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ON THE MOD k INDEX THEOREM OF FREED
AND MELROSE

WEIPING ZHANG

The purpose of this short note is to present an alternative approach
to a formula of Preed-Melrose [6, Corollary 5.4], which expresses the
topological index of vector bundles over Z/fc-manifolds through geo-
metric data.

Recall that Freed and Melrose proved their formula by first estab-
lishing a general index theorem for Z/fc-manifolds and then making an
application of the Atiyah-Patodi-Singer index theorem for manifolds
with boundary [2].

Our approach is based on a result established jointly by Bismut and
the author in [4] concerning the behaviour of the //-invariants under real
embeddings. By such approach the use of the Atiyah-Patodi-Singer in-
dex theorem mentioned above is avoided. Prom our argument, it turns
out immediately that for certain special dimensions, one can refine the
Z/k index formula to a 2Z/2k formula. Furthermore, our method also
suggests a promised new approach to the Atiyah-Patodi-Singer index
theorem itself.

This paper is organized as follows. In Section 1, we recall the ba-
sic notation and facts about Z/fc-manifolds. In Section 2, we give
our approach to the Freed-Melrose formula in which we are interested.
Section 3 containes a 2Z/2k refinement for dimension 8A; + 4. In the
final Section 4, we discuss the Atiyah-Patodi-Singer index theorem for
manifolds with boundary [2] from the point of view of our approach.

1. The topological index for Zjk-manifolds

Z/A -manifolds were introduced by Sullivan in his studies of geometric
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topology. We recall the basic definitions for completeness (cf. Freed [5]
and Freed-Melrose [6]).

Definition 1.1. A compact Z/k-manifold is a compact manifold
X with boundary dX, which has a decomposition dX = \J^=1(dX)i
into k disjoint manifolds and k diffeomorphism π̂  : (dX)i -+ Y to a
closed manifold Y.

Let π : dX -> Y be the induced map. We use (X, Y, π) to denote
this Z/fc-manifold.

Convention 1.2. In what follows, we will call a (covariant) object
a (e.g. vector bundles, metrics, connections, etc.) of X a Z/k object
if there will be a corresponding object β of Y such that a\dX= π*β.

For simplicity, we make the assumption that X is spin and of even
dimension. Then Y is an odd dimensional manifold carrying an induced
spin structure.

Let {X1, Y;, π') be another spin Z/A -manifold. We call an embedding
%x : X —> X' a Z/Λ -embedding if there is an embedding %γ : Y —> Y1

such that

(1.1) π'ix \dX= iγπ.

Let K(X, Y, π) be the ΛT-group of (X, Y, π) generated by Z/k com-

plex vector bundles over (X,Y,π). Denote by K(X, Y, π) the corre-

sponding reduced ίf-group. The classical construction of direct images

in K-theoτy also works for if(X,Y,π) (cf. [5], [6]). In particular, if

E e K(X,Y,π) and i : (X,Y,π) -> (X',Y',π') is an embedding be-

tween even dimensional compact spin Z/A -manifolds, then the direct

image %XE lies in K{X\ Y',π')

Example 1.2. Let n be a positive integer. Let Sn*k be the Z/k-

manifold obtained by removing k open balls Dn from the n-sphere. The

identification map, which is obviously defined, will be denoted by πn^k.

Lemma 1.3 (cf. Freed-Melrose [6]). One has

(1.2)

Now let E be a Z/k complex vector bundle over (X, Y, π), and let
i : (X, Y, π) <-* (5n ' f c, S""1, πn | fc) be a Z/fc embedding with n even. The
existence of such an embedding is clear.
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Definition 1.4. (cf. Freed [5] and Preed-Melrose [6]). The Z/k
topological index of E is an element in Z/k given by

(1.3) mά{k){E) = [%XE\ e Z/k = K(Sn>k,Sn-\πn,k).

Standard techniques in If-theory can be adapted here to show that
ind(fc)(i£) does not depend on the embedding i. Furthermore, the fol-
lowing Riemann-Roch property still holds.

Proposition 1.5. Let E be a Z/k complex vector bundle over
(X,r,π). Let ix : ( X , l » <-+ (X',Y',π') be a Z/k embedding be-
tween even dimensional compact spin Z/k manifolds. Then, one has

(1.4) i n d ( j b ) ( £ ; ) = ind(fc) (**.£).

2. The Freed-Melrose formula for the Z/k index

Let (X, y, π) be as in Section 1 an even dimensional compact spin
Z/A -manifold.

Let gτγ be a metric on TY. Let gτx be a Z/k metric on TX such
that gτx is a product metric near dX and that

(2.1) gτx |τ(ax)= **9TY-

Let V τ x (resp. V τ y ) be the Levi-Civita connection of gτx (resp. gτγ)
Let F be a Z/k complex vector bundle over Y. Let gF be a metric

on F and let VF be a connection on F preserving gF.
Let Ebe a, Z/k vector bundle over (X, Y, π) such that E \dX= π*F.

Let gE be a metric on E such that it is a product metric near dX and
that gE \dx= π*gF. Let VE be a Z/k connection on E preserving gE

such that V^ \ex= τr*VF and that V^ is a product connection near
ΘX.

Let DYF be the Dirac operator coupled with F onY.
If D is a self-adjoint Dirac operator, denote by η(D) the reduced

η-invariant introduced by Atiyah-Patodi-Singer [2].
We will use the same notation as in Bismut-Zhang [4] to express the

characteristic forms.
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Theorem 2.1. (Preed-Melrose [6, Corollary 5.4]). The following

identity holds,

mά{k){E) = fχ Ά{TX, Vτx) ch(£,
(mod A;).

Remark 2.2. The integrality of the right-hand side of (2.2) is

non-trivial. It can be seen as a consequence of the index theorem of

Atiyah-Patodi-Singer [2] for manifolds with boundary.

In what follows, we will give a proof of Theorem 2.1 directly, without

refering to the Atiyah-Patodi-Singer index theorem.

Proof of Theorem 2.1. Let ix : (X,Y,π) ^ (Sn>k,S71"1,πn|fc) be a

Z/k embedding with n even. Note iγ : Y <-> Sn~ι the corresponding

embedding of Y in S71'1.

Let πx : Nx -» X (resp. πγ : Nγ -> Y) be the normal bundle to X

(resp. Y) in S '̂* (resp. S"1"1). Then one has

(2.3) π*Nγ = Nx \dx .

Let £+,£_ be two Z/k complex vector bundles of a same dimension
over (Sn'*, Sn~\ πn,fc) such that ξ+ - ξ_ E UΓ(Sn'*, 5 n - χ , πΠ|fc) is a rep-
resentative of i\E. Let μ+,μ_ be two complex vector bundlesjDver Y
satisfying that ξ± \dS^= K^±- τ h e n by (2.3), μ+ - μ. G X ^ " 1 )
is a representative of i\F.

In view of Bismut-Zhang [4, Remark 1.1], we can and will assume
that the following analogue of [4, 1.10], to which we also refer for
relevant notation, holds, after constructing suitable Z/k metrics and
connections on (TSn^k,TSn~1) and ξ = ξ+ Θ £_,μ = μ+ Θ μ_ and
a Z/k self-adjoint element Vx G End(£) with corresponding element
Vγ e End(μ),

(2.4)

K(F"** ®EU*FNχ*®EN**{Z)), on

(2.4')
N F N γ * ® F N ) , on Y,
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Furthermore, Vχ,Vγ are invertible on Sn'k\X1S
n~1\Y respectively.

Also, we can and will impose the product condition near dSn*k and
dX for all objects, and the condition that the embedding (X, Y) t->
(Sn'k,Sn~1) is totally geodesic.

Now let 7 s " ' , 7 5 n - 1 be the Chern-Simons currents on Sn'k, 5 n ~ 1 con-
structed in [3] and [4], corresponding to (2.4), (2.4') respectively. Recall
that they satisfy the following transgression formulas,

(2.5') dΊ

sn~λ =ch(/i, V ) - A-1(Nγ,V
Nγ)ch(F,VF)δγ,

where VNχ (resp. VNγ) is the orthogonal projection of VT5n> \χ (resp.

V T 5 n l \γ) on Nx (resp. Nγ).

Furthermore one has

(2-6) Ί!r'h\as**=<jtΊ
s'~1-

Prom (2.5), (2.6), one deduces that

A(TSn'k,Vτsn")ch(ξ,Vξ) - f A(TX,Vτx)ch(E,VB)
Jx

(2.7)
f - n-1 n-1

/Cn_i

On the other hand, use of [4, Theorem 2.2] yields

.-ι>μ) = η(Dγ,F) + f A(TSn-\Vτsn~1)'ysn-1,

(modZ).

By (2.7), (2.8), we get

ί A{TSn*, Vτsn>fc) ch(^, Vξ) - kή{DSn-i μ)
(2.9) J s n k p

= / A(TX, Vτx) ch{E, VE) - kή(DYF) (modit).
Jx

Now combining (2.9) with Proposition 1.5, we can reduce the proof of
Theorem 2.1 to the case of the Z/k manifold (5 fn'A:,S fn-1,πn,A;). This,
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in tern, by using (2.9) again for the pair (X,Y,π) = (S2>k,S1,π27k),
and by the Z/k Thorn isomorphism theorem, which can be proved by
adapting directly the usual proof of Thorn isomorphism in ordinary
ίf-theory, can be reduced to the case of (S2ik

yS
1,π2,k)> The proof of

Theorem 2.1 can then be completed by the easy calculations already
worked out in [5, 1.14]. q.e.d.

Remark 2.3. Although our proof is written out for spin manifolds,
the same strategy applies to spinc-manifolds as well. We leave this to
the interested reader.

Remark 2.4. There is also a proof of (2.2) by N. Higson [7], using
the If-theory of C*-algebras and also the Atiyah-Patodi-Singer index
theorem for manifolds with boundary [2].

3. A mod 2 refinement for real vector bundles

The purpose of this section is to establish a mod 2 refinement of
Theorem 2.1. In fact, by taking k = 0 in (2.2), one gets the well-known
integrality of the characteristic number < A(TX) ch(E), [X] >.

Now if dimX = 4 (mod 8), k = 0 and E is the complexification
of a real vector bundle, one has the mod 2 refinement due to Atiyah
and Hirzerbruch [1] that < A(TX)ch(E), [X] > is an even integer.
Our improvement of Theorem 2.1 paralleles this refinement of Atiyah-
Hirzerbruch in the k φ 0 case.

Thus from now on, we assume that (X, Y, π) is a compact spin Z/k-
manifolcUrf dimension 8m + 4.

Let K0{X, Y, π) be the corresponding reduced KO group of Z/k
real vector bundles over (X, Y, π).

Proposition Ά.l^Let n be a positive integer such that n = 4 (mod
8). Then one has KO(Sn*,Sn-\πn,k) = 2Z/2k(= Z/k).

Proof. This can^be proved in the same way as Lemma 1.3 from the
classical fact that KO(Sn) = 2Z. q.e.d.

According to Proposition 3.1, and using the fact that an 8/ dimen-
sional spinor space is the complexification of real vector space, we can
define the Z/k topological index of a Z/k real vector bundle E over
(X, Y, π) as an element in 2Z/2k:

(3.1) md(k){E)e2Z/2k.

On the other hand, let Ec be the compexification of E. Then we
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can define metrics, connections and Dirac operators as in Section 2 for

Ec.
Now we can state our improvement of Theorem 2.1 as follows.
Theorem 3.2. The following identity holds,

( 3 2 ) ind{k)(E) ΞΞ Jχ A(TX, Vτx) ch(Ec,

(mod2fc),

where FQ is the compexification of F, which is the real vector bundle
over Y corresponding to E.

Proof. The strategy of the proof of (3.2) is the same as our proof
of Theorem 2.1. All that one needs to note is the following two points:

(i) Since an 8m + 3 dimensional spinor space carries a quaternionic
structure, ή(DγtFc) is in fact mod 2 continuous. So as argued similarly
in [8], the formula here corresponding to (2.8) holds mod 2Z;

(ii) Instead of reducing the proof of (2.2) to (52'*,5rl,π2,fc)> here we
use the fact that an 8/ dimensional spinor space is the complexification
of a real space, to reduce (3.2) to (S4)k,S3,π^k) for which (3.2) can
also be verified easily.

We leave the details to the interested reader, q.e.d.
Remark 3.3. It seems that a similar modification of Preed-

Melrose's and/or Higson's argument can also lead to such a mod 2
refinement.

4. Comments in relations with the Atiyah-Patodi-Singer
index theorem

We assume k = 1 in this Section.
Recall that in this case, Theorem 2.1 is an immediate consequence of

the Atiyah-Patodi-Singer index theorem for manifolds with boundary

[2]
Now that we have given the direct proof of Theorem 2.1, we nat-

urally hope that the idea of our approach would also be helpful in
understanding the Atiyah-Patodi-Singer index theorem itself.

More precisely, in using the notation as in Section 1 and 2, let
Ds*Λtξ + TVx be the Dirac operator on 5n > 1 coupled with the coef-
ficient ξ satisfying the Atiyah-Patodi-Singer boundary condition [2].
Then one gets easily the following result.
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Theorem 4.1. Let T be a nonnegatiυe real number. Then the
following identity holds,

Proof. Formula (4.1) follows from the Atiyah-Patodi-Singer index
theorem [2] for Ds*,itξ+TVχ and the easy local index calculation that

YimTrs[exp(t(Ds^t + TVx)
2)(x,x)]dvol(x)

[ ' ' = {A{TSn>\ V T 5 n l

q.e.d.
Now set T = 0 in (4.1). One has,

(4.3) i

By (4.2), (4.3), we get

wdiDs-.it + TVX) +η(DSn-ι,μ + TVY)

Clearly, the left-hand side of (4.4) does not depend on Γ G [0, +oo).
Recall that the behaviour of 7/(D5«-i)μ + TVy) as T tends to oo has

been studied in Bismut-Zhang [4]. This suggests that a new demon-
stration of the Atiyah-Patodi-Singer index theorem for Dirac operators
could be achieved if we could

i) prove (4.4) directly;

ii) study the behaviour of ind(Dsn,i,μ + TVX) as Γ is sufficiently
large.

We believe that such a strategy, which would yield a Zf-theoretic
proof of the Atiyah-Patodi-Singer index theorem [2], is promising and
would inevitably lead to better understandings of the role of Atiyah-
Patodi-Singer boundary conditions [2] appearing at so many places
in differential geometry and mathematical physics. (Note added in
proof: see X. Dai & W. Zhang, C. R. Acad. Sci. Paris, (1) 319 (1994)
1293-1297.)
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