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SOME NEW HARMONIC MAPS FROM B3 TO S2

CHI-CHEUNG POON

I. Introduction

It is well known that uQ(x) = JC/|JC| is the unique minimizer of the

energy functional fB* \Vu\2 dx among maps u e. Hι(B3, S2) such that

u(χ) = x for x e dB3 [2] where B3 and S2 are the unit 3-ball and 2-

sphere respectively. Such an energy minimizer is a weakly harmonic map

[4]. By minimizing a "relaxed energy", F. Bethuel, H. Brezis, and J.-M.

Coron [1] proved that there exist infinitely many weakly harmonic maps

for any nonconstant boundary data. But the regularity of such weakly

harmonic maps is still unknown. Here we use a different approach to

obtain the following result.

Theorem. For any x0 in 5 , there is a harmonic map u: B3 —• S2

such that

(i) u{x) =x on dB3

(ii) u is smooth in Έ ~ {x0}, i.e., x0 is the only singularity of u.

Let r, α, and z be cylindrical coordinates in R 3 , i.e., x = rcosα,
y = rsina. A map u: B3 -> S2 is called, as in [5], axially symmetric if
in r, a, z

(1) u(r, a, z) — (cosαsinp , sinαsin^ , cos^)

for some real valued function φ(r, z). Using (1), we can simplify the
formula for the energy of an axially symmetric map u,

where D = {{r, z): r2 + z2 < 1, r > 0} .
For any smooth φ: D -» R, define

sin2?
+
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It is easy to see that any finite energy critical point φ of E defines by (1)
an axially symmetric weakly harmonic map.

In 1987, D. Zhang [5] studied the critical points of E and obtained
a smooth axially symmetric harmonic map corresponding to any given
smooth axially symmetry boundary data that omits a neighborhood of the
south pole. Then R. Hardt, D. Kinderlehrer, and F.-H. Lin [3] slightly
improved this result to allow boundary data that can reach the south pole
but not wrap around. In this paper, we will follow Zhang's method to
construct harmonic maps which are axially symmetric in appropriate co-
ordinates and have the properties stated in the theorem.

II. Proof of the theorem

First suppose that x0 is in the interior of B3. By rotating B3 and S 2 ,
we may assume that x0 = (0, 0, a), 0 < a < 1.

Any critical point φ of E satisfies in D the partial differential equation

(2)
dz\dz) 2r

Let p, 0 be polar coordinates centered at (0, a) e D, i.e., r = pύnθ,
z = p cos θ + a. In coordinates p, θ, (2) becomes

. Λ d2φ Idφ 1 d2φ\ . Λ

psmθ —h> + - ^ - + T +sin0
\dp2 Pdp Pdθ2)

dφ Qosθdφ sin2φ _

~dp + p ~dθ " 2psin0 ~ '

> = d 2 ?

sin2^

Suppose 9? is independent of /?. Then dφ/dp — d2φ/dp2 = 0, and

0 = sin0

Thus

and

( pdΛ2 - 2 ^rsin0-777 = sin φ + C

for some constant C. If we set 9?(0) = 0, then C = 0 and

(3) s in0-τ | = \ύnφ\.
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The general solution of (3) is:

sinh c + cosh c cos θ
cos φ = — Γ T 7T > ~°° < c < °°

c cosh c + sinhc cos θ
When c = 0, φQ = θ when c > 0, φc < θ and when c < 0, φc > θ .
Also #>c —• 0 as c —• oo and ̂ c -^ π as c -^ -oo .

Define ^ = {(r, z) : r2 + z2 = 1, r > 0}, ^ : Λ -^ [0, π ] 5 and

g(r9 z) = arctan(z/r). If we substitute φ by # in (1) and restrict r,

z to {(r, z) : r2 + z 2 = 1}, then (1) gives the identity map from S2 to

S 2 . In coordinates p, (9, ^ = {{p, θ) : p = ρo{θ), 0 < θ < π} for
some function /?0. Write ^(θ) = g(pQ(θ) sin(θ), p0{θ)cos{θ)). Then g
satisfies

cos ̂  - a
Clearly g(θ) < θ . Also g is monotone increasing, g(0) = 0, g(π) = π,
and

2

Therefore ^ ;(0) = 1 - a, and g'(π) = 1 + a. We can find some c > 0
such that

φc{θ) < g(θ) < θ = φo(θ).

Now we can proceed as in [5] and consider the following problem:

Minimize E{Ψ) = mjr{^)\r{^j +^
among maps ψ : D -> [0, π], ψ = g on A,

(4) φc(θ)<ψ(p,θ)<φ0(θ).

As in [5], a maximum principle implies that equality holds only for θ e
{0, π} because the constraints φ , φ are critical points of E. Thus a
minimizer ψa is a critical point of E and is regular in D. Both #?c and
φ0 are continuous in 5 ~ {(0, <z)} ,

φc = φo = O for r = 0, z > a,

φc = φQ = π for r = 0, z < a.

By the constraint (4), we conclude that ψa is continuous in D ~ {(0, a)} ,
ψa = 0 for r = 0, z > a, and Ψa = π for r = 0, z < <z. Then

ua{r, α, z) = (sin ^ f l cos α, sin ̂  sin a, cos ̂ f l)

is the desired axially symmetric harmonic map.
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Now suppose that x0 is on the boundary of B3. By rotating B3 and

S2 , we may assume that xQ = (0, 0, 1).

For any 0 < a < 1, let va: B3 -• S2 be obtained by the homogeneous

extension, with respect to the point (0, 0, a), of the identity map from

S2 to S2. One can compute the energies of va , 0 < a < 1, as in [2, 7.B],

and see that they are uniformly bounded. If ua is the axially symmetric

harmonic map which we obtained in the above, then E(ua) < E{va) and

{E(ua), 0 < a < 1} is uniformly bounded. Thus there is a subsequence

{ua } , as aι: —> 1, ua converges weakly in Hι (B3, S2) to a map uχ which

is also axially symmetric. Also, ux is harmonic, ux(x) = x on dB3 in the

sense of traces. Moreover u{ is completely regular on B ~ {(0, 0, 1)} .
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