int_{\Phi^{-t}\left(B_{2}-B_{1}\right)} f^{2} d \lambda^{s s} \leq \epsilon / c \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\int_{\Phi^{-t} B_{1}} \phi^{2} f^{2} d \lambda^{s s} \geq(1+\epsilon)^{-1} \tag{3}
\end{equation*}
$$

The support of the function $\rho \phi f$ is contained in $\bigcup_{t \in \mathbb{R}} \Phi^{t} B_{2}$ and

$$
\begin{aligned}
|(\rho \phi f) \Delta(\rho \phi f)| \leq & f^{2}\left[\left|\phi^{2} \rho \Delta(\rho)\right|+\rho\|\nabla \rho\|\left(2\|\phi \nabla \phi\|+\|\tilde{Y}\| \phi^{2}\right)\right. \\
& \left.+\rho^{2}\left(|\phi(\Delta(\phi)+\tilde{Y}(\phi))|+\phi^{2}\left|\frac{1}{2} \operatorname{div}(\tilde{Y})+\frac{1}{4}\|\tilde{Y}\|^{2}\right|\right)\right]
\end{aligned}
$$

and consequently $|(\rho \phi f) \Delta(\rho \phi f)| \leq c f^{2}$ on $\cup_{t \geq t_{1}} \Phi^{-t} W^{s s}(v)$. Thus for $t \geq t_{1}$ we obtain

$$
\begin{align*}
\int_{\Phi^{-t} W^{s s}(v)} & (\rho \phi f) \Delta(\rho \phi f) d \lambda^{s s} \\
& \geq \int_{\Phi^{-t} B_{1}}(\phi f) \Delta(\phi f) d \lambda^{s s}-\int_{\Phi^{-t}\left(B_{2}-B_{1}\right)} c f^{2} d \lambda^{s s} \tag{4}\\
& \geq \alpha-2 \epsilon
\end{align*}
$$

Choose a smooth function $\xi: \mathbb{R} \rightarrow[0,1]$ such that $\xi(t)=0$ for $t \leq 0, \quad \xi(t)=1$ for $t \geq 1$. For an integer $k>0$, define functions $\xi_{k}, \zeta_{k}: W^{s}(v) \rightarrow[0,1]$ by $\xi_{k}\left(\Phi^{t} w\right)=\xi(-t-k)$ and $\zeta_{k}\left(\Phi^{t} w\right)=\xi(k+t+1)$ for $w \in W^{s s}(v)$ and $t \in \mathbb{R}$. Then the norms of the gradients of ξ_{k}, ζ_{k} and the absolute values of $\Delta\left(\xi_{k}\right), \Delta\left(\zeta_{k}\right)$ are pointwise uniformly bounded independent of $k>0$.

From the above estimates and Proposition 4.1 it then follows:
(5) There is a number $A>0$ such that

$$
\left|\int_{\Phi^{-t} W^{s s}(v)}\left(\rho \phi f \zeta_{j} \xi_{k}\right) \Delta\left(\rho \phi f \zeta_{j} \xi_{k}\right) d \lambda^{s s}\right| \leq A
$$

for all $j, k \geq 0$ and all $t \geq t_{1}$.
Choose an integer $m \geq 2 A / \epsilon$, let $k>t_{1}+1$ and define a function ψ on $W^{s}(v)$ by $\psi=\xi_{k} \zeta_{m+k} \rho \phi f$. Then ψ is a smooth function with compact support, and $\int_{W^{s}(v)} \psi(\Delta \psi) d \lambda^{s}=a_{1}+a_{2}+a_{3}$ where

$$
\begin{aligned}
\left|a_{1}\right| & =\left|\int_{U_{t \leq k} \Phi^{-t} W^{s s}(v)} \psi(\Delta \psi) d \lambda^{s}\right| \leq A \\
a_{2} & =\int_{U_{t=k}^{k+m} \Phi^{-t} W^{s s}(v)} \psi(\Delta \psi) d \lambda^{s} \geq m\left(\alpha_{\eta}-3 \epsilon\right) \quad \text { and } \\
\left|a_{3}\right| & =\left|\int_{U_{t \geq k+m} \Phi^{-t} W^{s s}(v)} \psi(\Delta \psi) d \lambda^{s}\right| \leq A
\end{aligned}
$$

Together we obtain that $\int \psi(\Delta \psi) d \lambda^{s} \geq m\left(\alpha_{\eta}-4 \epsilon\right)$, in particular $\alpha_{\eta}-$ $4 \epsilon<0$.

On the other hand we have

$$
\int \psi^{2} d \lambda^{s} \geq \int_{\bigcup_{t=k}^{k+m} \Phi^{-t} B_{1}} \phi^{2} f^{2} d \lambda^{2} \geq m(1+\epsilon)^{-1}
$$

and consequently

$$
\int \psi(\Delta \psi) d \lambda^{s} / \int \psi^{2} d \lambda^{s} \geq\left(\alpha_{\eta}-4 \epsilon\right)(1+\epsilon)
$$

Thus also $-\delta_{0} \geq\left(\alpha_{\eta}-4 \epsilon\right)(1+\epsilon)$, which implies that $-\delta_{0} \geq \alpha_{\eta}$ since $\epsilon>0$ was arbitrary.

The next lemma then shows that $\alpha_{\eta}=-\delta_{0}$ for every measure η as above:

Lemma 4.3. $-\delta_{0} \leq \alpha_{\eta}$ for every measure η induced as above by the Gibbs-equilibrium state of a Hölder continuous function on $T^{1} M$.

Proof. If suffices to construct a function ϕ on $T^{1} M$ of class C_{s}^{2} such that $\int \phi^{2} d \eta=1$ and $\int \phi\left(\Delta^{s}(\phi)+Y(\phi)+\phi\left[\frac{1}{2} \operatorname{div}(Y)+\frac{1}{4}\|Y\|^{2}\right]\right) d \eta \geq$ $-\delta_{0}-\epsilon$ for every $\epsilon>0$.

For this we recall that $-\delta_{0}$ equals the top of the L^{2}-spectrum of \tilde{M}, and hence for $\epsilon>0$ there is a compact ball B in \tilde{M} and a smooth function $0 \not \equiv f$ on \tilde{M} with support in B such that

$$
-\int f \Delta(f) d \lambda_{\tilde{M}} \leq\left(\delta_{0}+\epsilon\right) \int f^{2} d \lambda_{\tilde{M}}
$$

where $\lambda_{\bar{M}}$ is the Lebesgue measure on \tilde{M}.
Recall that every leaf of the stable foliation of $T^{1} \tilde{M}$ projects diffeomorphically onto \tilde{M}.

Let $\Pi: T^{1} \tilde{M} \rightarrow T^{1} M$ be the canonical projection. If $v \in T^{1} \tilde{M}$ is such that $\Pi W^{s}(v)$ does not contain a periodic orbit of the geodesic flow, then the restriction of Π to $W^{s}(v)$ is injective. This implies that we can find a vector $v \in T^{1} \tilde{M}$ with $P(v) \in B$, an open neighborhood A of v in $W^{s}(v)$, an open neighborhood D of v in $W^{s u}(v)$ and a homeomorphism Λ of $A \times D$ onto an open neighborhood C of v in $T^{1} \tilde{M}$ with the following properties:

1) $\Lambda(w, v)=w$ for every $w \in A$.
2) $\Lambda(v, z)=z$ for every $z \in D$.
3) $\Lambda(A \times\{z\})$ is contained in $W^{s}(z)$ for every $z \in D$ and $P \Lambda(A \times\{z\}) \supset B$.
4) $\Lambda(\{w\} \times D)$ is contained in $W^{s u}(w)$ for every $w \in A$.
5) The restriction of Π to C is a diffeomorphism into $T^{1} M$.

Recall that the measures $\eta^{s u}$ on the leaves of the strong unstable foliation induce a nonzero measure η^{D} on D. Denote again by λ^{s} the family of Lebesgue measures on the manifolds $A \times\{z\} \subset^{\prime} A \times D$ induced
via Λ from the Lebesgue measures on the leaves of the stable foliation. Let ρ be the measure on $A \times D$ defined by $d \rho=d \lambda^{s} \times d \eta^{D}$. Then Λ is absolutely continuous with respect to the measure ρ on $A \times D$ and the measure η on C. The square root α of the Jacobian of Λ with respect to these measures is Hölder continuous. If \tilde{Y} denotes the lift of the vector field Y to $T^{1} \tilde{M}$, then $\alpha \circ \Lambda^{-1}$ is of class C_{s}^{2} on C and $\nabla^{s} \log \left(\alpha \circ \Lambda^{-1}\right)=\frac{1}{2} \tilde{Y}$.

Choose a smooth function ψ on D with compact support and values in $[0,1]$ such that $\psi(v)=1$. Define a function ϕ on C by $\phi(\Lambda(w, z))=$ $\psi(z) \alpha^{-1}(w, z) f(P(\Lambda(w, z)))$. Then ϕ is a function on C with compact support and hence induces a function $\bar{\phi}$ on $T^{1} M$ with compact support in $\Pi(C)$. Moreover $\bar{\phi}$ is of class C_{s}^{2}.

Write $\bar{\alpha}=\alpha \circ \Lambda^{-1}$ and $\bar{f}=f \circ P$; then

$$
\begin{aligned}
\chi= & \int \bar{\phi}\left(\Delta^{s}(\bar{\phi})+Y(\bar{\phi})+\bar{\phi}\left[\frac{1}{2} \operatorname{div}(Y)+\frac{1}{4}\|Y\|^{2}\right]\right) d \eta \\
= & \int_{C} \phi\left(\Delta^{s}(\phi)+\tilde{Y}(\phi)+\phi\left[\frac{1}{2} \operatorname{div}(\tilde{Y})+\frac{1}{4}\|Y\|^{2}\right]\right) d \eta \\
= & \int_{A \times D}(\bar{f} \circ \Lambda) \alpha^{-1}\left[\Delta^{s}\left(\bar{f} \bar{\alpha}^{-1}\right) \circ \Lambda+\tilde{Y}\left(\bar{f} \bar{\alpha}^{-1}\right) \circ \Lambda\right. \\
& \left.+(\bar{f} \circ \Lambda) \alpha^{-1}\left(\frac{1}{2} \operatorname{div}(\tilde{Y})+\frac{1}{4}\|\tilde{Y}\|^{2}\right) \circ \Lambda\right] \alpha^{2} \psi^{2} d \lambda^{s} \times d \eta^{D}
\end{aligned}
$$

Now $\nabla^{s} \log \bar{\alpha}=\frac{1}{2} \tilde{Y}$ and consequently we obtain from the above formula that

$$
\begin{aligned}
\chi & =\int_{A \times D}(\bar{f} \circ \Lambda)\left(\Delta^{s}(\bar{f}) \circ \Lambda\right) \psi^{2} d \lambda^{s} \times d \eta^{D} \\
& \geq\left(-\delta_{0}-\epsilon\right) \int_{A \times B}(\bar{f} \circ \Lambda)^{2} \psi^{2} d \lambda^{s} \times d \eta^{D}
\end{aligned}
$$

by the choice of \bar{f}. But clearly

$$
\int \bar{\phi}^{2} d \bar{\eta}=\int_{A \times D}(\bar{f} \circ \Lambda)^{2} \psi^{2} d \lambda^{s} \times d \eta^{D}
$$

and therefore $\alpha_{\eta} \geq-\delta_{0}-\epsilon$ by the definition of α_{η}. Since $\epsilon>0$ was arbitrary, the lemma follows.

Recall that the Lebesgue Liouville measure λ on $T^{1} M$ is the Gibbs equilibrium state of the Hölder continuous function $v \rightarrow \operatorname{tr} U(v)$ where $\operatorname{tr} U(v)$ is the trace of the second fundamental form at $P v$ of the horsphere $P W^{s u}(v)$. Denote the g^{s}-gradient of λ by Z. Then we have:

Lemma 4.4. The differential operator $L=\Delta^{s}+Z+\frac{1}{2} \operatorname{div}(Z)+\frac{1}{4}\|Z\|^{2}$ is self-adjoint with respect to λ, and the top of its spectrum equals δ_{0}.

Proof. Since Z is the g^{s}-gradient of λ, the operator L is self-adjoint with respect to λ by Corollary 2.6 of [12].

Let Δ^{v} be the leafwise Laplacean of the vertical foliation, i.e., for a smooth function f on $T^{1} M$ and every $v \in T^{1} M$ the evaluation of Δ^{v} on f at v is obtained by restricting f to the fibre $T_{P v}^{1} \tilde{M}$ of the fibration $T^{1} M \rightarrow M$ through v and evaluating the Laplacean of the round sphere $T_{P v}^{1} M$ on this restriction. Then Δ^{v} is a second order differential operator on $T^{1} M$ with smooth coefficients, which is subordinate to the vertical foliation and leafwise elliptic. Moreover Δ^{v} is self-adjoint with respect to the invariant measure λ, i.e., for smooth functions f, ϕ on $T^{1} M$ we have $\int f\left(\Delta^{v} \phi\right) d \lambda=\int \phi\left(\Delta^{v} f\right) d \lambda=-\int\left\langle\nabla^{v} f, \nabla^{v} \phi\right\rangle d \lambda$ where $\nabla^{v} f$ is the section of the vertical bundle T^{v} whose restriction to a fibre $T_{p}^{1} M$ equals the gradient of the restriction of f to the (totally geodesic) submanifold $T_{p}^{1} M$ of $T^{1} M$, and by abuse of notation \langle,$\rangle is the natural Riemannian$ metric on T^{v}.

Since the vertical foliation and the stable foliation of $T^{1} M$ are transversal, for every $\epsilon>0$ the operator $L_{\epsilon}=L+\epsilon \Delta^{v}$ is elliptic and moreover self-adjoint with respect to λ. In particular the spectrum of L_{ϵ} is a pure point spectrum, and its top is an eigenvalue α_{ϵ} whose corresponding eigenspace is one-dimensional and spanned by a positive function $f_{\epsilon}: T^{1} M \rightarrow(0, \infty)$ of class C^{2}. We assume f_{ϵ} to be normalized in such a way that $\int f_{\epsilon} d \lambda=1$. First we note:

Lemma 4.5. $\lim _{\epsilon \rightarrow 0} \alpha_{\epsilon}=-\delta_{0}$.
Proof. Let Q_{ϵ} be the quadratic form on the space of smooth functions on $T^{1} M$ associated to L_{ϵ}; for every smooth function ϕ on $T^{1} M$ we have

$$
Q_{\epsilon}(\phi)=\int \phi\left(L_{\epsilon} \phi\right) d \lambda=\int \phi(L \phi) d \lambda-\epsilon \int\left\|\nabla^{v} \phi\right\|^{2} d \lambda
$$

and consequently $Q_{\epsilon} \geq Q_{\delta}$ for $\epsilon \leq \delta$. Now the space of smooth functions on $T^{1} M$ is a form core for the quadratic form Q_{0} defined by L; since $Q_{\epsilon} \rightarrow Q_{0}(\epsilon \rightarrow 0)$ on this form core, the operators L_{ϵ} converge as $\epsilon \rightarrow 0$ in the strong resolvent sense to L (see [6]).

This implies in particular that $\lim _{\epsilon \rightarrow 0} \alpha_{\epsilon}=-\delta_{0}$.
Lemma 4.6. Let η be a weak limit of the measures $f_{\epsilon} \lambda$ on $T^{1} M$ as $\epsilon \rightarrow 0$. Then η is a harmonic measure for the operator $L+\delta_{0}$.

Proof. Let ϕ be a smooth function on $T^{1} M$; then ϕ and $\Delta^{v} \phi$ are continuous. Hence $\int \epsilon\left(\Delta^{v} \phi\right) f_{\epsilon} d \lambda \rightarrow 0$ and

$$
\left(\alpha_{\epsilon}+\delta_{0}\right) \int \phi f_{\epsilon} d \lambda \rightarrow 0(\epsilon \rightarrow 0)
$$

by Lemma 4.5. Let $\left\{\epsilon_{i}\right\}_{i}$ be a sequence such that $\epsilon_{i} \rightarrow 0$ and that the
measures $f_{\epsilon_{i}} \lambda$ converge weakly as $i \rightarrow \infty$ to a measure η. We then have

$$
\begin{aligned}
\int\left(L+\delta_{0}\right) \phi d \eta & =\lim _{i \rightarrow \infty} \int\left[\left(L+\delta_{0}\right) \phi\right] f_{\epsilon_{i}} d \lambda \\
& =\lim _{i \rightarrow \infty} \int\left[\left(L+\epsilon_{i} \Delta^{v}-\alpha_{\epsilon_{i}}\right) \phi\right] f_{\epsilon_{i}} d \lambda \\
& =\lim _{i \rightarrow \infty} \int \phi\left(L_{\epsilon_{i}}-\alpha_{\epsilon_{i}}\right)\left(f_{\epsilon_{i}}\right) d \lambda=0
\end{aligned}
$$

since $L_{\epsilon_{i}}$ is self-adjoint with respect to λ. This shows the lemma.
Corollary 4.7. Let η be as in Lemma 4.6, and let ζ be the section of $T W^{s}$ such that $\zeta+\frac{1}{2} Z$ is the g^{s}-gradient of η. Then

$$
\operatorname{div}(\zeta)+\|\zeta\|^{2}+\delta_{0}=0
$$

Proof. Let $v \in T^{1} \tilde{M}$ and let f be a function on $W^{s}(v)$ such that $\nabla^{s} \log f=\left.\frac{1}{2} Z\right|_{W^{s}(v)}$. For a smooth function ϕ on $W^{s}(v)$ with compact support we then have $f^{-1} \Delta^{s}(f \phi)=\Delta^{s}(\phi)+Z(\phi)+\phi f^{-1} \Delta(f)=L \phi$, and hence the formal adjoint L^{*} of $L_{\left.\right|_{W^{s}(v)}}$ is given by $L^{*}(\phi)=f \Delta^{s}\left(f^{-1} \phi\right)$. In other words, if $L^{*}(\phi)=-\delta_{0} \phi$, then $f^{-1} \phi$ is a solution of $\Delta^{s}\left(f^{-1} \phi\right)=$ $-\delta_{0} f^{-1} \phi$.

From this and Lemma 2.2 of [12] the corollary follows.

5. Pressure computation

In this section we use the results in Section 4 to prove the second part of Theorem B and Theorem C. For this we continue to use the assumptions and notation of Sections 1-4. Recall in particular that we denoted the pressure of the functions $2\left\langle X, \xi_{\epsilon}\right\rangle$ for $\epsilon \in\left(0, \delta_{0}\right.$] by $q(\epsilon)<0$. Our theorem will be a consequence of the fact that $\lim _{\epsilon \rightarrow 0} q(\epsilon)=0$. As in Section 4 let $L_{\delta}=\Delta^{s}+Z+\frac{1}{2} \operatorname{div}(Z)+\frac{1}{4}\|Z\|^{2}+\delta \Delta^{v}$, and let f_{δ} be an eigenfunction of L_{δ} with respect to the largest eigenvalue α_{δ}. In contrast to Section 4 however we assume now that f_{δ} is normalized in such a way that $\int f_{\delta}^{2} d \lambda=1$. Then we have:

Lemma 5.1. Let ν be a weak limit of the measures $f_{\delta}^{2} \lambda$ on $T^{1} M$ as $\delta \rightarrow 0$. Then the following are satisfied:
i) The vector fields ξ_{ϵ} converge as $\epsilon \rightarrow 0$ in the Hilbert space of sections of $T W^{s}$ over $T^{1} M$, which are square integrable with respect to ν to a section ξ of $T W^{s}$.
ii) $\operatorname{div}(\xi)+\|\xi\|^{2}+\delta_{0}=0$ almost everywhere on $\left(T^{1} M, \nu\right)$.
iii) ν is a self-adjoint harmonic measure for $\Delta^{s}+2 \xi$.
iv) Every ν-measurable section ζ of $T W^{s}$ over $T^{1} M$, which satisfies $\operatorname{div}(\zeta)+\|\zeta\|^{2}+\delta_{0} \leq 0$ almost everywhere, coincides with ξ.
Proof. Let $\left\{\delta_{i}\right\}_{i}$ be a sequence such that $\delta_{i} \rightarrow 0(i \rightarrow \infty)$ and that the measures $f_{\delta_{i}}^{2} \lambda$ converge as $i \rightarrow \infty$ weakly to a measure ν. For $i>0$ write $f_{i}=f_{\delta_{i}}, \alpha_{i}=\alpha_{\delta_{i}}$ and $Q_{i}=\nabla^{s} \log f_{i}+\frac{1}{2} Z$. The differential equation for f_{i} then yields

$$
\begin{equation*}
\operatorname{div}\left(Q_{i}\right)+\left\|Q_{i}\right\|^{2}-\alpha_{i}+\delta_{i} f_{i}^{-1} \Delta^{v}\left(f_{i}\right)=0 \tag{1}
\end{equation*}
$$

and consequently

$$
\begin{equation*}
\operatorname{div}\left(\xi_{\epsilon}-Q_{i}\right)=\left\|Q_{i}\right\|^{2}-\left\|\xi_{\epsilon}\right\|^{2}-\delta_{0}+\epsilon-\alpha_{i}+\delta_{i} f_{i}^{-1} \Delta^{v}\left(f_{i}\right) \tag{2}
\end{equation*}
$$

for every $\epsilon>0$. Since $f_{i}^{2} \lambda$ is a self-adjoint harmonic measure for $\Delta^{s}+2 Q_{i}$ (see [12]), integration of equation (2) shows

$$
\begin{aligned}
0 & =\int\left(\operatorname{div}\left(\xi_{\epsilon}-Q_{i}\right)+2\left\langle Q_{i}, \xi_{\epsilon}-Q_{i}\right\rangle\right) f_{i}^{2} d \lambda \\
& =\int\left(-\left\|\xi_{\epsilon}-Q_{i}\right\|^{2}-\delta_{0}+\epsilon-\alpha_{i}-\delta_{i}\left\|\nabla^{v} \log f_{i}\right\|^{2}\right) f_{i}^{2} d \lambda
\end{aligned}
$$

since $\int\left(f_{i}^{-1} \Delta^{v}\left(f_{i}\right)\right) f_{i}^{2} d \lambda=-\int\left\|\nabla^{v} \log f_{i}\right\|^{2} f_{i}^{2} d \lambda$ by self-adjointness of Δ^{v}. From this we obtain

$$
\begin{equation*}
\lim \sup _{i \rightarrow \infty} \int\left\|\xi_{\epsilon}-Q_{i}\right\|^{2} f_{i}^{2} d \lambda \leq \epsilon \tag{3}
\end{equation*}
$$

Since the above equation is valid for every $\epsilon>0$ we further conclude that

$$
\begin{equation*}
\lim \sup _{i \rightarrow \infty} \delta_{i} \int\left\|\nabla^{v} \log f_{i}\right\|^{2} f_{i}^{2} d \lambda=0 \tag{4}
\end{equation*}
$$

Now by the definition of ν we have

$$
\begin{aligned}
\int\left\|\xi_{\epsilon}-\xi_{\delta}\right\|^{2} d \nu & =\lim _{i \rightarrow \infty} \int\left\|\xi_{\epsilon}-\xi_{\delta}\right\|^{2} f_{i}^{2} d \lambda \\
& \leq \limsup _{i \rightarrow \infty} 2\left(\int\left\|\xi_{\epsilon}-Q_{i}\right\|^{2} f_{i}^{2} d \lambda+\int\left\|\xi_{\delta}-Q_{i}\right\|^{2} f_{i}^{2} d \lambda\right) \\
& =2 \epsilon+2 \delta
\end{aligned}
$$

by the above estimates for all $\epsilon, \delta>0$. Hence for every sequence $\left\{\epsilon_{j}\right\}_{j>0}$ with $\epsilon_{j} \rightarrow 0(j \rightarrow \infty)$ the vector fields $\left\{\xi_{\epsilon_{j}}\right\}_{j}$ form a Cauchy sequence in the Hilbert space \mathcal{H} of sections of $T W^{s}$ over $T^{1} M$, which are square integrable with respect to ν. In other words, there is a section $\xi \in \mathcal{H}$ such that $\xi_{\delta} \rightarrow \xi(\delta \rightarrow 0)$ in \mathcal{H} which yields i) above.

Next we want to show that ν is a self-adjoint harmonic measure for $\Delta^{s}+2 \xi$, and for this it is sufficient to show that

$$
\int(\operatorname{div}(Y)+\langle 2 \xi, Y\rangle) d \nu=0
$$

for every section Y of $T W^{s}$ of class C_{s}^{1}. Let Y be a section of $T W^{s}$ of class C_{s}^{1} and let $\epsilon>0$; since $\xi_{\delta} \rightarrow \xi$ in \mathcal{H} there is a number $\delta \leq \epsilon$ such that

$$
\begin{equation*}
\left|\int\langle 2 \xi, Y\rangle d \nu-\int\left\langle 2 \xi_{\delta}, Y\right\rangle d \nu\right|<\epsilon \tag{5}
\end{equation*}
$$

Now the functions $\left\langle 2 \xi_{\delta}, Y\right\rangle$ and $\operatorname{div}(Y)$ are continuous on $T^{1} M$ and the measures $f_{i}^{2} \lambda$ converge as $i \rightarrow \infty$ weakly to ν. This means that we can find a number $i_{0}>0$ such that

$$
\begin{equation*}
\left|\int\left(\operatorname{div}(Y)+\left\langle 2 \xi_{\delta}, Y\right\rangle\right) d \nu-\int\left(\operatorname{div}(Y)+\left\langle 2 \xi_{\delta}, Y\right\rangle\right) f_{i}^{2} d \lambda\right|<\epsilon \tag{6}
\end{equation*}
$$

for all $i>i_{0}$. On the other hand, by (4) above we may further assume that

$$
\begin{equation*}
\left|\delta_{i} \int f_{i} \Delta^{v}\left(f_{i}\right) d \lambda-\alpha_{i}-\delta_{0}\right|<\epsilon \tag{7}
\end{equation*}
$$

for all $i>i_{0}$. The equation preceding (3) then implies that $\int\left\|\xi_{\delta}-Q_{i}\right\|^{2} f_{i}^{2} d \lambda \leq 2 \epsilon$ so that

$$
\begin{equation*}
\left|\int\left\langle 2 \xi_{\delta}, Y\right\rangle f_{i}^{2} d \lambda-\int\left\langle 2 Q_{i}, Y\right\rangle f_{i}^{2} d \lambda\right| \leq 2 c \sqrt{2 \epsilon} \tag{8}
\end{equation*}
$$

where $c=\max \left\{\|Y\|(v) \mid v \in T^{1} M\right\}$.
Since $f_{i}^{2} d \lambda$ is a self-adjoint harmonic measure for $\Delta^{s}+2 Q_{i}$, integration and (6), (7), (8) yield

$$
\begin{aligned}
\left|\int(\operatorname{div}(Y)+\langle 2 \xi, Y\rangle) d \nu\right| & \leq 2 \epsilon+2 c \sqrt{2 \epsilon}+\left|\int\left(\operatorname{div}(Y)+\left\langle 2 Q_{i}, Y\right\rangle\right) f_{i}^{2} d \lambda\right| \\
& =2(\epsilon+c \sqrt{2 \epsilon})
\end{aligned}
$$

Since $\epsilon>0$ was arbitrary we obtain that indeed

$$
\int(\operatorname{div}(Y)+\langle 2 \xi, Y\rangle) d \nu=0
$$

and hence iii).
Now ν is a self-adjoint harmonic measure for a leafwise elliptic second order differential operator subordinate to W^{s}, and hence ν is absolutely continuous with respect to the stable and strong unstable foliation, with conditionals on stable manifolds in the Lebesgue measure class. But this means that for ν-almost every $v \in T^{1} M$ the restriction of the vector
fields ξ_{δ} to the open ball B of radius 1 about v in $W^{s}(v)$ converge almost everywhere pointwise with respect to the Lebesgue measure λ^{s} on $W^{s}(v)$ to the restriction of ξ by i) above, and $\left\|\xi_{\delta}\right\|^{2} \rightarrow\|\xi\|^{2}$ almost everywhere pointwise on $\left(W^{s}(v), \lambda^{s}\right)$ as well. But $\operatorname{div}\left(\xi_{\delta}\right)+\left\|\xi_{\delta}\right\|^{2}+\delta_{0}-\delta=0$ and consequently via partial integration we obtain that $\operatorname{div}(\xi)+\|\xi\|^{2}+$ $\delta_{0}=0$ on B in the sense of distributions. Regularity theory for elliptic equations then implies that in fact the restriction of ξ to B is a strong solution of $\operatorname{div}(\xi)+\|\xi\|^{2}+\delta_{0}=0$ and hence $\operatorname{div}(\xi)+\|\xi\|^{2}+\delta_{0}=0$ almost everywhere with respect to ν.

We are left with statement iv) in the lemma. For this let χ be any ν measurable square integrable section of $T W^{s}$ over $T^{1} M$, which satisfies $\operatorname{div}(\chi)+\|\chi\|^{2}+\delta_{0} \leq 0$ almost everywhere with respect to ν. As before we then have

$$
\begin{aligned}
0 & \geq \int\left(\operatorname{div}(\chi-\xi)+\|\chi\|^{2}-\|\xi\|^{2}\right) d \nu \\
& =\int\left(\langle 2 \xi, \xi-\chi\rangle+\|\chi\|^{2}-\|\xi\|^{2}\right) d \nu \\
& =\int\|\xi-\chi\|^{2} d \nu
\end{aligned}
$$

since ν is a self-adjoint harmonic measure for $\Delta^{s}+2 \xi$. Hence $\xi=\chi$ almost everywhere.

By Lemma 5.1 iii) the measure ν is harmonic for the leafwise elliptic differential operator $\Delta^{s}+2 \xi$. Therefore by the result of Garnett [8] we can write $d \nu=d \lambda^{s} \times d \nu^{s u}$ where $\nu^{s u}$ is a family of locally finite Borelmeasures on the leaves of $W^{s u}$, which are absolutely continuous under canonical maps, and where λ^{s} is the family of Lebesgue measures on the leaves of W^{s} for all $\epsilon>0$.

In other words, the measures $\nu^{s u}$ induce a $\pi_{1}(M)$-invariant measure class $\nu(\infty)$ on $\partial \hat{M}$. This measure class has the properties mentioned in Theorem C:

Corollary 5.2. For every $x \in \tilde{M}$ and $\nu(\infty)$-almost every $\zeta \in \partial \tilde{M}$ the functions $y \rightarrow K_{\epsilon}(x, y, \zeta)$ converge as $\epsilon \rightarrow 0$ uniformly on compact subsets of \tilde{M} to a minimal positive Δ_{0}-harmonic function.

Proof. Let $\tilde{\nu}$ be the lift of ν to a locally finite measure on $T^{1} \tilde{M}$, and let $\tilde{\xi}$ be the lift of ξ. Then Lemma 5.1 implies that for $\tilde{\nu}$-almost every $v \in T^{1} \tilde{M}$ the functions $y \rightarrow K_{\epsilon}(x, y, \pi(v))$ converge as $\epsilon \rightarrow 0$ uniformly on compact subsets of \tilde{M} to a positive Δ_{0}-harmonic function f^{v}. The gradient of $\log f^{v}$ is just the projection to \tilde{M} of the restriction of $\tilde{\xi}$ to $W^{s}(v)$.

We are left with showing that for $\tilde{\nu}$-almost every $v \in T^{1} \tilde{M}$ the function f^{v} is in fact minimal Δ_{0}-harmonic. Since for every smooth function
ϕ on \tilde{M} we have

$$
f_{v}^{-1} \Delta\left(\phi f^{v}\right)+\delta_{0} \phi=\Delta(\phi)+2\left\langle\nabla \log f^{v}, \nabla \phi\right\rangle
$$

this is equivalent to saying that every bounded $\Delta+2 \nabla \log f^{v}$-harmonic function on \tilde{M} is constant. Now ν is a self-adjoint harmonic measure for $\Delta^{s}+2 \xi$, and hence the Kaimanovich-entropy of the diffusion on $T^{1} M$ induced by $\left(\Delta^{s}+2 \xi, \nu\right)$ vanishes (see [12], [15]). But this just means that ν-almost every leaf of W^{s} is Liouville with respect to $\Delta^{s}+2 \xi$, which yields the corollary.

Consider now again the measures $\nu^{s u}$ on the leaves of the strong unstable foliation. The arguments in the proof of Lemma 3.5 then show that there is a number $c>0$ such that $\nu^{s u}\left(B^{s u}(v, 1)\right) \in\left[c^{-1}, c\right]$ for all $v \in T^{1} M$, where $B^{i}(v, \delta)$ denotes the open ball of radius $\delta>0$ about v in the manifold $W^{i}(v)$ equipped with the metric g^{i} which is induced from the Riemannian metric on $M(i=s, s u, s s)$.

Recall that the unique Gibbs equilibrium state ν_{ϵ} of the function $2\left\langle X, \xi_{\epsilon}\right\rangle$ admits a family $\nu_{\epsilon}^{s u}$ of conditional measures on strong unstable manifolds such that $\left.\frac{d}{d t} \nu_{\epsilon}^{s u} \circ \Phi^{t}\right|_{t=0}=2\left\langle X, \xi_{\epsilon}\right\rangle+q(\epsilon)$. By the arguments in the proof of Lemma 2.7 we have $\nu_{\epsilon}^{s u}\left(B^{s u}(v, 1)\right) \in\left[c^{-1}, c\right]$ for all $v \in T^{1} M$ independent of ϵ. Let $\mathcal{F}: v \rightarrow-v$ be the flip on $T^{1} M$ and define for $\epsilon>0$ a measure ν_{ϵ}^{s} on the leaves of W^{s} by $d \nu_{\epsilon}^{s}=d t \times d \nu_{\epsilon}^{s s}$ where $\nu_{\epsilon}^{s s}=\nu_{\epsilon}^{s u} \circ \mathcal{F}$. Clearly there is a number $a>0$ such that $\nu_{\epsilon}^{s}\left(B^{s}(v, 1)\right) \in\left[a^{-1}, a\right]$ for all $v \in T^{1} M$ and all $\epsilon \in\left(0, \delta_{0}\right]$. Thus we obtain a finite Borel measure σ_{ϵ} on $T^{1} M$ by defining $d \sigma_{\epsilon}=d \nu_{\epsilon}^{s} \times d \nu^{s u}$ which we may assume to be normalized in such a way that $\sigma_{\epsilon}\left(T^{1} M\right)=1$ for all $\epsilon>0$. Then the section ξ of $T W^{s}$ over $T^{1} M$ is contained in the Hilbert space of sections which are square integrable with respect to σ_{ϵ} for all $\epsilon>0$, with Hilbert norm bounded independent of ϵ. Moreover σ_{ϵ} is quasi-invariant under the action of the geodesic flow, and we have $\left.\frac{d}{d t} \sigma_{\epsilon} \circ \Phi^{t}\right|_{t=0}(v)=$ $2\langle X, \xi\rangle(v)-2\left\langle X, \xi_{\epsilon}\right\rangle(-v)-q(\epsilon)$ where as before $q(\epsilon)<0$ is the pressure of the function $2\left\langle X, \xi_{\epsilon}\right\rangle$ on $T^{1} M$.

Lemma 5.3. For every $\delta>0$ there is a number $\epsilon(\delta)>0$ such that $\int\left\|\xi_{\epsilon}-\xi\right\|^{2} d \sigma_{\epsilon}<\delta$ for all $\epsilon<\epsilon(\delta)$.

Proof. Recall that the vector fields ξ_{ϵ}, ξ are pointwise uniformly bounded in norm, independent of ϵ. Lemma 5.1 together with the precompactness of the space of positive locally bounded Δ_{ϵ}-harmonic functions on \tilde{M} then implies the following: Let $\tilde{\nu}^{s u}$ be the lift of the measures $\nu^{s u}$ to the leaves of $W^{s u} \subset T^{1} \tilde{M}$. Then for every $v \in T^{1} \tilde{M}$ and $\tilde{\nu}^{s u}$-almost every $w \in W^{s u}(v)$ the restriction of $\tilde{\xi}_{\epsilon}$ to $W^{s}(w)$ converges uniformly on compact sets to the restriction of ξ.

Let $C \subset T^{1} \tilde{M}$ be a set with a local product structure, given by a
vector $v \in T^{1} \tilde{M}$, a compact ball $B \subset W^{s u}(v)$ about v, a compact ball $A \subset W^{s}(v)$ about v and a homeomorphism $\Lambda: A \times B \rightarrow C$ such that $\Lambda(w, z) \in W^{s}(z) \cap W^{s u}(w)$ as in the proof of Lemma 4.3. We assume that the projection of C to $T^{1} M$ is surjective.

Since C can be covered by a finite number of fundamental domains for the action of $\pi_{1}(M)$ on $T^{1} \tilde{M}$, there is a number $c_{0}>0$ such that $\sigma_{\epsilon}(C) \leq c_{0}$ for all $\epsilon \in\left(0, \delta_{0}\right.$], where we denote the lift of σ_{ϵ} to $T^{1} \tilde{M}$ again by σ_{ϵ}. By the infinitesimal Harnack inequality we can further choose a number $m>0$ such that $\left\|\xi_{\epsilon}\right\|^{2}(v)$ and $\|\xi\|^{2}(v)$ is not larger than m for all $v \in T^{1} M$ and all $\epsilon \in\left(0, \delta_{0}\right]$.

Let $\delta>0$ be given. By the properties of the measures ν_{ϵ}^{s} there is then a number $\rho>0$ such that $\sigma_{\epsilon}(\Lambda(A \times E))<\delta / 8 m$ whenever $E \subset B$ is Borel and $\tilde{\nu}^{s u}(E)<\rho$. On the other hand, for $\tilde{\nu}^{s u}$-almost every $w \in B$ the sections ξ_{ϵ} converge on $\Lambda(A \times\{w\})$ uniformly to ξ as $\epsilon \rightarrow 0$; hence there is a number $\epsilon(\delta)>0$ such that $\tilde{\nu}^{s u}(E)<\rho$ where $E=\{w \in B \mid$ $\left\|\xi_{\epsilon}-\xi\right\|^{2}(\Lambda(z, w)) \geq \delta / 2 c_{0}$ for some $z \in A$ and $\left.\epsilon \leq \epsilon(\delta)\right\}$.

For $\epsilon<\epsilon(\delta)$ we then have

$$
\begin{aligned}
\int\left\|\xi_{\epsilon}-\xi\right\|^{2} d \sigma_{\epsilon} & \leq \int_{C}\left\|\xi_{\epsilon}-\xi\right\|^{2} d \sigma_{\epsilon} \\
& =\int_{\Lambda(A \times E)}\left\|\xi_{\epsilon}-\xi\right\|^{2} d \sigma_{\epsilon}+\int_{\Lambda(A \times(B-E))}\left\|\xi_{\epsilon}-\xi\right\|^{2} d \sigma_{\epsilon} \\
& \leq 4 m \sigma_{\epsilon}(\Lambda(A \times E))+\sigma_{\epsilon}(\Lambda(A \times B)) \delta / 2 c_{0} \leq \delta
\end{aligned}
$$

by the above. This shows the lemma.
Corollary 5.4. $q(0)=\lim _{\epsilon \rightarrow 0} q(\epsilon)=0$.
Proof. Assume to the contrary that $q(0)=\lim _{\epsilon \rightarrow 0} q(\epsilon)<0$; recall that $q(\epsilon)<q(0)$ for every $\epsilon>0$. By Lemma 5.3 we then can find a number $\epsilon>0$ such that $\int\left\|\xi_{\epsilon}-\xi\right\|^{2} d \sigma_{\epsilon}<\frac{1}{16} q(0)^{2}$. Since the norm of the geodesic spray X is constant 1 , from this it follows that

$$
\left|\int\left\langle X, \xi-\xi_{\epsilon}\right\rangle d \sigma_{\epsilon}\right| \leq \int\left\|\xi-\xi_{\epsilon}\right\| d \sigma_{\epsilon} \leq\left(\int\left\|\xi-\xi_{\epsilon}\right\|^{2} d \sigma_{\epsilon}\right)^{1 / 2}<-\frac{1}{4} q(0)
$$

But $\left.\frac{d}{d t} \sigma_{\epsilon} \circ \Phi^{t}\right|_{t=0}=2\left\langle X, \xi-\xi_{\epsilon}\right\rangle-q(\epsilon)$ and consequently

$$
0=\left.\int \frac{d}{d t} \sigma_{\epsilon} \circ \Phi^{t}\right|_{t=0} d \sigma_{\epsilon}=\int 2\left\langle X, \xi-\xi_{\epsilon}\right\rangle d \sigma_{\epsilon}-q(\epsilon) \geq-\frac{1}{2} q(0)
$$

by the above estimates, a contradiction to our assumption $q(0)<0$. Hence the corollary is proved.

As a corollary we obtain the second part of Theorem B.

Corollary 5.5.

1) There is a number $c>0$ such that $\int_{S(p, R)} G_{0}(p, y)^{2} d \lambda_{p, R}(y) \leq c$ for all $p \in \tilde{M}$, all $R \geq 1$.
2) $\liminf _{R \rightarrow \infty} \int_{S(p, R)} G_{0}(p, y)^{2-\epsilon} d \lambda_{p, R}=\infty$ for every $\epsilon>0$.

Proof. Statement 1) follows from the arguments in the proof of Corollary 3.6. To show 2) let $\epsilon>0$; by the first part of Theorem B there is then a number $\alpha>0$ such that $G_{0}(p, y)^{2-\epsilon} \geq \alpha^{-1} e^{-\alpha \operatorname{dist}(p, y)} G_{0}(p, y)^{2}$ for all $y, p \in \tilde{M}$ with $\operatorname{dist}(p, y) \geq 1$. Choose now $\epsilon>0$ sufficiently small that $q(\epsilon)>-\alpha / 2$; such a number exists by Corollary 5.3. The Harnackinequality at infinity of Ancona for the operator Δ_{ϵ} implies that there is a number $c(\epsilon)>0$ such that $\int_{S(p, R)} G_{\epsilon}(p, y)^{2} e^{-q(\epsilon) R} d \lambda_{p, R}(y) \geq c(\epsilon)$ for all $R \geq 1$. But the maximum principle yields that $G_{0}(p, y) \geq \bar{c} G_{\epsilon}(p, y)$ for all $p, y \in \tilde{M}$ with $\operatorname{dist}(p, y) \geq 1$, where $\bar{c}>0$ is a universal constant. Hence

$$
\begin{aligned}
\int_{S(p, R)} G_{0}(p, y)^{2-\epsilon} d \lambda_{p, R}(y) & \geq \alpha^{-1} \bar{c} \int_{S(p, R)} G_{\epsilon}(p, y)^{2} e^{-\alpha R} d \lambda_{p, R}(y) \\
& \geq \alpha^{-1} \bar{c} c(\epsilon) e^{\alpha R / 2}
\end{aligned}
$$

for all $R \geq 1$, and the corollary is proved.

References

[1] A. Ancona, Negatively curved manifolds, elliptic operators, and the Martin boundary, Ann. of Math. 125 (1987) 495-536.
[2] ___ Sur les fonctions propres positives des variétés de Cartan-Hadamard, Comment. Math. Helv. 64 (1989) 62-83.
[3] M. Anderson \& R. Schoen, Positive harmonic functions on complete manifolds of negative curvature, Ann. of Math. 121 (1985) 429-461.
[4] Y. Benoist, P. Foulon \& F. Labourie, Flots d'Anosov à distributions stable et instable différentiables, J. Amer. Math. Soc. 4 (1992) 33-74.
[5] G. Besson, G. Courtois \& S. Gallot, Entropies et rigidités des espaces localement symétriques de courbure strictement négative, Geometric \& Funct. Anal. 5 (1995) 731-799.
[6] E.B. Davies, One-parameter semigroups, Academic Press, New York, 1980.
[7] P. Foulon \& F. Labourie, Sur les variétés asymptotiquement harmonique, Invent. Math. 109 (1992) 97-111.
[8] L. Garnett, Foliations, the ergodic theorem and Brownian motion, J. Funct. Anal. 51 (1983) 285-311.
[9] E. Ghys \& P. De la Harpe, Sur les groupes hyperboliques d'aprés Mikhael Gromov, Birkhäuser, Boston 1990.
[10] U. Hamenstädt, An explicit description of the harmonic measure, Math. Z. 205 (1990) 287-299.
[11] _, Time-preserving conjugacies of geodesic flows, Ergodic Theory Dynamical Systems 12 (1992) 67-74.
[12] _, Harmonic measures for compact negatively curved manifolds, Preprint, 1995.
[13] _, A new description of the Bowen-Margulis measure, Ergodic Theory Dynamical Systems 9 (1989) 455-464.
[14] _, Cocycles, Hausdorff measures and cross ratios, to appear in Ergodic Theory Dynamical Systems.
[15] V. A. Kaimanovich, Brownian motion on foliations: Entropy, invariant measures, mixing, J. Funct. Anal. 22 (1989) 326-328.
[16] F. Ledrappier, Ergodic properties of Brownian motion on covers of compact negatively curved manifolds, Bol. Soc. Brasil. Mat. 19 (1988) 115-140.
[17] _, A renewal theorem for the distance in negative curvature, Proc. Sympos. Pure Math. 57 (1995) 351-360.
[18] , Ergodic properties of the stable foliations, Proceedings Güstrow 1990, Lecture Notes in Math. 1514 (1992) 131-145.
[19] _, A heat kernel characterization of asymptotic harmonicity, Proc. Amer. Math. Soc. 118 (1993) 1001-1004.
[20] G.A. Margulis, Certain measures associated with U-flows on compact manifolds, Functional Anal. Appl. 4 (1970) 55-67.
[21] D. Sullivan, Related aspects of positivity in Riemannian Geometry, J. Differential Geom. 25 (1987) 327-351.
[22] P. Walters, An introduction to ergodic theory, Graduate Texts in Math. Vol. 79, New York, Springer, 1982.

Universität Bonn

