ON THE SLOPE AND KODAIRA DIMENSION OF \bar{M}_{g} FOR SMALL g

MEI-CHU CHANG \& ZIV RAN

Let M_{g} denote the moduli space of smooth curves of genus g and let

$$
\bar{M}_{g}=M_{g} \cup \bigcup_{i=0}^{[g / 2]} \Delta_{i}
$$

be its stable compactification; here $\Delta_{i}=\Delta_{i, g}$ for $0<i<g$ parametrizes stable curves of the form $C_{1} \cup_{P} C_{2}$, where C_{1} and C_{2} have genus i and $g-i$, respectively, and meet at P, and Δ_{0} parametrizes irreducible nodal curves of geometric genus $g-1$. Let λ denote the class of the Hodge line bundle on \bar{M}_{g}, i.e., the line bundle whose fiber over $[C] \in \bar{M}_{g}$ is $\Lambda^{g} H^{0}\left(C, \omega_{c}\right)$, and put

$$
\delta_{i}=\left[\Delta_{i}\right], \quad \delta=\sum_{i=2}^{[g / 2]} \delta_{i}+\delta_{0}+\frac{1}{2} \delta_{1} .
$$

Many important divisor classes on \bar{M}_{g} have the form $a \lambda-b \delta, a, b>0$, for example the canonical class

$$
K_{\bar{M}_{g}} \sim 13 \lambda-2 \delta
$$

(cf. [7]). With Harris, one defines the slope s_{g} of M_{g} as

$$
s_{g}=\inf \{a / b \mid a \lambda-b \delta \text { is effective, } a, b>0\}
$$

This number carries some important information about \bar{M}_{g}. For example, as λ is birationally ample, \bar{M}_{g} is of general type (resp. has nonnegative Kodaira dimension) whenever $s_{g}<6 \frac{1}{2}$ (resp. $s_{g} \leq 6 \frac{1}{2}$), and this, in fact, is how these statements were proven by Harris, Mumford, and Eisenbud for $g \geq 24$ (resp. $g=23$). It is proved in [4] that $s_{g} \leq 6+12 /(g+1)$ whenever $g+1$ is composite. On the other hand, the lower bound $s_{g}>6 \frac{1}{2}$

[^0]is obviously equivalent to \bar{M}_{g} having Kodaira dimension $-\infty$. For additional motivation for computing or estimating s_{g}, see [6], [2].

The problem of bounding s_{g} from below was considered by Harris and Morrison [5], who conjectured in general that

$$
s_{g} \geq 6+12 /(g+1)
$$

with equality when $g+1$ is composite. They give an asymptotic lower bound ($\sim 576 / 5 g$) for s_{g}, as well as some explicit lower bounds for small $g(g \leq 6)$. Additional lower bounds on s_{g} for $g \leq 5$ and $g=15$ were given in [2], [3].

The purpose of this paper is to give further lower bounds on s_{g} for $6 \leq g \leq 9$ and $g=16$. These suffice, in particular, to prove that M_{16} has Kodaira dimension $-\infty$. We summarize our results as follows.

Theorem 0.1. For $g=2, \cdots, 9,15,16$ we have $s_{g} \geq \sigma_{g}$, where σ_{g} is given in Table 1, in which $(\mathrm{HM})_{g}$ denotes the Harris-Morrison lower bound in genus g.

g	σ_{g}	$(\mathrm{HM})_{g}$	$6+12 /(g+1)$
2	10	10	10
3	9	9	9
4	8.5	~ 8.4242	8.4
5	7.8	8	8
6	7.8333	7.328	7.7142
7	7.4285		7.5
8	7		7.3333
9	7		7.2
15	6.667		6.75
16	6.56		6.7058

Table 1

Remark. We have $s_{4} \leq 8 \frac{5}{6}$ by [5].
Our method of proof, in analogy with [5], is to show the noneffectiveness of a divisor class A on \bar{M}_{g} by "testing" against suitable pencils $F \subset \bar{M}_{g}$, i.e., by showing that $F \cdot A<0$. We will use three kinds of pencils: the first kind "fill up" \bar{M}_{g}, the second kind fill up a boundary component $\Delta_{i} \subset \bar{M}_{g}$, while a third and more subtle kind fill up a divisor
in a boundary component. As for the first kind of pencils, these are mostly classical, coming from pencils of smooth or nodal curves on rational surfaces (mostly \mathbb{P}^{2}); the one nonclassical exception is a pencil of genus 15 constructed in [1]. As for the second and third kinds, these are obtained by starting with a pencil of the first kind, base-changing, if necessary to get sections, and then applying one of two possible types of "lifts": type α consists in attaching a fixed curve along a section, while type β consists in gluing together two (disjoint) sections.

The paper is organized as follows. §1 consists of generalities, notably some trivial but useful "principles" for proving noneffectiveness of divisor classes by testing on suitable curves, and some formulas useful for doing intersection theory on \bar{M}_{g}; in particular, for computing intersection numbers related to the lifts of types α and β. In $\S 2$ we describe explicitly our pencils and prove Theorem 0.1.

1. General principles and formulas

We begin by formulating the general principles which we will use in proving the noneffectiveness of divisor classes. Let X be a \mathbb{Q}-factorial projective variety, such as \bar{M}_{g}. Then for any curve F (say irreducible) and divisor D on X, the intersection number $F \cdot D \in \mathbb{Q}$ is defined. If $B \subset X$ is a subvariety, we will say that F fills up B if F moves in an irreducible algebraic family $\left\{F_{t} \mid t \in T\right\}$ of curves on X such that $\bigcup_{t \in T} F_{t}$ is dense in B. Recall that F is said to be nef if $F \cdot D \geq 0$ for every effective divisor D. More generally, a collection $\left\{F_{1}, \cdots, F_{N}\right\}$ of curves is said to be nef if for every effective divisor D, we have

$$
\max _{1 \leq i \leq N} F_{i} \cdot D \geq 0
$$

Principle 1.0. If F fills $u p X$, then F is nef.
Principle 1.1. If F fills up a prime divisor B such that $F \cdot B \geq 0$, then F is nef.

Principle 1.2. Suppose that for each i the curve F_{i} lies on a prime divisor B_{i} and is nef as a curve on B_{i} with respect to \mathbb{Q}-Cartier divisors, and suppose moreover that

$$
F_{i} \cdot \sum_{j=1}^{n} B_{j} \geq 0, \quad i=1, \cdots, N
$$

Then the collection $\left\{F_{1}, \cdots, F_{N}\right\}$ is nef on X.
The proofs of these are essentially trivial. For illustration, let us prove 1.2. Suppose D is an effective divisor on X such that $D \cdot F_{i}<0$ for
$i=1, \cdots, N$. Then

$$
\left.D\right|_{B_{i}} \cdot \bar{B}_{i} F_{i}=D \cdot{ }_{X} F_{i}<0
$$

So by assumption $\left.D\right|_{B_{i}}$ cannot be effective on B_{i} and, in particular, $D \geq$ $B_{i}, i=1, \cdots, N$. But then we have $\left(D-\sum_{j=1}^{N} B_{j}\right) \cdot F_{i}<0, i=$ $1, \cdots, N$.

Applying the same argument to $D-\sum B_{j}$ in place of D, we conclude inductively that D contains arbitrarily high multiples of the B_{j}, which is impossible. q.e.d.

We now specialize to the case $X=\bar{M}_{g}$. For a "pencil," i.e., an irreducible curve $F \subset \bar{M}_{g}$, it will be convenient to define the slope

$$
s(F)=\frac{F \cdot \delta}{F \cdot \lambda},
$$

provided both numerator and denominator are positive. Note that, essentially by definition, whenever F is nef we have

$$
s_{g} \geq s(F)
$$

More generally, we have
Principle 1.3. For any nef collection $\left\{F_{1}, \cdots, F_{N}\right\}$ of pencils on \bar{M}_{g}, we have

$$
s_{g} \geq \min _{1 \leq i \leq N} s\left(F_{i}\right) .
$$

Proof. If $D \sim a \lambda-b \delta$ is effective, $a, b>0$, then for some $1 \leq i \leq N$,

$$
0 \leq D \cdot F_{i}=a F_{i} \cdot \lambda-b F_{i} \cdot \delta,
$$

i.e., $\min s\left(F_{i}\right) \leq \frac{a}{b}$, hence the assertion. q.e.d.

Next, we will recall some formulas which we will use in computing intersection numbers on \bar{M}_{g}. Let $\pi: \mathscr{Y} \rightarrow B$ be a proper morphism from a locally complete intersection surface to a smooth complete curve of genus h, whose fibers $Y_{b}=\pi^{-1}(b)$ are stable curves of genus i, and let $f: B \rightarrow \bar{M}_{i}$ be the natural map, with image cycle F. Then we have (cf. [1])

$$
\begin{gather*}
F \cdot \delta=c_{2}(Y)+4(1-h)(i-1), \tag{1.1}\\
F \cdot \lambda=\chi\left(\mathscr{O}_{Y}\right)+(1-h)(i-1)
\end{gather*}
$$

Another standard device which we will use is that of "lifting" a pencil in $\bar{M}_{i}, i<g$, to \bar{M}_{g}. We will use two types of such lifts:

Type α. With notation as above, let $A \subset \mathscr{Y}$ be a multisection, i.e., a smooth irreducible curve, not containing any singular points of fibers, and
mapping to B with degree $m>0$, and let $\alpha(F, A, g)$ or $\alpha(F, A)$ be the pencil in \bar{M}_{g} parametrized by A, where $a \in A$ corresponds to the curve $Y_{\pi(a)} \cup C$ obtained by gluing $Y_{\pi(a)}$ to a fixed general curve of genus $g-i$ by identifying a with a fixed general point $P \in C$. Then we have

$$
\begin{align*}
& \alpha(F, A) \cdot \overline{m_{g}} \lambda=m F \cdot \lambda, \quad \alpha(F, A) \cdot \bar{M}_{g} \delta_{j}=m F \cdot \delta_{j} \\
& j \neq i, g-i, \tag{1.2}\\
& \alpha(F, A) \cdot \bar{M}_{g} \delta_{i}=m(2 h-2)-2(g(A)-2)+A \cdot{ }_{y} A .
\end{align*}
$$

Proof. The first two formulas are evident. To verify the third, it is easy to see by base-change that we may assume A is a section of π. In this case the formulas of [7] yield

$$
\begin{aligned}
\alpha(F, A) \cdot \bar{M}_{g} & \delta_{i}
\end{aligned}=-A \cdot \omega_{\mathscr{Y} / B}=m(2 h-2)-A \cdot \omega_{\mathscr{Y}}, ~=m(2 h-2)-(2 g(A)-2)+A \cdot A
$$

by adjunction. What we are using from [7] is essentially just the fact that the normal bundle to Δ at a curve C_{0} with a unique node P is essentially $T_{1} \otimes T_{2}$, where T_{1} and T_{2} are the tangent spaces to the branches of C_{0} at P.

Type β. Now in the above situation suppose there are given two transverse multisections A_{1}, A_{2}. Base-changing with respect to $A_{1} \rightarrow B$, then $A_{1} \times{ }_{B} A_{2} \rightarrow A_{1}$, we obtain a family with two sections meeting transversely; blowing up the intersection of the two sections, we obtain a family, say $\tilde{\pi}: \tilde{\mathscr{Y}} \rightarrow \tilde{B}$, with two disjoint sections $\tilde{A}_{1}, \tilde{A}_{2}$. Gluing these together, we obtain a pencil

$$
\beta\left(F, A_{1}, A_{2}\right) \subset \Delta_{0} \subset \bar{M}_{i+1}
$$

Putting $m_{i}=\operatorname{deg}\left(A_{i} \rightarrow B\right), i=1,2$, we have, again by [7],

$$
\begin{aligned}
\beta\left(F, A_{1}, A_{2}\right) \cdot \overline{M_{i+1}} \lambda & =m_{1} m_{2} F \cdot \overline{M_{i}} \lambda, \\
\beta\left(F, A_{1}, A_{2}\right) \cdot \overline{M_{i+1}} \delta_{j}= & F \cdot \delta_{j}, \quad j \neq 0,1, i \\
\beta\left(F, A_{1}, A_{2}\right) \cdot \delta_{1}= & A_{1} \cdot A_{2}, \\
\beta\left(F, A_{1}, A_{2}\right) \cdot \overline{M_{i+1}} \delta_{0}= & m_{1} m_{2} F \cdot \delta_{0} \\
& +\left[\sum_{l=1}^{2} m_{l}(2 h-2)-\left(2 g\left(A_{l}\right)-2\right)+A_{l} \cdot A_{l}\right] \\
& -A_{1} \cdot A_{2} .
\end{aligned}
$$

Remark 1.4. Note that by construction, if F is nef on \bar{M} and A contains a general point of a general fiber Y_{b}, then $\alpha(F, A, g)$ is nef on $\Delta_{i, g}$, and similarly for β.

2. Construction

In this section we will give the specific construction which, together with the methods of $\S 1$, will prove Theorem 0.1 . For simplicity of exposition, we will concentrate on the case of genus 16 ; in fact, as regards proof, the other cases are essentially special cases of this.

In outline, the argument goes as follows. We construct for each $i=$ $1, \cdots, 8,15$ a pencil $F_{i} \subset \bar{M}_{i}$ and a section A_{i} (for $i=15$, we construct two sections $A_{1,15}$ and $A_{2,15}$) and compute the appropriate intersection numbers. Then we may define

$$
\begin{align*}
& F_{i, 16}=\alpha\left(F_{i}, A_{i}, 16\right), \quad i=1, \cdots, 8 \tag{2.1}\\
& F_{0,16}=\beta\left(F_{15}, A_{1,15}, A_{2,15}\right)
\end{align*}
$$

By construction, the F_{i} are nef; they even fill up their \bar{M}_{i} for $i \leq 8$. Using Remark 1.4, the fact that each $F_{i, 16} \cdot \delta>0$ (by construction), and Principle 1.2, we may conclude that $\left\{F_{0,16}, \cdots, F_{8,15}\right\}$ forms a nef collection of pencils on \bar{M}_{16}. We may then apply Principle 1.3 to get a lower bound on s_{16}.

i	Type of pencil F_{i}	\# of base points	$\lambda \cdot F_{i}$	$\delta \cdot F_{i}$	$s\left(F_{i}\right)$	$s\left(F_{i, 16}\right)$
1	Plane cubic	9	1	12	12	11
2	Type $(2,3)$ on quadric	12	2	20	10	9.5
3	Plane quartic	16	3	27	9	8.6
4	Type (3.3) on quadric	18	4	34	8.5	8.25
5	Quadric section on del Pezzo quartic	16	5	39	7.8	7.6

Table 2

Next, we construct F_{6}, \cdots, F_{9} (where F_{9} is not needed for the bound on s_{16} but yields the bound on s_{9}). Here we take in each case a pencil of nodal plan curves of degree d with assigned nodes in generic position, plus the appropriate number of assigned simple base points in generic position to make a pencil, and then some unassigned base points. It is classical in these cases that by blowing up the base points we get a pencil F_{i} of stable curves filling up \bar{M}_{i}, and we take as A_{i} the section corresponding to a simple base point.

i	d	\# of nodes	\# of simple base points	$F_{i} \cdot \delta$	$F_{i} \cdot \lambda$	$s\left(F_{i}\right)$	$s\left(F_{i, 16}\right)$
6	6	4	20	47	6	7.83	7.66
7	7	8	17	52	7	7.43	7.28
8	8	13	12	56	8	7	6.875
9	8	12	16	63	9	7	6.88

Table 3
Finally we consider the one nonclassical case $i=15$. Here the appropriate pencil F_{15} was constructed in [1], [3], and its α-lift was considered in [2]; incidentally, this α-lift $\alpha\left(F_{15}, A, 16\right)$ may be used in place of $F_{1,16}$ constructed above. The case of the β-lift is quite similar and so we will just sketch it. There is a family

$$
\begin{aligned}
\mathscr{Y} \\
\pi \downarrow \\
\mathbb{P}^{1}
\end{aligned} \subset \mathbb{P}^{1} \times \mathbb{P}^{3}
$$

of stable, irreducible automorphism-free curves of genus 15 , whose degree in \mathbb{P}^{3} is 14 . For the corresponding pencil F_{15} in \bar{M}_{15} we have

$$
F_{15} \cdot \lambda=318, \quad F_{15} \cdot \delta=F_{15} \cdot \delta_{0}=2120,
$$

and moreover F_{15} fills up a divisor $D \subset \bar{M}_{15}$ such that $F_{15} \cdot D>0$, so that F_{15} is nef in \bar{M}_{15}.

As our multisections A_{1}, A_{2} we take the pullbacks of two generic planes $H_{1}, H_{2} \subset \mathbb{P}^{3}$. As \mathscr{Y} projects birationally to a surface of degree 16 in \mathbb{P}^{3}, we have

$$
\begin{aligned}
& A_{1}^{2}=A_{2}^{2}=A_{1} \cdot A_{2}=16, \\
& g\left(A_{i}\right) \leq \frac{15 \cdot 14}{2}=105, \quad i=1,2, \\
& A_{i} \cdot Y_{6}=14, \quad i=1,2 .
\end{aligned}
$$

Setting $F_{0,15}=\beta\left(F_{15}, A_{1}, A_{2}\right)$ and plugging into the formulas, we compute that

$$
\begin{aligned}
& F_{0,16} \cdot \lambda=14^{2} \cdot 318, \\
& F_{0,16} \cdot \delta=2120 \cdot 14^{2}-2(14 \cdot 220+16)+16, \\
& s\left(F_{0,16}\right)=6.5670,
\end{aligned}
$$

yielding the bound on s_{16}.

References

[1] M. C. Chang \& Z. Ran, The Kodaira dimension of the moduli space of curves of genus 15, J. Differential Geometry 24 (1986) 205-220.
[2] ___, Divisors on \bar{M}_{g} and the cosmological constant, Mathematical Aspects of String Theory (S. T. Yau, ed.), World Scientific, Singapore, 1987, 386-393.
[3] __, A note on the slope of subvarieties of $\bar{M}_{15}\left(6 \frac{2}{3} \leq S_{15} \leq 6 \frac{3}{4}\right)$, Mathematical Aspects of String Theory (S. T. Yau, ed.), World Scientific, Singapore, 1987, 408-411.
[4] D. Eisenbud \& J. Harris, On the Kodaira dimension of the moduli space of curves of genus ≥ 23, Invent. Math. 90 (1987) 359-387.
[5] J. Harris \& I. Morrison, Slopes of effective divisors on the moduli space of stable curves, Invent. Math. 99 (1990) 321-355.
[6] J. Harris \& D. Mumford, On the Kodaira dimension of the moduli space of curves, Invent. Math. 67 (1982) 23-86.
[7] D. Mumford, Stability of projective varieties, Enseignement Math. 24 (1977) 39-110.
University of California, Riverside

[^0]: Received May 30, 1990 and, in revised form, August 2, 1990. The authors were supported in part by the National Science Foundation.

