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ON THE SLOPE_AND KODAIRA DIMENSION
OF Mg FOR SMALL g

MEI-CHU CHANG & ZIV RAN

Let M denote the moduli space of smooth curves of genus g and let
σ

/=0

be its stable compactification; here Δ. = Δ. for 0 < / < g parametrizes
stable curves of the form C{ Up C2, where Cγ and C2 have genus / and
g-i, respectively, and meet at P, and Δo parametrizes irreducible nodal
curves of geometric genus g - 1. Let λ denote the class of the Hodge
line bundle on Ήg, i.e., the line bundle whose fiber over [C] e Ήg is
Λ*Z/°(C>ωc),andput

[gβ]

ι=2

Many important divisor classes on Ήg have the form aλ-bδ, a, b > 0,
for example the canonical class

KΈ - 13λ-2<5

(cf. [7]). With Harris, one defines the slope s of M as

s = inf{a/b\aλ - bδ is effective, a, b > 0}.

This number carries some important information about M . For ex-

ample, as λ is birationally ample, M is of general type (resp. has nonneg-

ative Kodaira dimension) whenever s < 6\ (resp. s < 6\), and this, in

fact, is how these statements were proven by Harris, Mumford, and Eisen-

bud for g > 24 (resp. g = 23). It is proved in [4] that s<6+ 12/(g+l)

whenever g+1 is composite. On the other hand, the lower bound s > 6\
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is obviously equivalent to Mg having Kodaira dimension -oo. For ad-

ditional motivation for computing or estimating s , see [6], [2].

The problem of bounding sg from below was considered by Harris and

Morrison [5], who conjectured in general that

sg>6+12/(g+l)

with equality when g + 1 is composite. They give an asymptotic lower
bound (~ 576/'5g) for s , as well as some explicit lower bounds for small
g (g < 6). Additional lower bounds on s for g < 5 and g = 15 were
given in [2], [3].

The purpose of this paper is to give further lower bounds on sg for
6 < g < 9 and g = 16. These suffice, in particular, to prove that Mι6

has Kodaira dimension -oo. We summarize our results as follows.
Theorem 0.1. For g = 2, ••• ,9, 15, 16 we have sg > σg, where σg

is given in Table 1, in which (HM) denotes the Harris-Morrison lower

bound in genus g.

g

2

3

4

5

6

7

8

9

15

16

10

9

8.5

7.8

7.8333

7.4285

7

7

6.667

6.56

(HM),

10

9

- 8.4242

8

7.328

6+12/(s+l)

10

9

8.4

8

7.7142

7.5

7.3333

7.2

6.75

6.7058

TABLE 1

Remark. We have s4 < 8 | by [5].

Our method of proof, in analogy with [5], is to show the noneffective-

ness of a divisor class A on ~Mg by "testing" against suitable pencils

F c Af , i.e., by showing that F A < 0. We will use three kinds of

pencils: the first kind "fill up" Λ/ , the second kind fill up a boundary

component Δz c Mg , while a third and more subtle kind fill up a divisor
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in a boundary component. As for the first kind of pencils, these are mostly
classical, coming from pencils of smooth or nodal curves on rational sur-
faces (mostly P2) the one nonclassical exception is a pencil of genus 15
constructed in [1]. As for the second and third kinds, these are obtained
by starting with a pencil of the first kind, base-changing, if necessary to
get sections, and then applying one of two possible types of "lifts": type a
consists in attaching a fixed curve along a section, while type β consists
in gluing together two (disjoint) sections.

The paper is organized as follows. § 1 consists of generalities, notably
some trivial but useful "principles" for proving noneffectiveness of divisor
classes by testing on suitable curves, and some formulas useful for doing
intersection theory on ~Mg in particular, for computing intersection num-
bers related to the lifts of types a and β. In §2 we describe explicitly our
pencils and prove Theorem 0.1.

1. General principles and formulas

We begin by formulating the general principles which we will use in
proving the noneffectiveness of divisor classes. Let X be a Q-factorial
projective variety, such as Λ/ . Then for any curve F (say irreducible)
and divisor D on X, the intersection number F D e Q is defined. If
B c X is a subvariety, we will say that F fills up B if F moves in an
irreducible algebraic family {Ft\t e T} of curves on X such that \JteτFt
is dense in B. Recall that F is said to be nef if F D > 0 for every
effective divisor D. More generally, a collection {Fχ, , FN} of curves
is said to be nef if for every effective divisor D, we have

max FrD> 0.
\<i<N ι ~

Principle 1.0. // F fills up X, then F is nef
Principle 1.1. If F fills up a prime divisor B such that F B > 0, then

F is nef
Principle 1.2. Suppose that for each i the curve Ft lies on a prime

divisor Bt and is nef as a curve on Bi with respect to Q-Cartier divisors,
and suppose moreover that

7=1

Then the collection {Fχ, , FN} is nef on X.
The proofs of these are essentially trivial. For illustration, let us prove

1.2. Suppose D is an effective divisor on X such that D Fι < 0 for
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i = 1, ••• ,N. Then

So by assumption D\B cannot be effective on B and, in particular, D >

Bn i = 1, ,N. But then we have (D - Σ j l i 5 y) ^ < 0, i =

1,••-,#.
Applying the same argument to Z> - Σ Bj ι n place of D, we conclude

inductively that D contains arbitrarily high multiples of the B., which is
impossible, q.e.d.

We now specialize to the case X = M . For a "pencil," i.e., an irre-

ducible curve F c M , it will be convenient to define the slope

provided both numerator and denominator are positive. Note that, essen-
tially by definition, whenever F is nef we have

sg>s(F).

More generally, we have
Principle 1.3. For any nef collection {F{, , FN} of pencils on Mg,

we have
sσ > min

8

Proof If D ~ aλ-bδ is effective, a, b >0, then for some 1 < i < N,

i.e., mins(Ft) < f , hence the assertion, q.e.d.
Next, we will recall some formulas which we will use in computing

intersection numbers on 37 . Let π: y —• B be a proper morphism
from a locally complete intersection surface to a smooth complete curve
of genus h , whose fibers Yb = n~x(b) are stable curves of genus /, and
let / : B —> 37J. be the natural map, with image cycle F. Then we have
(cf. [1])

Another standard device which we will use is that of "lifting" a pencil in
Af, > i < g, to Ήg . We will use two types of such lifts:

Type a. With notation as above, let A c p' be a multisection, i.e., a
smooth irreducible curve, not containing any singular points of fibers, and
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mapping to B with degree m > 0, and let a(F, A, g) or a(F, A) be
the pencil in Λ7 parametrized by A, where a e A corresponds to the

curve Yπ(a\ U C obtained by gluing Y,, to a fixed general curve of genus
g — i by identifying a with a fixed general point P e C. Then we have

^ λ, a(F 9 A) Ίηδj = mF δj,

(1.2) * ' jφi,g-i,

a(F, ^) .jjr i . = m(2Λ - 2) - 2(g(^) - 2) + A -y A.

Proof. The first two formulas are evident. To verify the third, it is easy
to see by base-change that we may assume A is a section of π . In this
case the formulas of [7] yield

a(F, A) τΓgδi = -A ωr/B = m(2h -2)-A ωy

= m(2h-2)-(2g(A)-2) + A A

by adjunction. What we are using from [7] is essentially just the fact that
the normal bundle to Δ at a curve Co with a unique node P is essentially
Tχ 0 T2, where Tχ and T2 are the tangent spaces to the branches of Co

at P.
Type β. Now in the above situation suppose there are given two trans-

verse multisections A{, A2. Base-changing with respect to A{ —• B, then
A\ XBA2 ~* A\ > w e °btain a family with two sections meeting transversely;
blowing up the intersection of the two sections, we obtain a family, say
π: y —• B, with two disjoint sections A{9 A2. Gluing these together, we
obtain a pencil

Putting mi = deg(Ai -• B), / = 1, 2, we have, again by [7],

β(F, Ax, A2) -jη^λ = m{m2F W[λ,

β(F,Ax, A2) -jf-δj = Fδj9 7 ^ 0 , 1 , 1 ,

β(F,Aι,A2) δι=Aι.A2,

(1.3) β{FiAχ,A2)>τη:;δ() = mιm2F δ0

+ Σ m / ( 2 Λ - 2) -
L/=i

Remark 1.4. Note that by construction, if F is nef on M and A
contains a general point of a general fiber Yb , then α ( F , A, g) is nef on
ΔJ. g , and similarly for β .
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2. Construction

In this section we will give the specific construction which, together with
the methods of §1, will prove Theorem 0.1. For simplicity of exposition,
we will concentrate on the case of genus 16; in fact, as regards proof, the
other cases are essentially special cases of this.

In outline, the argument goes as follows. We construct for each / =
1, , 8, 15 a pencil Ft c Ήt and a section A. (for / = 15, we con-
struct two sections Aχ 1 5 and A2 15) and compute the appropriate inter-
section numbers. Then we may define

(2.1)
16), i= , 8 ,

,16 A 2,

By construction, the F. are nef; they even fill up their M. for / < 8.

Using Remark 1.4, the fact that each Ft 1 6 δ > 0 (by construction),

and Principle 1.2, we may conclude that {FQ 1 6 , , JF8 15} forms a nef

collection of pencils on A/16. We may then apply Principle 1.3 to get a

lower bound on sι6.

i

1

2

3

4

5

Type of pencil F(

Plane cubic

Type (2, 3) on quadric

Plane quartic

Type (3.3) on quadric

Quadric section

on del Pezzo quartic

# of base
points

9

12

16

18

16

λFt

1

2

3

4

5

δ'Ft

12

20

27

34

39

siFi)

12

10

9

8.5

7.8

*(*i,16)

11

9.5

8.6

8.25

7.6

TABLE 2

Next, we construct F6, , F9 (where F9 is not needed for the bound
on sι6 but yields the bound on s9). Here we take in each case a pencil of
nodal plan curves of degree d with assigned nodes in generic position, plus
the appropriate number of assigned simple base points in generic position
to make a pencil, and then some unassigned base points. It is classical in
these cases that by blowing up the base points we get a pencil Fi of stable
curves filling up M., and we take as A{ the section corresponding to a
simple base point.
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i

6

7

8

9

d

6

7

8

8

# of nodes

4

8

13

12

# of simple
base points

20

17

12

16

Frδ

47

52

56

63

Frλ

6

1

8

9

7.83

7.43

7

7

7.66

7.28

6.875

6.88

TABLE 3

Finally we consider the one nonclassical case / = 15. Here the appro-

priate pencil Fl5 was constructed in [1], [3], and its α-lift was considered

in [2]; incidentally, this α-lift a(F{5, A, 16) may be used in place of Fx 1 6

constructed above. The case of the /?-lift is quite similar and so we will

just sketch it. There is a family

γ c P1 x P3

*l
pi

of stable, irreducible automorphism-free curves of genus 15, whose degree

in P3 is 14. For the corresponding pencil Fl5 in Ml5 we have

Fl5 λ = 318, Fl5 δ = F1 5 δ0 = 2120,

and moreover Fl5 fills up a divisor D c A/15 such that Fl5 D > 0, so

that F1 5 is nef in M15.

As our multisections Aχ9A2 we take the pullbacks of two generic planes

H{, //2 c P 3 . As y projects birationally to a surface of degree 16 in P 3 ,

we have

Aχ = A2 = Aχ A 2 = 1 6 ,

i=U2,

Setting Fo 1 5 = β(Fi5, Aι, A2) and plugging into the formulas, we

compute that

F o l 6 λ = 1 4 2 . 3 1 8 ,

Fo i6 δ = 2120 142 - 2(14 220 + 16) + 16,

s(F0 1 6) = 6.5670,

yielding the bound on s 1 6 .
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