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GLOBAL ISOMETRIC EMBEDDING
OF A RIEMANNIAN 2-MANIFOLD

WITH NONNEGATIVE CURVATURE
INTO A EUCLIDEAN 3-SPACE

KAZUO AMANO

1. Introduction

The isometric embedding problem of a 2-dimensional Riemannian man-
ifold M2 with Gaussian curvature K > 0 into 3-dimensional Euclidean
space R3 is one of many difficult problems. In fact, it is quite hard to show
certain a priori estimates in a neighborhood of zero points of K and to
verify the convergence of the Nash-Moser type interaction scheme, since
the linearization operators are degenerating on {K = 0} . Lin [5] studied
a local problem and solved it. Naturally, the next subject is a global prob-
lem, which we shall study in this paper. In a global case, Lin's method
does not work well, though it is quite suggestive, since his technicalities are
particularly adapted to the local situation. For instance, his ingenious pa-
rametrization would not lead to success in the global case. What we need
are a new type of implicit function theorem and global a priori estimates
for degenerating linearized operators.

Let g = gtj ώcι dxj be a C r α Riemannian metric defined in R2, where

r > 2 and 0 < a < 1 (actually, Cr smoothness will suffice for our purpose

(cf. §5)). We assume that

(1.1) l ^ - ^ l r « l ( ! < / , . / < 2),

where δ . stands for Kronecker's delta, | |Γ is the Cr supremum norm,

and A < 1 means that A is sufficiently small. K denotes the Gaussian

curvature of the Riemannian manifold (R2, g). We assume

(1.2) K>0,

and put / = Kdet{g j). It is to be noted that (1.1) and (1.2) imply

0 < / < 1. Let D be a bounded convex domain in R2 such that there

exists a convex function φ e C°°(R2) satisfying φ < 0 in D and φ > 0
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in R \ D. For a small p > 0, D denotes a bounded convex domain

{ x e l 2 : φ(x) < p} . We define a nonlinear operator F[μ] by

(1.3) F[μ] = det(V VjU) + / ( * ' V , - 1) - det((/ι,) y),

where (g'7) = (<?£/)"*, V̂  are covariant differentials, ut = du/dx1,

μ p X \ δ(x1)2 + exp{l//>/2 - 0(x))} (φ(x) > p/2),

ί > 0 is a small constant, and (/^)/ ; = dμp/dxιdxj.
We shall prove the following.
Theorem 1.1. Assume (1.1), (1.2), αra/ r > 14 + 2κ for some 0 <

JC < 1. Then for a small p > 0 ίΛere exists a function u^ e wr^2~2~κ(D )
such that

(1.4) F[μp + Uoo] = 0 inDp, uoo = 0 ondDp

and

(! 5 ) \UJr,2-2-κ « L

Theorem 1.2. Assume (1.1), (1.2), <z«d r > 15. 77ze«

α global c [ ( r~ 1 1 ) / / 2 ] isometric embedding of (Z), g) /Vzίo 3-dimensional

Euclidean space R 3.
Here IF*( ) denotes the Sobolev space with norm || | | 5 , [•] is Gauss's

symbol, i.e., [(r - 11)/2] is the largest integer < (r - 11)/2.
In Theorem 1.2, assumption (1.1) and the convexity of D are essential.

If we remove one of those assumptions from Theorem 1.2, then it is no
longer true; we will be able to find counterexamples. It is to be noted that
(1.1) and convexity are not necessary in the local case (cf. Lin [5]). (1.2)
ensures that the nonlinear equation which we study later is of elliptic type.

We first shall show that Theorem 1.2 follows from Theorem 1.1 (§2) and
second, establish an iteration scheme of Nash-Moser type for the nonlinear
operator (1.3) and prove Theorem 1.1 (§§3 and 4). We also prove that
Theorems 1.1 and 1.2 remain true for a Cr Riemannian metric g (§5).

2. Proof of Theorem 1.2

We shall show that Theorem 1.2 follows from Theorem 1.1.

Proof of Theorem 1.2. Since r > 14 + 2/4, and Sobolev's lemma

gives |M| [ ( r.7 ) / 2 ] < C\\u\\r/2_2_{/4 and Wr/2-2~ι/\Ω) c C ι ( r - 7 ) / 2 ] (Ω),
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Theorem 1.1 implies that for a small p > 0 there exists a function
woo e Cι{r~7)/2](Dp) such that

(2.1) F[μp + uoo] = 0 inDp, Uoo = 0 ondDp

and

( 2 2 ) lMool[(r-7)/2] ^ L

It is easy to show that u = μp + uoo satisfies

(2.3) det(Vz VjU) + f{giJuiUj - 1) = 0 in Dp/2

and

(2.4) dette,j - lift) > 0 in Dp/2

when (2δx1)2 < 1 in D ,2. By brute force computation, it follows from
(2.3) and (2.4) that

(2.5) K[gij-uiuj] = 0 inDp/2,

w h e r e

1

fiJ' \ ^ n \ / u c K 7 z n Jdet(yz.y)

Gauss's Theorema egregium shows that AΓ[gί; - M M̂ ] is the Gaussian cur-

vature of the Riemannian manifold {Dpj2, (g,; - uμj) dx1 dxJ). Hence,

the C [ ( r " 7 ) / 2 ] Riemannian manifold (Dp/2, (g.} - utUj) dx1 ώcj) is flat.

It is clear that we have only to prove the existence of a c t ( r~7 )^2 1~2

coordinate system (yι, y2) defined in 2) satisfying

(2.6) {gij - u,Uj) ώc' dxJ = (dyιf + ( dy2)2, dyι Λ dy2 φ 0.

In fact, (2.6) implies

gudχidxj = (dy1)2 + (dy2)2 + (duf, dyiAdy2^0,

i.e., the map {yι, y2, u):D -* R3 is a c [ ( r " 7 ) / 2 ] " 2 isometric embedding.
In order to prove (2.6), we shall show two lemmas.

For the sake of simplicity we put q = [{r - 7)/2] - 1, gtj = gtj - utUj e

Cq(Dp), g - ^ . Λbc'' ̂  , and K =
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Lemma 2.1. For any point x e Ί) and any unit vector ξ e Tχ(D)

there is a geodesic curve c(t\x9ξ), 0 < t < t0, on (D , g) such that

c(0\x,ζ)=x, έ(O,x,ξ)=ξ, c{t\ x, ξ) e Dp for 0 < t < ί0, c ( ί o ; x ,ξ)

e dDp, and c(t; x, {) is a Cq~x function with respect to t, x, and ξ.

Proof The geodesic curve c(t; x , ξ) = {cx(t\ x9ξ)9 c2(t; x , ξ)) is
defined by

(2.7) ck + f {;.(c)i V = 0, c(0) = x, έ{0) = ί,

where F* = g'1^), + (gu)j - ( # 0 ) / )l/2. Since f* e Cq-χ(Dp) and

|Γ^)\q-\ < 1, the Cq~~x regularity of c(t x , {) follows from a well-known
fundamental theorem of ordinary differential equations (cf., for example,
[4]). The remaining part of Lemma 2.1 is clear.

Remark. We may regard y{t\x9ξ) = c(t \x9ζ) as a solution of the
initial value problem

yk + fk..(c)γιγi = 0, y(0) = ξ,

where t^Λc) = Γf,-(c(ί x , ξ)) is a Cq~x function of /, x , and ξ. Hence,

γ(t;x,ξ) = d(ί; JC,{) is C^"1 smooth with respect to /, x , and ξ.

Furthermore, using (2.7), it is clear that c(t; x , ξ) is also Cq~x smooth

with respect to t, x , and {.

Lemma 2.2. There exist a global geodesic parallel coordinate system

(yx, y2) on 25 and a positive function h(yx, y2) defined on D such that

/ e Cq~x(D), h e Cq~x(D), and

(2.8) g = (dyx)2 + h(yx,y2)(dy2)2.

In particular, if K = 0 and q > 3, then h = 1.

When (Z), ̂ ) is embedded in R3 and q = oo, we can find the proof
of Lemma 2.2 in many textbooks. However, (D, g) is not yet embedded
in R3 and, furthermore, we are interested in the case q < oo and the loss
of regularity. Thus, we have to prove it here.

Proof of Lemma 2.2. We construct a global geodesic parallel coordinate
system (yx, y2) on D as follows: First, we fix a point p e D and a
unit vector υ e Tp(D), and take a geodesic curve c(t2) = {cx(t2), c2(ί2))
satisfying

(2.9) ck(t0) + ffActfit^iu) = 0, c(0) = p,



GLOBAL ISOMETRIC EMBEDDING 53

Second, we define a family of geodesic curves c(tλ t2) by

(2.10) ck(t{ t2) + ϊk

iJ{c)ti{tι t2)cj{tx t2) = 0,

where

and ( C j ί ^ ) , ^ ^ ) ) = (c2(/2), - c 1 ^ ) ) . Here we note that |v(ί2)| =

\lgijv\t2)vj{t2) = 1 and (c(ί2), υ(t2)) = $ / ( ί 2 y (ί2) Ξ 0. Lemma 2.1

shows that the family of geodesic curves {c(t{ t2)} covers D and, fur-

thermore, by Lemma 2.1 and the remark following it, c(tχ t2) is Cq~x

smooth with respect to t{ and t2. Taylor expansion

enables us to compute dcι(tι t2)/dtj. Combining (2.11) with (1.1), we

obtain det(acz(^ t2)/dtj) φ 0.

Third, for x = c(tx ; ί 2 ) G ΰ , w e define (y\x), y2(x)) by

(2.12) yι= fh\c(t',t2)\dt, y2= f2\c{t)\dt,
Jo Jo

where |y| = ygijy
ιyJ''. Hence, we get a global Cq~ι coordinate system

(yι, y2) defined on D. It is to be noted that, using the construction pro-
cedure of (yι, y2), we may assume that (y1, y2) is defined in a neigh-
borhood of Z).

We shall show that, in the new coordinate system (j/1, y2), g has a
simple expression of the form

(2.13) g{dyX)2 + h{y){dy2))2.

In order to prove (2.13), we abandon the original coordinate system

{xι, x2) temporarily, and write g as g = h^ dyι dyj. Let us fix a point

y0 = (}>o > ^o) e D arbitrarily and take a curve c(t) = (cι{t), c2(t)) =

(yι

0 + t,yl). Then, for all sufficiently small t > 0,

and

dist(c(0), c(t) = f yjhij{c)ti{τ)t'{τ)dτ = f y/hn{c{τ))dc.
JO J 0
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Hence, we have hn(y0) = 1 this implies hn = 1 in ~D. Next, let us

fix a point y0 = (0, yfy e D arbitrarily and take another curve c{t) =

(c\t), c2(ή) = (t,yl). As is well known, for a vector field Y = ^ 1

the covariant derivative VέY is defined by

where η) = drf/dyj and Γf;. = hkl{{hjj + (Aj7);. - (Al7)z)/2. Direct com-
putation gives

(2 14) v — =Γ'" — V — = Γ/ —

Since c(t) is a geodesic curve, we have Γ'π = cι + Tι-kc
jck = 0 which

implies, by (2.14),

(2.15) /V.-^,-M=0.

(2.14) and Aπ = 1 give

(2 16) / — v — \ = Γ / A =h hij((h ) + (A ) •
\ a y 1 ' e 9 y 2 / 1 2 h h j l ι υ 2

Hence, we have, by (2.15) and (2.16),

Using the definition of the coordinate system (yι, y2), we obtain

( i i 8 ) ( ^ • ^ ) = o a t c ( o )

(2.17) and (1.18) show that

which implies hn = h2l = 0 in T5. We have only to put Λ(y) = A22(y).

Since gtj and JCZ are Cq smooth with respect to yι by virtue of the

inverse function theorem, Cq~ι smoothness of h{y) follows from

dy2/ \dxι ' βjc^V fly2 dy
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In the case K = 0, Gauss's theorema egregium shows

(2.19) (d/dyl)2Vh = 0.

Here we used the assumption q > 3 which implies h e C2(D). Let us fix a

point y0 = (0, y%) e T5 arbitrarily and take a curve c(t) = (cx(t), c2(t)) =

(0, y2

0 + 0 . Then, for all sufficiently small ί > 0,

dist(c(0), c(0) = t

and

dist(c(0),c(ί))= f Jh{c{τ))dτ.
Jo v

Hence, we have Λ(y0) = 1 which implies h\yι=0= 1. Since

2dyι 22

we obtain dh/dyι\yι=Q = 0. Therefore, we have

dy/h
(2.20) VALi = 0 = l , = 0,

which together with (2.19) gives Vh = 1, i.e., h = 1 in D . q.e.d.
Consequently, (2.6) is proved; that is to say, the proof of Theorem 1.2

is complete.

3. Proof of Theorem 1.1 (Part 1)

The purpose of this section is to establish an implicit function theo-
rem of Nash-Moser type. Though there already exist numerous implicit
function theorems, none of them is applicable to our problem. In fact, if
we used them, we would end up with linearized operators of mixed type
which we cannot solve so far. However, repeated use of elliptic regular-
ization, or elliptic singular perturbation for linearized operators, enables
us to overcome the difficulty. By virtue of our implicit function theorem
we can prove an important part of Theorem 1.1.

For the sake of simplicity, we put μ = μp , s0 = r - 2,

(3.1) e - max{|^[//]|^/3

9 ||^[//]||^/(5°+2)} and 0 = <Γ1/2.

It is to be noted that we may assume that ε > 0. In fact, if ε = 0, then
Theorem 1.1 is trivial; we have only to take u = 0. (1.1) implies that
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ε > 0 is sufficiently small. Thus we may assume that 0 < ε < 1 and
θ > 1. Throughout this section, C > 0 denotes a certain large constant
which is independent of ε and n . Actually, C will be determined as a
large positive number satisfying (3.2), (3.10)-(3.12), and (3.23)-(3.24).

Lemma 3.1. We have

(3.2) \μ\s<C (0<s<s0 + 4),

(3.3) I^LuJlo < y/εθ~2, \\F[μ]\\s < εθ~s° (0 < s < s0),

where C > 0 is a constant independent of ε and p.
Proof (3.2) is clear. Direct computation gives

and
\\F[μ]\\s<ε{s^2)l2 = εθ-s« (0 < s < s0).

We define linear operators L[u] and Lε [u], ε+ > 0, by

(3.4) L[u]υ = dtF[u + tv]\t=0 = aij[u]vij + α ^ ] ^ . ,

(3.5) Lε[u]υ = L[u]υ + ε , ^ = fl^[Mlvl7 + ^[w]ι;.,

where L = agljVtVj and a > 0 is a constant which will be determined
later.

l3Lemma 3.2. // ε̂  = l/^//]^, gl3u{u. < 1/2, and Lu>\, then

(3.6) d e t a i l ] ) > ^ + det(/ι/;) + ε,Y det(g°).

(3.4) and (3.5) give

2 1 , , , rJc . 21

β. [«] = - («i2 + Γi2Mfc) + ε » α ^
22, , yJt 22

which implies

(a '̂[M]) = det(V .V ;M) + ε.Lw + e,V

/(I - s'7M,.Mj.) + det(/ίy) + ε.Lu + ε.Y

β j + / ( I - <?'7«;wJ ) + det(^,..)

+ e.(L« - 1) + e,V detdet(^°).
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Since, by the assumption, F[μ] + ε^ > 0, / ( I - g^uμ.) > / / 2 , and
ε^(L[u] - 1) > 0, we obtain (3.6).

Remark. It is to be noted that direct computation gives

det(/ι/y) > (φ - p/2)-4 exp(2/(/>/2 - φ)) d e t ( ^ ) > 0 in Dp \ Dp/2.

Here the convexity of φ(x) is essential.
In this section, we repeatedly use the Sobolev inequality

(3.7) H- < C(/)| |M | | , .+ 1 + K

and smoothing operators Sθ: w'(Dp) -+ Wj{Dp), θ > 1, denned by

Sθu(x) = θ2 f ψ{θ{x-y))u{y)dy,

where C(i) are positive constants, 0 < K < 1 is a fixed sufficiently
small constant, and ψ € C^°(K ) is a nonnegative function satisfying
f ψ(x)dx = 1. It is easy to show the inequalities

(3.8) | | V I I , <

(3.9) ||(7 - SJuW, < c ( i ;

where C{i, j) are positive constants and, in particular, C(/',/) = 1.
Lemma 3.3. There is a constant C > 0 such that

(3.10) \F[μ] - F[v]\0 < C(\u\2 + \υ\2)\u - υ\2,

(3.11)

\\d,L[u + tυ]wl<c(γ; \\v\\ί+i+κ\\w\\j+2+ X; |
^i+j=s i+j=s

i<s/2 i<s/2

and

(3.12) HLiill, < C| |κ| | J + 2

for 0 < s < s0 - 2 and 0 < t < 1.
Proof. (3.10) and (3.12) are clear. (3.11) follows immediately from

(3.4) and (3.7). q.e.d.
We construct a sequence {un} as follows: We define u0 and un+ι,

n > 0, by

(3.13) uo = O, un+ι=un+vn,
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where vn e Cs°+2'a(Dp) is a solution of the Dirichlet problem

(3.14) Le[μ + ΰnK = fn

(3.15) " εn

(3.16)

17)

(3.18) i?0 = 0, RH = ΣrJt

j=0

(3 19) Γj = ^ + Uj] " L ^ [ / l + β ^ " βjLVj + Qj

(0<j<n-l),

(3 20) Qj = F [ μ + " ; + l 1 " ^ ^ + " ^ " L[β + UJ]Vi
(0<j<n-l).

Here Sn = Sθ and θn = θn = ε~n/2 .

The sequence {un} is well defined and convergent if we assume the
following.

Assumption 3.4.

(3.21) g^μ + ΰ^μ + Qj.K^

(3.12)

Assumption 3.5.

(3.23) IKU0<C||/J0,

(3.24) K||1<

where C > 0 is a constant independent of ε and n .
Assumption 3.4 shows, by Lemma 3.2, that L [μ + w] is an elliptic

operator with real Cs°'α coefficients defined in Dp this implies that we

can solve the Dirichlet problem (3.14) in Cs°+2ta(Dp) (although C r ' α

regularity of the metric g played an important role here, Cr smoothness

will suffice for any other argument in this paper). Assumption 3.5 ensures

the convergence of {un} (cf. Proposition 3.6 and 3.7).
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Based on Assumptions 3.4 and 3.5, we have the following Propositions
3.6, 3.7 and Theorem 3.8 which were originally proved by Amano [1].
(Unfortunately, the author happened to make a mistake in [1]. In fact,
though the propositions of [1] are true, one of their assumptions which
corresponds to (3.24) in this paper is too strong for practical applications.)

Proposition 3.6. On Assumptions 3.4 and 3.5, if

(3.25) 0 < ε < min((4C)" 2, (2C)~4),

(3.26) θ > 2,

(3.27) so>4 + 2κ,

(3.28) 5 + κ<σ<s0,

then we obtain

(3.29) I K | | ί < ^ < r σ (0<5<50),

(3.30) ll^ll, < Cχεθs~a (0 < 5 < s0 - 2),

where C, = ±(so + l ) C .
Proposition 3.7. On Assumptions 3.4 and 3.5, if

0 < ε < min (4C)~2, (2C)~4, (2CC 2)~ 2,

lc(2C2 + 2C + J2C(i + 2)C(i + 3 + κ , σ + κ)) \ ,

{CC(0)(2c(l + K , s0 - 2) + I ) } " 2

(3.32) θ>2ι/κ,

(3.33) m a x ( 3 + τc, \{σ + 1 +κ)) <τ<σ-2,

(3.34) 5 + κ <σ<sQ/2- 1,

(3.35) 5 0 > 4 + 2κ,
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then we obtain

{ \fε is < a — K) ,

yΓεθs-σ (σ~>σ + κ),

(3.38)y \\Uj - ύj\\s < C^θ)~σ (0<s<s0),

(3.39)j Hr-.JI, < C^tfZ* ( 0 < s < s 0 - 2 ) ,

(3-40). Il/Jllj < C2εθSj~ (0 < ^ < ^ 0 ) ,

(3.41)7. βj < C3 Jεθ]~σ,
w/zere /y_1 = 0, r_j = 0, and each constant C > 0 depends only on K ,
sQ, and C.

Remark. By virtue of the interpolation inequality, (3.29)-(3.30) and
(3.36)^- (3.41) .̂ remain valid for real s, if we modify the constants C o —
C3 appropriately.

Theorem 3.8. On Assumptions 3.4 and 3.5, if r > 14 + 2κ for some

0 < K < 1, then for a given small p > 0 there exists a function u^ €
Wr/2~2~κ{Dp) such that

(3.42) F[μ + Uoo] = 0 inDp, u^ = 0 on dDp

and

(3-43) HκJl/2-2-κ « vΈ

Proof of Proposition 3.6. By (3.23), (3.17), (3.8), (3.3), σ0 > σ, and
2Csft < 1, we have

(3.44) | |t;0 | |0 < ^θ°-σ.

If we assume that

(3.45) \\vo\\j<^θj-σ (0<j<s),

then, by (3.24), (3.17), (3.2), (3.45), (3.8), (3.3), y/eθ = 1, s0 > a, θ > 2,

and (2C + 2C 2) v

/ε < 1, we obtain

(3-46) ||t;0 | |, < ^-θs~σ.

Hence (3.29) is proved.
Next, we note that (3.19) gives

(3.47) ro = -εoLvo + QQ
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and that (3.12), (3.15), (3.3), and (3.29) imply

(3.48) \\e0Lυ0\\s < \

Since (3.20) and direct computation yield

we obtain by (3.11), (sQ - 2)/2 + 3 + K < sQ, and σ > 5 + K ,

(3.49) | |β o | | 5 <±(s+l)Cβ0 5 ~ < τ .

By combining (3.47)-(3.49), we have (3.30).
Proof of Proposition 3.7. (3.36)0-(3.41)0. Since u0 = 0, ι;_j = 0,

and r_j = 0 , (3.36)0-(3.39)0 are clear. (3.40)0 follows from (3.17),
(3.8), and (3.3) when C2 > 1. By (3.15) and (3.3), (3.41)0 is valid when
C3 > 1. The constants C2 and C3 will be determined precisely in the
following part of the proof.

( 3 . 3 6 ) ^ - ( 3 . 4 1 ) ^ =• (3.36)n + 1. (3.23), (3.40)Λ, and 2CC2Jε < 1
give

(3.50) \\vn\\0 < ^θ°n~
σ.

If we assume that

(3.51) ll^ll; < - y θ Γ σ (0<J<s)>

then, by (3.24), (3.40)Λ , (3.2), (3.7), (3.8), (3.37).<n , (3.51), 5 + κ-σ<

0, y/εθ = 1, θ > 2, and

we have

(3-52) HtiJ, < f C σ

(3.36) ;.<π-(3.45).<π ^ (3.37)π + 1. Since (3.13) gives uH+ι = ΣUvj'
(3.36)y<B+1 we obtain

(3.53) ιι«, + ,ι ι,<^έ ί 5" f f

7=0

Direct computation shows that, by θ > 2ι/κ ,

r~ n

(3.54) Y J 3 ΘT" - ̂  w h e n s - σ ~ κ

7=0
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and

ΓF
 n

(3.55) Y Σ θ]~σ ^ ̂ θ n 7 ι w h e n s > σ + κ.
7=0

By combining (3.53)-(3.55), we have (3.37)n+1.
(3.36) ;<n- (3.41); < n => (3.38)Λ+1. In the case s < σ + /c , we obtain

(3.56) K + i - β Λ + i l l , < C ( J , σ + /c)VβC?

by (3.9) and (3.37). In the case s > σ + K , we get

(3.57) ll^+i-^+ill,<2^Ci

by (3.38) and (3.37)π+1. Hence, we need only to set

(3.58) Cn = max \ max C(s, σ + K) , 2 i .
υ ^0<5<σ+κ: J

(3.36)^π-(3.41) 7.<^(3.39)n + 1. Since

\ [ μ + «„]«„ - Le[μ + un]υn = ̂  ^La[μ + ΰn + τ(un - ΰn)]vn dτ,

(3.11), ( s o - 2 ) / 2 + 3 + f c < s o , (3.38) B , (3 .36) B + 1 , and 5 + K - σ < 0
give

(3.59) \\Lε[μ + un]vn-Lε[μ + ΰn]vn\\s

<ί(SQ-l)CCQεθs-σ (0<s<sQ-2).

( 3 . 1 2 ) , ( 3 . 4 1 ) π , ( 3 . 3 6 ) Λ + 1 , a n d τ<σ-2 s h o w

( 3 . 6 0 ) || -εnLvn\\s< \CC3εθs~σ (0<s<s0-2).

Direct calculation gives

Qn = nμ + un+ι] - F[μ + un] - L[μ + un]υn

(3.61)

By combining (3.61) with (3.11), (s0 - 2)/2 + 3 + K < s0 , (3.36)n+1, and
5 + κ - σ < 0 , w e obtain

(3.62) \\Qn\\s<\(sQ-l)Ceθs-σ (0<s<s0-2).

(3.59), (3.60) and (3.62) imply, by (3.19),

KWs^^εθ3-" (0<s<sQ-2),
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where

(3.63) q = i(* 0 - 1)CCO + I C C 3 + \(s0 -

( 3 . 3 6 ) ^ - ( 3 . 4 1 ) ^ =* (3.40)n + 1. We note that

(3.64) fn+ι = SnRn - Sn+ιRn+ι + SnF[μ] - Sn

We shall estimate each term of (3.64) separately. (3.8),(3.18), (339)j<n+ι,
o < so/2 - 1, and θ > 2 give

(3.65) I I ^ Λ J , < 2 ^ ( 5 , J 0 - 2)egqs

n-° (0<s< s0)

and

(3.66) \\Sn+iRn+ι\\s < C.Cis^, - 2 K ; ί (0<s< s0).

(3.8), (3.3), and σ - s - s0 < 0 show

(3.67) \\SnF[μ]\\s < C{s, σ ) ε ^ ^ (0 < s < s0)

and

(3.68) \\Sn+ιF[μ]\\s < C(s, <τ)ε0^ (0 < 5 < ίo).

Hence, we obtain

Mn+X<C2<+° (0<S<S0),

where

(3.69) C 2 = m a x ( 3 C 1 C ( j , s 0 - 2 ) + 2C(j,σ)) + l.

(3.36) ; < n-(3.41) ; < n =>• (3.41)B + 1. Direct computation gives

(3.70) F[μ + un+ι] = (I - Sn)F[μ] + (I - Sn)Rn + rn

by (3.13)-(3.20). Since εn+ι = \F[μ + M n + 1 ] | 0 , we have, in consequence
of (3.70),

en+ι < \d ~ Sn)F[μ]\0 + |(/ - Sn)RJ0 + \rH\0

We shall estimate each term of (3.71) separately. (3.7), (3.9), (3.3), and
1 + K - τ < 0 show

(3.72) |(7 - Sn)F[μ]\0 < C ( 0 ) C ( l + K , ί o ) β C Γ

(3.7), (3.9), (3.18), (3.39), < B , σ < so/2 - 1 , θ > 2 , a n d l + / c - τ < 0

give

(3.73) |(7 - Sn)Rn\0 < 2 C , C ( 0 ) C ( l +κ,s0- ™
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(3.7), (3.30), C, > (ί0 + l)C/4, and 1 + K - τ < 0 imply

(3.74) \rΌ\0<CxC{0)εθτ-a.

( 3 . 7 ) , ( 3 . 3 9 ) π + , , l + κ - τ < 0 , a n d σ + l + κ - 2 τ < 0 s h o w

(3.75) I'Jo^WOK ί ^>\).
(3.10), (3.2), (3.7), (3.8), (3.37)Λ + 1, (3.38)Λ+,, and τ > 3 + κ give

(3.76) |F[μ + flΛ+I] - F[μ + un+ι]\0 < 2CC0C(2)(C + C(2)v^)v^

By combining (3.72)-(3.76), we obtain, in consequence of ε < 1,

+ K, sQ) + C,C(0)(2C(l + K , S o - 2) /

which implies, by C(0)(2C(l + /c, s0 - 2) + l)y/e < 1/C,

(3-77) en+ι < C 3 V«CΓ
if we put

(3.78) C3 = C(0)C(l +κ,sQ) + CJC + 2CC0C(2)(C + C(2)) + 1.

Substituting (3.78) in (3.63), we can determine Cx explicitly. Hence,
by (3.69) and (3.78), we also get explicit expressions of C2 and C3. This
completes the proof.

Proof of Theorem 3.8. If we put σ = so/2 - 1, then (3.36) gives

(3.79) |K - κΛo/2-i-κ < Σ H«A/2-I-K ^ T ?(»"*)" ^ °

as /", j ! -> o o , i > y . S ince so/2 -2-2κ>5-l-κ>2, (3 .7) s h o w s

Hence, there is a function u^ e ^ ί°/2~1"'c(Ω) n C2(Ω) satisfying «„ -^

MQO i n w*l2-k-*(Ω) n C2(Ω).

Combining (3.70) with (3.9), (3.39); , (3.7), and so/2 - 2 - 2κ > 5 -

1 - K > 0, we can show that F[μ + un] -> 0 in Ws°/2~3~κ(Ω) n C°(Ω).

Since « B | β ^ = Σ ; i « j a ^ = O,wehave M j β D ^ O . By (3.37) ;,
we obtain ||Mσo | | ίo/2_1_κ = ϋ m ^ ^ | |MJ | J O / 2 _,_ K < y/i, which completes
the proof, q.e.d.

Now, for the proof of Theorem 1.1, it suffices to verify that Assumptions
3.4 and 3.5 are really fulfilled, i.e., that (3.21)-(3.24) follow from (1.1),
(1.2), and r > 14 + 2κr.
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Proof of Theorem 1.1 {Part 1). We shall show that (3.21) and (3.22)
are valid for any n .

Step 1. (3.21) and (3.22) hold when n = 0. In fact, if we choose the
constants δ > 0 and p > 0 sufficiently small and a > 0 sufficiently large,
then we have gιjμ^j < 1/2 and Lμ > 2.

Step 2. If we assume that (3.21) and (3.22) are valid for n = 1, 2, ,
k, then by (3.13), we can construct a function uk+ι. Using the proof of
Proposition 3.7 we have ||w;||5 < y/e for s <σ-κ, σ = s o /2- 1 and j =
0, 1, , k+1. Since r > 14+2κ; and s0 — r-2, Sobolev and Hausdorff-
Young inequalities, i.e., (3.7) and (3.8), give | % + 1 | 2 ^ C(2)y/ε, which
shows that (3.21) and (3.22) hold for n — k-\-\. Therefore, Assumption
3.4 is fulfilled.

4. Proof of Theorem 1.1 (Part 2)

The remaining part of the proof of Theorem 1.1 follows from certain
estimates which we show in this section by modifying Amano's calculation
[2]. Roughly speaking, we have a strong estimate in an elliptic region
(Lemma 4.4) and a weak one in a neighborhood of degenerating points
(Lemma 4.3). Using a sort of patchwork technique (Lemma 4.2), we can
combine them together to obtain (3.23) and (3.24).

Unless otherwise specified, P denotes a degenerate elliptic operator of
the form

(4.1) P = aiJdidu + aidi

with real C°° coefficients aιj = ajι and a1 defined in Ω, where Ω is
a bounded domain in R^ with C°° boundary. Assume that there is a
continuous function λ(x) > 0 defined in Ω such that

(4.2) / aiJ{x)ξiζJ>λ{x).
J\ξ\=ι J

S stands for a subset of Ω satisfying { x e Ω : λ(x) = 0 } c S . For the
sake of simplicity, we put

A, =max( max \DsaιjL, max |Z)V|n)

for k > 1 and

Bk = ( \ \ t \ \ k , )

Unless otherwise specified, C and Cz are positive constants independent

of aιj and a1.
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Lemma 4.1. We have

(4.3) £ | | [ d t , P]u\\l < C{A2\\Pu\\x\\u\\x + A2

2\\u\\\) (« e C

i+j<s+l
ί+2<s+l

(aeC0°°(Ω), s>l).

Proof of Step 1. We shall prove (4.3). Lemma 1.7.1 of Oleinik and
Radkevich [6] shows that

> \ah u ) < CAΊ y a u1{un (u G C,
/ J v K IJ' — L / J II IJ v V

k I

which implies

i

By integrating by parts, we have

ί aijuliulj dx + CA^WuW].

a^u^j dx = - {(Pu)t, ut) + ([d,, P)u, u,)

which means

(4.6) W A H « J U *
k J

<c(\\Pu\\x\\u\\x-
\ k

From (4.5) and (4.6) it follows that

^ l l t a ^ ^ l l ^ C ^ I I P w I I J I ^ I I ^ ^ I I w l l J ) (ue
k

Step 2. We shall prove (4.4) for £ = 1. (4.3) shows

.PMl^CiUd.^p^ + iiid^id.^PMll)

Hence we have
pM\] < c μ | | p M | | | | M | | + A2\\U\\2

A2

2\\U\\2)
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Step 3. We assume that (4.4) is valid for 1 < s < r. Direct computation
gives

\\d,[dk, P\ut-x ^ C{\\[dk,P]utt_x + Hφ, [dk, PWuW2^

Σ
i+2<r+l

Therefore, we obtain

and the proof of Lemma 4.1 is complete.
Lemma 4.2. for a fixed χ e C°°(Ω) satisfying supp|V#| c Ω,

(4.7) \\[χ, P]M||J < C ( Λ 0 | | P M | | 0 | | M | | 0 + 52

2||M||J) (u e

(4.8) HDf./WI?

(4.9)

i > 2 ) .

Proof of Step 1. We shall prove (4.7). Let us consider a cut-off function

χ e C^°(Ω) satisfying 0 < χ < 1 and 9 ^ c c j f for any /, and define an

operator P = ό ' 7 ^ ^ . + ά ^ by P = χP. Since [χ, P]M = [^, P]u and

IIPMIIO < H ŵllo > it will suffice to prove

(4.10) \\[χ, P]iι||; < C(Λ0 | |P«||0 | |iι | |0 + 52

2||w|lS) (u e C

Corollary of Lemma 1.7.1 of Oleinik and Radkevich [6] shows that

(aUUj)2 < B^άklukUι (u € C°°(Ω)),
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which gives

(4.11) \\[χ,?]u\\2

0 < CB0Jάkiukuιώc

by integrating by parts, we have

(4 12)

<||Piι|loll«llo +
which together with (4.11) implies (4.10).

Step 2. We shall prove (4.8). Let us take the same cut-off function χ

as in Step 1 and define an operator P = aljdtdj + aιdi by P = χP. Since

[χ, P]u = [χ, P]u and \\Pu\\x < C\\Pu\\x, we need only to prove

(4.13) \\[χ, PJiillJ < C^UPwHJIwll, + 5 2

2 | | W | | ί ) (u e C°°
(4.7) and Lemma 4.1 give

\\dk[χ, P]u\\l < C(\\χ,P]uk\\2

0 + \\[dk,[χ,P]]u\\l)

which implies (4.13).
Step 3. We prove (4.9) for s = 2. We need only to prove

(4.14) \\[χ, P]u\\2

2 < C(B2\\Pu\\2\\u\\2 + B2

2\\uf2) (u € C

where P is the operator introduced in Steps 1 and 2. (4.13) and Lemma
4.1 give

\\dk[χ, P]ii||; < C(\\[χ, P^w] + \\[dk, [χ, P]]u\\])

< C ( J 5 2 | | P M | | 2 | | M | | 2 + B\\\U\\2

2) , (u e C°°(Ω)).

Hence(4.14) is proved

Step 4. We assume that

\\[X,P]u\\2

s

~ ^+2\\u\\fj9 ( W E C ° ° ( Ω ) , 2 < s < r ) .

i+2<s

Direct computation gives

*li \<) >

i+2<r
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which implies

\\[χ,?]u\\2

r<c(B2\\Pu\\r\\u\\r + £ Bf+2\\u\\fj, (w
^ i+j<r '

i+2<r

Hence the proof of Lemma 4.2 is complete.
Lemma 4.2. Assume that

(4.15) \\u\\0<K\\Pu\\0, (W€C°°

Then we have

(4.16)

\ \ u \ \ x < K C { \ \ P u \ \ x + A 2 \ \ u \ \ x ) , ( « € C

(4.17)

IMI4<*c(||/'«||i + 2 4 +2||κ||, ) , («€C0°°(Ω), s>2).
^ i+j<s '

i+2<s

Proof of Step 1. We shall prove (4.16). Since

and, by (4.3),

we easily have (4.16).
Step 2. (4.17) is valid for s = 2. In fact, it follows from (4.16) and

(4.4) that

\\dku\\χ < KC(\\Pu\\2 + \\[dk, P]u\\x + A2\\u\\{)

<Kc(\\Pu\\2 +

i+2<2

Step 3. If (4.17) holds for 2 < s < r, then we have

\\dku\\r<KC^\Pu\\r+x + \\[dk,P]u\\r+ Σ ^ = 2 l l w I U i ) '

ι+2<r

and (4.4) gives

j
ι+2<r+l

Combining the above two inequalities, we can show that (4.17) is valid for
s - r + 1. Hence Lemma 4.3 is proved.
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(4.16) and (4.17) will turn out to be trivial and useless unless the cru-
cial constant A2 > 0 is sufficiently small. Fortunately, by virtue of the
definition of μ , the estimate (3.37)., and the fact ε < 1 which follows
from our assumption (1.1), we obtain A2 < 1. Hence, Lemma 4.3 is not
useless, and actually works very well when it is teamed with the following
lemmas.

Lemma 4.4. Assume that P is uniformly elliptic in Ω, i.e.,

aij{x)ξiξj>λ()\ξ\\ λo = const > 0.

Then there is a constant Cλ> 0 of the form Cλ = C | a polynomial of

and BQ\ such thatι

IMIi < C
(4.18)

(ueC°°(Ω),

(4.19)

= 0, s > 2).

It is not difficult to prove (4.18). In fact, we need only to apply well-
known standard techniques to the linear elliptic operator P and to calcu-
late several constants precisely. By induction with respect to s and patient
calculation, (4.19) follows from (4.18).

For δ > 0 we define a set Sδ by Sδ = {x e Ω: dist(x, S) < δ} .
Lemma 4.5. Assume that S is a compact C°° submanifold of Ω and

Ω\S is connected. Then there exists a function γ e L°°(Ω) such that
7 = 0 on S, infΩN^ γ > 0 for any sufficiently small δ > 0, and

(4.20)
( M eC°°(Ω), κ!

Proof. Standard techniques of elliptic operators give

λ\Du\2 dx<C ( | | P « | | 0 | | M | | 0 + \ sup |flJj - a\\\\u\\^) ,
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where λ = λ(x) is a continuous function satisfying (4.2) and Du =
(d{u, d2u, , ddu). Hence, it suffices for our purpose to show

(4.21) ί γu2dx< ίλ\Du\2dx.

Step 1. Let us fix a point p e Ω \ S arbitrarily. By virtue of the funda-

mental theorem of ordinary differential equations, we can construct a fam-

ily of curves c(t\ x) e C°°([0, Tp]xUp) such that c{0;x)=x, c(t x) $

S for 0 < t < Tp when x e Ω \ S , c{Tp\x) $ Ω, \c{t\x)\ = 1,

sup ; c 6 C / τχ < CXD , and such that c(ί •) is a local C°° diffeomorphism de-

fined in Up for any fixed t, where Up is a sufficiently small open neighbor-

hood of p, Γp is a positive constant, and τx = inf{t >0:c(t;x) £ Ω} .

We define a function μ (x) by

(4.22) μp(x) = :

for x e Up . For a function u e C°°(Ω) satisfying u\m = 0,

u(x) = u(c(0 *)) - u(c{τχ x)) = - Du{c(t *)) d(ί x) dt
Jo

holds, so we have

(4.23) \u(x)\2<C [τχ\Du(c(t;x))\2dt.
Jo

Multiplying (4.23) by μ Jx) and using (4.22), we obtain

μp(x)\u(x)\2<C Γxλ(c(t;x))\Du(c(t;x))\2dt9p Jo

which implies

/ μu2dx<C [ λ\Du\2dx.
Jup

 p Λ2

Step 2. Step 1 shows that there is a finite number of points px,

p2, , pN in Ω \ S such that Ω \ 5 c U/Ii U a n d

/ μu2dx<C I λ\Du\2dx.
JuPi

 Pi JΩ

Therefore, we need only to define μ(x) by

( min{μ(x):xeUD , 1 < / < N} ifxeΩ\S,

[0 if x G 5.

Hence (4.21) is proved, q.e.d.



72 KAZUO AMANO

Let us take a real smooth function Φ(x) defined in Ω such that Φ(x)
has at least a zero point in Ω and that VΦ Φ 0, and put for t > 1,

U{Φ,t) = {xeΩ: \Φ(x)\< \/t}.

Lemma 4.6. There are constants Co > 0 and C > 0 independent of P
and t > 1 such that

(4-24) < C ( | | P M | | 0 | | M | | 0 + i ŝup (αίj - α()||tt||j) ,

(17(077)), «

Proof. For a real-valued function ueC°°(U(Φ, t)) satisfying κ| a ι / ( φ t

= 0, we put
υ = (T-etΦ)~ιu, T = const > 0.

Direct computation gives

Pu = (T-etΦ)(aiJvij + aivi)

— e {t (aιJΦΦ )v + t(aιJΦ + aιφ)v + 2t(aιJΦv )}.
I J IJ I I J

By integrating by parts, we obtain

(T - eφ)~{ Pu • v dx

Since

and

- 11 etΦ(T - e'Φyi(aijΦiJ + a%)v2 dx

-wj aij{tetΦ(T - etΦ)-{Φiv}υj dx.

2 aJ{te {T-e ) Φ^jVjdx

< t e (T-e ) (a yΦz.Φ ;> dx + a }v{v. dx

- eltΦ){T - etΦf2 = eιΦ(T - 2etΦ)(T -



GLOBAL ISOMETRIC EMBEDDING 73

we have

(T-etΦ)~2Pu'Udx

<-ί /e (Γ-2e ){T-e ) {a ΦtΦλu
(4.25)

-tje'Φ(T- e'Φ)-\aiJΦu + α'Φ,.)M

2 Λ

2 j

dx

Combining (4.25) with

e~ι <etΦ<e, (T-e'ι)~ι < (T-etΦyι < (T-e)~ι, (JC e U(Φ, ή),

we obtain (4.24). q.e.d.
Now we can prove the remaining part of the proof of Theorem 1.1.

From now on C and Ct denote positive constants which are independent
of ε > 0, and Λ = 0 , 1,2, .

Proof of Theorem 1.1 (Part 2). We shall show that (3.23) and (3.24)
are valid for any n . For the sake of simplicity, we put Ln = Lε [μ + ύn]

n

for n = 0, 1, , and use A^ and B{

k

n) to denote constants Ak and Bk

when aιj = aιj[μ + ύn] and a1 = a\ [μ + w j . Let us take the following

cut-off functions χ, χ, and £ : * G Co°°(/>„), £ , / G C~(Dp\D),

0 < z , £ > £ < l , * = l i n a neighborhood of Z)^/2, / = 1 in a

neighborhood of supp(d{χ) Usupp(92χ), and / = 1 in a neighborhood of

1 (estimate of \\χvo\\s). Applying Lemma 4.6 to a function

Φ(JC) = Φ ^ 1 , x2) = (x2 -p2)/(the diameter of Dp), p = (pl ,p2)eD,

and the operator

we obtain

Here we note that, by (1.1) and the definition of μ = μp, we have

<ζ[μ]~2δ, αe

2

o[/ι]~O,and

(4.26) (a'£[μ])ij - (\M)i ~ (^2211-^2112 ~ -"1221+^2211) = °»
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where A ~ B means that A and its derivatives are approximately equal
to B and its derivatives respectively. This implies that

(4.27) \\χvo\\o < C||L0*t/0 | |0.

Lemma 4.3 shows that (4.27) gives

ll*voll,<c(| |Vt;o | |,+ Σ <2ll*«olly) ^ 2)

i+2<s

Hence, if we take p > 0 sufficiently small so that

C 4 O ) = C max (max \Σf aίj [μ]L, max |Z>V [μ]U < 1,

then we obtain

(4.28)

(4.29) ll^ll, < cflll^tioll^ Σ Λ^Wχvjλ, (2<s< sQ)

Step 2 (estimates of ||(1 - ̂ ) ^ 0 | | 5 ) . Since

det(/ι/y) >(φ- p/2)-4 exp(2/(p/2 - p)) d e t ( ^ ) > 0 in Dp \ Dp/2,

we can show, by (1.1), that Lo is uniformly elliptic in Dp Π supp(l - χ).
Applying Lemma 4.4 to the operator L o , we obtain

this gives, in consequence of (4.26),

(4.30) Ml-χ^KCWL^l-χ^X.

It is easy to show, by Lemma 4.4, that

(4.31)
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Step 3 (estimates of \\vo\\s). (4.27) and (4.30) imply

(4.32) | | t ; 0 | | 0 < C( | |L o t ; o | | o + \\[χ, L0]v0\\0 + ||[(1 - χ), LQ]v0\\0).

By virtue of Lemma 4.2 and the definition of χ, χ , χ, we have

\\[χ, LQ]v0 = \\[χ, χLQ]χv0\\0

( 4 34)

Since Lo is uniformly elliptic in Dp n (supp χ), by applying Lemma 4.5

to u = υ0, S = T), and Ω = Dp , we obtain

,A „-, ll^^ollo — vll o^olloll^o'lo
(4.35)

+ isup I

It follows from (4.32)-(4.35) that

ll«ollo ^ c (IIVoll +

which implies, in consequence of (4.26),

(4.36) ||vo||o < C| |L oυ o | | o .

(4.28) and (4.30) give

As in (4.33) and (4.34), by using Lemma 4.2 and cut-off functions χ, χ,

χ we have

( 4 . 3 8 ) \\[χ, L o ] v o l + | | [ ( 1 - χ ) , L 0 ] v 0 \ \ 0 < C { \ \ L o f

(4.18) of Lemma 4.4 and (4.7) of Lemma 4.2 show

(4.39) < C(| |L o t; o | | o + Bf\\υχ + \\[χ, L0]v0\\0)
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Combining (4.37)-(4.39) with (4.36), we obtain

(4.40) Kll,< CHLotgi,.
(4.29) and (4.31) give

XiVc '

Kll, ^

(4.41) <c(|IVoll,+ Σ
j

i+2<s, j<

for 5 > 2. (4.9) of Lemma 4.2 shows

/+2<ί-l

a n d

\\[χ,L0]vQ\\s = \\[χ,χl

(4-43) / + a < ,

<c(nvo | |J + Σ

Since Lo is uniformly elliptic in D Π (supp/), we have, by (4.19) of
Lemma 4.4,

<c(|lVolUi+ Σ ^ll^oll + ll^'^oKIUi)'

which gives, in consequence of (4.8) and (4.9),

(4-44) | | | ί ; 0 | | ί < c ( | | V 0 | | ί _ 1 + £
j

i+2<s, y
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Hence, combining (4.41)-(4.44), we obtain

(4.45) K I I , < c ( l l V o l l +

/+2<JΓ

for s > 2. Since (3.14) gives LQυ0 = Lε [μ + ύo]υ0 = f0, and (1.1) implies

*ί+2 ^ l0l, + 4 5 ^ follows from (4.36), (4.40), and (4.45) that

(0<s<s0)9

i.e., Assumption 3.5 is fulfilled when n = 0.
Step 4 (estimates of \\χvk+ι\\s). In Steps 4-6, we assume that (3.21)-

(3.24) are valid for n = 1, 2, , k. Then, by (3.13), we can construct
uk+ι. Since we have already proved, in Part 1, that (3.21) and (3.22) hold
for n = k + 1, by Lemma 3.2 we are able to solve the Dirichlet problem
(3.14) for n = k + 1 and to obtain vk+ι.

As in Step 1, we consider the same auxiliary function Φ(x) and apply
Lemma 4.6 to the operator

so that we have

C o i n f \Jμ + ώ*
<C(\\LMχυM\\0.\\χvk+ιy\\0

By using the proof of Proposition 3.7, (3.37)fc+1y and (3.41)Λ+1 are
valid. Hence, (1.1), (3.1), (3.15), and the definition of μ = μβ give

afM[μ + ύMy] - 2δ, a\M[μ + ύk+ι] - 0, and

(4.46) {aLy[μ + ^+1^)/; " K + ι > + δ*+i^)/

~ (̂ 2211 " 02112 - 01211 " 0221l) = ° '
where A ~ B means that A and its derivatives are approximately equal
to B and its derivatives uniformly in k = 0, 1, 2, . This implies

(4.47) ll*t>*+13ilo

By virtue of Lemma 4.3, (4.47) gives
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IIXWU2 < c(ll W* + iH, + Σ < ? Wil l ; ) > (* * 2)
i+2<s

(3.37)Λ+1 and (3.41)fc+1 show that

\u y\ < C(4)||δ II < C(4)||w*, II <λ/εC(4),

when s = 5 + κ and σ = sQ/2 - 1, and also that

E < C θτ~σv < C θ~2 = Cfi

by (3.33) and (3.1). Thus, it follows from the definition of μ = μp that

CA[k+ι) = max ( max \Dsa^y[μ + uk+χy\, max \Dsa[kJμ + ώ,+ 1] | 0)

< 1

if we take p > 0 sufficiently small. Here it is to be noted that the procedure
to determine p depends neither on εk+ιy nor on ύk+ιy actually, it
depends only on ε, g.j, and certain constants which we have already
specified. Hence, we obtain

(4-48) \\χvk+i\\ι<c\\t<k+iyχi>k+iy\\ι

and

(4.49) ||*t; fc+Iy||, < c(\\Lk+ιyχvk+ιy\\s +

for s > 2 .
Step 5 (estimates of ||(1 - z ) ^ + 1 | | 5 ) . It is relatively easy to estimate

(1 - χ)vk+ι, since Lk+ιy is uniformly elliptic in ~Dp Π supp(l - / ) , by
virtue of Lemma 3.2, (3.21)—(3.22) with « = k + 1, and the inequality
det(μ ; ) > 0 in Dp \ Dp,2 which we have obtained in Step 2. In fact, as
in Step 2, (4.18) of Lemma 4.4 and (4.46) give

(4.50) ||(1 - jK+^lli < C\\LMy(l - χ)υMy\\0

and, also, (4.19) of Lemma 4.4 gives
(4.51)

) (2<s<s0).

j<s-\
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Step 6 {estimates of \\vk+ι\\2). (4.47) and (4.50) show

K+i>Ίlo ^ Wxvh+Λ + IK1 - xK+^llo
(4-52) <C(| |L f c + l ί ; f c + 1 | | 0 + | | [ Z ,L, + 1 K + 1 | | 0

+ Hid- X),Lk+i]vk+χ).

As in Step 3, from Lemma 4.4 and the definition of cut-off functions χ,
χ, and χ it follows that

\\[χ, Lk+ιK+ι Ho + UK1" x)' Lfc+iK+ 1 Ho

= III*, ^fc+il^/k+illo + UK1 - ^

Lemma 4.5 shows

(4 54)

+isup|(^+ i J,[/ί + M/t+1]);7 - (aek+ι[μ + ύk+ι]){\\\vk+1\\Q.

Combining (4.52) and (4.53) with (4.54), we obtain

(4-55) H+ι\\o<C\\Lk+ιvk+ι\\o.

Here it is to be noted that, by (3.37)fc+1 and (3.41 ) k + ι , the constant C
does not depend on k = 0, 1, 2, . (4.48) and (4.50) imply

(4.56) M

+ 111(1-*),i*+1H+1llo).

By virtue of Lemma 4.2 and the definition oi χ , χ and χ , we have

\\[X,Lk+ι]vk+i\\ι + \\[(l-χ),Lk+ι]vk+ι\\0

= \\[X, χLk+ιlhk+ι\\ι + \\[(l-X),XLk+l]fak+l\\o

<C(\\χLkJvk+ι\\1+B{

2

k+l)\\hk+ιh)

(4.18) of Lemma 4.4 and (4.7) of Lemma 4.2 give

(4.58) Hft ^ l l , < C( | |L, + 1 % + 1 | | 0 + < + 1 ) | |

Combining (4.55)-(4.57) with (4.58), we obtain

(4-59) K + i l l ^
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Here (3.37)fc+1 and {3Al)k+ι ensure that the constant C does not depend
on k = 0, 1, 2, . By (4.49) and (4.51), we have

\\υk+ι\\s<\\χυk+ι\\s + \\(l-χ)vk+ι\\s

<c(\\Lk+ιχvk

(4,0

<cί\\LMv

+i\\s

k+1\\s+

+ \\[χ>LM]vk+ι\\s

for 5 > 2. (4.9) of Lemma 4.2 shows

j
i+2<s-\

and

(4.62) < (
\

i+2<s

for 5 > 2. Since Lk+ι is uniformly elliptic in Dp Π (suppχ), (4.19) of
Lemma 4.4 gives

vk+ι\\s<c(\\Lk+ιXvk+i\\s_i + )

<c(\\Lk+ιυk+ι\\s_ι +
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which implies, by (4.8) and (4.9),

(4.63) \\χυM\\^ι<^

Hence, combining (4.60)-(4.63), we obtain

(4.64) H+ι\\s<c(\\Lk+ιvk+ι\\s +

for s > 2. Since (3.14) and (1.1) give, respectively, ^ + 1 ^ + 1 =

LεJμ + ΰk+ι]vk+ι = fk+ι and B«£ι) ~ C\μ + ύk+1\l+4, from (4.55),

(4.59), and (4.64) it follows that

H+ι

< C(\\fk+ιI + £ \μ + ύk+ι\i+4\\vk+ι\\\ , (0<s<s0),
v i+j<s '

i.e., Assumption 3.5 is fulfilled when n = k + 1.
Therefore, by induction with respect to n = 0, 1, 2, , Assumptions

3.4 and 3.5 are valid for any n . Hence the proof of Theorem 1.1 is now
complete.

5. Appendix

We shall prove that Theorems 1.1 and 1.2 remain valid for a Cr Rie-
mannian metric g; that is to say, the Holder continuity of rth-order
derivatives of g.. are not necessary. Throughout this section, we assume

that g = gijdx1 dxj is a Cr Riemannian metric in M2 satisfying (1.1)
and (1.2).

We define a metric γ = yf.. dxι dxJ by

7U = 7u(x k) = k2 ί ψ(k(x - y))gij(y) dy,
J R

where k = 1, 2, 3, and ψ e C^°(M2) is a nonnegative function satis-
fying /R2 ψ(x) dx = 1. We define the nonlinear operator F[u] by replac-
ing gtj, Vf. = Vf , and / with γ.., Vj and

Ψ(k(x-y))f(y)dy
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respectively in (1.3). We put μ = μp, s0 = r - 2, and

ε(k) = max{\F[μ]\2

0

/3

9\\F[μ]\\2^2)}.

It is easy to show that ε(k) converges to a certain number when k —• oo.

Since y.;. e C°°(R2) c C r ' Q (R 2 ) , f(- k) e Coo(R2) c C r ~ 2 ' " (R 2 ) , and

y/7 -• ^ in C r(R2) as k -+ oo, all the results proved in §§3 and 4 are

valid for the mollified metric Γ when k is sufficiently large. In particular,

it is important that Assumptions 3.4 and 3.5 are both satisfied for γιj,
vn = %,(*;*)> "„ = **„(*;*)> Λ = / „ ( * ; * ) > a n ^ c = c(k). AS
is noted in §3, C r ' α regularity is necessary when we solve the Dirichlet
problem (3.14). However, Cr regularity suffices for any other purpose.
Furthermore, no constants which appeared in this paper depend on a
actually, we may assume that they are continuous functions of supremum
norms |y/;|5 (/, j = 1, 2, 0 < s < r). This implies that any constant
which depends on k converges to a certain value when k tends to oo.

Applying Theorem 3.8 to γ and / = /( ; t ) , w e can show that there

exist a function u^ = u^x k) e wr^2~2~κ(Dp) and a large number N

such that (3.42) and (3.43) hold for all k>N. Thus (4.43) implies that

the sequence { ^ ( x ; k)}™=N is strongly bounded in the Sobolev space

wr/2~2~κ(Dp). Hence, there is a subsequence {u^ix ku)}™=ι

of {u^ix'tk)}™^ such that {u^ix; ku)}^=ι is weakly convergent in

wr/2~2~κ(D ) and such that u^ix', kv) and its derivatives converge to

a function u^x) and its weak derivatives respectively for almost every

x in D As is well known,

Therefore, by replacing u^ = u^x k) with u^x k^) and letting
v -+ oo in (4.42) and (4.43), we can prove that the result of Theorem 3.8
remains true for the Cr metric g. Since (1.1) implies l i m ^ ^ ε ^ J < 1,
(1.5) follows from (4.43). Consequently, Theorem 1.1 remains valid for
g. As is proved in §2, if Theorem 1.1 is true, then Theorem 1.2 is also
true for the Cr metric g .
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