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Abstract

We prove that there exist constants co > 0, c\ such that the
inclusion

Hol°(Σ,G/P) -> Map°(Σ,G/P)

of the space of holomorphic maps of degree k = (k\, fo, ••-, kr), h
> 0 of a Riemann surface Σ to a flag manifold G/P, into the
corresponding space of continuous maps, induces isomorphisms
in homology groups Hi for i < co\k\ — c\, with \k\ = min(fcj).

1. Introduction

The space of based smooth maps Map°(Σ, X) from a compact surface
Σ into a manifold X can be considered from many points of view, in
terms of its topology, its geometry, and, thanks to string theory, even
its physics. When both Σ and X are Riemannian, there is a natural
energy functional

(1.1) E(f) = ί I df |2

JΈ

defined on Map°(Σ,X), whose critical points are harmonic maps. One
class of manifolds X that has been considered quite extensively is that
of the generalised complex flag manifolds G/P, G a semi-simple com-
plex Lie group, and P a parabolic subgroup. In this case, the minima
of the functional correspond to holomorphic or anti-holomorphic maps,
and in general, there are other, non-minimal, critical points.
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In the spirit of Morse theory, it is natural to ask what the relation
is between the space of criticial points of the functional and the total
space. Unfortunately, Morse theory is not applicable in this context
(condition "C" does not hold) and, indeed, one has the example of
Σ = X = P 1(Q, for which there are no critical points apart from
minima, and the space of the latter (holomorphic or anti-holomorphic
maps) is quite different from Map°(P1,P1) ~ Ω252.

Nevertheless, in certain cases, an interesting stability phenomenon
seems to occur, in that the components of the space of minima begin to
mimic the components of the larger space Map°(Σ, X) as one increases a
degree k classifying the components of Map0 (Σ, X). More precisely, the
inclusion induces isomorphisms in homotopy groups π{ and homology
group Hi for i < /(fc), where / is some increasing function of k. This
was first brought to light by Segal [16], who proved:

Theorem 1.1. Let Σ be a Riemann surface of genus g. The inclu-
sion in the degree k component

2 (Σ,Pn)

induces isomorphisms

h : #i(Hol° (Σ,Pn) ~ Hi (Map0, (Σ,Pn))

for i < (k- 2g)(2n - 1). When Σ = Ψ1, the result holds for homotopy

groups as well.

Segal's result was then extended to the case of X a Grassmannian
by Kirwan [12], to Σ = Pi(C) and X certain flag manifolds, in homol-
ogy, by Guest [7], to Σ = Pi(C) and X an S7(n,C) flag manifold, in
homology, by Mann and Milgram [14], and to Σ = PX(C) and G/P an
arbitrary flag manifold, in both homology and homotopy in [3]. For
X = G/P, the components Map2(Pi,G/P) of Map0(Px, G/P) are in-
dexed by k = (ku . . . , kr) € Zr. Setting

(1.2) I k |= min^)

one has:
Theorem 1.2 ([3]). Let k{ > 0, for all i. There exist constants

CQ = CQ(G/P) > 0, Cι = Cι(G/P) such that the inclusion

Roll (VUG/P) ->Map£ (Pi,G/P)
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induces isomorphism in homology groups Hi and homotopy groups π{

There is a corresponding stability result for instantons over a four-
manifold X, known as the Atiyah-Jones conjecture. Proofs, for X =
S4, can be found in [4], as well as [13], [17]; for X = P2(C) or a ruled
surface, see [10].

Roughly, Theorem (1.2) depends on a description of holomorphic
maps in terms of their principal parts, a generalisation due to Segal-
Gravesen of the principal parts of a map Pi(C) —>> Pi(C). The space
of holomorphic maps then becomes a space of labelled configurations
of points in C C Pi(C), the points being the poles of the map and the
labels the principal parts associated to each pole. These spaces then
admit natural stabilisation maps

(1.3) Hol° (Pi,G/P) -> Hol°,(Pl5G/P)

which increase the degree, and which are defined by adding in extra
principal parts. The theorem is then obtained by combining two results:

- The first, due to Gravesen [6], shows that the limit space which
one obtains from (1.3) is weakly homotopic to Ma,p°(F1,G/P).

- The second relies on an analysis of the homology of labelled config-
urations as in [4] to prove that the stabilisation maps induce homology
isomorphisms through the range.

The homotopy result is obtained by analysing the universal covers
of these spaces, and applying Whitehead's theorem.

Our purpose in this note is to extend this result in homology to arbi-
trary Riemann surfaces; due to the difficulties in analysing the relevant
covers, the homotopy result seems for the moment to be inaccessible.

Theorem 1.3. Let kι > 0, for all i. There exist constants c0 =
Co(G/P) > 0, C\ — Cι(G/P) such that the inclusion

Hol£(Σ,G/P) -> Map°(Σ, G/P)

induces isomorphism in homology groups Hi for i < CQ(\ k |) — cλ.

As for the case Σ = Px, holomorphic maps can be described as con-
figurations of principal parts, and these configurations will exhibit the
same stability phenomena. The problem, however, is that an arbitrary
configuration of principal parts does not necessarily represent a holo-
morphic map, rather in the same way that an arbitrary collection of
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zeroes and poles on Σ does not necessarily represent a meromorphic
function. There is an obstruction which must be analysed.

It seems that this stability phenomenon is not restricted to flag man-
ifolds. Indeed Guest [8] has already proven a similar result for toric
varieties. More generally, they seem to hold for certain manifolds ad-
mitting actions of a solvable group [2].

In section 2, we introduce our objects of study and establish some
notation. Section 3 is devoted to describing the space Conffc(Σ, G/P)
of configurations of principal parts on Σ, and to establishing the sta-
bility theorem for these configurations. Section 4 is devoted to the
relative topology of the inclusion Hol£ (G/P) «->• Conffc(Σ, G/P) and to
establishing our principal result.

2. Preliminaries

In this section we begin with a presentation of some facts about
G/P. We refer to the references [9], [1] for more details.

Let G denote any complex semi-simple Lie group, and g its Lie alge-
bra. We fix a Cartan subalgebra \) of g, and let u+ and u~ denote the
positive and negative root spaces, respectively, with respect to f). One
then has Borel subalgebras

(21) b+ = U + u+,

We consider parabolic subalgebras p obtained by adjoining to b+ a
certain number of negative root spaces. Then, p has a natural comple-
ment n~ in fl with n~ C u~ and b+ C p, so that

(2.2) fl = p + n - .

We will denote by B±^ P, 17=*=, and N~ the Borel, parabolic, and unipo-
tent subgroups of G corresponding to the Lie algebras b±, p, u*, and
n~, respectively. Let N = N~.

The group U~ acts on G/P, and its orbits give a cell decomposition
of G/P:

G/P= U U'(wP),

where Wp is a suitable subset of the Weyl group of G; we refer the
reader to [1]. There is one open dense orbit, U~(P), as well as complex
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codimension-one orbits (cells) XQ, which are in bijective correspon-
dence with the simple root spaces i?α, a = 1, , r, which are in n.
Let Za be the closure of Xa in G/P; one then has:

The group N CU also acts on G/P, and preserves the cell structure.
N acts transitively and freely on the big cell U~(P), and G/P can be
thought of as a compactification of N by r varieties Za at infinity. The
Za freely generate H2(G/P,Z) via the intersection pairing.

Let Σ be a Riemann surface with base point po Maps / from a
Riemann surface into G/P are classified topologically by their degree,
an r-tuple of integers (&i,..., kr) defined by

deg (/) = (fei, K) Φ> f*(Za) = ka points

counted with multiplicity. For holomorphic maps the kQ are non-
negative.

The group N is nilpotent, and has a central series

(2.3) 0 -> Nμ+X -> Nμ^ C*" -> 0

with NX=N, Ns = 0 and [ΛΓ, Nμ] C iVμ+1.
We can also first define what is in some sense a refinement of the

central series (2.3). Recall (e.g. [9]) that:
1) The Lie algebra u~ is spanned by the negative root spaces Ra\

any negative root α is a (positive) sum of simple negative roots.

2) The algebra n C u~ is obtained by fixing r simple roots α l 5 α r ;
one then sets n to be the span of the root spaces Ra C U~ such
that the decomposition of a into simple roots has at least one
non-zero coefficient for one of the c^.

3) Prom the fact that [Ra, R0] C Ra+β if [Λo, Rβ] Φ 0, one has that
U~ normalises n. One can filter n by ideals raμ, such that mμ is
spanned by the root spaces Ra of n for which a is the sum of μ
or more simple roots. In other words, there is a natural length
function ί{a) on the roots, given by the sum of the multiplicies of
the simple roots in the decomposition, and mμ is the span of the
root spaces Ra with ί{a) > μ. Similarly, one can define ideals u~
of u~.
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More concretely, when G = Sί(n, C), N will be (conjugate to) a
subalgebra of strictly bloch lower triangular matrices, while U~ consists
of all the strictly lower triangular matrices. The root spaces correspond
to the matrix entries, and the length function is simply the distance
from the diagonal (^(α^ ) = i — j).

Corresponding to the mμ and the u~, one has filtrations of N and
U~ by normal subgroups.

( 2 4 ) 0 -> M μ + 1 -> Mμ

 πA Qμ = O -> 0,
K' 0 -> 17-+1 -> 17- -* Tμ - O -> 0,

with [?7~,Mμ] C M μ + I / . Note that sx = r, the number of simple root

spaces in N.

Finally, one has:

Proposition 2.1. The exponential map

exp : n —> N

is a biholomorphic diffeomorphism.

3. Principal parts and the space Confjfc(Σ,G/P)

Let D be an open set of Σ, and consider M(D, G/P), the subset of
the holomorphic maps D ->- G/P which only meet the Za in a discrete
set. This is acted on in a natural way by the group Hol(Z),ΛΓ), using
the action of N on G/P. We can define the quotient set

(3.1) W(D) = M(£>,G/P)/Hol(£>, JV).

This quotienting is compatible with restriction and so one can define a
sheaf of sets W, the sheaf of principal parts of maps into G/P. The
example to bear in mind is that of G = SI(2, C), P the upper triangular
subgroup, so that G/P — Pi(C),iV = C, and one is considering ordi-
nary meromorphic maps. In this example, by representing elements of
M(D, G/P) as meromorphic maps into TV, the action of Hol(D, N) is
simply by addition, and one obtains the classical notion of the principal
part of a map D —> Pi(C), i.e., of meromorphic maps modulo holomor-
phic maps. More details and examples can be found in [3]. The more
general principal parts defined above share many of the properties of
the classical ones. For example:
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- Any map D -> N P C G/P is equivalent in VV(D) to the trivial
map D —> eP. In other words, in the principal part space, any map
which does not meet "infinity" is trivial.

- If / : D —> G/P is a map with /(*0) G Za, then n(zQ)f(z0) E
Za for all n : D —> N. Thus, the property of belonging to Za is
invariant, and the points mapped to Za are to be thought of as the
poles of the map. There are r different Zα's for the map to hit, and,
correspondingly, r different types or colours of poles. A local section of
the principal part space is then given by a discrete set of points, along
with some extra data "concentrated" at these points.

- A map with poles can be represented, using the action of N on
the big cell, as a meromorphic map into JV, with the notion of what
constitutes a meromorphic map being defined via the exponential dif-
feomorphism of Proposition 2.1

- The action of N preserves the local intersection number with Zα,
and so the principal parts have a natural degree at a point p G Σ:

(3.2) *"(/) = (*?(/),••• ,*?(/)) €(Z+)Γ.

If Za is cut out locally by ga = 0, then k%(f) is the order of vanishing
of 9a ° / a^ P' The local degrees add up to give a global degree for a
section 5 G H°(Σ,VV) :

(3.3) *W = (fci(θ),- -,Mβ))

Let Jff2(Σ, W) be the subspace of sections of degree k. As our basing
condition (f(po) = P) will preclude poles over pθ 5 we will be interested
in the space

(3.4) Conffc(Σ,G/P) = {s e H°k(Σ,VV)\kPΌ{s) = 0}.

This space has the structure of a smooth complex variety. To see this,
note that if one has coordinate patches, p : U ~ D, U C Ψχ,D C Σ,
one can pull back principal parts to obtain W(D) ^ W{U). However,
configurations on Pi uniquely determine uniquely based rational maps
Pi -> G/P ([6]). The space of such maps is a smooth complex variety,
[3], and so one can use this to give a similar structure to W(D). More
generally, if D i ? i = 1, , n are disjoint coordinate patches in Σ, then

iDi) = VV{Όλ) x ... x VV(Dn),
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and so can be thought of as a product of pieces of the space of rational

maps. We then obtain, from the analoguous result for Hol(Pi, G/P):

Proposition 3.1. Conΐk(Σ, G/P) is a smooth complex manifold of

dimension Σ<=i <̂* • (dimsα + 1) where sa is the Lie subalgebra of n

stabilising a point of the codimension one cell Xa in G/P.

Let k' > k & k'i > fc< for all i. If k' > fc, k\ - kt = c i? Σc* = c, one

can define a stabilisation map

(3.5) i(k,k') : Conf*(Σ, G/P) -> Confk,(Σ, G/P)

as follows. One chooses fixed principal parts f{ of multiplicity kj(fi) =
δij. Let p : Dι —> Σ, p(0) = p0 be a parametrisation of a neighbourhood
of po by the unit disk Dx. If r G Conffc(Σ, G/P), let

d(r) = sup {s G (0, l]|p(Z)s) contains no pole of r.},

where Ds is the disk of radius s. Then z(fc, /O(τ) is the configuration

of principal parts obtained from r by adding to it the principal part /i

at the points p (gj)» P ( 2 S ί ) >""" P (ci S ) ' t h e P r i n c i P a l P a r t Λ at

the points p ((cx + 1 ) ^ ) , p ((ci + c 2 ) ^ ) , etc, finishing with the

principal part fr at p ((c - cr + 1 ) ^ ) , ,p(c^). This stabilisa-

tion has the following important property:

Theorem 3.2. There exist constants co,Cι such that the map

i(k,k') induces isomorphisms in homology

i(k,k% : Hj(Confk(E,G/P)) -> ^(Conf,, (Σ,G/P))

for j < CQ I k I -cx.

Proof The proof for the case Σ = Pi(C) is given in [3]. Once one

has this case, one can exploit the cofibering

to obtain the result for arbitrary Σ.
This extension, in a different context, is given in [10, Section 3D]:

[10] considers moduli spaces of holomorphic vector bundles over a ruled
surface X; X is a holomorphic fibering, with Ψλ fibers, over a Riemann
surface Σ. In the end, the analysis boils down to studying strata of
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labelled configurations of points over Σ. This is the same situation
that one is considering here.

As in [6], the maps i(k, k') can be used to define an infinite mapping

telecope Conf (Σ,G/P). One can build a similar telescope Map (Σ,G/P)

for the mapping spaces, and one has

Theorem 3.3 (Gravesen [6]). For alii, there is an isomorphism

Combining this with Theorem 3.2 and the fact that the components
Map£(Σ, G/P) of Map0 (Σ,G/P) are all homotopy equivalent , we ob-
tain as in [3]:

Theorem 3.4. There are isomorphisms

jm : ^(Conf^Σ, G/P)) -> i?i(Map°(Σ,G/P))

for i < Co I k I -cx.

Furthermore, Gravesen's isomorphism is mediated by the holomor-
phic maps, in the sense that if one considers the maps:

Conf*(Σ, G/P) £ Hol°(Σ, G/P) Λ Map°(Σ, G/P),

then J* = j * o K+ in homology. To prove that J* is an isomorphism

through some range, we are thus reduced to understanding if*.

4. The obstruction space iί1(Σ,iV(— p0))

An arbitrary choice of principal parts does not necessarily define a
holomorphic map / : Σ ->• G/P, f{po) = P (Po5 P are our base-points).
Indeed, the map will exist only if a certain obstruction vanishes. To see
this, we consider r E Conffc(Σ, G/P) with poles at p^ i = 1, ,n.
Let Di be disks, disjoint and open, centred at pi with p0 £ J)^ and
set DQ — Σ\{pχ, ,pn} The configuration r is then described by
holomorphic functions:

(4.1) n ί 0 : DMPi} ~> N

with poles at Pi . If nι : Di -> N is holomorphic, we note that n%n%ςs

and n i 0 define the same principal part at p{. The question of existence
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of a map Σ -» G/P with principal parts τ is then equivalent to the
existence of holomorphic maps

(4.2) rΐ .Di —>ΛΓ,ί = 0 , . . . , n

with

(4.3) n° = nίni0 , * = l , . . . , n

on Di\{pi}. We see that this is tantamount to asking that the cocy-

cle ni0 be a coboundary (i.e., trivial) in the non-abelian cohomology

iϊΓ 1(Σ, N) or, equivalently, that the principal iV-bundle with transition

functions nι0(z) be trivial. (We note that, as bundles on open Rie-

mann surfaces are all trivial, the open sets A), A constitute a Leray

cover). If one now adds in the base point condition that n°(p0) = 1,

one obtains the more restrictive constraint that the class [nt0] vanish

in ίί1(Σ,7V(— p 0)), where N(—p0) is the sheaf of holomorphic maps in

N which are the identity at p 0 . The space ί^^Σ, N(—p0)) is a pointed

set, with origin O corresponding to the trivial bundle.

There is thus an obstruction map

Ω : Conf*(Σ,G/P) -> i ϊ ^ Σ , JV(-p0))

with

Hol2(Σ,G/P) = Ω-1(O).

The structure of ίf1(Σ,iV(— p0)) is given by the following:

Proposition 4.1. Let δ be the complex dimension of N. Then

JEΓ1(Σ, JV(—po)) is isomorphic as a complex manifold to C9δ, where g is

the genus ofΣ.

Proof We consider the successive quotients CSμ of (2.3). The

corresponding vector spaces Vμ — i ί 1 (Σ,O(—p o ) φ S μ ) are of dimension
sμ9-> by the Riemann Roch theorem. We will prove the proposition by

building a biholomorphic map

(4.4) HX(Σ, N(— po)) -> (BμVμ.

Let Wμ be subspaces of the space of cocycles Z 1 (Σ,m μ (—p 0 )), xnμ the

Lie algebra of M μ , such that

(4.5) (Π μ )*oexp: Wμ^Vμ
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is an isomorphism (we note that on O , the exponential map is just
the identity). We will establish (4.4) by successive normalisation of
cocycles. Let nf represent an element of fΓ^Σ, Afi(—p0)) (N = Mλ).
The map πx of (2.4) induces a surjection:

and so one can choose wf G W\ with exp(wf),nl° having the same
image in Vλ. Therefore, one can find n\ G fZΌ(2?i,Mι(—po))> i =
0 , . . . , n a n d n f G iJ °(AnA), M2(-p0)), with

(4.6) n i n f K ) " 1 = n*0 e x p « ) .

One can ask how unambiguously nf is defined. A different choice of
n\,n\ would give a different n2

0, with

(4.7) hf = pιnf Ad^φ0)

for pi G H°{Di,N{-p0)), i = 0,...,n. Applying πx gives π^p*) =
π^p0) on DOΠDU and so π ^ ^ ) defines a section of iϊ°(Σ, O(-p0)

Θ S / 1) =
0. The p% thus take values in M2, and (4.7) tells us that invariantly,
the nf define unambiguous elements of

H1(Σ,Ad{1)(M2)(-Po)),

where Ad^)(M2) is the M2-bundle with transition functions given by
the adjoint action of exp(w1®). As [Mi,M2] C M3, taking π2 of (4.7)
gives:

π2(ή?)=π2(pi)π2(n?)π2(p°),

and so n2(nf) is invariantly an element of V2 = iί1(Σ,O(—po)φ S 2)
Pursuing the normalisation, we write:

with wf e W2, n\ G H°(DuM2(-p0)), nf G H^D^ D0,M3(-p0)).
Again, invariantly, nf represents an element in ί ί 1 (Σ, Ad(2)(M3)(— p0))
for a suitable bundle ^4c?(2)(M3), defined by the adjoint action of
exp(tί4°)exp(u4°); nf projects under π3 to an element of V3. Con-
tinuing in this way, we obtain a unique representative

K 0 ^ ) - . - e x p « )
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for our cocycle, as well as a corresponding element

(π1(nf),π2(nf),...,πd(nf)) G ®μVμ,

establishing the isomorphism (4.4).
This proposition gives us, associated to any filtration of N with

abelian quotients, a somewhat artificial vector space structure on
Hι(Έ,N{— p0)) which is however, natural on the projection to the first
quotient. We want to show that for some positive constants CQ,C'15 the
relative homotopy groups π n (ConfΛ(Σ,G/P), Holfc(Σ, G/P)) vanish
for n < CQ I k \ —dv Thus, given a family of elements of Conffc(Σ, G/P)
parametrized by a disk, we want to deform it so that its image in
ϋΓ1(Σ, JV(—po)) is zero. We will do this by using two mechanisms:

- The first, which works well when N (or a quotient) is an abelian
group J4, uses the torus of G to "rescale" individual principal parts so
that they balance out in i?x(Σ, A(— po))

- The second uses the coadjoint action of the group U~ on N to
ensure, roughly, that the portion of the obstruction in Hι due to the
commutator [U~~,N] C N can be made to vanish.

A configuration r G Conf*(Σ, G/P) can be described, as we saw, by
meromorphic functions n i 0 into N near its poles Pi, and these define
an element Ω(τ) of Hι(Σ,,N(— p0)). Projecting from N = Mx to the
quotient Qx of (2.4), we obtain τri(Ω(τ)) G Vι = i ϊ 1 (Σ, Qi{—po)) — C p r .
The latter is an abelian group, and indeed πχ(Ω(r)) is the sum of
individual contributions from each principal part located at the pi.

We first show that given a family τ(s) of elements of Conf*.(Σ, G/P),
we can deform r(s) so that the contributions of sufficiently many of the
Pi span V\. If the dimension of the family is small compared to | k |,
this follows from the codimension estimate:

Proposition 4.2. Let 2g < d <\ k |. Let Ξ be the subset of
<7on/fc(Σ,G/P) consisting of elements r such that:

1) for each i G {l,...,r} ; there are at least d principal parts of
multiplicity
(* ! , . . . ,k u ... kr) = (0, . . . ,0,1,0,... ,0), i.e., kά = δij,

2) any choice of d of these "simple poles" for each degree i spans Vι
as a real vector space.

Then there are constants CQ,CI > 0 depending only on G/P, g such
that the codimension of (Confk{Σ, G/P)\Ξ) in Confk(Έ, G/P) is greater
than min(d — 2g,2co(| k \ —d) — cλ).
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Proof. From [3, Proposition (6.5)] one has that the complex codi-
mension of those configurations not satisfying 1) is bounded below by
Cb(| & I — d) — ci As for constraint 2), we first remark that when
N = C, the result is quite classical: the generic configuration of 2g
simple poles spans iϋΓ1(Σ,C?(—p0)) as a real vector space, and, for
each additional principal part, the constraint of belonging to a hy-
perplane in ^(Σ^O^po)) containing the images of the first (2g — 1)
principal parts imposes one extra constraint, giving a codimension of
d — 2g + 1. For arbitrary JV, we note that Vi decomposes naturally as
Qι ® iϊ1(Σ,C?(—po))5 so that all one needs is some generic behaviour
for the residues of the poles in Qι. One must therefore examine the
nature of these poles.

Principal parts of total degree-one were considered in some detail in
[3, Section 4]. On Σ = Pi(C), each principal part determines a unique
map Pi —)• G/P, and one can study the principal parts in terms of their
corresponding maps. Let us then consider a map of degree kj = ίij7 .
There is a larger parabolic subgroup P' D P, whose Lie algebra contains
that of P as well as the i-th simple root space. Correspondingly, the
opposite unipotent algebra n' contains all the simple root spaces of n,
except for the i-th. There is a projection

G/P -> G/P1

whose fiber is again a flag manifold G/P, with P maximal parabolic,
so that the Lie algebra of the corresponding N contains one simple root
space of G, which can be identified with the i-th root space α* of N.
The degree-one maps Pi -> G/P have constant image under the pro-
jection to G/P', and so are in essence maps into G/P. Furthermore,
there is a line bundle θ(λi) on G/P whose sections embed G/P into Pn,
in such a way that the degree one maps Px -> G/P give lines Pi ^ Pn,
with the pole of the map being cut out by the Pn_i at infinity. The
sections of O(λi) are acted on linearly by G, with the highest weight
vector corresponding to the section SXi vanishing at infinity. There is
also a "next highest" weight vector Sχi+ai. Under the representation
of φ : Pi —> G/P as a meromorphic map Φ : Pi -> JV", the compo-
nent of Φ corresponding to the simple root space Rai is essentially
Sλi+α* {x)/Sai (x). (This calculation can be found in a different form in
[15], [11].) For the generic map Px -» G/P^ this function has a non-
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trivial residue at the pole; one can use, for example, the transitivity of
the action of G on G/P to prove this.

Returning to the description of maps Pi -» G/P in terms of maps
Pi -> JV, this means that for maps of degree kj = ί̂  , the entry in
N corresponding to the i-th simple root has, generically, one simple
pole with non-zero residue. The entries corresponding to the other
simple roots are constant, as the composition Px —> G/P -» G/P' is
constant. One can thus choose the polar behaviour of the principal
parts corresponding to each simple root space in Qi independently. As
one has at least d simple poles for each degree i, Qλ ® HX(Σ^ O(—p0))
exhibits the same genericity behaviour as ίΓ1(Σ,C?(— Po)), giving the
result.

Corollary 4.3. The real codimension of Holk(Σ,G/P)\ (Holk(Σ,
G/P) Π Ξ) in Holk(Σ, G/P) is greater than [min(d-2g, 2co(| k \ -d) -
ci)]-2gδ.

Proof. Hol,(Σ, G/P) is cut out of Conf,(Σ, G/P) by the vanishing
of gδ holomorphic constraints, by Proposition (4.1).

Theorem 4.4. There exist constants c'o > 0, c[ such that

πn(Conf,(Σ,G/P), Hol,(Σ,G/P)) = 0

for n < c'o I k \ -c[.

Proof. Let σ be a map (simplex)

σ : (Bn,dBn) -> (Conf*(Σ,GyP), Hoi,(Σ, G/P)).

We want to deform it so that σ(Bn) lies in Holfc(Σ, G/P), keeping the
boundary in Hoi,(Σ, G/P)). First note that by Proposition (4.2) and
Corollary (4.3) one can choose c'o and c[ such that for n < c'o \ k \ — c'l7 σ
can be supposed to lie in the generic set Ξ. Next, we would like to
choose (continuously) once and for all our d simple poles of each degree
over all of σ. This may not be possible, as, for example any pair of
simple poles at one point of σ may coalesce into a double pole some-
where else on σ. The codimension estimates of Proposition (4.2) and
Corollary (4.3) guarantee that if one subdivides σ into sufficiently small
simplices σί5 this choice of simple poles can be performed over the Oi.
We will then deform inductively over the skeleta of this subdivision,
starting with the 0-skeleton. Our deformations will fix the points al-
ready in Hoi,(Σ, G/P), and so in particular the edges of the simplex,
allowing the induction to proceed.
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In any case, we are left with the problem of deforming a simplex of
configurations, over which d simple poles have been "marked".

We will deform this simplex in successive steps, killing the obstruc-
tion corresponding to the successive quotients Qμ of (2.4). We begin
with the obstruction (TΓI)* Ω o σ(x) G ̂ (Σ.Q^-po)) ^ Cr9 corre-
sponding to the simple root spaces. To deform the principal parts, we
will use the left action of the torus of G on principal parts. This gets
translated into conjugation when one represents the principal part by
a meromorphic function into N; so that if t is an element of the torus,
and n : U C C -> N,then t {n(x)) = tn(x)t~ι, x eU. For simplicity,
we will choose a subgroup H = C* of the torus which acts with the
same weight on all of the simple root spaces, and just use this subgroup.
We will need:

Lemma 4.5. Let

V : Bn - (O

be such that
1) Σ*ίΐK+1Vi(x)=0 on dBn,

2) {vi(a ), ,vM(x)} and {υM+i(x),''' ,vM+κ(x)} both span Cι as
a real vector space for all x.

Then there exists a map C

C :Bn -
x

with:

2) Σ?JK CiVi{x) + υM+κ+i(x) = 0 for all x β Bn.
Furthermore, C is homotopic, by a homotopy which is constant on

dBn, to the constant map x F-» (1,1,..., 1).
Proof. Let F be the affine subbundle of the trivial RM -bundle over

(0)M+κ+ι: RM x ( 0 ) M + K + 1 -> ( 0 ) M + K + 1 , defined by:

M M-fK+1

i=M+l

Let π : RM x C M + A : + 1 -> F be a projection of bundles, that is a fiber
preserving map which is the identity when restricted to F, defined for
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example by an orthogonal projection. The map V : Bn -
lifts to a constant section (l,V) : Bn ~> RM x (Cι)M+κ+1, taking
values in F on dBn. Let us set c(x) = π(l^V)(x). One then has
Σiίi Ci(x)vi(x) + Σ^Λf+t1 υί(x) = 05 which is what one wants; the
problem is that some of the c{ could vanish. Let 0 < e < 1, and set

if Ci(x) £ (-€,€),

The idea is to deform the real axis into the upper half plane in a small
neighbourhood of the origin so that it avoids the origin. Then:

M M+K+l M

i=l i=M+l i=l

M+K

We note that | c» — ĉ  | < e. Now let us set Vj(x) — Σ dji(x)vi(x),
t=Af+l

for j = 1,..., M. Substituting, we have

M M+K I M \

Y^Ci(x)vi{x) + ^ 1 - Σ(CJ - c^dji Vi(x) + vM+κ+i(x) = 0.
i=l t=Af+l \ j=l J

M
Taking e sufficiently small, and setting c. = 1 — Σ ( c j ~ Cj)dji, i =

i=i
M + 1,..., M + if gives the result. We note that as the c{ never
encounter, say, the negative imaginary axis, the map (ci, , CM+K) is
automatically homotopic in (C*) M + K to the constant map.

We apply this lemma to our situation, with ί — rg, M + K = d, as
follows: one sets ^(x), i = 1, ,cί, to be the individual contributions
in ^(Σ,Qι(— po)) ~ Crd of our marked single poles, and lump the
contributions of the other poles together into vM+κ+i(x) The lemma
then tells us that we can rescale Vi(x), i = 1, , M + K, so that the
total obstruction Σvi(x) vanishes. This rescaling is performed by using
the adjoint action of the group H.

What this then means is that, once this rescaling is done, if one
represents the principal parts by holomorphic iV-valued functions ni0

over DiΠ Do, one can find holomorphic N~valued functions n% on the
Ό% such that n ι n l 0 (n 0 )" 1 takes values in the subgroup M2.
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More generally, let us suppose that we have n n * 0 ^ 0 ) " 1 £ Mμ for
all i. We would like to modify nt0 to n*°, say, so that one can solve
n^ή* 0 ^ 0 )" 1 G Mμ+i, for suitable ή\ή°. To begin, we note that if
q* is some element of U~_x, the (μ — l)-th subgroup of the filtration
(2.4), then Adqi{ni0) and ni0 have the same image in N/Mμ, so that
nϊAdgiinPMn0)-1 <E Mμ. Writing

±μi

and projecting to Qμ = Mμ/Mμ+χ, we have:

This scheme allows us to use the action, not of the torus, but of U~ to
modify the cocyle in i/1(Σ, Qμ), adding to it πμ(pι°). To fix our ideas,
let us consider a simple example, taking U~ = N in 5^(4, C). Let us
write n t 0 (fixing i) as:

(4.8)

(i o o o
r»! 1 0 0
n2 n 3 1 0
n4 n 5 n6 i

for some functions Πj, and let us suppose that there exist n ι, n° so that
n'n^in0)-1 is of form:

(4.9)

Ί 0 0 0\
0 100
0 010
m 0 0 \)

for some function m, so that one is in M3. Conjugating n*° by qx in
M2, where

(4.10) * =9* =

Λ o o o
0 1 0 0
rOlO
0 0 0 1



116 J. C. HURTUBISE

gives:

(4.11)

and so

(4.12)

l o o (Λ
ni 1 0 0
n2 n3 1 0

— rn6 n5 nQ I

1 0 0 0\
0 1 0 0
0 0 1 0

\-rn6 0 0 1J

We can thus modify the element m in (4.10) by adding to it (—

We now remark that our genericity assumptions tell us that the

residues of the simple root terms {nι,n$ and n 6 in the example) of

the simple poles span Qx ® ίiΓ 1(Σ,O(— p0)) and that the commuta-

tor gives a surjective map Qλ ® Tμ_ x —> Qμ. The presence of suffi-

ciently many simple poles in generic position will allow us to kill the

μ-th obstruction, choosing g*'s so that πμ(nιAdqi(nιQ)(n°)~~ι) vanishes

in i ϊ 1 ( Σ , Q μ ( — po)) We can then modify n\n° into ή\ή° so that

WAd^n^ή0'1 E Mμ+1,

giving us our inductive step, at least for one configuration. We now

have to see how this should be done for a family, by a transformation

which is a deformation.

Given a family n i 0 (s),s E Bn of these cocyles, we will proceed in a

fashion similar to that of Lemma (4.5). The part of the adjoint action of

qι that we are interested in only depends on its projection to Tμ_χ ĉ  C μ

(recall (2.4)). We consider the subbundle F of ( T μ _ ! ) r d x Bn defined

by

rd

- 0 in
i>rd

Q μ},
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where the first (rd) points of our configuration are taken to be our
marked simple poles and Qμ denotes the space Hι(Έ,Qμ(— Po)) By
our genericity assumption, this is an aίfine subbundle, and we choose
a projection π : (Tμ_i) d x Bn -> F. The natural 0-section 0 : Bn -+
(Tμ_i) d x Bn lies in F over the boundary of Bn, and one defines the
qι{x) by π o 0, which is naturally homotopic to 0, and so gives us our
deformation.

This completes the inductive step; as Mμ = 0 for μ sufficiently large,
one can, after completing this deformation process, solve ni(x)ni0(x) —
n°(x) over the simplex and so obtain holomorphic maps.

Combining Theorems (3.2) and (4.4), proves the stability result, The-
orem (1.3)
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