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Abstract

The purpose of this paper is to construct a complex which com-
putes the homology of Hurwitz spaces of branched covers of P1.
We also compute some of the low dimensional homology groups
of a compactification of the Hurwitz space, and report on com-
puter calculations performed in specific examples.

1. Introduction

In this paper we develop a cell complex that computes the homol-
ogy of the Hurwitz space of branched covers of P1. The motivation for
this construction is to compute the Picard group of SHkh, the Hur-
witz space parametrizing degree-fc covers of P1 simply branched over b
points. In particular, the second author conjectures that Pic(SHkyb) ®
Q = 0, and using calculations made with our complex we present evi-
dence for the validity of this conjecture.

Our complex also easily explains some known facts about the ho-
mology of SHkb, leading us to believe that the complex is natural and
worthy of further investigation. For example, our complex comes from
a representation of a compactification of SHk,b as a cell complex with
no cells in codimension b or higher contained in SHkib. It follows that
Hι(SHkjb) = 0 for i > 6, a fact which is also a consequence of SHkj
being affine. Likewise, calculating the top homology of our compactifi-
cation easily reduces to the classical combinatorial problem associated
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with counting the number of connected components of SHk^b (this num-
ber is well known to be 1 - [2], [9]).

One reason to be interested in the Picard groups of Hurwitz spaces
is the connection with the Picard groups of moduli spaces of curves.
A k—sheeted cover of P1 simply branched over b points, is, by the
Riemann-Hurwitz formula, a smooth curve of genus g — | — k +1. Thus
there is a map of SHkb -* Mg which, when k > 2g — 2, has uniform
fibers. The methods of [12] show that in this case Pic(SHkjb) ® Q = 0
if and only if Pic(Mg) ® Q = Q.

Since Harer [7] has established that Pic(Mg) ® Q = Q for g > 3, the
Picard group of SHkyb is torsion when b is large relative to k. Thus, it
is natural to conjecture that it is torsion for all values of k and 6, and
we show this in some examples. Conversely, a proof of the conjecture
mentioned above, for all values of k and 6, would yield a new proof of
Harer's theorem on Pic{Mg).

The contents of the paper are as follows. Section 1 is the introduc-
tion. In Section 2 we define Hurwitz spaces as well as compactifications
of them, which we will decompose into cells. The advantage of compact-
ifying is that it is easier to calculate homology on compact topological
spaces. We also prove statements which are sufficient to relate the ho-
mology of Hurwitz compactifications to the group of codimension-one
algebraic cycles on SHkyb. In Section 3 we describe the map from Hur-
witz space to the moduli space of curves, and prove that if k > 2g — 2
then Pic(SHktb) ® Q = 0 if and only if Pic(Mg) ® Q = Q.

Section 4 describes the complex which calculates the homology of
Hurwitz spaces. The idea is to use the fact that Hurwitz spaces are
etale covers of configuration spaces of points in P1 corresponding to
configurations of the branch points. Likewise, the compactifications we
consider are defined so that they are branched covers of simple com-
pactifications of configuration spaces. Since it is relatively easy to give
a cell decomposition of a compactified configuration space where the
complement of the open configuration space is a subcomplex, we ob-
tain, by lifting, a cell decomposition of SHk^b (the compactification of
SHkj) where SHkb — SHk^ is a subcomplex. We then use the mon-
odromy of the covering map to give a method for explicitly describing
the boundary maps on the lifted cell complex. The calculations made
here are the key to the paper and are what enable us to compute what
we know about the homology of Hurwitz spaces.
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Using the techniques from Section 4, we prove in Section 5 a theorem
about some low dimensional homology groups of the compactifications
SHkj for all values of k and b. In Section 6 we use our complex to
compute the top homology group of SHkb and show that the calcu-
lation reduces to the classical combinatorial problem associated with
counting the number of components of SHkyb. The section also con-
tains a summary of computer calculations which we made using our
complex. We also discuss various conjectures and counterexamples on
the homology, and Picard groups of Hurwitz spaces.

2. Hurwitz spaces and compactifications

In this section we define the different Hurwitz spaces that we will be
considering in the paper. Each parametrizes degree k coverings of P1

simply branched over b distinct points.
• Hkib - the space of covers branched over b ordered points in P1. It

is an etale cover of (P1)6 — D\ here D is the union of all diagonals.
• SHkb - the space of covers branched over b unordered points in

P1. SHktb = HKb/Sb, and is an etale cover of P6 - D\ here D
is the discriminant divisor and Sb is the symmetric group on b
letters.

• AHkb - the quotient of Hkb by PGL(2,C), the automorphism
group of P1. It is an etale cover of Mo,b the open moduli space
of smooth b—pointed curves of genus 0.

When it is clear which Hurwitz space we are using, we will often drop
the sub and superscripts.

We will also consider the following compactifications of Hurwitz
spaces; each is a normal but usually singular variety.

• Hk,b - The normalization of (P1)6 in the function field of Hkib.
• SHk,b - The normalization of P6 in the function field of SHkib.
Remark. Unfortunately, it does not seem possible to interpret the

boundaries of these compactifications as representing any geometrically
significant functor. In his thesis, S. Mochizuki constructed a compacti-
fication of AHkb using Harris and Mumford's theory of admissible cov-
ers. However, it seems out of reach to construct a cell complex for his
compactification for which it is possible to make explicit computations.

Proposition 2.1. The space SHkb is the quotient of Hkb by the
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(non-free) action of Sb induced from the action on (P1)6.
Proof. If A is a ring which is integrally closed in its function field,

and G is a finite group acting on A, then it is easy to see that the
invariant subring AG is integrally closed in its function field. Thus,
taking a quotient by a finite group preserves normality, so Hk,b/Sb is
a normal variety. By construction, Hkyb/Sb and SHkb have the same
function field and both admit finite maps to P6. Since SHkb is defined
to be the normalization of P6 in the function field of SHkj,, there is a
finite surjective map Hk^/Sb —> SHkb. On the other hand this map has
degree 1, and both varieties are normal, so it must be an isomorphism,
q.e.d.

Let H and H refer to the Hurwitz spaces and their compactifications.
Also let Δ denote H — H. Consider the long exact sequence of a pair

...-mk(A)-mk(H)->Hk(HtA)->... .

Since the open Hurwitz spaces are smooth, Lefschetz duality implies
that the term on the right can be identified H2h~k(H), (the real dimen-
sion of SHkib and Hkb is 2b) In particular we will look at the terms

(2.1) ... -> fΓ26.2(Δ) -> H2b_2(H) -> H2(H) - > . . . .

Because Δ has dimension 26 — 2, the first term is just the number of
irreducible components of Δ [6, Lemma 19.1.1].

Proposition 2.2. // the map i* : H2b_2(Δ) ->• H2b-2{H) is sur-
jective, then Hllg(H) = 0, where Hllg(H) is the image of Ab_ι(H) in
H\

Proof. The proof is straightforward given the following commuta-
tive diagram of exact sequences:

> H2b-2{H) -> H2(H)

t t

If the map H2b_2(A) -> H2b-2(H) is surjective, then the map
H2b_2(H) -> H2(H) is zero. Commutativity thus implies that the map
Ab^1(H) —¥ H2(H) is zero, which is what we needed to show, q.e.d.

Proposition 2.2 gives a concrete way of checking that H%lg(H) is
zero. All we need to do is to check that H2b-2(H) is generated by



70 STEVEN DIAZ & DAN EDIDIN

cycles coming from Δ. In the sequel, we will give cell decompositions
for which Δ is a subcomplex, and give an algorithm for computing the
homology. The next proposition shows that Pic(H) may be computable
as well.

Proposition 2.3. Assume the hypothesis of Proposition 2.2 above.
If in addition, H2b-i(Π) = 0, then Pic(H) = H2

alg(H) = 0_
Proof. Let Hsm C H be the smooth locus. Because H is normal,

H — H8m has real codimension at least 4. Thus, by the long exact
sequence of a pair and Lefschtez duality, H2b-ι{H) = ff^fP"1). Now
let X —> H be a desingularization which is an isomorphism over iϊ,
and consider the exact sequence:

. . . - > Hn-iiX - Hsm) - > H2b^(X) - > Hι(H8m) - > . . . .

The groups at the ends are both zero, so H2b-i(X) — 0. Since X is
smooth, Hλ(X) = H2b-i{X), by Poincare duality. Since H is projec-
tive (see Section 4.4), we may assume that X is projective. It then
follows from the exponential sequence and the Hodge decomposition
that Pic(X) injects into H2(X).

Now consider the diagram of exact sequences:

H2b.2(X -H)h H2b_2(X) 4 H\H)
t — cl t d t d

Since the lower j * is surjective, any element in Ab_ι(H) is of the form
j*x for x e Ab-X(X). Suppose that cl(j*x) = 0. Then j*cl(x) = 0, so
cl(x) = ΐ*(y) for y E H2b_2(X — H). Since the leftmost vertical arrow
is an isomoprhism, cl(x) = cl(i*z) for some z G Ab_1(X — H). On the
other hand, the middle vertical map is injective, so x = i*z, and thus
j*x = 0. This proves that the map cl : Ab_1(H) -> H2(H) is injective.
On the other hand, we proved in Proposition 2.2 that the map was
zero. Therefore, Pic(H) = Ah^{H) = 0. q.e.d.

Remark. Since the proofs of Propositions 2.2 and 2.3 do not depend
on the coefficients, they also hold with rational coefficients; i.e., facts
about the rational homology of Hurwitz spaces imply statements about
Hlig ® Q and Pic ® Q.
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3. The map from Hurwitz space to moduli space

Each of the Hurwitz spaces #*,&, SHkyb, AHkb maps to Adg, the mod-
uli space of curves of genus g = | — k + 1.

The purpose of this section is to relate Pic or H2

alg of any of these
Hurwitz spaces to the corresponding groups for Λ4g. Since the argu-
ments are virtually identical for either group, we will, for the rest of the
section, use the generic notation H2(X) to consistently refer to either
of Pic or H\lg. Rational coefficients are assumed throughout.

In particular, we prove the following theorem which is due to Mochi-
zuki [12].

Theorem 3.1. Assume that k > 2g — 2. Then the following hold:
(1) H2{H) = 0 implies H2{Mg) = Q; here H refers to any of the

Hurwitz spaces mentioned above.
(2) U2{Mg) = Q implies H2{SHKb) = 0.
Remark. The proof of this theorem is contained in [12] using the

language of stacks. We go over the proof by the language of schemes.
The argument presented is similar to that given in [3] for the maps
from Severi varieties of plane curves to Mg.

Proof of Theorem 3.1. Set Qk%h — AHkyb/Sb; this quotient parametrizes
gk

Js with exactly 6 simple branch points. The following proposition is
the first step in the proof.

Proposition 3.1.
(1) H2{H) = 0 implies U2(GKb) = 0
(2) H2{Gkjb) = 0 implies that U2(SHKb) = 0.
Proof of Proposition 3.1. Consider the following Cartesian diagram:

TT __y QTT

*lk,b ~r ^nk,b

AHk,b -> Gk,b

The horizontal maps are finite etale, so the pullbacks are injective on all
cohomology groups. The vertical maps are PGL(2,C) bundles. Since
the first characteristic class of a principal PGL(2, C) bundle is zero,
the vertical pullbacks are isomorphisms on (complex) codimension-one
cycles ([15]). Combining the facts above proves the proposition.

To complete the proof of Theorem 3.1 we now prove
Proposition 3.2. Assume k > 2g - 2. Then U2{Gk,b) = 0 if and

onlyifH2(Mg) = Q.
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Proof of Proposition 3.2. If C -» M is a family of curves, let
denote the Picard scheme parametrizing degree k line bundles on the
fibers of C over M. If that family has a section, then there is a Poincare
bundle C on Jk(M) xMC ([13, p. 22]). Let M! A ΛΊP be a finite cover
over which the pullback, C, of the universal curve has a section. Let C
be the Poincare bundle over Jk{Mf)xM'Cf, and set Gι

k{C) = Gr(2,τr*£)
where π : J^ΛΊ') x^i' C -> Jh{M') is the projection. Set Q'kh =
Gk,b *Mg M'. The arguments of [3, Lemma 3] show that Q'kh C Gι

k(C)
is an open subscheme. Furthermore, the arguments of [12] show that
Q\ (C) — G'kh consists of three irreducible components of codimension 1,
which are independent of Ή.2. The remainder of the proof is essentially
identical to [3, Section 5]. q.e.d.

4. The cell complex

In this section we show how to express certain compactified Hurwitz
spaces as cell complexes. Both the cells and the boundary maps are
explicitly described. The cell complexes have the property that the
points added to compactify a Hurwitz space form a subcomplex. This
allows the computation of certain homology groups as well as in certain
cases the map i* in Proposition 2.2 of Section 2. These calculations are
described in Sections 5 and 6.

The basic idea is as follows. Observe that in the map of a com-
pactified Hurwitz space to the base product of P l5s or to a single P6,
ramification can only change when more branch points in the curves
being parametrized come together. Construct a cellular decomposition
of the base such that whenever more branch points come together there
is a new cell. It is then possible to use the cell decomposition of the
base to induce a cellular decomposition of the covering Hurwitz space.

We now proceed to make these ideas precise and explicitly carry them
out. We first do it for ordered branch points, and then by analyzing the
action of the symmetric group we are able to give a cell decomposition
in the case of unordered branch points.

4.1. Cell decomposition of the base. The cell decomposition
given here is similar to the cell decompositions for configuration spaces;
for references to the literature on this topic see the book by Vassiliev
[14].
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We first define a cellular decomposition of (P 1 ) 6 .

View P 1 a s C U o o and let Zj = α̂  + y/—ΪCj be a holomorphic coor-

dinate on the finite part of the j ' t h P 1 .

(26)-cells: There are 6! of these, one for each ordering of {1,.. . ,6}.

Let σ G Sh. Then the open cell corresponding to σ is defined as:

i , . . . ,zb)\aσ{1) > ασ ( 2) > . . . > aσ{b)}

(note that all of these cells are contained in the finite part of (P 1) 6).

All cells of lower dimension are obtained from the (26)-cells by a

finite sequence of the following three types of operations.

(1) Set one complex coordinate equal to oo.

(2) Set two real coordinates equal to each other; this is only allowed if

the two real coordinates are adjacent in the ordering given by the prior

cell. One must then order the imaginary coordinates corresponding to

the equal real coordinates.

(3) Set two imaginary coordinates equal; this is only allowed if the

corresponding real coordinates are equal as in (2) and the two imagi-

nary coordinates are adjacent in the ordering of the prior cell.

Thus a cell will be described as follows: some of the coordinates

will be oo, among the other coordinates given any two a^aj we have

α; = a,, di < dj or a{ > α̂  ; within each group of equal α's given any

two Ci,Cj, Ci — Cj, Ci < Cj or c» > Cj. A typical cell:

{(oo, z2, z3, zA, oo, z6, z7, zs)\a3 = α 4 = α 6 < α 2 = α 7 < α 8 ,

c 4 = c6 < c3,c2 < c 7 },

(this cell has codimension 8). We now give a list of all the types of cells

of low codimension and low dimension, as we will compute with them

later on.

(26 — 1) cells all have the form:

i , . . . , zb)\aσ{1) > α σ ( 2 ) . . . > . . . aσ{i)

(26 — 2) cells are of three types with some subtypes.

Infinity: {{zu... , o o , . . . zh)\aσ{ι) > α σ ( 2 ) > . . . > άσ{ι) > . . . α σ ( 6 ) } ,

where as usual ά means omit.

Complex diagonal:

(i) > α σ ( 2 ) > . . . > aσ{i) = aσ{k) > . . . > α σ ( 6 ) ,

Cσ(l) =
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Two real diagonals: these may be adjacent or non-adjacent.

= 0>σ(k) = βσ(m)

< Cσ(Λ) < C σ ( m ) }

or

( i ) > α σ ( 2 ) . . . > . . . α σ ( / )

= flσ(Jk) > ασ(m) = Q>σ{n) > > «σ(6)?

Cσ(fc) < Cσ(/),Cσ(m) < C σ ( n ) } .

(26 — 3)-cells are of three types, with many subtypes.
Infinity and a real diagonal.
Complex diagonal and a real diagonal; these may be adjacent or

nonadjacent.
Three real diagonals: these may be all three adjacent, two of the

three adjacent, or none adjacent.
We now describe the cells of low dimension.
3-cells
Set j of the coordinates equal to infinity, where 0 < j < b — 2.

Among coordinates not set equal to infinity, set all real coordinates
equal to each other. Divide the imaginary coordinates into two disjoint
nonempty groups. Within each group set all the imaginary coordinates
equal to each other. Finally, declare one group of imaginary coordinates
to be greater than the other group. For instance:

Cl = ... = a > q+i = ... = cb-j}.

2-cells
These are quite similar to 3-cells. Set j of the coordinates equal to

infinity, where 0 < j < b — 1. Among coordinates not set equal to
infinity set all real coordinates equal, and set all imaginary coordinates
equal.

1-cells
None
0-cells
{(oo,..., oo)}.
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It is rather clear, though perhaps tedious to write down in complete
detail that (P 1 ) 6 is a disjoint union of these cells and that each cell is
homeomorphic to an open ball of the appropriate dimension. We leave
this to the reader.

We now define our cell decomposition for Fb = (Ψ1)b/Sb. It is easy
to see that for any cell C in the decomposition of (P 1 ) 5 and any σ € Sb,
either σ acts as the identity on C or maps C homeomorphically onto
another cell C. Prom this it follows that we have a cell decomposition
of Ψb where cells are equivalence classes of cells of (P 1 ) 6 under the
action of Sb (two cells being equivalent if and only if some element of
Sb establishes a homeomorphism between them). As we did for (P 1 ) 6

we shall describe explicitly the cells with which we shall later compute.

(26) cells
There is only one of these which we may represent as: [1 > 2 > . . . >

6], where 1 > 2 is short hand for aλ > α2.
(26 - 1) cells
There are 6 — 1 of these which may represent as: [1 = 2 > 3 > . . . >

6], [1 > 2 = 3 > . . . > 6], . . . , [1 > 2 > 3 . . . > 6 - 1 = 6], where 1 = 2
is short hand for aλ = α2. Having said a{ = a3- we do not need to say
whether c* < c3 or c3 < C{ because these two cells are equivalent under
the Sb action.

(26 — 2) cells. We now have several different types.
Infinity: only 1 cell [oo x 2 > 3 > . . . > 6].
Complex diagonal: 6 - 1 cells [1 = 2 > 3 > . . . > 6], . . . [1 > 2 >

3 6—1 = 6], where 1 = 2 is short hand for aλ = α2 and cx = c2.
Two real diagonals: | ( 6 — 1)(6 — 2) cells, choose 2 >'s in [1 > 2 >

. . . > 6] and turn them into ='s. Again there is no need to order the
c's.

(26 - 3) cells.
Infinity and a real diagonal: b-2 cells [oo x 2 = 3 > . . . > 6], . . . ,

[oo x 2 > 3 . . . > 6 — 1 = 6]. Again no need to order the c's.
Complex diagonal with additional real diagonal. This has one slightly

tricky point. {aλ > . . . > a{ = a3> . . . > ak = at > . . . > α6, Q = c3}
and {αi > . . . > α; = a3> . . . > ak = at > ... > α&, ck = q} are not
equivalent. Likewise, {aλ > . . . > a{ — a,j = ak > . . . > ab^Ci < Cj —
ck} and {αi > . . . > α» = a3 = ak > . . . > ah,Ci = c3 < ck} are not
equivalent. There are (6 - 1)(6 - 2) cells. Starting from [1 > 2 . . . > 6]
one has (6 — 1) choices for turning a > into =, and then (6 — 2) choices
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for turning one of the remaining > ' s t o a = . In this notation, 1 = 2 = 3
means a,ι = a2 = a3 and C\ = c2 < c3.

Three real diagonals: | (6 — 1)(6 — 2) (6 — 3) cells; choose 3 >'s and
turn them into ='s. Again there is no need to order the c's.

3 - cells. There are \b(b - 1) cells: [1 = 2 = 3 = . . . = 6], [1 = 2 =
3 = 4 . . . = 6],. . . [1 = 2 = 3 . . . = b-1 = 6], [oo x 2 = 3 = . . . = 6], . . . ,
[oo x . . . x oo x b — 1 = 6].

2 — cells. There b such cells:
[1 ΞΞ 2 = ... = 6], [oo x 2 = 3 . . . = b]... , , [oo x . . . oo x C|.

1 — cells. None

0 — cells, [oo x . . . x oo]
4.2. Cellular decomposition of the Hurwitz space
Lemma 4.1. Consider the map πkj : Hkb -> (P 1 ) 6 (or

SHkth -> Ψb). Let C be a cell in our decomposition of (P 1 ) 6 (or
Then the inverse image of C under πk^ (or sπkib) has finitely many
connected components, each of which connected component is homeo-
morphic to C via the restriction ofπkj (or sπkib).

Proof. Since πk^ and sπk^ are finite algebraic, and the cells are
homeomorphic to open balls, all we need to show is that over each cell
the number of preimages of points not counting multiplicity is constant.
The arguments for πk^ and sπk^ are essentially the same. Denote
by D C (P 1 ) 6 the locus of points where two or more coordinates are
equal. Let C be a cell in (P 1) 6, and p and q two points in C. Prom
the way the cellular decomposition was constructed, at all points of C
the same coordinates are equal to each other. Thus, we may assume
that centered at p we have holomorphic coordinates W\,... , wb with D
given by ιvχ = ...= Wj, and near q we have holomorphic coordinates
υ i , . . . ,vι, with D given by vλ = ... — Vj. The map given by f(wi) = v{

yields an isomorphism of a small neighborhood W of p with a small
neighborhood V of q, takingp to q and mapping WΠD isomorphically
onto V Π D. (In P 6 the local picture is simply the quotient of this
picture by the symmetric group). The covering πk^ : Hkb -» (P 1 ) 6 — D
is determined by the local combinatorial data, which is the same for
W — D and V — D. This gives a commutative diagram:
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V-DcV

Hkb is defined as the normalization of (P 1 ) 6 in the function field of
Hk,b- Normalizations can be constructed locally and patched together
(see [4] expose XII for the analytic case). Therefore, the preceeding
commuative diagram gives rise to the following commutative diagram:

1 1
w 4 v

So there are certainly the same number of points over p as over q. q.e.d.

With this lemma proven we may define a cellular decomposition
of Hk,b or SHkj the open cells of which are exactly the connected
components of the inverse images via πkj or sϊτk,b of the open cells in
our cellular decomposition of (P 1 ) 6 or P 6 .

We now show how to keep track of the connected components of the
inverse image of a given open cell. This will allow us to give explicit
names to all the cells of our cellular decomposition of a Hurwitz space.
This is needed to be able to perform explicit homology computations.

The first step here is to describe the fiber of πk^ (or sπkj) over
a point away from all diagonals. It has been known for a long time
how to do this; see for instance [1] or [5] for details and proofs. Let
p = (j9χ,... ,p6) G (P 1) 6 — D (Remember D consists of all diagonals).
Choose a base point p0 G P 1 distinct from {pi,... ,p&} For each
j — 1,... , b choose an oriented path starting at p0 and travelling once
around Pj then returning to p0 and not enclosing any of the other p{.
Orient the loops so that their product is the identity. This is sometimes
called a lolly pop diagram.
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Pb

PO - - C ( T P2

P1

Once such a choice of lolly pop diagram has been made there is a
bijection between:

• ordered 6—tuples (σi,. . . , σh) of simple transpositions in Sk such
that σχσ2 . . . σb = id, and {σi,... ,σ&} generates a transitive sub-
group of Sk

m, modulo the equivalence relation (σi,...,σ&)
— (τi,...r6) iff there exists σ e Sk such that σ̂  = στισ~ι for
alii.

This equivalence relations is known as simultaneous conjugation. De-
note the equivalence class of (σi,. . . ,σh) by [σ 1 ? . . . ,σb].

Fix a base point p0 E P 1 . For each open cell C of (P 1) 6 that is not
contained in D fix a point P none of whose coordinates is equal to p0,
and fix a lolly pop diagram for P with base point p0. From Lemma 4.1
we see that each connected component of πkl(C) contains exactly one
element of π^"j(P). Thus to designate an open cell of Hkh not lying
over D one gives the cell of (P 1) 6 over which it lies, and an equivalence
class [σi,... ,σ6].

Cells that lie over of D are more difficult to keep track of since the
map πkjb can branch over them. We first tell how to do this for cells in
D of dimension 26 — 2. In the list of (26 — 2) cells in Section 4.1 these
are the complex diagonal cells. We will express cells over

C = {α σ ( i ) > > a>σ{i) = aσ{k) > <M&)7 cσ{i) = cσ(k)}

as equivalence classes of cells over

C = {aσ(l) > • > Oσ(0 = aσ{k) > 0>σ(b),Cσ{l) > Cσ(k)}-

Some of the sheets of Hkb over C might come together over C.
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Lemma 4.2. For C , C just defined, each cell lying over C is
uniquely determined by listing all cells lying over C having it in their
closure.

Proof. It is sufficient to show that each cell lying over C has exactly
one cell lying over C in its closure. First note that C U C is simply
connected. Assume to the contrary that we have a cell E' lying over
C" with two distinct cells E and F lying over C in its closure. We
may then find points p' G C, p G C and two paths jι and 72 from p'
to p such that 71 lifts to a path starting in E1 and ending in E while
72 lifts to a path starting in E1 and ending in F. Because C U C is
simply connected we may continuously deform 71 into 72 leaving the
endpoints fixed. This would induce a deformation of the lifting of j x

into the lifting of 72 leaving the endpoints fixed. This is impossible
because the liftings have distinct endpoints. q.e.d.

Thus a cell over C can be unambiguously identified by giving the
cells C and C and a list of those cells over C having it in their closure.
This list is the previously mentioned equivalence class. For purposes of
explicit computations we also need to be able to say which cells lying
over C" have the same cells lying over C in their closure. We first
prove a lemma stating essentially that which sheets come together is
determined by the local monodromy of the cover.

Lemma 4.3. Let C be any open cell in D (not necessarily of
dimension 2b —2). Pick a point p G C, a small open neighborhood (say
any open ball) B of (P 1 ) 6 containing p, and a point q G B — D. The
fundamental group of B — D with base point q acts via monodromy on
ττ^(q). Define an equivalence relation on τr̂ "£(<7) by saying that two
points are equivalent if and only if they can be taken to each other by
monodromy actions. For B sufficiently small the following are true.

1. Two points ofπ^\(q) lie in the same monodromy equivalence class
iff they lie in the same connected component of π^b(B — D).

2. The closure of each connected component ofπ^l(B-D) inπ^b(B)
has exactly one point over p.

3. The closures of the connected components of τr^(B — D) in

Tffc {,(£?) are all disjoint from each other.
Proof. 1. and 2. are standard monodromy facts. For 3. we need

to use the fact that Hk,b was defined as a normalization. The disjoint
union of the closures of the connected components of π^l(B — D) in
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πk \(B) must be dominated by the normalization which is πk \(B). Thus

they are equal, q.e.d.

Another way of stating the lemma is that the points of TΓ̂ ΓJ, (q) come

together over p if and only if they are equivalent under the monodromy

action.

Now back to our specific C, C of dimensions (26 — 2) and (26 — 1).

Going from C to C involves pσ(η and pσ(k) coming together. Thus the

monodromy involves pσμ) and pσ(k) moving around each other (At this

point the reader might find it useful to review the foundational material

in [1] Sections 1 and 2). For simplicity of illustration we assume that

σ(i) = i in C, C".

We start with the chosen lolly pop diagram.

Then Pi takes a trip around pi+χ ending back where it started. The

paths Oi and σiΛ.γ must deform as p{ moves so that the points never

cross the paths. The end result is:

Diagram 4.2.5
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notice that σ̂  = a ^ a ^ a ^ a ^ a " 1 and σ i + i = α ^ α ^ α , " 1 .
Start with a sheet over C" given with respect to the standard lolly

pop diagram 4.2.4 by [ T Ϊ , . . . , T 6]. The monodromy element induced
by Pi going around pi+ι as shown takes that sheet to a sheet which
with respect to the new lolly pop diagram 4.2.5 is given by [ τ l 5 . . . , τb].
Since sheets over C are named according to the standard lolly pop
diagram, we must determine how this sheet is named with respect to
the standard diagram. Let [TΪ, . . . , Ί%] be its name with respect to the
standard lolly pop diagram. Prom [1, Lemma 1.4] we see that we want
σj •"* ^3 3 ~ I? j ̂  and Wj »->• r3, j = 1,... , 6 to induce the same
homomorphism from π ^ P 1 — {p l 5 . . . ,p&},Po) --> Sk. This is achieved
by setting

(4.1)
= ri+l rΓ

Thus a cell over {αx > . . . > α* = α i + i > . . . > α&, C; = c i +i} can be

designated as

{oi > . . . > α< = α i + 1 > . . . > α t , ^

where the double square brackets mean equivalence class not only with
respect to simultaneous conjugation but also with respect to the equiv-
alence relation generated by the monodromy substitution 4.1. Similar
considerations apply to all cells of dimension 26 — 2 lying over D.

Cells of dimension 26—3 lying over D are quite easy. Referring to our
list in Section 4.1 we see that in (P 1 ) 6 they are all of the type "complex
diagonal with real diagonal". To each such cell C of dimension 26 — 3
associate the cell C of dimension 26—2 which simply in the description
of C leaves out the extra real diagonal. For example:

C = {ai > . . . > di = ai+1 > . . . > dj = Oj +i > ... > at,
ci — ci+li cj < Cj+l\ )

C = {aλ > . . . > a{ = α ί + i > . . . > α6, c{ = Q + I } .

The number of sheets over C and C are exactly the same. Each sheet

over C is in the closure of a unique sheet over C. Thus to designate a

cell over C we name C, the associated cell C", and a cell over C.
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Cells of dimension 26—4 lying over D are again more difficult. Given
a cell C of dimension 26 — 4 in D one looks for a cell C of dimension
26 — 3, not necessarily in D such that for C, C we can prove a lemma
analogous to Lemma 4.2. One then designates cells over C as equiva-
lence classes of cells over C" modulo a monodromy equivalence relation.

We stop here but the ambitious reader could keep going.
Now for SHkib, cells in SHk,b are equivalence classes of cells in Hk,b

under the action of Sb. We describe this action in Section 4.3 in con-
junction with our calculations of boundary maps. One should also be
aware that if monodromy calculations are done directly in SHkb, they
are different in Hkb. The quotient map (P1)6 —> Fb ramifies to order
two at the diagonals where exactly two of the coordinates are equal.
The simple loops which we constructed in (P1)6 pushforward to double
loops in P\ In [1, Section 2] simple loops in P6 were constructed. Points
only need to go half way around each other in (P1)6 to go completely
around each other in P6.

For example:

Here σ̂  = σiσi^ισi *, σ i + 1 = σ̂  and the monodromy substitution is:

4.3. The boundary maps. We proceed in a manner similar to
the way which we proceeded for the description of the cellular decom-
position. We first describe the boundary maps for the base (P1)6 then
use this to describe them for Hkb. After that we factor out by the
symmetric group and get boundary maps for P6 and SHkb.

First, let us describe the boundary maps for the base (P1)6. Set
theoretically this is quite simple. Recall the three operations which we
gave when first defining the cell complex. There are three codimension-
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one things we can do to a cell to obtain another cell.
(1) Set two adjacent real coordinates equal to each other (remember

to order the corresponding imaginary coordinates).
(2) Set some complex coordinates equal to infinity under the follow-

ing rules. We start with a maximal set of complex coordinates all of
whose real coordinates are equal. Within this we find a maximal proper
subset S whose imaginary coordinates are also equal. Set all complex
coordinates in S equal to infinity. Be careful about the ordering of the
remaining coordinates.

(3) Set two adjacent imaginary coordinates equal, provided that the
corresponding real coordinates are already equal.

Set theoretically the boundary of a cell consists of all those cells of
one smaller dimension that can be obtained via the operations above.
The signs can be easily obtained by writing down local coordinates
and using standard conventions found in most basic algebraic topology
books.

The boundary maps for Hkib are pretty much the same except that
we must keep track of the sheets of the cover. Let C be a cell in Hkb

lying over the cell C in (P1)6. For each cell C in the set theoretic
boundary of C we get a cell C' lying over C" in the boundary of C (set
theoretically). The signs in the boundary maps are the same as down
in (P1)6. However, we must keep track of the sheets! To do so, we will
be more explicit and use the explicit names for C and C' given in terms
of conjugacy classes of 6—tuples of transpositions in Sk-

The precise description of how to do this breaks down into several
cases depending on how the chosen lolly pop diagrams for C and C
relate, and whether C and/or C" are in D.

We first do the easiest case where neither C nor C" is contained in D.
C has a given lollypop diagram as does C". In the diagrams the points
Pi, . . . ,p& are situated as they must be to represent a point of C or of
C". Move the points in the diagram for C in a continuous manner until
they become the points in the diagram for C". As you move the points
make sure that they always represent a point of C until the end of your
movement where they represent a point of C". Deform the lolly pop
diagram along with the points. The end lolly pop diagram is a possible
lolly pop diagram for C". Compare it with the chosen lolly pop diagram
for C" and make a translation as was done in the preceding monodromy
computations. An example should (hopefully!) make the process clear.
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Consider a cell lying over the cell {α2 > aλ > α3 > . . . > ab}. Such a

cell would be designated as {α2 > aλ > α3 . . . > α&, [ r l 5 . . . , τb]}. Among

the cells in the boundary of {α2 > ax > a3 > ... > ab} are {aι = a2 >

a3 > . . . > α6, Ci < c2} and {ax = α2 > α3 > . . . > α6, cx > c2}.

Suppose that the standard lolly pop diagrams for these cells have

been chosen as follows.

Pb Pb

P2

{a2>a1>a3>...>ab}

Diagram 4.3.1

{a1=a2>a3>...>ab,c1>c2}

To move the points in the lolly pop diagram for {α2 > aλ > α3 >
. . . > ab} into those for {aλ = α2 > α3 > . . . > α6,Ci < c2} one
simply moves p2 to the left until it gets to the proper place. With
this movement one may deform the lollypop diagram for {α2 > ax >
α3 > . . . > ab} into that for {ax = α2 > α3 > . . . > ab,cι < c2}.
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Since the deformed lolly pop diagram agrees with the chosen lolly pop
diagram, no translation of permutations is needed. Thus one of the
terms in the boundary of {α2 > aλ > α3 . . . > α6, [ τ 1 ? . . . , τb]} will be
{αi = α2 > α3 > . . . > ab, C\ < c2, [ τ 1 ? . . . , τb]}.

For {αi = a2 > α3 > . . . > α&, C\ > c2} the situation is not so simple.
Since the movement must stay inside α2 > aλ until its end, p\ can
not travel over p2 as would be needed to obtain a deformed lolly pop
diagram equal to the chosen lolly pop diagram for {aλ = a2 > a3 >
. . . > CLb, C\ > C2 }.

Consider the following movement.

If θ\,... , σb are the elements of the fundamental group represented
by lolly pops in the standard diagram for |αχ = α2 > α3 > . . . >
α&,Ci > c2}, and α i , . . . ,α& are those in the deformed lolly pop dia-
gram then α?i = σ2

ισλσ2, a2 = σ2

xσγxσ2σλσ2, and a{ = σ{ otherwise.
Solving for the σ/s in terms of the α/s we have σ\ = a\a2aιa2

λaϊι

and σ2 = α i α 2 α Γ 1 . With the same argument used to write down the
monodromy action, we conclude that one of the terms in the boundary
of {α2 > aλ > α3 . . . > α6, [τu . . . , τb]} is {ax = a2 > α3 > . . . > α6, cx >
c2, [τiτ 2rir 2" 1rf 1, τ ir 2 rf 1 , r 3 , . . . , τh]}.

In choosing the standard lolly pop diagrams it is natural to try to
make, as many as possible, standard ones be identical to deformed ones.
No matter how clever one is, one can not make this always happen. This
is a reflection of the fact that the cover Hk,b -» (P 1 ) 6 has non-trivial
monodromy.

When one or both of C and C are contained in D things can be
more complicated. It always comes down to finding a way to compare
the lolly pop diagrams used in designating cells over C and C". We do
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a typical example.

Both of the cells CΊ = {ax = α2 > α3 > . . . > α6,Ci < c2} and
C2 = {̂ 1 = α2 > α3 > . . . > α6, ci > c2} have C3 = {αi = α2 > α3 >
. . . > α&,Ci = c2} in their boundaries. Sheets over C 3 are represented
as equivalence classes of sheets over CΊ. This makes the boundary map
from sheets over C\ to sheets over C 3 quite simple. A sheet over CΊ
has in its boundary the sheet over C3 which is its equivalence class.
The boundary map from sheets over C2 to sheets over C 3 will involve
lolly pop diagram computations. In computing the boundary map from
sheets over Co = {a2 > aλ > α3 > . . . > ab} to the sheets over CΊ and C2

we saw how to compare sheets over Co with sheets over both CΊ and C 2.
Prom this (and the fact that C0UCiUC2 is simply connected) we see that
the boundary map from sheets over C2 to sheets over C 3 is: the sheet
[τi,. . . , rb] over C2 goes to the sheet [[τiτ2τiτ.f Vf1, T I T ^ " 1 , T 3, . . . , r j ] ,
where as before [[ ]] means equivalence with respect to both simultane-
ous conjugation and the monodromy substitution 4.1 with i = 1.

That is as much as we will say about how to compute boundary
maps in Hkb. The boundary maps in SHkb are based on these, but
also involve factoring out by the action of Sb. We now explain how to
compute the boundary maps for SHkib.

First we state a general rule for calculating boundaries. For a cell C
in Hkb denote by [C] the cell in SHkyb corresponding to the Sb orbit of
C. Say dC = Σ£=i α ίCή a n d suppose that among the Ci there are m
equivalence classes [CΊ],... , [Cm]. Then d[C] = ΣZi HCi] w h e r e t h e

bi are determined as follows. For each Cj, j > m choose an element
Gj G Sb that fixes C and takes Cj to some Ci with / < m, (It is easy to
see that one can always do this.) b{ is a{ plus the sum over all j > m
such that [Cj] = [Ci] of assign σά. Here, by sign σ, we mean its sign
not as a permutation, but rather as a homeomorphism from Cj to Ci\
it is -hi if it preserves orientation and —1 if it reverses orientation. The
correctness of this is clear if one thinks about what the quotient map
Hk,b —> SHkb looks like near [Ci]. Notice that sign Oj is independent
of the choice of θj\ for suppose Oj and σ'j had opposite signs, then
σjισ'j would be orientation reversing from Cj to itself, contradicting
the fact that the action always either takes a cell to another cell, or a
cell identically to itself.

It is very easy to determine when two cells of (P 1 ) 6 are equivalent
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under the action of Sb. For Hkyb it is not so easy, one must do lolly
pop diagram computations similar to those done before. Here we show
how to do what we need to compute the homology groups which were
calculated with the computer.

The boundary of the unique 26—cell [aλ > . . . > ab] will be a sum
of terms of the form [ax > . . . > α* = α i + 1 > . . . > ah,Ci < c i + i ]
and [αi > . . . > a{ = α i + i > . . . > ab,Ci > Q + I ] . Those two cells
represent the same cell in P 6 . The question is when do the cells over
them in Hk^b represent the same cell in SHkj. That is, when will
[oi > . . . > o< = ai+1 > . . . > abiCi < ci+u [τu ... ,τb]] and [at > . . . >
di = ai+ϊ > ... > ab,Ci > Ci+i, [r^,... , r^]] represent the same cell in

Suppose we have chosen standard lolly pop diagrams as follows.

Pb
{a-|>a2>...>ab}

Pi+1

Pb

{a1>a2>...>aj=aj+1>...>ab,Ci>cJ4.1}
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Think of computing d[aχ > a2 > . . . α&, [TΊ, . . . ,t j] in Hkib. For
the two terms involving a{ = ai+ι we have chosen standard lolly pop
diagrams which are equal to the deformed lolly pop diagrams, so we get
terms [aλ > a2 > ... > a{ — ai+1 > . . . > α 6, c{ < ci+u [ru... , τh]] and

[CLI > a2 > . . . > a,i = α i + i > . . . > ah,Ci > ci+u[τu... ,τ 6 ]]. Notice

that in the two lollypop diagrams for Q < ci+ι and c{ > ci+ι the sets
{p 1 ?... ,pb} are equal. The fibers of Hkb over each of these points are
therefore equal - both identified with covers of P 1 — {pi,... ,p&} The
fiber of SHkj over the single point represented as the equivalence class
containing those two points is again just covers of P 1 — {pi,... ,p&}
When identifying two fibers in Hkb to get the single fiber in SHkb

we must identify a cover in one fiber with the same cover in the other
fiber. When representing these covers as equivalence classes [τi, . . . , τb]
we must take into account that we have different lolly pop diagrams
for the two points in (P 1 ) 6 which become one point in Ψb. This involves
writing the cycles in one diagram in terms of the cycles in the other as
we have done many times before. The end result is:

d[aλ > . . . > α 6 ; [ τ l 7 . . . ,τ6]]

6 - 1

± t > • • > fli = α*+i > > o>b, Ci < b ]]

α6,

Next we think about the boundaries of 26 — 1 cells. From the list
at the beginning of Section 4.1 we see that all b — 1 cells are more
or less of the same type. Let us think about taking the boundary of
[di > . . . > ai = α i + i . . . > α6, c{ < ci+ι, [τu... , τb]]. In its boundary
we will have all the types of 2b — 2 cells on the list from Section 4.1.
Computing the boundary for cells that add a new real diagonal not
adjacent to the one, we already have, proceeds almost exactly as the
26 to 26 — 1 boundary proceeded. Adding a real diagonal adjacent to
di = ai+1 also proceeds very similarly except that the lolly pop diagrams
are a bit more complicated because three points are permuted. The
only really new things are when one gets a complex diagonal or an
infinity.

The complex diagonal term is quite easy. Sheets over [αi > . . . >
a,i — α i + i . . . > ab,Ci = c ί + 1] are identified as equivalence classes of
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sheets over [αi > . . . > α» = α<+i... > ab,Ci < c ΐ + i] . The boundary
map sends each sheet to its equivalence class.

Boundary terms that involve infinity are much more complicated.
The boundary of {ax > . . . > αέ = ai+1 . . . > α&,Q = Q+i} in (P 1 ) 6

contains both {ax > ... > a^_i x o o > ai+ΐ > . . . ab} and {aλ > . . . >
Oj x o o > α̂ +2 > . Q>b}' As i ranges from 1 to b — 1 we get infinity in
all positions. However, under the action of Sb all these are equivalent.
We must see how the sheets over them in Hkb are equivalent under the
action of S& Given what we already know how to do, this is not very
difficult. Suppose we choose as our representative cell in SHkjb the cell
of Hk,b where oo is in the δ'th position.

Its standard lolly pop diagram could be chosen as:

Now suppose oo is in the i'th position. Then its standard lolly pop
diagram could be chosen as:
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Thus we have oij — σ^ for j < i; αά = α ^ α ^ i . . . σb-χσbσ^\... σ~ι

and Oίj — Oj-i for j > i. We can therefore make the appropriate
transformations on the equivalence classes [τi,... , τb] to identify sheets
over the two cells - as we have done many times before.

The boundary maps of higher codimension become more compli-
cated, but we can always do them by paying careful attention to lolly
pop diagrams.

4.4. This cell complex does compute homology. Notice that
we have never referred to our cell complex as a CW-complex. Indeed it
is not obvious that it is a CW-complex. Thus, there could be a question
as to whether or not it can actually be used to compute the homology
of Hk,b or SHkib, which for the rest of the section will be referred to as
H. We now show that it does indeed compute the homology.

First note that H is the normalization of a projective variety in a
function field. Thus by [10, Section v.4, Theorem 4] it is also a pro-
jective variety. Next refer to [8] on the triangulation of semi-algebraic
sets. Prom the fact that H is projective algebraic, and the way the
cells were defined in terms of equalities and inequalities, it follows that
the closure of any cell in the base is a closed semi-algebraic set. By
[8, Theorem, p. 170] one may triangulate H in such a way that the
total inverse image in H of the closure of each cell is a simplicial sub-
complex. Finally [16, Section 2.9] shows how to make a cell complex
that computes homology out of a simplicial complex. Our cell com-
plex is made in that manner. Each open cell is the union of all open
simplices that are contained in it.

5. Computation of some low dimensional homology groups

Theorem 5.1.
(a) H'iSHw) = H'iHtt) =0fori>b,
(b)H1(HLb)=H1(SHkfb) = 0,
(c)H2(SHKlnQ)=®.
Proof. (a) follows from the fact that these spaces are affine, see

[11, p. 39], but can also been seen from our cell complex.
When i < b every cell of dimension i is supported in Hk,b — Hk,b (resp

SHk^ — SHk^b). Thus the relative homology groups Hi(HktbjHkb —
Hkib) and Hi(SHkb, SHkb — SHkyb) vanish. Applying Lefschetz duality
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(applicable because of the triangulability mentioned in Section 4.4) it
follows that

H2b-i(Hk,b)=H2b-i(SHk,b) = 0

for i < b.
(b) There are no 1 cells in the complex.
(c) This requires more computation. First note that every 2-cell is

closed because there are no 1-cells. To simplify notation we will use
the following notation for 2-cells in Pδ.

ΔO = [ 1 Ξ 2 Ξ 3 Ξ . . . = 6 ] ,

Δ I = [OO X 2 ΞΞ 3 ΞΞ . . . ΞΞ 6],

< = [ o o x o o - x o o x i + l =

Δ 6 _ i = [OO X . . .OO X C j .

Using this notation, we will compute the boundaries of selected 3 cells
(mod 2)

d[l = 2 = 3 = b] = Δ o + Δi + Δfe_1?

d[oo x 2 = 3 = b] = Δi + Δ 2 + Δ 6_ l 5

continuing until we take

d[oo xoo - o o x b - l = b] = Δ 6 _ 2 + Δ 6 _ i + Δ 6 _ i .

Similar relations hold in the homology of of SHkib, however, mat-
ters are complicated by the fact that there are many sheets. We can
however, write

d[l = 2 = 3 = 6]( i) = Δ^σ o ( i ) ) + A[σi{i)) + Δ £ V ί 0 \

where the superscripts in parentheses indicate a particular sheet of
SHkb over the cell, and σo,σχ and σb_i are some integer valued func-
tions depending on an ordering of the sheets over the cells concerned.
We do know however, that every sheet over Δ o must occur in the
boundary of some cell over [1 = 2 = 3. . . = 6].
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Let us write down an arbitrary 2—cycle

<=O

Prom what we just said, by adding suitable terms of the form d[l
2 = 3 . . . = 6]W we see that a is homologous to a cycle of the form

i=l j

In a similar fashion we can use terms of the form d[oo x 2 = 3 = . . . =

b]W to eliminate i = 1 terms from the sum. Continuing in this manner,

we eventually obtain that a is homologous to a cycle of the form

Thus,

rk H2(SHkj, Z/2Z) < number of sheets over Δ&_i.

We now state:

Lemma 5.1. The number of sheets over Δ6_χ is one.
Given the lemma, the theorem follows almost immediately. Of course

iϊ 2 (P 6 ,Q) = Q. Since the map s π M : lSHk,b -> P 6 is a (singular)
branched cover, the transfer map is injective on rational homology.
Hence, rkq H2(SHkilnQ) > 1. This bound, together with the one
above, yields H2{SHk}b,Q) = Q as desired, q.e.d.

Proof of Lemma 5.1. To compute the number of sheets over the
cell Δ6_i in P 6 , we must compute the number of sheets in Hkj over
the cell {(oo,... ,oo,z6) : zb G C} in (P 1 ) 6 . (Note that this cell is in
the equivalence class that represents Δ6_i.) Here, we must compute,
by local monodromy, the number of points in Hkb lying over a point in
(P 1 ) 6 where Z\ = z2 . . . £&-i. This number is the number of equivalence
classes of the monodromy group generated by loops in (P 1 ) 6 — Δ which
take any 2 points, but the last one around each other.

However, due essentially to the fact that P 1 minus a single point is
still simply connected, any loop involving points going around the last
point can be deformed to a loop that involves only the first 6—1 points
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going around each other. Hence, the number of sheets is the number
of monodromy equivalence classes of the full monodromy group. Thus,
to prove the lemma, it suffices to show that Hkb is connected.

By classical arguments, (cf. [5]) the quotient SHktb = Hkyb/Sb is
connected. Furthermore, since (P 1) 6 — Δ is connected, it suffices to
find a path connecting any two points in a fiber of the map πk^ :
Hktb -> ( P 1 ) 6 - Δ .

Let a = (zι,... , zb) be a point in (P 1 ) 6 — Δ and let aλ, α 2 , . . . aN

be the orbit of a under the action of Sb where aλ = a and N = (6)!.
The fiber of πkj over each point a{ represents all possible degree k
covers of P 1 simply branched over the set {zx,. ..zb}. Thus we can fix a
single lolly pop diagram for P 1 — {zλ,... ,zb} and use it to represent the
fibers over each α; as equivalence classes of ordered 6—tuples of simple
transpositions as in Section 4. Denote by a\1' the point in the fiber
over cίi represented as

(5.1) [(12), (12),... , (12), (13), (13), (14), (14),... , {Ik), (Ik)],

where the transposition (12) is repeated 6 — 2(fc — 2) times.

Because SHkb is connected, any 2 points in πkl(a) can be connected

to be points of the form a^ and α̂  for some i and j respectively. Thus,

we can reduce the proof of connectedness to showing that two points

of the form a^ and af can be connected.

Fortunately, it is quite easy to construct a path connecting these two
points. At the end of Section 4.2 we constructed paths in (P 1 ) 6 that
induced simple loops in P 6 . Denote by Yx these paths in (P 1 ) 6 . Thus
Yx induces a path in Hk^b, that takes the point [σi,... , σx, σ ί + 1 , . . . , ob]
in the fiber over {zλ,... , zh zι+ϊ,... ,zb) to the point

r — 1 1

in the fiber over (zι,... , zj_i, zt+ι, zh Zι+2, , %b) Compute directly
that Γf induces a path in Hkb, that takes a point represented by (5.1)
over (zx,... , zι, zx+λ,... , zb) to a point again represented by (5.1) over
(zι,... , zx_ι, zι+ι, zι, zt+2, - -> Zb) Since Sb is generated by the trans-
positions (12), (23),... , (6-1,6) , using a product of the IYs will take
any a[1' to af\ q.e.d.
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6. High dimensional homology

6.1. Top dimensional homology. In this section we compute
H2b(SHkib, Z/2Z) by means of our complex. We use Z/2Z coefficients
because the computations with them are easier and no information is
lost. Since SHkb is non-singular and SHkib is normal, the rank of
H2b(SHk,b) with coefficients in any non-trivial group is the number of
connected components of SHkib which is the same as the number of
connected components of SHk,b.

It has been known since the 1800's that SHkib is connected ([9], see
also [5]), thus H2b(SHk^Z/2Z) = Z/2Z. In this section we show that
using our cell complex to compute this homology group reduces to a
combinatorial problem, and that this combinatorial problem is exactly
the same one used in the classical proof that SHkb is connected.

Let / be the degree of the map sπk,b : SHkib —> Ψb. Prom Section
4 we know that SHkib will have / cells of dimension (26) and l(b — 1)
cells of dimension (26 — 1). To write down the boundary map d :
(26)chains —> (26 — l)chains in compact form we first define operators
Γ75 1 < j < b — 1 on equivalence classes of ordered 6—tuples of simple
transpositions which represent fibers of sπkib as in Section 4:

(6.1) Γ̂  fσi,... ,σ6] = [σχ,... ^σj^σj+ι^σ~Λ.ισ

Prom Section 4 we deduce that

j=l t=l

H2b(SHkib, Z/2Z) is of course the kernel of d.
Lemma 6.1. Each Γj is a bijection.

Proof. Γ " 1 ^ ! , . . . , σb] = [σu . . . , σ^u σjσj+ισjι, σά, σj+2 , σb].
q.e.d.

Remark. Remembering that the σ's are transpositions one can
see the following. If α, = σ J + i then Γ, acts as the identity. If α, and

are disjoint, then Γ? acts as the identity. If GJ and σ J + i are neither
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disjoint nor equal, then Γ| acts as the identity. So in any case, Γ? acts
as the identity &nd we may take Tj1 = Γ*.

Prom the lemma it follows that each (26 — l)cell has exactly two
(26)cells in whose boundary it lies; [1 > ... j = j+1 > ... 6, [σ l 7... , σb]]
lies in the boundary of exactly, [1 > ... > 6, [σλ,... , σb]] and [1 > ... >
ft,^1^,...,^]].

Suppose that a = ΣLi "ά1 > . . - > & , [σ^\ . . . , σ^}] and da = 0,
and further that Γ^σ^,... , σf}] = [σ[8\ ... , σ[s)] where of course 1 <
s<l.

Lemma 6.2. at = as.
Proof. The coefficient of [1 > ... j = j + 1 > ... 6, [σ[s),... , σ{

b

s)]]
in da is at + as. q.e.d.

Suppose now that we put an equivalence relation on equivalence
classes [σi,... , σb] as follows. Two such are equivalent if there is some
Γj taking one to the other. Then take the equivalence relation thus gen-
erated. By the remark above, one could generate the same equivalence
relation with Γ^'s.

By Lemma 6.2 the rank of the kernel of d is at most the number
of equivalence classes under that equivalence relation. Indeed since,
Lemma 6.2 gives one possibly trivial linear relation among the coeffi-
cients o,i for each (26 — l)cell, the rank of the kernel of d is exactly the
number of equivalence classes. Showing that this number is one is a
purely combinatorial problem. It is exactly the combinatorial problem
used to prove the connectivity of SHkyh (see for example [5]).

6.2. Examples and conjectures. Using computer programs
written by the second author, we were able to determine homology in-
formation about the Hurwitz spaces 5if3)4 , SH3i6 , SH3,$ and SH^6

as well as their compactifications. We summarize the results of these
calculations below. All computations were done with rational coeffi-
cients.

SH3y4 is a 4 sheeted cover of P4 — D where D is the discriminant.
We found ^{SHSA) = Q a n d H2(SH3A) = 0. After compactifying
we found H7(SH3A) = 0 and H6(SH3A) = Q. Since H2{SH3A) = 0 it
follows from exact sequence 2.1 that the map i* in Proposition 2.2 is
surjective. Thus, H2

alg{SH3A) = 0. Since H7(SH3A) = 0, Pic(SH3A) =
0 as well by Proposition 2.3.

SH3,6 is a 40 sheeted cover of P6 - D, and H^SH^) = Q while
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H2{SH3y6) = 0. We also found Hn(SH3fi) = 0 and H10(SH3t6) = Q 2 .
Thus, as above H2

alg(SH3y6) = Pic(SH3,6) = 0.
SH3y8 is a 364 sheeted cover of P 8 - £>, and Hι(SH3)8) = Q and

H2(SH3y8) = 0. We also found Hlb(SH3iS) = 0 and Hu(SH3tS) =
Q 2 . As in the previous examples, we can then conclude Hllg(SH3$) —
Pic(SH3,8) = 0.

SH4y6 is a 40 sheeted cover of P 6 - D and Hλ{SH^) = Q2 while
H2(SH4y6) = Q. This example shows that H2(SHKh) is not in gen-
eral 0, as one might have hoped. We also found Hi^SH^^) = 0 and

H10(SH4i6) = Q 2. Because H2(SH4IQ) φ 0, we can not conclude from

the exact sequence 2.1 that the map i* from Proposition 2.2 is sur-

jective. Nevertheless we are able to show by direct calculation that

4f — SH4^)) = 0, so the map i* is surjective and
Hlι9(SH4,6) - 0. Since Ήn(SH\9e) = 0, Pic(SHAfi) = 0 as well.

Since SHk,b is far from being simply connected, we expect that
Hι{SHk,h) can be arbitrarily large for A:, b » 0. Based on the first ex-
amples involving SH34,SH3)6,SH3iS we wondered if H2(SHkyb) would
vanish. However, as noted above H2(SH4$) φ 0, and we expect that
H2(SHk,b) can become arbitrarily large.

In all of the examples we calculated that H2b-i(SHkyb) = 0 lead-
ing the first author to ask, and the second author to conjecture1 the
following:

Conjecture 1. H2b-i(SHkj) = 0 for all k and b.
Likewise, in all examples where it was possible to for us to compute

H2b-2(SHkib) was generated by the image of H2b-2(SHkib — SHkib).
We believe this happens for all k and 6, which is consistent with the
following conjecture1

Conjecture 2. H2

alg(SHKb) = 0 for all k and b.
As proved in Section 3, Harer's theorem implies the conjecture for k

large relative to b.

Combining Conjecture 1 and Conjecture 2 yields by Proposition 2.3
Conjecture 3. Pic(SHkyb) ® Q = 0.
Again, Harer's theorem proves this conjecture when k is large relative

to b.

1 Again, the first author does not make conjectures.
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