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NODAL GEOMETRY ON RIEMANNIAN MANIFOLDS

SAGUN CHANILLO & B. MUCKENHOUPT

1. Let M" be a smooth, compact, and connected Riemannian mani-
fold with no boundary. Let A denote the Laplacian on M. Let —Au =
Au, u an eigenfunction with eigenvalue A, 4 > 1. Our main theorems
are:

Theorem 1 (BMO estimate for log|u|). For u, A as above,

|| log || [|gpo < ¢A” log4,

where c is independent of A, and depends only on n and M .

Theorem 2 (Geometry of nodal domains). Let u, A be as above, let
B C M be any ball, and let Q C B be any of the connected components of
{x € B:u(x) #0}. If Q intersects the middle half of B, then

2
Q] > 2" log )" B,

where ¢ is independent of A and u.
Similar theorems have been proved by H. Donnelly and C.
Fefferman [1], [2] with A"log4 replaced by A""*?/* in Theorem 1 and

jo=nl 2(logA)™*" replaced by AT /2 4 Theorem 2. O course,
it is obvious that Theorems 1 and 2 above are not best possible.

Theorem 1 is the key to Theorem 2. We deduce Theorem 2 from Theo-
rem 1 by essentially following the arguments in [2] with appropriate mod-
ifications in view of the better BMO estimate of Theorem 1.

We shall use the symbols ¢, ¢,, ¢, ¢,, ¢;, ¢,, and ¢ to denote
generic constants which are independent of 4.

2. Before commencing the proof of Theorem 1, we recall two facts
from [2]. We state these as Theorem 0.

Theorem 0. Let M, u, A be as above. Let B(x,d) denote the ball
centered at x of radius 6. Then
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We now begin the proof of Theorem 1.
Lemma 1. Let u, A be as before. Then u satisfies the reverse-Holder

inequality,
(n=2)/2n 1/2
2n/(n-2) 2
<cVa ( / ) .
(i ) B/,
Proof. By the Poincaré-Sobolev inequality, for any ball B,

2n/(n-2)\ (n=2)/2n Un 1/2
u-— <c|B ( / Vu ) .
(IBI/ 5/, ) B\ 13 /, v

We now apply Theorem 0(B) to the right side above, to get

(IBl/ IBI/ o 2)) o <C\/_<|B|/|u|2>l/2'

By use of Minkowski’s inequality, Lemma 1 follows. q.e.d.
Our theorem will follow from the lemma stated below.
Lemma 2. Suppose w > 0,

(2.1) / w < cO/ w,
B(x,6(1+1/VA)) B(x,9)

and

er () s

Then ||logw||gyo < c(n)A"loga.

Theorem 1 follows by choosing w = ]u}z.

Our next lemma is a covering lemma of independent interest.

Lemma 3. Fix any 6 > 0, with 6 < 1/2. Let {B_ },, be any fi-
nite collection of balls in R". Then one can find a subcollection of balls
B,,B,, -, By such that

N
(a) UB.c U1+5

a€l

N
(b) > 1 (x) <4767

i=1
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Proof. Select a ball B, with the largest radius from the collection
{B,},c;- Having selected B,,---,B,_, select B, so that B, ¢
Uf.:ll (1+0)B; and B, has the largest possible radius out of the balls in the
collection {B,} . 1\{Bl.}f=_ll . Our choice of the subcollection B, -+, By
clearly satisfies (a). We now prove (b). Let x, € ﬂfi B, M =M(x,). By
a translation we may suppose x, = 0. For x € R", define T,(x) = x/r,
r > 0. By our selection procedure Trk(Bk) 4 U:.:l](l +0 )Trk(B,.) , where
r; denotes the radius of B;. Now Trk(B,.) is also a ball containing the
origin, and since r, > r, for i < k, we have T, (B;) C Trk (B;), and we
conclude

k—1
() T, B¢ U +oT,(5).
i=
Let z, denote the center of 7, (B;). We note that each of the balls T, (B,)

has radius 1 and 0 € N, 7, (B,). We will show that |z, — z,| > . For
if |z, -z, < d, and assuming r; > r;, we get (1 +<5)T,I_(Bl.) D Trl.(Bj) , a
violation of (). Thus the balls B(z,, d/2) are all disjoint. Furthermore
T (B)cC{x:|x| <2} forall i=1,2,---, M. Hence, M(6/2)" <2",
i.e., M <4"67", and (b) follows.

Lemma 4. Let w satisfy the hypothesis of Lemma 2, let B be a fixed
ball, and let E C B such that |E| > (1 —c,A”")"|B|. Then

/w > (c3/1_"/2)k/ w,
E B

where ¢, = c¢,(n, ¢|) and c¢; = c4(n, ¢;).

Proof. The proof of Lemma 4 rests on an induction on k , the inductive
step being accomplished by Lemma 3. We verify Lemma 4 for k = 1.
To do so note that if |E| > (1 - cA~"? )|B| (for some appropriate choice
of ¢ =¢(c;,n)), then [w > 1 [w. To see this, observe |B\E| <
¢A~"%|B|. Thus by (2.2),

5 (n—=2)/n ) 5
wg(/w"/(" )> |B\E| /"gé/"cl/w.
B B

We make the choice ¢”/"c, < 1/2 and inserting this choice into the
inequality above we get [p  w < jfpw. Thus [fw > §fw. If
¢, < ¢ and |E| > (1 -¢,A™")|B|, then |E| > (1 — cA™"?)|B|. There-
fore [w >4 [w >¢;A7™"? [Lw, and we are done with the case k = 1.

B\E
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So we assume the statements are valid for kK — 1. Clearly we can assume
|E| < (1 - ea™" 2)|B| or else there is nothing to prove. For each point of
density x of E we can thus select a ball B, C B such that x € B, and

|B,NE|/|B,|=1-cA"?,
We apply the covering lemma, Lemma 3, to the B,’s with the choice
6 = 27'%, and also assume without loss of generality that the B, are

finitely many. Define E, = (U?;l(l +,1_1/2)Bi) NB. Then E, C B, and
to complete the induction we will show that

(2.3) |E| < (1 -c,A ")|E,|,

(2.4) / w > e / w.
E E,
We prove (2.3) first. Now,

|E,| = |E| + ‘(U(l +427"")B,) N B\E|
> |E|+|(UB,) N B\E| = |E| + || B)\E| .

By the covering lemma, Lemma 3, the expression above is bounded below
by

(2.5) |E|+47"A7"2 S |B\E].
By our selection, |B\E| = cAT"? |B;|, thus (2.5) is bounded below by
E|+Y cd™"A7"B| = |E|+ca "1+ 27177y [0+ 47 )By).

Set ¢47"(1 + Y 2)_" =¢,, and note ¢, < ¢. From the expression above
we deduce
—-hn
|E\| > ¢4 "|E|| + |E],

and (2.3) follows.
We now prove (2.4). By (2.1),

w < / w < C /w.
/E, Z (1+47')B, OZ B,

But (1-¢i "*)|B,|=|ENB,], thus [, w < 2 [, ,w. Therefore, by
Lemma 3,

COZ/vaSZCOZ/B w52c0/EwaBi52-4"c011"/2/Ew.

We select ¢y =2. 4"c, and (2.4) follows. g.e.d.

NE
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We now prove Lemma 2. It will be enough to assume |B|_1 [pw=1,
and to show for ¢ > 0

|B|

-1
. L —_——
{xeB:w (x)>t} < tc}.—"(logl)" ,

which is equivalent to showing

—-n -1
l{xeB:w(x) <t} <t " |

Let us denote by E the set {x € B : w(x) < t}. Select k; such that
|E| ~ (1 - czi_”)k°|B|. Thus k, ~ cA"log(|B|/|E|), and so by Lemma 4
and the normalization |B|™" [ pw =1, we get,

181 = [ w< (e [ ws @l
B E

Hence,
n/2 n
|BI/|E| < te™'®**" < 1(|B|/|E))* ¢,

and it follows easily that |E| < " log )™ |B|. q.e.d.

We now prove Theorem 2. We will be brief and only indicate those
points in our argument which differ substantially from the argument pre-
sented in [2]. Before commencing we note an equivalent formulation of
Theorem 1:

Theorem 1'. Let u, A be as before and let E C B. Then

2" log 4
sup [u] < (cIBI/IED™ ™ sup [u].

The lemma stated below is proved in [2] (Lemma 2 there).

Lemma 5. Suppose ) is a component of {x € B(x,, d), u(x) > 0}
and assume x, € Q and 0 <J < A Suppose further |Q|/|B(x,, d)| <
n" < iny < . Then there is a positive number r, satisfying

(a) O<ry<-ls,
Mo

QN B(Xgs 7o)
b —_—_ 21,
®) Blxy, 1)l =0

rO csln
(c) sup Jul < ()" sup Jul,
QNB(x,, 1) B(x,,9)

where ¢, depends on the “bounded geometry” estimates.
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We also need the estimate below which is Theorem 1 in [1].
Lemma 6. Let u, A be as above. Then

r Vi /
sup |u| < (c—,) sup |u|, O<r<r.
B(x,r) r B(x,r")

Lemma 6 may be deduced from Theorem O(A) above by an iteration
and a use of the mean value inequalities for u.

Proof of Theorem 2. By Theorem 1',

( c|B(x,, 1) )C‘"‘“‘
|QﬂB(x0, r0)| B(

—ny\cA" log i
<(emy )

sup |y
X 1p)NQ

sup |u| <
B(x,,1,)

sup  |u|.
B(xy,r)NQ
The estimate above follows by assuming |Q|/|B(x,; d)| < n" and then
using Lemma 5(b). We shall arrive at a contradiction for a suitable choice
of 7, and thus for this choice of n we will have |Q|/|B(x,,d)| > n"
which will prove Theorem 2. Using Lemma 5(c) we get

_ n _ n r 5/7]
(eng™™ ™ sup jul < (eng)™ (L) sup ful.
B(xy,1,)NQ B(x,,9)
Thus,
—ned 7o\ /M
sup [u] < (eng ™ " (2) " sup Jul,

B(xy, 1, B(x,,d)

Applying Lemma 6 to the left side above yields
NV o logi (To\%/"

sup |u| < (C—> c 9 sup |u
U Cog BCS (2) o,
ro\ G/1=cVa —n\cA" logA
< (¢ ¢

< ()" e

c,/n—cVa, .. —n\cA"logA
Therefore (cr,/d)™ (eny ™) >1.

Let us assume that our choice of #n is such that ¢,/ — cvVA>0. So
using Lemma 5(a) we see easily

A 64/'7—6\/1 n
1< (cl) (cno—n)cl log_
Mo

sup |u|.
B(x,,0)

We now choose # = '13 and 7, = 51_"(logi)—l. This choice forces
¢,/n—cVi >0 and also yields

1< (6”0)04/r]—0\/1—cn1" logl.
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This is a contradiction as cn, < 1 for small ¢. Thus, |Q|/|B(x,, d)| >
n" = cA”™*(logA)~>". We now get rid of the restriction 6 < A~/*. Sup-
pose B C M is any ball with radius r > A7Y2 . Assume X, € Q be-
longs also to the middle half of B. We apply our previous conclusion to
QN B(x,, ,1_1/2) to get

2
1N B] 2 10 B(xy, 47%)] 2 cA™" (log2) " Blxy, 272)]
A2 2 (108 7)™

= P |B|

But r <c¢, as the manifold is compact and we hence arrive at

2
QN B[ > A" "*(loga)"*"|B|.
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