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DEHN SURGERY ON ARBORESCENT KNOTS

YING-QING WU

1. Introduction

A knot K is called an arborescent knot if it can be obtained by
summing and gluing several rational tangles together; see [7] or below
for more detailed definitions. Recall that a 3-manifold is called a Haken
manifold if it is irreducible and contains an incompressible surface.
Following Hatcher [14] we say that a 3-manifold M is laminar if it
contains an essential lamination. The purpose of this paper is to study
Dehn surgeries on arborescent knots, and to see which of these surgered
manifolds axe laminar, Haken, or hyperbolic.

There has been some study on these problems for Montesinos knots.
Denote by K = K(pι/qι,... ,pn/qn) & Montesinos knot obtained by
gluing rational tangles corresponding to the rational numbers Pi/qi to-
gether in a cyclic way; see for example [24] for more details. To avoid
the trivial case, we always assume that \qι\ > 2. We call n the length of
K. Oertel [24] showed that if n < 3, then there are no closed essential
surfaces in the knot exterior E(K) = S3 — Int N(K), and if n > 4 and
|<7t| > 3, then there are incompressible surfaces which remain incom-
pressible after all nontrivial surgeries. Delman [4], [5] studied essential
laminations in E(K), the exterior of K, showing that for most Mon-
tesinos knots there are essential laminations in E(K) which remain
essential after all nontrivial surgeries. The result is particularly inter-
esting for those K with n < 3, because by the results of Oertel [24] and
Hatcher [13] most of these surgered manifolds are nonHaken manifolds.

For our purpose we divide arborescent knots into three types. Type I
knots are those Montesinos knots which have length at most 3. A knot
is of type II if it is of the form shown in Figure 1.1, where R{pi/qi) are
rational tangles with \qι\ > 2, and B is any 4-string braid from the left
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to the right such that the resulting link is a knot. In other words, a
knot is of type II if it is the union of two tangles, each of which is a
sum of a (l/2)-tangle and a rational tangle. All the other arborescent
knots are called type III knots. We will mainly study surgeries on type
II or III knots.

FIGURE 1.1

Theorem 2.4. Let K be an arborescent knot. If K is not a Mon-
tesinos knot of length at most 3, then K(j) is laminar for all non-trivial
slopes 7.

Remark. The following knots in the knot table [25] satisfy the
hypothesis of Theorem 2.4: 8i6, 8 i 7, 929, 932, 933, 938, 1079 - 1097, and

10i48 - IO154.

Corollary 2.5. All arborescent knots K have property P, i.e,
τri(if (7)) φ 1 for all nontrivial 7.

Corollary 2.6. The cabling conjecture is true for arborescent knots,
that is, if K is a nontorus arborescent knot, then K(j) is irreducible
for all 7.

Remark. The property P conjecture says that all nontrivial knots
have property P. Modulo the Poincare conjecture, this would follow
from the Gordon-Luecke theorem that knots are determined by their
complements [11]. Other classes of knots for which the conjecture has
been proved include satellite knots [8], and symmetric knots [3]. Re-
cently Delman and Roberts proved it for alternating knots.

The cabling conjecture says that if K is not a cable knot or torus
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knot, then all surgeries on K produce irreducible manifolds. It has been
proved for satellite knots [26], alternating knots [22], strongly invertible
knots [6], and those knots with bridge number at most 4 [12].

In most cases, a stronger result than Theorem 2.4 holds.
Theorem 3.6. // K is a type III arborescent knot, then K(η) is

a hyperbolic Haken manifold for all nontriυial 7. In particular, this is
true for all Montesinos knots K = K(p1/q1,... ,pn/qn) with <fc > 2 and
n > 4 .

Theorem 4.4. // K is a type II arborescent knot, then K(j) is a
hyperbolic Haken manifold for all non-integral slopes 7.

Theorem 4.4 is not true for integral surgeries on type II knots. There
are infinitely many isotopy classes of connected, closed, incompressible
surfaces in any type II knot complement, but none of them can survive
under any integral surgery.

Theorem 4.8. If K is a type II arborescent knot, then all closed in-
compressible surfaces in E(K) are compressible in K(j) for all integral
slopes 7.

Remark. Theorem 4.8 was proved by Lopez [20] for a subclass
of type II knots. The proof there is not complete, as the author does
not seem to have noticed that there are infinitely many incompressible
surfaces in the knot complement.

Combining Theorem 4.8 with a theorem of Hatcher [13], we see that
all but finitely many integral surgeries on a type II knot produce non
Haken laminar manifolds.

We will use tangles to prove the above theorems. Theorem 2.4 follows
from a more general result: If K is the union of two nonsplit tangles,
then either K is some (2, q) cable of a composite knot, or E(K) has es-
sential laminations which remain essential after all nontrivial surgeries.
Note that in the first case an incompressible torus in E(K) remains
incompressible after all nontrivial surgeries, but the surgery along the
cabling slope produces a reducible manifold, so it is not laminar. But
clearly this is the only "bad" surgery besides the trivial one. Theo-
rem 3.6 is a consequence of Theorem 3.3, which states that if K is the
union of two nontrivial atoroidal tangles, and at least one of the tangles
is 5-irreducible, then all surgeries on K are hyperbolic and Haken.

The purpose of the remaining part of this section is to give some def-
initions and conventions. We refer the reader to [17] for basic concepts
about 3-manifolds.
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If X is a subset of a 3-manifold M, we use N(X) and \X\ to de-
note a regular neighborhood of X and the number of components in
X respectively. Let if be a knot in M. A slope 7 is an isotopy class
of simple closed curves on dN(K). A slope 7 is nontriυial if it is not
the meridional slope of K. It is called an integral slope if it inter-
sects the meridional slope of K just once. We use (M, K 7) to de-
note the manifold obtained from M by surgery on K along 7, that is,
(M, K\ 7) = (M - Int N(K)) U (S1 x D2), where 7 bounds a disk in the
solid torus S1 x D2. When M = 5 3, the surgered manifold (M, if; 7)
is simply denoted by if (7).

We define a tangle to be a pair (5,T), where 5 is a 3-ball, and
T = ίi U t2 is a pair of arcs, called strings, properly embedded in B.
When there is no confusion we also call T a tangle. T is called a trivial
tangle if it is properly isotopic to a pair of arcs on dB. Denote by
E(T) the tangle space B - IntiV(Γ). We say that Γ is d-reducible if
E(T) has compressible boundary, otherwise it is d-irreducible. Recall
that a closed or properly embedded surface in a 3-manifold M is called
an essential surface if it is incompressible, d-incompressible, and not
parallel to a surface on dM. A 3-manifold M is atoroidal if it contains
no essential tori. A tangle T is said to be atoroidal if E(T) is atoroidal.

A marked tangle is a triple (5,T, Δ), where (J5,T) is a tangle, and
Δ is a disk on dB containing two endpoints of T. A marked tangle
is called a rational tangle if its underlying tangle (5,T) is trivial. We
assign a rational number or 00 to the tangle as follows. Suppose the
string £1 of T is rel dti isotopic (in B — ί2) to an arc a on dB. Let
F be a torus whose double branch covers dB with the branch set dT.
Let m b e a component of the lifting of 9Δ, and let / be a curve on F
intersecting m once. Orient m, / so that the intersection number of m
with / is +1 with respect to the orientation of F induced from a fixed
orientation of dB. Then the lifting of a represents some pi + qm in
Hχ(F). We say that (B,T,A) is ap/g rational tangle, and use R(p/q)
to denote it. Because of the ambiguity of the choice of /, the number
p/q is defined mod Z. Thus R(r) = R(r') if and only if r = r' mod Z.
The tangles in Figure 1.2 are the O-tangle, oo-tangle and (l/5)-tangle,
respectively.
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One can check that if a tangle is a (p, q) rational tangle in the usual
sense (see e.g. [2] or [16]), and we choose the left-hand side disk as the
disk Δ, then it is an R(p/q) according to our definition.

T

FIGURE 1.2

Given two tangles (i?i,Tί) and (J32,T2), we can choose a disk Δ^ on
i to form marked tangles (i?i,Ti,Δi), and then glue the two disks

Δj together to form a new tangle (B,T). We say that (B,T) is the
sumof (JBi,Ti,Δi) and (5 2,T 2,Δ 2), and write (5,T) = (BUTUA1) +
(B2,T2, Δ2) or simply T = Tι+T2. This process depends on the choice
of Δi and the gluing map. When neither of (Bi,Ti,Di) is R(0) or
Λ(oo), we say that the sum is a nontrivial sum. A tangle is called
an algebraic tangle if it is obtained by nontrivially summing rational
tangles together in various ways. Thus a sum of algebraic tangles is still
an algebraic tangle. Define the length L(T) of an algebraic tangle T as
follows. L(T) = 1 if T is a rational tangle. In general, if T = Tx + T2

is a nontrivial sum, then L(T) = L(Tχ) + L(T2). It can be shown that
the length of an algebraic tangle is well defined.

Given two tangles (2?1?Ti) and (J32,T2), we may glue the boundaries
of the Bi together to get a knot or link K in S3. In this case K is
called a union of Tx and Γ2, and we write K = TΊ U T2. Again, K
depends on the gluing map dBx ->- dB2. Prom Figure 1.1 one can see
that an arborescent knot K is of type II if and only if it is a union of
two tangles Tί and Γ2, and each T{ is a sum -R(l/2) + R(pi/qi).

A knot K is called an arborescent knot if it is the union of two alge-
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braic tangles. This is equivalent to the definition given in [7]. Note that
Montesinos knots [23], which are also called star knots [24], are a special
kind of arborescent knots. A Montesinos knot K(pι/q1,... ,pn/Qn) is
obtained by gluing n rational tangles with associated rational numbers
Pi/qii... ,Pn/qn together in a cyclic way, where qι > 2. We call n the
length of K.

2. Essential laminations after surgery

A tangle (B,T) is a split tangle if there is a disk in B separating the
two strings. (B,T) is called a parallel tangle if T is a pair of parallel
knotted arcs. Suppose a knot K in S3 is a union of two nonsplit tangles
Ti and T2. In this section we will show that in most cases there are
essential laminations in K(η). More explicitly, if K is not a (2,#)
cable of a composite knot, then all nontrivial surgeries on K produce
laminar manifolds. See [9] for definitions and properties of essential
laminations.

We first consider the case that one of the Ti is toroidal.
Lemma 2.1. Suppose K = Tλ UT2, where T{ are non-split tangles.

If Tx is toroidal, then one of the following holds.
(a) Both Ti are parallel tangles, so K is some (2, q) cable of a com-

posite knot;
(b) K(η) is a Haken manifold for all 7 φ 00.
Proof. As before, we use E(Ti) to denote the tangle space B3 —

Int N(Ti). Let P be the punctured sphere E(TX) Π E(T2) in the knot
exterior E{K) = S3 - Int N(K). Let F be an essential torus in £(Ti).
Since the Ti are nonsplit, P is incompressible in E(K), so F is also
incompressible in E(K). Let V be the (knotted) solid torus in S3

bounded by F. Then K is a knot in F, and P is an incompressible
surface in V — Int N(K). One can show that this implies that K is not a
closed braid in V. By a theorem of Gabai [8], F remains incompressible
after all nontrivial surgeries on K. Hence (b) follows unless (V, K; 7) is
reducible. If (V, K\ 7) is reducible, by a theorem of Scharlemann [26], K
is some (p, q) cable of a knot K' in V. Let V be a regular neighborhood
of K' containing K. Isotope P to minimize its intersection with dV.
Since if is a closed braid in F ; , P cannot lie in V, so k = \P Π
dV'\ > 2. Each component of PΓ\V intersects dN(K) just p times, so
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\PΠdN(K)\ = kp. As P is a four-punctured sphere, we have k=p = 2.
It is now easy to see that conclusion (a) holds.

Lemma 2.2. Suppose (£?,T) is a nontrivial atoroidal tangle with
tχ,t2 as the strings. Let rrii be a meridian of the string U on dE(T).
Then at least one of the dE(T) — rrij (j = 1,2) is incompressible.

Proof If dE(T) is incompressible, then both dE(T) - mά are
incompressible. So assume dE(T) is compressible. Cutting along a
compressing disk JD, we get a manifold with one or two tori as boundary
depending on whether D is separating. Since T is assumed atoroidal
and E(T) is irreducible, each of the tori bounds a solid torus. Therefore,
E(T) is a handlebody of genus two.

Suppose dE(T) — mi is compressible. After cutting along a com-
pressing disk, we get one or two solid tori, so mi lies on the boundary
of a solid torus V. We claim that rrii is a primitive curve of dV, i.e, it
intersects a meridian disk of V just once. For if mi were not primitive,
by attaching a 2-handle along mi we would get a manifold W with
dW = S2 and πxW Φ 1. But attaching a 2-handle along rri\ is the
same as to refill N(tι) back into F, so W would be a summand of the
3-ball £?, which is absurd.

Thus, if both dE(T) — rriι and dE(T) — m2 are compressible, then rriχ
and m2 are primitive curves on the boundary of the handlebody E(T).
Moreover, when attaching 2-handles to both mi and ra2, we get the
3-ball B. Prom Lemma 2.3.2 of [3] or Theorem 1 of [10] it now follows
that the set rri\ U ra2 is standard, in the sense that there is a disk D
cutting E(T) into two solid tori, each containing an raf as a primitive
curve. But this implies that T is a trivial tangle, contradicting the
assumption of the lemma.

Theorem 2.3. Let K C S3 be the union of two nonsplit tangles Ti
and T2. Suppose that at least one of the Ti is not a parallel tangle. Then
there is an essential lamination C in E(K) which remains essential
after all nontrivial surgeries on K.

Proof. If one of the tangles Ti is toroidal, the result follows from
Lemma 2.1 because a Haken manifold is laminar. So we assume that
both Ti are atoroidal. Let ti,t 2 be the strings of 2\. Let Ui be the
annulus dN{U) Π dE(Tx). Similarly, let Vi be the annulus dNfa) Π
dE(T2), where s1 ?s2 are the strings of T2. By Lemma 2.2, one of
the dE(Tι) - Uj (resp. dE(T2) -Vό) is incompressible. Without loss
of generality we may assume that dE(Tλ) - Uλ and dE(T2) - Vλ are
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incompressible.
The proof of Theorem 2.3 is divided into four steps. In Step 1 we

construct a branched surface B in E(K). Step 2 shows that it fully
carries a lamination. We then prove in Step 3 that B is essential in
E(K). Finally in Step 4 it will be shown that B remains essential after
all nontrivial surgeries on K. This will complete the proof of Theorem
2.3 because by [9] any lamination fully carried by an essential branched
surface is essential.

Step 1. Construction of essential branched surfaces.

Figure 2.1 indicates a part of N(K) and the part of the surface P
in a neighborhood of N(K). The surface P cuts E(K) into E(TX) and
E(T2), and cuts the torus dN(K) into the four annuli C/Ί, Vi, l/2,1^, as
shown in Figure 2.1.

FIGURE 2.1

We take the branched surface B to be the same as P outside of some
neighborhood of N(K). Inside of this neighborhood B is as shown
in Figure 2.2. It can be constructed as follows. Take the union of
P with Uι U Vι U C/2 There are two branch curves cx and c2, where
d = Ό\ Π Vι Π P, and c2 = V\ Π U2 Π P. Smooth this branched surface
so that at cλ the cusp is in the corner between P and Uι, and the cusp
at c2 is in the corner between P and V\. We then push the resulting
branched surface
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into the interior of E(K) to obtain the required branched surface B.

Ύl ΛΊ N(K)

FIGURE 2.2

Step 2. B fully carries a lamination.
Cutting the branched surface B along the branch curves cλ and c2,

we get a surface F which is homeomorphic to the disjoint union of P
and Vi. We can construct a regular neighborhood N(B) as follows. Let
F x / be a product neighborhood of F. The three branches at cx give
rise to three boundary components of F, which in turn determine three
annulus components HUH2, H3 of dF x /. Write Hi as S1 x /,. Let H3

be the component on dVλ x /. Choose an injective map ψ : h U/2 -ϊ h
Then using id xφ : Hx\JH2 -> H3 we can glue the two annuli Hλ\jH2 to
# 3 . Gluing the three annuli near c2 together in a similar way, we obtain
a manifold homeomorphic to a regular neighborhood of B. Clearly, the
/-bundle structure of F x / gives rise to the /-bundle structure of N(B).

Now let C! be the set F x K C F x /, where if is a Cantor set in /. On
the annulus Hu C is a product S1 xKu where K{ is a Cantor set in /*.
By the property of Cantor set, we can choose the map φ : ϊ\ U /2 —>• h
in such a way that φ(Kλ I) K2) = K3. Choose the gluing map near c2

in a similar way. Then the quotient of £ in N(B) is a lamination £
which is transverse to the /-bundle structure, and intersects all /-fibers.
Hence £ is a lamination fully carried by the branched surface B.

Step 3. B is essential in E(K).
Recall the construction of B. Outside of a neighborhood of N(K)

B is the same as P, and inside of the neighborhood B is as shown in
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Figure 2.2. There is a torus T parallel to dN(K), containing the part
of B in Figure 2.2, which is parallel to dN(K). The surface B U T is
topologically the same as the surface P U dN(K) shown in Figure 2.1.
Let V2 be the part of T which does not lie on B. Let X be the manifold
obtained by cutting E(K) along the branched surface B. Then topo-
logically X is obtained by first cutting E(K) along BUT, and then
gluing back along the annulus V2. In the first step we cut E(K) into
three pieces. The part inside of T is a product T x I. The other two
components are homeomorphic to E(Tι) and E(T2), and will still be
denoted by E(Tχ) and E(T2) respectively. In the second step we glue
T x / to E(T2) along the annulus V2'. Note that V2' is identified with V2

on dE(T2), and is a meridional annulus on T x / (i.e, an essential curve
of V2 is isotopic to a meridian of K.) Thus, X has two components:
£(Tχ), and Y = E{T2) Uy2 (T x /).

Let Fh and Fυ be the horizontal and vertical surfaces on dX respec-
tively; see [9] for definitions. Since B has two branch loci cλ and c2,
Fυ has two components. One can see from Figure 2.2 that the com-
ponent corresponding to cλ lies on dE(Tλ) and is isotopic to U\, while
the one corresponding to c2 lies on E(T2) C Y and is isotopic to V\.
By definition the horizontal surface is Fh = dN(B) — Fv. Therefore
Fh Π E(TX) = dE(Tτ) - Uu and FhΓ)Y is the component of dY - Vλ

other than dN(K).
According to [9], B is essential if the following conditions hold. (We

split condition (ii) of [9] into (ii) and (ii;) below.)
(i) B has no disk of contact;

(ii) Fh is incompressible, and has no sphere component;

(ii') Fh has no monogons;

(iii) X is irreducible;

(iv) B contains no Reeb branched surface;

(v) B fully carries a lamination.
We remark that condition (ii') can be replaced by
(ii") No component X' of X is a solid torus with FυΠXf a longitudinal

annulus.
One is referred to the proposition in section 2 of [1] for a proof of

this fact, (ii") is much easier than (ii') to check.
If B had a disk of contact, the central curve of some component of
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Fυ would bound a disk in E(K). In our case both components of Fv

are isotopic to a meridional annulus in E{K), so their central curves
are homotopically nontrivial. This proves (i).

Since E(Tι) is a tangle space, it is irreducible. Also, by our as-
sumption at the beginning of the section, dE(Tι) — Uλ is incompress-
ible. Therefore (ii) and (iii) are true for the component E(Tλ) of X.
To prove them for the component Y of X, we use the following well
known fact: If W is a 3-manifold, and S is an essential surface in W',
then W is irreducible and 3-irreducible provided that the manifold ob-
tained by cutting W along S is. Consider the (noncompact) manifold
Y — V\. Since Fh Π Y is a component of d(Y — Vί), conditions (ii)
and (iii) will follow if Y — Vί is irreducible and d-irreducible. Now
Y - Vί = {E(T2) - Vι) UV2 (T x /). One can easily show that V2 is
essential in Y — Vx. Since both E(T2) — Vλ and T x I are irreducible
and 5-irreducible, (ii) and (iii) are proved.

In our case, both components of X have some genus-two boundary
components, so they cannot be solid tori. This proves (ii").

Since no component of Fh is a disk, by Remark 1.3 of [9] (iv) is true.
(v) was proved in Step 2.
Step 4- B remains essential after surgery.
As before, we use K(*γ) to denote the manifold obtained from S3 by

Dehn surgery on K along the slope 7. Let X(j) (resp. Y(j)) be the
manifold obtained by Dehn filling on X (resp. Y) with slope 7. Thus
X(η) — K(j) — IntN(B). We want to show that B is essential as a
branched surface in K(η). Some of the conditions listed in Step 3 are
quite easy to check. Conditions (i) and (v) depend only on the branched
surface #, not on the manifold in which it is embedded, so they still
hold for B in If (7). (ii") is also obvious because each component of
X(j) still has a non torus boundary component, (iv) again follows
from Remark 1.3 of [9] and the fact that Fh has no disk components.
The component E(TX) of X is unchanged in ^(7), so (ii) and (iii) are
true for this component of ^(7). It remains to show that ^(7) is
irreducible, and F1 = FhΠ Yfa) is incompressible in Y(Ί). Note that
F' = (dY - Vί) - ΘN(K) = dY{Ί) - Vί.

Consider the trivial surgery Y(m), where m is the meridional slope
of K. Since Y = E(T2) Uy2 (T x I) and V2 is a meridional annulus on
T x /, a meridian disk of K extends to a compressing disk D' of F' in
Y(m). Since \D' Π K\ = 1, K cannot be a cable knot in Y(rή). By a
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theorem of Scharlemann [26], ^(7) is irreducible for all 7 φ m. There
is an annulus in Y with one boundary on F' and the other a meridian
m on dN(K), so by [28] the surface F' is incompressible in Y(j) if
Δ ( 7 , m ) > 2 .

It remains to show that F' is incompressible in y (7) if Δ(7, m) = 1.
Recall that Y = E(T2) Uy2 (T x /). We have y(7) = E(T2) UVa ((Γ x
/)(7)). Clearly, (Γ x /)(7) is a solid torus. Since the central curve of
V2 is isotopic to the meridian m of if, it intersects a meridian of the
new solid torus (T x J)(7) just once, so V2 is a longitudinal annulus on
(Γ x J)(7). Therefore gluing (T x I)(j) to E(T2) does not affect the
manifold. In other words, y(7) is homeomorphic to E(T2). Under this
homeomorphism, the surface F' = dY{y)—Vι is mapped to dE(T2)—V\.
By the assumption at the beginning of the section, dE(T2) — V\ is
incompressible in E(T2). Therefore, F' is incompressible in y(7).

This completes the proof of Theorem 2.3.
Theorem 2.4. Let K be an arborescent knot. If K is not a Mon-

tesinos knot of length at most 3, then K(j) is laminar for all non-trivial
slopes 7.

Proof We claim that if K is not a Montesinos knot of length at
most 3, then it is a union of two nontrivial algebraic tangles.

By definition K is the union of two algebraic tangles 2\ and T2. If 2\
is trivial, and T2 has length at most 2, then if is a Montesinos knot of
length at most 3. If T2 has length at least 3, then T2 can be written as
T + T", with 2 < L(T") < L(T2). Since Tx intersects V at two points,
we have K = (1\ + T') + T". If Tλ + V is still a trivial tangle, we can
proceed by induction, since L(T") < L(T2). This proves the claim.

Now suppose K = 7\ UT2 and both T{ are nontrivial. By Lemma 3.2
of [31], a sum of atoroidal tangles is still atoroidal. Thus all algebraic
tangles are atoroidal. In particular, they cannot be parallel tangles.
Since a nontrivial split tangle is toroidal, Tί must be nonsplit, so the
result follows from Theorem 2.3.

Corollary 2.5. All arborescent knots K have property P, i.e,
7Γi(ϋf (7)) Φ 1 for all nontrivial 7.

Proof. If K is of type I, then it is a Montesinos knot, which admits
an involution. Hence K is a, symmetric knot. By Corollary 7 of [3], K
has property P. If K is of type II or III, K(j) is laminar by Theorem 2.4,
so it has infinite fundamental group [9].

Corollary 2.6. The cabling conjecture is true for arborescent knots.
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that is, if K is a non-torus arborescent knot, then K(j) is irreducible
for all 7.

Proof If K is of type II or III, this follows from Theorem 2.3 be-
cause a laminar manifold is irreducible. So suppose K = K^, a , &•).
Delman [5] shows that if all ςrf are odd, then K(η) is laminar for all
nontrivial 7. If one of the g< is even, K is strongly invertible, in which
case the result has been proved by Eudave-Munoz [6].

3. Surgery on type III knots

Suppose (B,Γ) is a tangle. We use Θ0E(T) and dλE(T) to denote
the punctured sphere dB Π E(T) and the two annuli dN(T) Π dE(T)
respectively. Thus dE(T) = d0E(T) U dλE{T).

Lemma 3.1. Let {B,T) be an atoroidal tangle. Let A be an incom-
pressible annulus in E(T) so that dA C dE(T) can be isotoped to be
disjoint from d\E(T). Then A is parallel to an annulus on dE(T).

Proof After an isotopy if necessary we may assume that dA is
on d0E(T). For homological reasons, dA bounds either an annulus on
d0E(T) or an annulus on dE(T) containing a component Ui of dχE(T).
In the second case, after isotoping a component of dA through U^ we
get an annulus with boundary a pair of parallel curves on d0E(T).
Therefore, we may assume that this is already true for A. Let A' be
the annulus on d0E(T) bounded by dA.

Since E(T) is atoroidal, the torus AuA1 bounds a solid torus V. Since
A is incompressible in E(T), it cannot be meridional on V. Note that
a component of dA bounds a disk D on dB, so if A is not longitudinal
on V, then V U N(D) would be a punctured lens space in the 3-ball
5, which is absurd. Therefore, A is longitudinal, and is parallel to the
annulus A' on dE(T). q.e.d.

Note that the annulus A in the lemma is not assumed essential. The
condition that dA can be isotoped into d0E(T) cannot be omitted,
otherwise there would be many counter examples.

A disk D in E(T) is called a monogon if dD Π diE(T) is an essential
arc for i = 0,1. It is called a bigon if dD Π diE(T) consists of two
essential arcs.

Lemma 3.2. // T is a nontrivial atoroidal tangle, then d0E(T) is
incompressible, and the tangle space E(T) has no monogons or bigons.
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Proof. A compressing disk of d0E(T) cuts B into two 3-balls B1,B2,
each Bi containing a string ti of T. Since E(T) is atoroidal, U is a trivial
arc in B^ so T is a trivial tangle.

A monogon of E(T) can be extended to a disk D in B with 51? =
U Uα, where α C 95. The frontier of iV(Z}) is then a compressing disk
ofdoE(T).

Now consider a bigon D. If the two components of dD Π dιE(T) are
on different components of dιE(T), then D extends to a band Df in i?
connecting the two strings. The frontier of N(D') is an incompressible
annulus in E(T) with boundary on d0E(T), so by Lemma 3.1 it is d-
parallel. Since Γ can be isotoped into dN(D'), T is trivial. If the two
components of dD Π dχE(T) are on the same component of dλE(T),
then D extends to an annulus A in B containing a string tλ of T.
Since dD Π d0E(T) are essential arcs, the other string of T is in the
ball component of B — A. Pushing A off this component, we get an
incompressible annulus in E(T). By Lemma 3.1 this annulus is d-
parallel, therefore tλ is also d-parallel, which implies that d0E(T) is
compressible, so T is trivial by the above.

Theorem 3.3. Suppose (S3,K) is a union of nontrivial atoroidal
tangles (J5l5Tί) and (B2,T2). IfTγ is d-irreducible, then all nontrivial
surgeries on K produce hyperbolic Haken manifolds.

Proof. Decompose S3 as the union of the tangle space E(Tχ) and
the handlebody H = B2 U N(Tι). Then K is a knot in H intersecting
each meridian disk of N(TX) once. Denote by M the manifold H —
IntN(K). Let D\,D2 be the two disks in H which are meridian disks
of Γi, so that H - Int N(DX U D2) = B2. Let U{ be the annulus M Π
Di. Clearly, Ui is essential in M. So dH is compressible in M if and
only if after cutting along Uii the surface d0E(T) is compressible in
-B(T), which is the closure of M — Int N(Uι U U2). Hence by Lemma
3.2, dH is incompressible in M. By Menasco's result [21] it remains
incompressible after all nontrivial surgeries.

Let 7 be a nontrivial slope on dN(K). Clearly, both E(Tχ) and
H — Int N(K) are irreducible. Since K intersects a disk of H just
once, it cannot be a cabled knot in H, so by Scharlemann's theorem
[26] (H,K;Ί) is irreducible. Thus (S\K;-y) = E(TX) U (H,K;Ί) is a
Haken manifold. Moreover, the incompressible surface dH in (S3, K\ 7)
is separating, so (S3, K\ 7) is not a small Seifert fiber space, i.e, a Seifert
fiber space with orbifold a 2-sphere having at most 3 singular points.
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In the following we will show that (S3,K',j) is atoroidal. It will then
follow from Thurston's hyperbolization theorem [30] that (ί*3, K\ 7) is a
hyperbolic manifold. In general both E(Tχ) and (H, K\ 7) may contain
some essential annuli. What we will show below is that the boundaries
of these annuli will never match up to produce an essential torus.

Lemma 3.4. The manifold (i/, K\ 7) is atoroidal.
Proof. Let T be an essential torus in (if, if; 7), isotoped to have

least intersection with dN(K). Then P = T Π M is a punctured torus
such that dP is a set of curves on dN(K) parallel to 7. Since T is an
essential torus, such P is an essential surface in M. Isotop P so that it
has least intersection with Ui. By an innermost circle - outermost arc
argument one can show that P ΠUi has no trivial circles or 9-parallel
arcs. Since P has no intersection with the component of dA that lies on
dH, this implies that P ΠUi ιs a set of essential circles. In particular,
P = T, so T lies in M.

If T(Ί (C/i UC/2) = 0, T would be an essential torus in the tangle space
E(T2) = M — lntN(Uι U U2), contradicting the assumption that T2 is
atoroidal. So assume T Π E(T2) is a set of annuli. One can show that
an inessential component of T Π E(T2) is parallel to one of the annuli
in dN(T2). Thus if none of the annuli in T Π E(T2) is essential, then
T is isotopic to dN(K) in M, so it would not be an essential torus. If
some component of T Π E(T2) is an essential annulus, by Lemma 3.1
E(T2) would be toroidal, q.e.d.

Now consider (H,K;j). Let Mx = N(Dχ UD2UK), and let M2 =

H — Mi. It is clear that M2 is homeomorphic to the tangle space
and the homeomorphism can be chosen so that the surface F — M1ΠM2

is mapped to dχE(T2). Use d0Mi to denote the surface dM{ — IntF.
Lemma 3.5. An essential annulus A in {H,K\η) can be isotoped

to be disjoint from F.
Proof. We may assume that A has minimal intersection with F.

Then by an innermost circle outermost arc argument we may assume
that each of A Π F, A Π d0Mι and A Π d0M2 consists of essential circles
or essential arcs in F, d0Mx and 90M2, respectively. If A Π F consists
of essential circles, then A Π M2 is a union of essential annuli which
can be isotoped to be disjoint from dιE(T2), contradicting Lemma 3.1.
If AΓ\ F are essential arcs, then these arcs cut A into bigons, half of
which lie in M2 = F(T2), so by Lemma 3.2 T2 would be either trivial
or toroidal, contradicting the assumption of the theorem.
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We remark that in general (H,K;Ύ) may contain some essential
annuli, but the above lemma says that the annuli can be pushed off F.

Now suppose T is an essential torus in (S3,K;j). Since (S3, K η)
is Haken, we may isotop T so that ΓΠ (H, K\ 7) and TΠ E(Tλ) consist
of essential annuli. By Lemma 3.5 we can choose T to be disjoint
from the surface F. Note that dF = d(d\E(Tι)), so a component of
T Π E(Tι) can be isotoped off dχE(Tι). But this contradicts Lemma
3.1, completing the proof of Theorem 3.3.

Theorem 3.6. // K is a type III arborescent knot, then K(j) is
a hyperbolic Haken manifold for all nontriυial 7. In particular, this is
true for all Montesinos knots K = K(pι/qi,... ,pn/<Zn) with & > 2 and
n > 4 .

Proof By the proof of Theorem 2.4, if K is not of type I, then it is
a union of two nontrivial algebraic tangles 7\ and T2. By Lemmas 3.2
and 3.3 of [31], Tj is atoroidal, and it is 9-reducible if and only if it is
a sum of Λ(l/2) and R(pi/qi) with |^ | > 2. Therefore, if both T{ are
θ-reducible, then If is a type II knot. The first part of the theorem
now follows from Theorem 3.3. As for the second part, notice that if
there are two i's such that Pi/qi = 1/2, then K(p\/q\,... ,pn/9n) is a
link of at least two components. Therefore a type II knot cannot be a
Montesinos knot.

4. Surgery on type II knots

Let (S3,K) = (J5i,Γi) U (B2,T2) be a type II knot, where each
Ti is a sum of a (1/2) rational tangle and a (pi/qi) rational tangle, as
shown in Figure 2.1, where the 4-string braid determines the gluing map
dBλ -+ dB2. Let P be the planar surface dB{ Π E(Ti). It cuts E(K)
into the two tangle spaces E(Ti). As in Section 2, dP cuts the torus
dN(K) into four annuli UUU2, VUV2, where U{ = dN(ti)ndE(Tι), and
Vi = dN(si) Π dE(T2), U, Si being the strings of Tί and T2 respectively.
We choose the indices so that tx and Si are the unknotted strings in 7\
and T2. The following are some basic facts about the tangles T{ and
K.

Lemma 4.1. (a) Ti is a nontriυial atoroidal tangle;
(b) E(Ti) is a handlebody;
(c)dE{Tλ)-Uλ (resp. dE^-Vx) is incompressible, anddE(Tλ)-
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U2 (resp. dE(T2) — V2) is compressible;
(d) E{K) is atoroidal.
Proof. One of the strings of T{ has exterior the same as that of a

{pi/qi) 2-bridge knot in S3, so T{ is nontrivial. Since T{ is a nontrivial
sum of two atoroidal tangles, it is also atoroidal; see for example Lem-
ma 3.2 of [31].

As tι is a trivial string, E(tχ) = Bx — IntN(tι) is a solid torus. One
can untangle Tί by sliding t2 over ίl5 which means that the string t2

is isotopic to a trivial arc in the solid torus E(tλ). Hence E(TX) is a
handlebody of genus 2 (this is also proved in Lemma 3.3 of [31]), and
dE(Tx) - U2 is compressible. By Lemma 2.2, dE{Tx) - Ux is incom-
pressible.

Let S be an essential torus in E(K). Since the % are atoroidal, we
may assume that P cuts S into incompressible annuli A^ none of which
is parallel to an annulus on P. By Lemma 3.1 each A{ is parallel to Uj
or Vj. Hence S is parallel to dN(K). q.e.d.

There are 6 surfaces obtained by tubing P along dN(K). Two of
them are isotopic to dE(Tχ) and dE(T2), and are compressible. Now
take a union P U t/Ί, and push the Ό\ part into E{K); then take the
union of this surface with Vi U C/i U V2 and push it into E(K). We thus
obtain a surface, denoted by Fux. Similarly, we have FU2, FVl and Fγ2.
Two of these surfaces, FU2 and Fy2, are actually compressible in E(K).
We will see that Fuλ (similarly Fyx) remains incompressible after all
non-integral surgeries.

Let Vy, V2 be two longitudinal annuli on the boundary of a solid
torus W. Construct a manifold X = E(T2) U W by gluing V to V(.

Lemma 4.2. The manifold X is irreducible, d-irreducible, and
atoroidal. Any essential annulus in X is isotopic to V{.

Proof. Consider the surface S = Vi U V2 in X. Clearly, it is
incompressible and d-incompressible in the solid torus W. By Lemma
4.1 (a) and 3.2, it is also incompressible and ^-incompressible in E(T2).
Therefore, S is an essential surface in X. It is well known and easy
to prove by an innermost circle outermost arc argument, that if X is
reducible or 5-reducible, then after cutting along an essential surface,
either one of the components is reducible, or the surface F = dX—N(S)
is compressible in one of the components. Now as a tangle space, E(T2)
is irreducible. Since W is a solid torus, it is also irreducible. dX Π W
is a pair of longitudinal annuli, and dXΠE(T2) is the surface P, which
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is already known to be incompressible. Therefore, X is irreducible and
^-irreducible.

If X has an essential torus Q, by minimizing its intersection with 5,
we may assume that QΓ\E(T2) is a set of incompressible annuli. Let A
be a component of QΠE(T2). Since S is a pair of annuli, dA can be iso-
toped into P, so by Lemma 3.1, A is parallel to an annulus on dE(T2).
Thus we can isotope the torus Q to reduce |Q Π SΊ- Since both E(T2)
and W are atoroidal, this would eventually lead to a contradiction.

Now suppose Q is an essential annulus in X, isotoped so that |QίΊ«ί?|
is minimal. Then Q Π S is a set of essential arcs or circles in Q. If
they are arcs, a component of Q Π E(T2) would be a bigon of J5(T2),
contradicting Lemma 3.2. If Q Π S are circles, one can reduce \Q Π S\
by the same argument as above for an essential torus. So assume Q is
disjoint from S. If Q is in W, one can see that it is parallel to VJ. If Q
is in E(T2), by Lemma 3.1 it is parallel to an annulus Q' on dE(T2).
Since Q is essential in X, Q' must contain one of the VJ. Thus Q is
isotopic to Vi.

Consider a solid torus W. Let U[ be an annulus on dW running
at least twice along the longitude of W. Construct a manifold Y =
E{Tλ) ΌWby gluing Uλ to U[.

Lemma 4.3. The manifold Y is irreducible, d-irreducible, and
atoroidal There is no essential annulus in Y with at least one boundary
parallel to dU2.

Proof. The proof is essentially the same as that of Lemma 4.2.
When proving the 3-irreducibility of Y, use the fact that dE(Tι) — U\
is incompressible (Lemma 4.1). For the proof about the annulus, notice
that if Q is an essential annulus with one boundary parallel to dU2,
then a component of Q Π E(Tχ) can still be isotoped off U\ U C/2, so
the argument in the proof of Lemma 4.2 applies, and one would finally
conclude that Q is isotopic to U\. (It cannot be isotopic to U2 because
it then would not be essential in Y.) But since the curves dU2 are not
isotopic to dUi on dF, this is impossible.

Theorem 4.4. // K is a type II arborescent knot, then K(η) is a
hyperbolic Haken manifold for all non-integral slopes 7.

Proof. Let F = FVl be the surface constructed above by tubing
P with some annuli on dN(K). It cuts E(K) into two components.
Prom the construction we can see that the component Y1 containing
dN(K) is homeomorphic to E(Tλ) UVl (dN(K) x /) with Ux glued to
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a meridional annulus on dN(K) x /, and the other component X is
homeomorphic to E(T2) U (C/χ x 7), with Vλ U V2 glued to the two annuli
(dUi) x /. Thus X is the manifold constructed prior to Lemma 4.2.

Now attach a solid torus W to Y' along the slope 7. The resulting
manifold Y = Y' U W can be written as E(TX) U^ {{dN{K) x I) U W')
Let W be the solid torus (dN(K) x /) U WΛ Then Y = E{TX) UUx W.
Moreover, since 7 is a non-integral slope, U\ runs at least twice along
the longitude of W. Hence Y is a manifold as constructed prior to
Lemma 4.3.

The surgered manifold K(η) is the union of X and Y, with dX =
dY = F. Therefore, by Lemma 4.2 and Lemma 4.3, F is incompressible
in if (7), and K(j) is irreducible. So K(j) is a Haken manifold. Since
F is separating, if (7) is not a small Seifert fiber space.

It remains to show that K(η) is atoroidal. Assume Q is an essential
torus in K(j). Since both X and Y are atoroidal, Q Π X and Q Γ)Y
consist of essential annuli. By Lemma 4.2, all components of Q Π X
are parallel to V*. As each Vi has one boundary on U\ and the other
on E/2, it follows that at least one of the essential annuli in Q Π Y has
a boundary curve parallel to the curves dU2. But this is impossible by
Lemma 4.3. q.e.d.

Let a be a 1-manifold properly embedded in a 3-manifold M, and F a
properly embedded surface in M. By an isotopy of F in (M, α) we mean
an isotopy φ : Fxl -ϊ M oΐF in M such that φ((FΓ)a) xl) C a. A disk
J9 in M is called a peripheral compressing disk of F if DΠF = dD, D
intersects a just once, and on F there is no disk D', which intersects a
at most once such that dD = dD'. If such a disk exists, F is peripheral
compressible, otherwise it is peripheral incompressible. F is a-essential
if F — a is essential injlί — α, and F is peripheral incompressible.

Lemma 4.5. Let M —> M be a double cover with branch set a. Let
F be the lift of F. If F is a-essential, then F is incompressible and
d-incompressible in M.

Proof. If F is compressible, by the Z2-equivariant Dehn's Lemma
[19], there is a compressing disk D of F such that either η(D) = D, or
η(D) Π D = 0, where η is the covering transformation map. In the first
case the image D of D in M is a peripheral compressing disk, and in
the second case it is a compressing disk of F.

If F is d-compressible, consider the double 2M of M, i.e., take two
copies of M and glue their boundaries together by the identity map.
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The double 2F of F is compressible in 2M, so by the above 2F is
compressible in 2M, implying that F is compressible or d-compressible.

Lemma 4.6. Suppose {B,T) = R{l/2) + R(p/q), \q\ > 2. Let F
be a T-essential surface in B such that F is not a disk intersecting T
at most once or is a sphere intersecting T at most twice. Then the
following hold:

(a) The ends of each string U of T are in the same component of
dB - 3F.

(b) IfFc lntB,Jhen F is isotopic to dB in (B,T).
Proof (a) Let M be the double cover of B branched over T, and

let F be the lift of F. The conditions of the lemma guarantee that^F
is not a disk or sphere. By Lemma 4.5, F is an essential surface in M.

Let D be the gluing disk between R{l/2) and R(p/q). By our def-
inition the lift of the rational tangles axe solid tori, and the lift of D
is an annulus D representing rrii + 2lx and pm2 + qh in Hχ(dWi) with
respect to some meridian-longitude pairs {m^li). Thus M is a Seifert
fiber space with two singular fibers of type (1,2) and (p, q), and its orb-
ifold is a disk with 2 singular points. So D is the only vertical essential
annulus, and dM is the only closed incompressible surface in M.

CLAIM. Each component of dF intersects each component of dD an
even number of times.

By Theorem VI.34 of [18], F is either vertical (i.e., a union of fibers)
or horizontal (i.e., transverse to all fibers). If it is vertical, it is isotopic
to I), so the^claim is true. Now assume F is horizontal. Glue a solid
torus V to M to get a new manifold X, so that dF bounds meridians
of V. The Seifert fibration of M extends to a Seifert fibration of X
in a unique way. Furthermore, if s is the intersection number of a
component of dF with a component of dD, then the center of V is a
singular fiber of type (r, s) for some r relatively prime to 5, because
dD are fibers and dF are meridians of V. Now the union of F and
some meridians of V is a horizontal surface. It is well known that if
a Seifert fiber space has a horizontal surface, then its Euler number
is zero. By the formula on p.437 of [27] the Euler number of X is
(1/2) + (p/q) + (r/s) mod Z. Therefore, (r/s) = -(q + 2p)/(2q), mod
Z. Since q is odd (otherwise T would have a closed component), we
have s = 2q. This proves the claim.

Now consider a component β of dF on dB. Since F is peripheral
incompressible, there must be two points of dT on each component of
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dB — β. Let a be an arc in a component of dB — β connecting the two
points of dT in that component. The conclusion (a) of the lemma is true
if and only if da = dU for some string t{ of T. Let u be the intersection
number of a with dD. Since the two points on each component of
dB — dD belong to the same string of T, we see that da = dU for some
i if and only if u is even. Notice that β is the boundary of a regular
neighborhood of a on dB, so \β Π dD\ = 2|α Π dD\ = 2w.

Let /5f be the lift of /?. The 2u points in βΠdD lift to 4u points of
intersection βΠdD. Each of /3 and dD has two components. Therefore,
each component of β intersects each component of dD at u points. By
the above claim, u is even. We have just shown that this implies (a).

^b) The only closed incompressible surfaces in M are tori parallel to
dM. By calculating the Euler number of F, we see that F is either a
torus disjoint from T, or a 2-sphere intersecting T at four points. But
the first case cannot happen, since E(T) is atoroidal.

Let D be the disk between R(l/2) and R{p/q) as before. Since F is
peripheral incompressible, by an isotopy in (i?, T) we may assume that
FΠD consists of circles parallel to dD on D — T, and each component
of F — D is an annulus or a disk intersecting T twice. By Lemma 3.1,
each annuli is parallel to one on D. Thus after an isotopy in (5, Γ) we
may assume that F intersects D in a single circle. Let (B{, 7*), i = 1,2,
be the tangles R(l/2) and R(p/q). The disk FnBx cuts (BUTX) into
two tangles T" and T". Since a rational tangle cannot be a nontrivial
sum, one of T' and T" is trivial, so F Π Bλ is isotopic in (BuTχ) to
D or di?! — Int D. Similar arguments hold for F Π B2. If one of the
F Π Bi is isotopic to £), we can see that F — T would be compressible
in B — T, which is impossible because F is T-essential. Therefore, both
F Γ)Bi are isotopic to dBi — Int D in (B^ T )̂, and F is isotopic to dB

( , )

Lemma 4.7. Suppose (S3,K) = (BUTX) U CB2,T2) ώ α type II
arborescent knot, where (B^Ti) = R{l/2) + R(pi/qi), as in the defini-
tion. Let F be a K-essential connected surface in S3, and assume that
F is not a sphere intersecting K at most twice. Then F is isotopic in
(S3,K) to the sphere S = dB1Π dB2.

Proof. Isotop F to minimize | F Π 5|. Clearly, no component of
S — F is a disk disjoint from K. If D is a closed up component oίS — F
intersecting K just once, then by the peripheral incompressibility of F,
the circle dD bounds a disk D' on F intersecting K once. DΌD1 cuts S3
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into two 3-balls W ,̂ W2. Let Wι be the one with interior disjoint from
F. Let Ki = Wi Π K. If K2 is a trivial arc in W2, then F - Int N{K2)
is an incompressible surface in the solid torus W2 — Int N(K2). Thus
F — Int N(K2) is an annulus. But then F is a sphere intersecting K
twice, contradicting our assumption. Therefore K2 is knotted. Since
E(K) is atoroidal (Lemma 4.1(d)), K is not a composite knot, so K\
is a trivial arc in Wλ. We can then isotop F through W\ to reduce
\F Π S\. Hence F Π S is a set of parallel circles on 5, such that each
disk component of S — F contains two points of K.

Let Fi — F Π Bi. We want to show that F; is Tressential in B{.
Suppose D is a compressing disk of Fλ — Tλ in Bx — 2\. Since F
is incompressible, 3JD bounds a disk D' on F. D' cannot be in J31?

otherwise D would not be a compressing disk. Thus D' Π S Φ 0. A
disk component of D' — S would then be a compressing disk of S — K,
contradicting the fact that S—K is incompressible in S3 — K. Similarly,
one can show that FΠ(Bi-Ti) is peripheral incompressible in (2? ,̂T;).
It remains to show that Fi — Tf is d-incompressible in Bi — Ti.

Let D be a δ-compressing disk. If the arc DΠS connects two different
components of F Π 5, then after isotoping F through D we would get a
surface with less components of intersection with 5, contradicting the
choice of F. If D Π S connects the same component of F Π 5, then after
isotoping F through D, we get a surface F' such that |F'nSΊ = \FΓ\S\ +
1. But there are two components αx ,a2 oΐ F'ΠS which bound disks on
S intersecting K just once. Since F is peripheral incompressible, such
components can be removed by an isotopy, so we will get a surface with
less intersection to S than F, again a contradiction to the minimality
of \F Π S\. Therefore F{ is ^-essential in B^

It now follows that F is disjoint from 5, for otherwise by Lemma
4.6(a) the two points of K in a disk component of S — F would belong
to the same string in each (5^,^), which means that K would be a
link of two components. Finally, if F is in a B^ by Lemma 4.6(b) it is
isotopic to S.

If D is a peripheral compressing disk of F, let D x / be a product
neighborhood of D with (D x I) Π F = 3D x /. Then the surface
F' = (F - dD x /) U (D x a/) is said to be obtained from F by 2-
surgery along Zλ The reverse process of getting F from F' is called
tubing along If, or more precisely, along the arc K Π (D x 7). The
annulus 9D x / is called a tube.
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Theorem 4.8. IfK is a type II arborescent knot, then all closed in-
compressible surfaces in E(K) are compressible in K(j) for all integral
slopes 7.

Proof. Let F be a connected essential surface in E(K). By 2-surgery
of F along peripheral compressing disks, we will get a if-essential sur-
face F'. Since K is atoroidal (Lemma 4.1(d)), F is not a torus, so no
component of F' is a 2-sphere intersecting K at most twice. By Lemma
4.7, F' is a union of parallel copies of the sphere S. F can be obtained
by tubing F' along K.

Suppose F' has n components F[,... , F'n. Let Fn = F^- Int N(K).
Let A be an annulus in N(K) with one boundary on K, and the other
on dN(K) representing the slope 7. We may assume that the tubes
are all inside of JV(if), with boundary on dN(K). Label a point of
dAΠF by i if it is in F{. Thus, when traveling around dA, the labels of
dA Π F are 1,2,... , n, n,. . . ,1,1,. . . , n, n,. . . , 1, as shown in Figure
4.1, where n = 4. Each tube intersects A in an arc connecting two
points of F Π dA. Figure 4.1 shows a possible diagram of A Π F.
(It can be shown that the surface corresponding to this diagram is a
connected essential surface in E(K)\ see for example [24]. One can
construct infinitely many connected essential surfaces in this way.)

4 3 2

FIGURE 4.1
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CLAIM. An outermost arc a of AΠ F has the same label at its two
ends.

Otherwise, the tube corresponding to a would lie between some F!
and -F/+X, so the union F^Fi+i and the tube would be a compressible
surface, and its compressing disks would become compressing disks of F
after all the other tubings, so F would be compressible. This completes
the proof of the claim.

Now let N' be a smaller regular neighborhood of K. Perform the 7
surgery on this neighborhood. When removing IntiV7, the effect on A
is to remove a small neighborhood of the inner circle. By our choice of
A, the inner circle represents the slope 7 on dN1. Thus after surgery
A can be extended to a disk D. By the same reason as in the claim,
one can see that if an outermost arc of A Π D has different labels on its
ends, then F is compressible in K(j) and we are done. So assume that
each outermost arc has the same label on its two ends. Notice that this
label must be either 1 or n.

If AΓ\ D has 3 or more outermost arcs, then two of them have the
same label at their 4 ends. If A Π D has only two outermost arcs, then
all the arcs are parallel, so by the way dA Π F are labeled, one can
see that the two outermost arcs again have the same label on its 4
ends. This means that the union of the two corresponding tubes and
a component of F' would make a closed surface. Since F is assumed
connected, this is impossible unless n = 1. When n = 1, the two arcs
FDD are isotopic (in If (7)) to arcs on dD, which implies that after
surgery, the two tubes are isotopic to the two annuli dN(K) Π E(Ti)
for some i, so F is isotopic to dE(Ti). Since E(Ti) are handlebodies,
F is compressible in K(η). This completes the proof of Theorem 4.8.

In [13] Hatcher showed that, given a knot ϋf, there are at most
finitely many slopes on dN(K) that are the boundary of essential sur-
faces in E(K). Combining Theorem 2.4, Theorem 4.8 with Hatcher's
theorem, we have the following corollary.

Corollary 4.9. All but finitely many integral surgeries on a type II
arborescent knot produce non-Haken laminar manifolds.
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