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0. Introduction

A hyperbolic manifold is a riemannian manifold with constant sectional
curvature - 1 . Jorgensen showed that there are only finitely many topo-
logical types of the thick part of complete hyperbolic 3-manifolds with
bounded volume. Thurston then showed that almost every Dehn surgery
on a cusped manifold yields a hyperbolic manifold, and their volumes ac-
cumulate at the original cusped manifold from below. These results lead
to a global description of the volumes of hyperbolic 3-manifolds which
form a well-ordered set of order type ωω in several situations [11].

Particular interest has been taken by various authors in the minimum
volume. Among others, Meyerhoff [9], Adams [1], and Chinburg and
Friedman [3] found the cusped 3-orbifold, the cusped 3-manifold, and
the arithmetic 3-orbifold of minimal volume, respectively. In this paper,
we will prove

Theorem. Among compact hyperbolic 3-manifolds with nonempty to-
tally geodesic boundary, each one having the minimum volume admits a
polyhedral decomposition by two regular truncated tetrahedra of dihedral
angle π/6.

The minimum is hence twice the volume of a regular truncated tetra-
hedron of dihedral angle π/6. It can be expressed by a definite integral
of some elementary functions, and the numerical computation shows that
it is 6.452 . The reader is asked to compare this large value with the
other minima. A manifold having the minimum volume is necessarily ori-
entable but not unique, and those manifolds are described by Thurston in
[11] and classified by Fujii [5].

We review the polyhedral decomposition in the next section. In §2,
we describe the minimum volume, the manifold shown to have the mini-
mum, and its rigidity property in terms of the shape of cut locus. In §3,
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showing a basic inclusion lemma, we obtain a few effective consequences of
minimality for finding real targets. Then, using the basic inclusion again,
we estimate the volume in §4. In the last section, we show that there is a
small stable region for the shape of the cut locus around the manifold in
question. This together with the rigid property proves the theorem.

1. Polyhedral decomposition

We begin with recalling some necessary trigonometric rules. The sine
and cosine rules for a triangle and the rule for a right angle hexagon, which
shows a relation of three nonadjacent edges and another edge, are the
basic rules; we call the last rule the hexagon rule. These are described for
example in [4], [11], One more particularly useful rule, which we call the
quadrilateral rule, is the relation of three edges of a Lambert quadrilateral:

Quadrilateral Rule. The identity

tanhα = coshrtanh/

holds for a Lambert quadrilateral, illustrated in Figure 1.1 with core alti-
tude /, base magnitude r, and side altitude a.

Γ

FIGURE 1.1

The following is the notation we use throughout this paper. N denotes
a compact hyperbolic 3-manifold with nonempty geodesic boundary dN,
and Dr a hyperbolic disk of radius r. Note that area

Dr = 2π{coshr- 1).

The rest of this section consists of a quick review of the result in [8].
A return path is a geodesic segment in TV whose end points lie on the

boundary components of N (possibly the same boundary component)
such that the segment is perpendicular to the boundary at both of its end
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points. A return path uniquely exists in a free relative homotopy class of
paths with respect to the boundary. We call a lift of a return path in the
universal cover N of N a short cut; it is the shortest path between the
components of dN.

There exist only finitely many return paths of bounded length in N.
Hence we label them λχ, λ2, in order of length. Introducing variables
Ij = lengthAy., we get a length sequence lχ < l2 < ••• which diverges.
The first nonzero shortest distance between terminal points of λ{ and λ
on dN has useful information; we denote it by dtj, which is attained by
either an arc or a closed loop. These quantities depend on the manifold
N.

The cut locus C of dN in N is the set of points in int N, which admit
at least two shortest paths to the boundary. It will be a geometric spine
in our setting. C is stratified by the number of shortest paths which the
point admits. The stratification becomes a finite cellular complex structure
on C. We hence use the notation C to mean not only the cut locus, but
also the cut locus with this canonical cellular structure.

An appropriate geometric block for N is a truncated polyhedron, which
is a compact polyhedron obtained from an ultra-ideal polyhedron by trun-
cating each end (see [5]). We call a face produced by truncation external
{internal otherwise); we also call an edge of an external face external {in-
ternal otherwise). These terminologies are due to the expected location of
polyhedra in N. We sometimes call an internal edge a ridge for short.
Every truncated polyhedron is decomposed by truncated tetrahedra. A
truncated tetrahedron is determined by its six dihedral angles up to la-
belled isometry.

A polyhedral decomposition of N is a finite geometric cellular decom-
position of N by truncated polyhedra so that the union of external faces
forms the boundary. Every ridge of a polyhedral block is then a return path
in N. Only finitely many return paths are involved in the decomposition.
The main claim in [8] is

Theorem 1.1 [8]. The topological dual decomposition of C modulo
boundary is homotopic by straightening to a polyhedral decomposition of
N.

By definition the duality is the correspondence between a ./-cell of C
and a (3 - ;)-cell of TV relative boundary, which transversely intersect
each other at an interior point.

Since a return path is unique in a free relative homotopy class of paths,
Theorem 1.1 gives a specific decomposition determined by the cut locus.
Hence it asserts not only its existence but also its unique resultant. In
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light of this uniqueness, we call our decomposition canonical The short-
est return path λx turns out to be an edge of the canonical polyhedral
decomposition.

2. Examples

We describe in this section the manifolds having a polyhedral decom-
position by two regular truncated tetrahedra of dihedral angle π/6. These
manifolds will be shown to have the minimum volume.

The Lobachevsky function defined by

fθ
f

JO

is well known to be convenient for describing volumes of hyperbolic poly-
hedra. Denote by Δ^ a regular truncated tetrahedron of dihedral angle
θ.

Lemma 2.1.

volumeΔ, = 8/1 ( ? ) - 3 /" arccosh („ C0St

 Λ) dtθ \4/ Jo \2cost-lJ

= I [/I (^ + φ) - /I (\ - φ) + /I(0 + 0) - /I(0 - Φ)

+ U 2

2 , cos2 (9/2 - s i n 2 π/3 sin2 0
tan φ = *—= ^ .

cos π/3cos θ
Proof. The above formula for each θ is rather independent. Δo is the

ideal regular octahedron, where volumeΔ0 = 8/I(π/4) (see [10], [11]). A
one-parameter family {Δ,: 0 < t < θ} of polyhedra joins Δo with Δθ.
Then integrating the variation formula of Hodgson [6] for volume Δ,, we
have

1 fθ

volume Aθ - volumeΔo = - - / length(ridges of Δt)dt.
£ Jo

An external edge of Δt has length arccosh(cos//(l - cos/)) by the cosine
rule. Then a ridge of Δt has length arccosh(cos//(2cos/ - 1)) by the
hexagon rule. The first identity follows by substituting it in the integration.

Choose the center of an external face of Δ^ , and draw the perpendicular
path to the internal hexagon on the other side. Regard the path as the core,
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and cut Aθ into six congruent doubly truncated orthoschemes of dihedral
angles π/3, 0, and 0/2. Each edge of the dihedral angle 0/2 joins
the faces produced by the truncation. The second identity now follows
from the volume formula of such a truncated orthoscheme by Kellerhals
[7]. q.e.d.

Take two copies of Δπ , 6 , and glue them along internal faces so that the
resultant is a nonsingular hyperbolic manifold with geodesic boundary.
There actually are several ways to get the desired resultants; denote any
one of them by No . No is hence a notation for a manifold in the class
specified here. It is easy to see that No is necessarily orientable. It was
shown in [5] that there are exactly eight orientable isometry types in this
class.

There is some numerical information of No in common. The shortest
return path λ{ of NQ is a ridge of the tetrahedra Δ π / 6 in the decomposi-
tion. Applying the cosine rule to an external face and then the hexagon rule
to an internal face, we get cosh/j = (3 + >/3)/4 = 1.1830- . Obviously
volume NQ = 2 volume Δ π / 6 . Numerical computation using the identities
in Lemma 2.1 by 'Mathematical shows that it is 6.452

The cut locus C of JV0 is very simple; it contains only one 2-cell.
Hence, by duality there is only one return path involved in the canonical
polyhedral decomposition. Since this simplicity is frequently used in the
sequel, let us call a cut locus simple if it has only one 2-cell. This simple
structure is related to the following rigid property of No .

Lemma 2.2. Denote the Euler characteristic of dN by χ(dN). IfC is
simple and χ(dN) = -2, then the canonical polyhedral decomposition of
N consists of either two regular truncated tetrahedra with dihedral angle
π/6 and in particular N = NQ) or one regular truncated octahedron with
dihedral angle π/6.

Proof Since C is simple, there is only one return path involved in the
canonical polyhedral decomposition. Hence the induced decomposition on
dN has exactly two vertices which correspond to the end points of this
path. Let e and / be the number of edges and faces on dN respectively.
Then

which implies / < 8. Since each polyhedron has at least four external
faces, the number of polyhedra involved in the decomposition is at most
two.

If there are two polyhedra in the decomposition, then they must be
truncated tetrahedra by a standard Euler characteristic argument.
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Moreover every ridge has the same length because they are identified in
N, and hence the polyhedra must be regular. Since there are twelve ridges
gathered at the shortest return path, the dihedral angle of each ridge turns
out to be 2π/12 = τr/6.

Suppose that there is only one polyhedron in the decomposition, and
denote it by P. It is a truncated polyhedron with at most eight external
faces. P has six internal faces. To see this, by collapsing each external
face of P to a point, we get a ball P*. The combinatorial structure of
P* is realized by a piecewise linear cell. The number of its faces is equal
to #{edges} - #{vertices} + 2 by Euler's identity. By the definition of P*,
we have #{vertices} = / and 2#{edges} = #{external edges of P} = 2e.
Since e = / + 4, we hence get #{faces} = 6.

Also, the internal faces of P consist of pairs of isometric polygons, since
TV is obtained by gluing internal faces of P. Thus the five polyhedra listed
in Figure 2.1 are the only possible combinatorial types for P*. Another
polyhedron either has more than eight vertices or does not have faces in
pairs.

FIGURE 2.1

Let us realize P* concretely by a piecewise linear cell inscribed in the
unit sphere. Since P is the only polyhedron to form the canonical poly-
hedral decomposition of N, the cut locus C has only one vertex v by
duality. Put υ at the center of the Poincare disk. There are / shortest
rays from v to the boundary of the universal cover of N. Extend them
to the sphere at oo and realize P* by the linear convex hull of their end
points.

JΊie length of an internal edge of P is the distance of the components of
dN which the associated rays go through. Since each ray to the component
of dN has the same length, the distance is a monotone function in terms
of the angle which the associated rays bound. Recall that each internal
edge of P has the same length since they all are identified in N. Hence
the corresponding angles all must be the same, so that P* inscribed in the
unit sphere has equilateral edges. This restriction rules out all the possible
combinatorial cells in Figure 2.1 except the last one.
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Therefore P* is necessarily an equilateral hexahedron inscribed in the
unit sphere. Since each face is an equilateral quadrilateral inscribed in
the circle, it is a square, P* is a cube, and P is a regular truncated
hexahedron. In particular, all the ridges have the same dihedral angle.
There are twelve ridges gathered at the shortest return path, and hence the
dihedral angle of each ridge turns out to be 2π/12 = π/6. q.e.d.

3. Basic inclusion

The core of this section is a basic inclusion established in Lemma 3.2.
We will use the basic inclusion to prove a number of results culminating
in

Proposition 3.1. If the volume of N is minimal, then χ(dN) = -2
and cosh/j > ( 3 + >/3)/4.

Reflecting a Lambert quadrilateral along the top edge, we get a sym-
metric pentagon. Let λ be the left edge of the pentagon whose shape is
determined by / = length λ and the bottom magnitude. Take a right angle
hexagon whose three nonadjacent edges all have length /. Then we define
a preferred bottom magnitude R to be half the length of another edge of
the hexagon (see Figure 3.1). A preferred bottom magnitude produces a
very special symmetric pentagon; in particular, it has an angle of 2π/3.
By the hexagon rule, R is a function of / and hence x = cosh /. More
precisely,

/ 2cosh/- 1 / 2x-
coshi? =

2(cosh/-1) Y 2(JC— 1) '

The side altitude A of the based Lambert quadrilateral is also a function
of / or x and satisfies

cosh 2 A = — - — .

Consider the hyperbolic solid which is the solid of revolution of the above
very special symmetric pentagon about λ. R is a radius of the top and
also bottom disks (see Figure 3.1, next page). We call it an English muffin
or simply muffin because of the shape, and denote it by M{. The variable
in the notation is sufficient since R is a function of /.

To see the relation of a muffin with N, recall that λχ is the shortest
return path of N, and l{ is its length. The related constants x{ = cosh l{,
JRJ = R{x{), and Aχ = A(x{) depend on N. Here we have the basic
inclusion lemma.
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FIGURE 3.1

Lemma 3.2. MΊ can be packed in N so that the core of M, is matched

up with the shortest return path λχ. In particular,

volume N > volume M, ,

and the top and bottom disks at Mι are packed in dN.

Proof. Since λχ is simple, a muffin-like neighborhood of λx is embed-
ded. Hence the question is to estimate how much it can be thickened.
In the universal covering space, we have lifts of λχ, which are mutually
disjoint short cuts.

Recall the fact that three disjoint geodesic surfaces in H 3 uniquely
determine a right angle hexagon spanned by the short cuts between them.
Or two short cuts having terminal points in a common component of dN
span a right angle hexagon in N.

dn is the first nonzero shortest distance between terminal points of λχ

and λχ, and is the shortest distance between terminal points of lifts of
λχ in N. Choose lifts λx and λ[ of λx so that they touch a common
component of dN and attain the distance dxχ there. These two lifts
determine a right angle hexagon. The last short cut involved has length
I > lχ because lχ is the shortest length of the short cuts. We thus have

cosh2 L + cosh /
cosh dλ, = —=

M l sinh2 lχ

cosh2 lχ + cosh lχ

sinh2 /,
= cosh2i?15

which implies dχχ > 2Rχ, and we can thicken a thin muffin up to one with

base radius Rχ at least on the boundary.

To see that the thickening yields a packing even in int N, assume the

contrary. Then there are lifts λχ, λ[ and their thickened muffins M, Mf

in N with base radius R, so that intM and int M1 have a common
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point v. Since the thickening defines a packing on dN9 the terminal
points of λχ and λ[ are on mutually distinct components of dN.

Draw perpendicular paths from v to the top and bottom disks of M,
and denote their end points by /? and q so that length/??; > lengthy . qv
necessarily has less length than Aχ. The same procedure for M1 supplies
the points p and q on its top and bottom disks so that length pv >
length qv . Then consider a pentagon spanned by λχ and a sector pυq.
The pentagon has right angle vertices, except v , and is placed in the basic
pentagon of M where v is in its interior. In particular, /.pυq > 2π/3
by the definition of Rχ. Similarly, /pvq > 2π/3.

Next let λ , be the short cut which connects a component of dN

containing q with another component containing q . λ > and v span

a geodesic plane containing both q and q . Thus λqq> and qvq bound

a pentagon with four right angle vertices. λqq, has length > lχ. Both

qv and qv have length less than Aχ. Put this pentagon on the basic

pentagon of M so that v is at the vertex with an angle of 2π/3 and q

is on an edge. If q is contained in the basic pentagon, then 1 # must

have length less than lχ, which is a contradiction. Hence q lies outside

the basic pentagon and in particular the angle Δqvq is larger than 2π/3.

We then assume without loss of generality that length/??; < length pv ,

and consider the short cut λ , which connects a component of dN having

/? with another component having q . λpq> and v span a pentagon with

four right angle vertices. Fold it on the pentagon spanned by λ'x and pvq

along the folder vq . Since length λpq» > length λ'_χ = lχ, p is forced to

be outside this pentagon and hence /.pvq > (pvqf > 2π/3.
We thus get three adjacent angles /pvq, /qvq', and /q'vp at v which

are all > 2π/3. This is impossible, q.e.d.
Lemma 3.3.

volumeMι = 2π ί A coshi? - -? j

2x-\ u 4JC + 1 u \
= π \ hr 7T- arccosh — r arccoshx ,

y V A X —I) 3 J
and it is monotone decreasing in terms of x.

Proof. The half muffin cut by the orthogonal bisector to the core λ is
a solid of revolution of a Lambert quadrilateral of core altitude 1/2, base
magnitude R, and side altitude A, and its volume is π(AcoshR - 1/2)
(see p. 213 of [4]). Then the claim is an exercise in calculus, q.e.d.
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We have two corollaries of the basic inclusion, which prove Proposition
3.1.

Corollary 3.4. If χ(dN) < -2, then volume TV > volume NQ. In par-
ticular, if volume N is minimal, then χ(ΘN) = —2.

Proof By the numerical computation of volume Mι at x = 1.14, we
have that volume iV > volume Mι > 6.5 if xx < 1.14 since volume Mι

is monotone decreasing. Hence consider the other case xx > 1.14 or
more roughly lχ = arccoshjCj > 0.52. The collar of the boundary with
depth /j/2 is embedded in N by the definition of lχ. We thus have
volume^ > areadN-lJl = π\χ(dN)\Ίχ. Since χ(ΘN) = 2χ{N) is even,
the assumption implies that χ{dN) < - 4 , and π\χ(dN)\ lx > 6.5. In
either case, volume TV > 6.5 > volume No. The last claim follows since
the maximal Euler characteristic is -2. q.e.d.

We recall here a result in [2]. Start with a packing of H 2 by disks of
radius R. The set of points which admit at least two shortest paths to the
disks of the packing defines a polygonal decomposition of H 2 . The local
density of the packing is a density for each member of the packing defined
by the ratio of areaD^ by the area of the polygon bounding the member
in question. Consider three disks of radius R on H 2 touching each other.
Their centers span an equilateral triangle Δ of edge length 2R and angle
a. By the cosine rule, a is related to x and hence / by

_ cosh2i? _ x
C O S α ~ c o s h 2 Λ + l ~2Γ^Ί'

Then Bόrόczky showed in [2] that the local density of any packing by disks
of radius R is bounded by

area(Δ n disks)
areaΔ '

which is a function of JC or /.
Corollary 3.5. // χ(ΘN) = -2, then xx > (3 + >/3)/4.
Proof We had a packing on dN by two disks of radius R{ by the

basic inclusion. Then Borόczky's bound works also for this case, and we
get an estimate of aχ = a(xλ) by area comparison,

2areaZ)Λ < 2π\χ(dN)\ (Bόrόczky's bound),

which implies ax > π/6, and hence xι>(3 + λ/3)/4. q.e.d.

4. Volume estimate

In this section, by estimating the contribution of the complement of an
embedded muffin, we improve the volume estimate in the basic inclusion.
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In particular, we have
Proposition 4.1. If χ(dN) = -2 and cosh/j > 1.186, then volume TV

> volume NQ.
Recall that l2 is the length of the second shortest return path of N. l2

is not a function of lx, however we will have a bound. Also recall that dtj

is the first nonzero shortest distance of the terminal points of λt and λ..
We have shown previously that 2RX <dn.

Lemma 4.2.
2

cosh L > x ~ + 1,
coslr dι2 tanlr lx - 1

, . ^ / cosh/, + 1
COSh/o > A / r-ri r + 1 .2 ~ Y cosh d22 - 1

Proof. Choose lifts λx and λ2 of the return paths so that they touch

a common component of dN and attain the distance dι2 there. Since a

hexagon determined by λx and λ2 has the last short cut of length I > l{,

by the hexagon rule we have an inequality

cosh I, cosh L + cosh /t

\ r L

The first estimate in the statement is identical to this. The second is a
consequence of the same argument for a hexagon determined by λ2 and
λ'2, which touch a common component of dN and attain the distance d22

there, q.e.d.

The top and bottom of a packed muffin by the basic inclusion are disks
packed in dN; denote these two by U and U'. R{ is the common radius
of U and Uf and obviously bounds the maximum radius of two disks
packed in dN from below. We introduce here a function Rf of / or x
defined by

cosh R* = 3 - cosh R.

R'(x{) = R[ gives a very optimistic upper bound of the radius of two disks
packed in dN - int(U U I/'). In fact, we have

Lemma 4.3. If χ(dN) = -2, then the maximum radius of two disks
packed in dN-m\{U\JU') is less than R[. Also either R{ +R[ > dx2 or
2R\ >d22.

Proof Suppose two disks of radius R[ are packed in dN-int(U\JUf).
Then, since there must be complementary room, we have

2areaZ)Λ +2areaZ)Λ/ <2π\χ{dN)\,

which contradicts the definition of R\.
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The maximum radius of two disks packed in dN - int(U U Uf) having
their center at the terminal points of /2 is obviously less than such radius
with no restriction on the location of centers. Hence it is also less than
R[. The paired maximal disks in dN - int(U U £/') with the preferred
centers must touch either U, U', or themselves. If one of them touches
U or U', then Rι+R[ >dn. Otherwise, either they touch each other
or one of them touches itself, and 2Rf

χ > d22 in either case, q.e.d.
Thus define two functions of / or x by

coshi? = x s h 1,
h2(7? i ? ' ) t h 2 / l

u i7 / cosh/ + 1
coshF = \ — — — , — - + 1.

ycosh2/? '- l

If we let E(xχ) = Eχ and F{xχ) = Fχ, then /2 > mm{Eχ, Fχ} by Lemmas
4.2 and 4.3.

Proof of Proposition 4.1. By estimating the contribution of the collar
of dN - int(U U U1), we will find a better lower bound of volume TV.

A(xλ) = A. is the side altitude of half of the muffin M, . The depth
ι

of the collar of dN - int(U U U) is equal to min{/2/2, Aχ}, but un-
fortunately it is not a function of xχ. Since l2 > min{Eχ, Fχ}, we
have min{/2/2, Aχ} > min{min{JE1/2, Fχ/2}, Aχ} , where the right-hand
side is now a function of lχ or xχ and bounds the depth of the col-
lar from below. In the product metric space, the volume of the collar
is obviously the product of the area of the base and the depth of the
collar. Replacing 'depth' by (2 depth-fsinh(2 depth))/4, we get a hy-
perbolic volume of the collar (see p. 211 of [4]). Hence, letting H =
max{min{is/2, F/2, A}, 1/2} and H(xχ) = Hχ, we improve the volume
estimate by

volume N > volume M{ + (4π - 2 areaDR ) * — ι- .

The graph of the function

volumeMι + (4π - 2areaZ)R)(2i/ + sinh2i/)/4

in terms of x is described in Graph 4.1. The numerical computation
shows that the value at x = 1.186 is 6.47 and attains the minimum on
x > 1.186. In particular, volume N > volume No in xχ > 1.186. q.e.d.
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GRAPH 4.1

5. Simple cut locus and proof of theorem

In this section, we fill up the gap between (3 + λ/3)/4 and 1.186 by
showing the proposition below, and prove the Theorem.

Proposition 5.1. // χ(dN) = -2 and (3 + >/3)/4 < xx < 1.186, then
the cut locus of N is simple.

Consider again an equilateral triangle Δ of edge length 2R, and let /
be the distance between the center and a vertex. It is a function of / and
hence x. Obviously J > R and satisfies

cosh / =
I 3cosh/- 1

3(cosh/-l)
3x- 1

Recall that U and U' are two disks in d N centered at the terminal points
of λχ. By thickening these to disks V and V' with the same centers so
that the radius is Jχ = J{xx), we get an overlapped configuration of two
disks on dN. If N = No , then these entirely cover dN0.

A component of VΓ\V' is generically a round bigon since U and U' are
packed in dN. By a round polygon, we mean a polygon bounded by parts
of circles. Three bigons might touch at their vertices. This occurs typically
on ΘN0. In general, V f)Vf is a union of bigons with some common
vertices. The centers of V and V' have distance at least 2R. Hence
the area of the bigon is bounded by that of the maximally overlapped
configuration in Figure 5.1 (next page), though it may not be realized by
some TV. The area B of this bigon is then a function of / or x defined
by

B = ψ areai), - (2π - 2β - 2a).
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FIGURE 5.1

Each bigon contains a core geodesic connecting the two vertices. To the
core of each bigon in F n K ^ w e assign the orthogonal bisector on dN -
int(t/ U U') which bridges the boundary of U U U'. Then slit dN -
int(C/U t/;) along these bisectors to get a jigsaw puzzle on dN-int(UuU'),
and each slitted region is a piece of the puzzle.

A piece of the puzzle is also a round polygon, where the slits are geo-
desies. There roughly is a one-to-one correspondence between pieces of
the puzzle and round polygonal components of dN- F u V1 by inclusion.
These regions are linked as in Figure 5.2, and we call the included round
polygon a hole, A hole is located in a piece of the puzzle as a kernal. The
puzzle on dN0 is very special, and it consists of twelve round triangular
pieces without holes.

FIGURE 5.2
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FIGURE 5.3

It is quite conceivable that the holes are all triangular if xχ is close
enough to (3 + \/3)/4. In fact, we have

Lemma 5.2. // χ(dN) = -2 and χχ < 1.186, then dN - V U V'
consists of triangular holes.

Proof. Let b be the number of bigons in V n V', and decompose
VuV' by edges, which joins vertices in each bigon. Let c be the number of
vertices at which three bigons meet. Then d{VuVf) = d (holes) has 2b-3c
edges, and χ(VυVf) = ((26-3c)+c)-(6+(26-3c))+2 = -b+c+2. Also
since each hole has at least three edges and its Euler characteristic is at most
1, χ (holes) < ( 2 6 - 3 c ) / 3 . Thus χ(dN) = χ(VuV')+χ (holes) < 2 - 6 / 3 ,
and we get b < 12. On the other hand, we have an obvious bound:

area(holes) = area(bigons) - 2areaD y + area d N

<b-B-4π cosh / + 8π.

The numerical computation shows that the last term is negative if b < 10
and xx < 1.186, which is absurd. Thus 6 = 1 1 or 12. When b = 12,
χ (holes) = 8 - c and the holes have 24 - 3c edges in total. Hence they
consist of 8 - c triangles. When 6 = 1 1 , x (holes) = 7 - c and the holes
have 22 - 3c edges in total. Hence they consist of 6 - c triangles and one
quadrilateral.

To rule out the latter case, we consider an abstractly smallest possible
piece of a puzzle containing a triangular or quadrilateral hole. It is obvious
that a piece containing a triangular hole has more area than the area of
a piece without a hole, which is illustrated by the shaded region on the
left side of Figure 5.3. It is not quite obvious but easy to see that a piece
containing a quadrilateral hole has more area than the area of the shaded
region of the right configuration in Figure 5.3, where the top and bottom
circles of radius / touch each other.
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The areas of the configuration in the figure, which we denote by T and
Q, are functions of / or x defined by

Q = (2π - 2δ - 2σ) - { 2 δ ^

Then we should have an inequality

2areaZ)^ + 6T + Q < area(<9JV) = 4π

by area comparison if the case in question occurred. But the left-hand side
is monotone decreasing in terms of x, and the numerical computation
shows that the value at x = 1.186 is 12.59-•• > 4π. Hence the case
cannot be realized, q.e.d.

The last useful and very neat function, S, for our purpose is

u o / cosh /
cosh S =

cosh / - 1

which is identified with the diagonal length of a symmetric Lambert quadri-
lateral illustrated in Figure 5.4.

FIGURE 5.4

To see a very useful property of 5(Xj) = Sι, we let df be max(x, y)
where x e dN and y is a terminal point of λχ.

Lemma 5.3. If df < Sχ, then the shortest distance of any point in N
to the boundary is < l2/2. In particular, the cut locus is simple.



SMALLEST HYPERBOLIC 3-MANIFOLDS WITH GEODESIC BOUNDARY 191

Proof. Recall the estimate of dX2 in Lemma 4.2, it is simplified to

cosh 2 d ] 7 > coth 2 /, f — — j Γ + 1 ) .
1 2 "~ ι \cosh/2 - 1 /

By the assumption, we have

— ι — > cosh2 df > cosh2 dn.

Combining these, we get an estimate

cosh /2 > 2xχ + 1,

or equivalently,

On the other hand, the edge altitude a of a Lambert quadrilateral with
base magnitude dj (<SX) and core altitude lχ/2 is related to xχ by

tanh a = cosh d^ tanh -^

xx xx -
< =

- x{ - 1 xx + 1 *! + Γ
which implies α < /2/2. This means that the 2-cell involved in the cut
locus is only one on the bisector of lχ.

Proof of Proposition 5.1. Since xχ < 1.186, every hole must be trian-
gular by Lemma 5.2. The point which attains d, is hence contained in
some triangular hole. The distance dχή between the vertex and the center
of the equilateral triangle of edge length 2Jχ bounds df from above. By
the sine rule, we have

sinh dtή sinh Jχ

sinπ/3 " sinπ/2 '

which implies

< coshtfL = A/TTT-1—TT < cosh 5

Then by Lemma 5.3, the cut locus is simple.
Proof of Theorem. Suppose N has the minimum volume. Then by

Propositions 3.1, 4.1, and 5.1, χ{dN) = -2 and the cut locus is simple.
By the rigidity established in Lemma 2.2, either N = No or N has a
canonical polyhedral decomposition by one regular octahedron of dihedral
angle π/6. The latter case is ruled out since then the shortest return path
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λι is realized by a ridge with cosh/j = (1 + \/3)/2 = 1.366 , and the
volume is greater than volume Λ^ by Proposition 4.1. q.e.d.
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