DIAMETER, VOLUME, AND TOPOLOGY FOR POSITIVE RICCI CURVATURE

J.-H. ESCHENBURG
Dedicated to Wilhelm Klingenberg on the occasion of his 65th birthday

1. Introduction

A compact Riemannian n-manifold with (normed) Ricci curvature ric := Ric $/(n-1) \geq 1$ has diameter $\leq \pi$, and equality holds if and only if M is isometric to the unit n-sphere (Cheng's rigidity theorem, cf. [4], [12], [5]). The aim of the present paper is to prove the following theorem.

Theorem 1. Let M^{n} be a compact Riemannian manifold with Ricci curvature ≥ 1. Let $-k^{2}$ be a lower bound of the sectional curvature of M^{n}, and ρ a lower bound of the injectivity radius. Then we may compute a number $\varepsilon=\varepsilon(n, \rho, k)>0$ such that M is homeomorphic to the n sphere whenever $\operatorname{diam}(M)>\pi-\varepsilon$.

More precisely, $\varepsilon=v(\delta) / \operatorname{vol}\left(S^{n-1}\right)$, where $v(r)$ denotes the volume of a ball of radius r in the unit n-sphere and

$$
\delta= \begin{cases}\rho-\cosh ^{-1}\left(\cosh (k \rho)^{2}\right) /(2 k) & \text { for } k>0, \\ (1-\sqrt{2} / 2) \rho & \text { for } k=0 .\end{cases}
$$

For sectional curvature, a much stronger result is known:
Theorem 2 (Berger [3], Grove-Shiohama [8], [9]). Let M^{n} be a compact Riemannian manifold with sectional curvature $K \geq 1$ and diameter $D>\pi / 2$. Then M is homeomorphic to a sphere.

One may not expect such a theorem for Ricci curvature since, e.g., for $M=S^{m} \times S^{m}$ with ric $=1$ we have $\operatorname{diam}(M)=(1-1 /(2 m-1))^{1 / 2} \cdot \pi$. So the bound on the diameter must depend at least on the dimension. A diameter pinching theorem for Ricci curvature in the diffeomorphism category was first stated by Brittain [2] (whose proof used an incorrect version of Gromov's compactness theorem) and proved by Katsuda [11, p. 13] using a result of Kasue [10]. However, the proof needs also an upper curvature bound, and it would be hard to compute the ε. We give a

Received March 27, 1989 and, in revised form, January 22, 1990.
direct proof combining the methods of Grove and Shiohama [12], [8] with the idea that large diameter implies small excess in the sense of Abresch and Gromoll [1]. After this work was finished, Grove and Petersen [7] investigated the excess in more generality and proved our theorem in this context. In fact, using earlier work [6], they could replace the injectivity radius bound with a lower volume bound.

2. Proofs

To prove the theorems, we consider points $p, q \in M$ of maximal distance in M and the functions $r_{p}(x)=d(p, x), r_{q}(x)=d(q, x)$. For any $x \in M$ let $\Gamma_{p}(x)$ and $\Gamma_{q}(x)$ be the sets containing the final tangent vectors of all shortest unitary geodesics from p and q (resp.) to x. A point x is called a regular point (in the sense of Grove-Shiohama and Gromov) for the function $r_{p}-r_{q}$ if there exists $v \in T_{x} M$ with

$$
\langle v, a-b\rangle>0
$$

for all $a \in \Gamma_{p}(x)$ and $b \in \Gamma_{q}(x)$. Such a vector v is called admissible. The admissible vectors at x form an open convex cone. If an admissible vector v at x is extended to a smooth vector field V, then $V(y)$ is admissible for all y close to x. Otherwise, there would be sequence $y_{j} \rightarrow x$ and $a_{j} \in \Gamma_{p}\left(y_{j}\right), b_{j} \in \Gamma_{q}\left(y_{j}\right)$ with $\left\langle a_{j}-b_{j}, V\left(y_{j}\right)\right\rangle \leq 0$. But subsequences of $\left(a_{j}\right)$ and (b_{j}) would converge to some $a \in \Gamma_{p}(x), b \in \Gamma_{q}(x)$ for which we would also get $\langle a-b, V(x)\rangle \leq 0$. This is a contradiction.

The following lemma (cf. [8], [9]) is basic for our proof.
Lemma. If all points of $M \backslash\{p, q\}$ are regular points for $r_{p}-r_{q}$, then M is homeomorphic to the n-sphere.

Proof. Any $x \in M \backslash\{p, q\}$ has a neighborhood U_{x} and a smooth vector field V_{x} on U_{x} which is admissible. Further, we let U_{p} and U_{q} be open balls centered at p and q where the exponential maps have smooth inverse maps, and put $V_{p}=\nabla\left(r_{p}^{2}\right)$ and $V_{q}=-\nabla\left(r_{q}^{2}\right)$. Then V_{p} is admissible outside p since $\Gamma_{p}(x)=\left\{\nabla r_{p}(x)\right\}$ for any $x \in U_{p}$ and $\nabla_{p} r_{p}(x) \notin \Gamma_{q}(x)$; likewise, V_{q} is admissible. By compactness, finitely many of the open sets $U_{x}, x \in M$, cover M, say U_{1}, \cdots, U_{N} with corresponding vector fields V_{1}, \cdots, V_{N}. If $\left\{\phi_{j} ; j=1, \cdots, N\right\}$ is a corresponding decomposition of unity, then $V=\sum \phi_{j} V_{j}$ is admissible outside $\{p, q\}$ and extends the vector fields $\nabla\left(r_{p}^{2}\right)$ and $-\nabla\left(r_{q}^{2}\right)$ near p and q. In particular, p and q are the only zeros of V. Thus by the flow of V we get a diffeomorphism of $B_{r}(p)$ onto $M \backslash B_{r}(q)$ for small enough r, which shows that M is homeomorphic to a sphere. q.e.d.

Thus it suffices to prove that $r_{p}-r_{q}$ has only regular points if the diameter bound ε is small enough. In the proof of the previous proposition we saw that $B_{r}(p) \backslash\{p\}$ and $B_{r}(q) \backslash\{q\}$ contain only regular points if r is smaller than the injectivity radius at p and q, in particular if $r<\rho$.

Now suppose that $x \in M$ is a nonregular (critical) point of $r_{p}-r_{q}$. We claim that there exist $a \in \Gamma_{p}(x)$ and $b \in \Gamma_{q}(x)$ with

$$
\begin{equation*}
\langle a, b\rangle \geq 0 . \tag{*}
\end{equation*}
$$

Otherwise, $\Gamma_{p}(x)$ would be contained in the open convex cone $C=\{v \in$ $T_{x} M ;\langle v, b\rangle<0$ for any $\left.b \in \Gamma_{q}(x)\right\}$, and C would contain a vector c with $\langle c, v\rangle>0$ for all $v \in C$. Hence $\langle c, a-b\rangle>0$ for any $a \in \Gamma_{p}(x)$, $b \in \Gamma_{q}(x)$, and c would be an admissible vector, which is impossible.

It is now easy to finish the proof of Theorem 2. Namely, we find a geodesic triangle with vertices x, p, q and angle $\leq \pi / 2$ at x. By Toponogov's comparison theorem, a triangle (x_{0}, p_{0}, q_{0}) with the same side lengths in the unit sphere S^{2} also has angle $\leq \pi / 2$ at x_{0}. But such a triangle cannot exist if the largest side $p_{0} q_{0}$ has length $>\pi / 2$. Namely, either the length a of, say, $q_{0} x_{0}$ also exceeds $\pi / 2$, in which case p_{0} lies in the convex ball $B_{\pi-a}\left(-q_{0}\right)$ whose boundary intersects $q_{0} x_{0}$ orthogonally at x_{0}, so the angle at x_{0} is larger than $\pi / 2$, or both sides $p_{0} x_{0}$ and $q_{0} x_{0}$ have lengths $\leq \pi / 2$. The length of $p_{0} q_{0}$ is certainly not larger than the diameter of the triangle $\left(p_{0}, q_{0}, x_{0}\right)$. If the angle at x_{0} is $\leq \pi / 2$, this triangle is contained in a triangle of side lengths and angles equal to $\pi / 2$, i.e., a quarter half-sphere. This has diameter $\pi / 2$, so the length of $p_{0} q_{0}$ cannot exceed $\pi / 2$. Thus there are no such triangles and hence $M \backslash\{p, q\}$ contains only regular points, which proves Theorem 2. q.e.d.

To prove Theorem 1 , let α and β be the shortest geodesics from p and q to x with final vectors a and b satisfying (*). Now we consider the excess function (cf. [1])

$$
e=r_{p}+r_{q}-D
$$

where $D=d(p, q)=\operatorname{diam}(M)$. By the triangle comparison theorem, $e(x)$ is bounded from below by the excess

$$
e_{0}=d\left(p_{0}, x_{0}\right)+d\left(q_{0}, x_{0}\right)-d\left(p_{0}, q_{0}\right)
$$

of a triangle $\left(p_{0}, q_{0}, x_{0}\right)$ in the hyperbolic plane of curvature $-k^{2}$ with $d\left(x_{0}, p_{0}\right)=r_{p}(x), d\left(x_{0}, q_{0}\right)=r_{q}(x)$ where the angle at x_{0} equals the angle between α and β, which by ($*$) is at most $\pi / 2$. This hyperbolic excess is decreasing if we make the angle at x_{0} larger and the side lengths
$d\left(x_{0}, p_{0}\right)$ and $d\left(x_{0}, q_{0}\right)$ shorter. Since x is a critical point, we have

$$
r_{p}(x) \geq \rho, \quad r_{q}(x) \geq \rho
$$

and, therefore, $e(x)$ is bounded from below by the excess e_{1} of a hyperbolic triangle $\left(p_{1}, q_{1}, x_{1}\right)$ with angle $\pi / 2$ at x_{1} and sides lengths $d\left(x_{1}, p_{1}\right)=d\left(x_{1}, q_{1}\right)=\rho$. By the cosine law we have

$$
e(x) \geq e_{1}=2 \rho-\cosh ^{-1}\left(\cosh (k \rho)^{2}\right) / k
$$

Let us put $\delta=e_{1} / 2$. Then we have

$$
r_{p}(x) \geq r+\delta, \quad r_{q}(x) \geq D-r+\delta
$$

for some $r>0$. In other words,

$$
B_{\delta}(x) \subset P:=M \backslash\left(B_{r}(p) \cup B_{D-r}(q)\right) .
$$

If $v(t)$ denotes the volume of a ball of radius t in the unit n-sphere S^{n}, we have the Bishop-Gromov inequality (e.g., cf. [5, 4.3]), applied to balls with radii δ and D,

$$
\begin{equation*}
\operatorname{vol}(P) \geq \operatorname{vol}\left(B_{\delta}(x)\right) \geq v(\delta) \cdot \operatorname{vol}(M) / \operatorname{vol}\left(S^{n}\right) . \tag{1}
\end{equation*}
$$

On the other hand, the Bishop-Gromov inequality also gives an upper bound for $\operatorname{vol}(P)$. Namely,

$$
\operatorname{vol}\left(B_{r}(p)\right)+\operatorname{vol}\left(B_{D-r}(q)\right) \geq(v(r)+v(D-r)) \cdot \operatorname{vol}(M) / \operatorname{vol}\left(S^{n}\right),
$$

and $\operatorname{vol}\left(S^{n}\right)-(v(r)+v(D-r))$ is the volume of a tubular neighborhood of radius $(\pi-D) / 2$ around a small sphere of spherical radius $r+\frac{1}{2}(\pi-D)$. By Cavallieri's principle, this volume gets larger if we replace the small sphere by a great sphere, and therefore

$$
\operatorname{vol}\left(S^{n}\right)-(v(r)+v(D-r)) \leq(\pi-D) \cdot \operatorname{vol}\left(S^{n-1}\right) .
$$

Hence

$$
\operatorname{vol}\left(B_{r}(p) \cup B_{D-r}(q)\right) \geq \operatorname{vol}(M)-(\pi-D) \cdot \operatorname{vol}\left(S^{n-1}\right) \cdot \operatorname{vol}(M) / \operatorname{vol}\left(S^{n}\right),
$$

which shows

$$
\begin{equation*}
\operatorname{vol}(P) \leq(\pi-D) \cdot \operatorname{vol}\left(S^{n-1}\right) \cdot \operatorname{vol}(M) / \operatorname{vol}\left(S^{n}\right) . \tag{2}
\end{equation*}
$$

Now (1) and (2) cannot hold together if

$$
\pi-D<\varepsilon:=v(\delta) \cdot \operatorname{vol}\left(S^{n-1}\right) .
$$

So, in this case, the function $r_{p}-r_{q}$ has only regular points, which finishes the proof.

Acknowledgements

We wish to thank the referee for several useful hints.

References

[1] U. Abresch \& D. Gromoll, On complete manifolds with nonnegative Ricci curvature, preprint 87-27, Max-Planck-Inst. für Math., Bonn, 1987.
[2] D. L. Brittain, A diameter pinching theorem for positive Ricci curvature, preprint, Philadelphia, 1987.
[3] J. Cheeger \& D. G. Ebin, Comparison theorems in Riemannian geometry, North-Holland, Amsterdam, 1975.
[4] S. Y. Cheng, Eigenvalue comparison theorems and its geometric applications, Math. Z. 143 (1975) 289-297.
[5] J.-H. Eschenburg, Comparison theorems and hypersurfaces, Manuscripta Math. 59 (1987) 295-323.
[6] K. Grove \& P. Petersen, Bounding homotopy types by geometry, Ann. of Math. (2) 128 (1988) 171-227.
[7] ___, A pinching theorem for homotopy spheres, J. Amer. Math. Soc. (to appear).
[8] K. Grove \& K. Shiohama, A generalized sphere theorem, Ann. of Math. (2) 106 (1977) 201-211.
[9] H. Karcher, Riemannian comparison constructions, Global Differential Geometry (S. S. Chern, ed.), Studies in Math., Vol. 27, Math. Assoc. Amer., Washington, DC, 1989.
[10] A. Kasue, Applications of the Laplacian and Hessian comparison theorems, Geometry of Geodesics (Proceedings 1982), Advanced Studies in Pure Math. 3 (1984) 333-386.
[11] A. Katsuda, Gromov's convergence theorem and its applications, Nagoya Math. J. 100 (1985) 11-48.
[12] K. Shiohama, A sphere theorem for manifolds of positive Ricci curvature, Trans. Amer. Math. Soc. 275 (1983) 811-819.

Universität Augsburg

