DIAMETER, VOLUME, AND TOPOLOGY FOR POSITIVE RICCI CURVATURE

J.-H. ESCHENBURG

Dedicated to Wilhelm Klingenberg on the occasion of his 65th birthday

1. Introduction

A compact Riemannian *n*-manifold with (normed) Ricci curvature ric := $\operatorname{Ric}/(n-1) \ge 1$ has diameter $\le \pi$, and equality holds if and only if M is isometric to the unit *n*-sphere (Cheng's rigidity theorem, cf. [4], [12], [5]). The aim of the present paper is to prove the following theorem.

Theorem 1. Let M^n be a compact Riemannian manifold with Ricci curvature ≥ 1 . Let $-k^2$ be a lower bound of the sectional curvature of M^n , and ρ a lower bound of the injectivity radius. Then we may compute a number $\varepsilon = \varepsilon(n, \rho, k) > 0$ such that M is homeomorphic to the n-sphere whenever diam $(M) > \pi - \varepsilon$.

More precisely, $\varepsilon = v(\delta)/\operatorname{vol}(S^{n-1})$, where v(r) denotes the volume of a ball of radius r in the unit n-sphere and

$$\delta = \begin{cases} \rho - \cosh^{-1}(\cosh(k\rho)^2)/(2k) & \text{for } k > 0, \\ (1 - \sqrt{2}/2)\rho & \text{for } k = 0. \end{cases}$$

For sectional curvature, a much stronger result is known:

Theorem 2 (Berger [3], Grove-Shiohama [8], [9]). Let M^n be a compact Riemannian manifold with sectional curvature $K \ge 1$ and diameter $D > \pi/2$. Then M is homeomorphic to a sphere.

One may not expect such a theorem for Ricci curvature since, e.g., for $M = S^m \times S^m$ with ric = 1 we have diam $(M) = (1 - 1/(2m - 1))^{1/2} \cdot \pi$. So the bound on the diameter must depend at least on the dimension. A diameter pinching theorem for Ricci curvature in the diffeomorphism category was first stated by Brittain [2] (whose proof used an incorrect version of Gromov's compactness theorem) and proved by Katsuda [11, p. 13] using a result of Kasue [10]. However, the proof needs also an upper curvature bound, and it would be hard to compute the ε . We give a

Received March 27, 1989 and, in revised form, January 22, 1990.

J.-H. ESCHENBURG

direct proof combining the methods of Grove and Shiohama [12], [8] with the idea that large diameter implies small excess in the sense of Abresch and Gromoll [1]. After this work was finished, Grove and Petersen [7] investigated the excess in more generality and proved our theorem in this context. In fact, using earlier work [6], they could replace the injectivity radius bound with a lower volume bound.

2. Proofs

To prove the theorems, we consider points $p, q \in M$ of maximal distance in M and the functions $r_p(x) = d(p, x)$, $r_q(x) = d(q, x)$. For any $x \in M$ let $\Gamma_p(x)$ and $\Gamma_q(x)$ be the sets containing the final tangent vectors of all shortest unitary geodesics from p and q (resp.) to x. A point x is called a *regular point* (in the sense of Grove-Shiohama and Gromov) for the function $r_p - r_q$ if there exists $v \in T_x M$ with

$$\langle v, a-b \rangle > 0$$

for all $a \in \Gamma_p(x)$ and $b \in \Gamma_q(x)$. Such a vector v is called *admissible*. The admissible vectors at x form an open convex cone. If an admissible vector v at x is extended to a smooth vector field V, then V(y) is admissible for all y close to x. Otherwise, there would be sequence $y_j \to x$ and $a_j \in \Gamma_p(y_j)$, $b_j \in \Gamma_q(y_j)$ with $\langle a_j - b_j, V(y_j) \rangle \leq 0$. But subsequences of (a_j) and (b_j) would converge to some $a \in \Gamma_p(x)$, $b \in \Gamma_q(x)$ for which we would also get $\langle a - b, V(x) \rangle \leq 0$. This is a contradiction.

The following lemma (cf. [8], [9]) is basic for our proof.

Lemma. If all points of $M \setminus \{p, q\}$ are regular points for $r_p - r_q$, then M is homeomorphic to the n-sphere.

Proof. Any $x \in M \setminus \{p, q\}$ has a neighborhood U_x and a smooth vector field V_x on U_x which is admissible. Further, we let U_p and U_q be open balls centered at p and q where the exponential maps have smooth inverse maps, and put $V_p = \nabla(r_p^2)$ and $V_q = -\nabla(r_q^2)$. Then V_p is admissible outside p since $\Gamma_p(x) = \{\nabla r_p(x)\}$ for any $x \in U_p$ and $\nabla r_p(x) \notin \Gamma_q(x)$; likewise, V_q is admissible. By compactness, finitely many of the open sets U_x , $x \in M$, cover M, say U_1, \dots, U_N with corresponding vector fields V_1, \dots, V_N . If $\{\phi_j; j = 1, \dots, N\}$ is a corresponding decomposition of unity, then $V = \sum \phi_j V_j$ is admissible outside $\{p, q\}$ and extends the vector fields $\nabla(r_p^2)$ and $-\nabla(r_q^2)$ near p and q. In particular, p and q are the only zeros of V. Thus by the flow of V we get a diffeomorphism of $B_r(p)$ onto $M \setminus B_r(q)$ for small enough r, which shows that M is homeomorphic to a sphere. q.e.d.

744

Thus it suffices to prove that $r_p - r_q$ has only regular points if the diameter bound ε is small enough. In the proof of the previous proposition we saw that $B_r(p) \setminus \{p\}$ and $B_r(q) \setminus \{q\}$ contain only regular points if r is smaller than the injectivity radius at p and q, in particular if $r < \rho$.

Now suppose that $x \in M$ is a nonregular (*critical*) point of $r_p - r_q$. We claim that there exist $a \in \Gamma_p(x)$ and $b \in \Gamma_q(x)$ with

$$(*) \qquad \langle a, b \rangle \ge 0.$$

Otherwise, $\Gamma_p(x)$ would be contained in the open convex cone $C = \{v \in T_x M; \langle v, b \rangle < 0 \text{ for any } b \in \Gamma_q(x)\}$, and C would contain a vector c with $\langle c, v \rangle > 0$ for all $v \in C$. Hence $\langle c, a - b \rangle > 0$ for any $a \in \Gamma_p(x)$, $b \in \Gamma_q(x)$, and c would be an admissible vector, which is impossible.

It is now easy to finish the proof of Theorem 2. Namely, we find a geodesic triangle with vertices x, p, q and angle $\leq \pi/2$ at x. By Toponogov's comparison theorem, a triangle (x_0, p_0, q_0) with the same side lengths in the unit sphere S^2 also has angle $\leq \pi/2$ at x_0 . But such a triangle cannot exist if the largest side p_0q_0 has length $> \pi/2$. Namely, either the length a of, say, q_0x_0 also exceeds $\pi/2$, in which case p_0 lies in the convex ball $B_{\pi-a}(-q_0)$ whose boundary intersects q_0x_0 orthogonally at x_0 , so the angle at x_0 is larger than $\pi/2$, or both sides p_0x_0 and q_0x_0 have lengths $\leq \pi/2$. The length of p_0q_0 is certainly not larger than the diameter of the triangle (p_0, q_0, x_0) . If the angle at x_0 is $\leq \pi/2$, this triangle is contained in a triangle of side lengths and angles equal to $\pi/2$, i.e., a quarter half-sphere. This has diameter $\pi/2$, so the length of p_0q_0 cannot exceed $\pi/2$. Thus there are no such triangles and hence $M \setminus \{p, q\}$ contains only regular points, which proves Theorem 2. q.e.d.

To prove Theorem 1, let α and β be the shortest geodesics from p and q to x with final vectors a and b satisfying (*). Now we consider the excess function (cf. [1])

$$e = r_n + r_a - D,$$

where D = d(p, q) = diam(M). By the triangle comparison theorem, e(x) is bounded from below by the excess

$$e_0 = d(p_0, x_0) + d(q_0, x_0) - d(p_0, q_0)$$

of a triangle (p_0, q_0, x_0) in the hyperbolic plane of curvature $-k^2$ with $d(x_0, p_0) = r_p(x)$, $d(x_0, q_0) = r_q(x)$ where the angle at x_0 equals the angle between α and β , which by (*) is at most $\pi/2$. This hyperbolic excess is decreasing if we make the angle at x_0 larger and the side lengths

J.-H. ESCHENBURG

 $d(x_0, p_0)$ and $d(x_0, q_0)$ shorter. Since x is a critical point, we have

$$r_p(x) \ge \rho$$
, $r_a(x) \ge \rho$

and, therefore, e(x) is bounded from below by the excess e_1 of a hyperbolic triangle (p_1, q_1, x_1) with angle $\pi/2$ at x_1 and sides lengths $d(x_1, p_1) = d(x_1, q_1) = \rho$. By the cosine law we have

$$e(x) \ge e_1 = 2\rho - \cosh^{-1}(\cosh(k\rho)^2)/k.$$

Let us put $\delta = e_1/2$. Then we have

$$r_p(x) \ge r + \delta$$
, $r_a(x) \ge D - r + \delta$

for some r > 0. In other words,

$$B_{\delta}(x) \subset P := M \setminus (B_r(p) \cup B_{D-r}(q)).$$

If v(t) denotes the volume of a ball of radius t in the unit *n*-sphere S^n , we have the Bishop-Gromov inequality (e.g., cf. [5, 4.3]), applied to balls with radii δ and D,

(1)
$$\operatorname{vol}(P) \ge \operatorname{vol}(B_{\delta}(x)) \ge v(\delta) \cdot \operatorname{vol}(M) / \operatorname{vol}(S'').$$

On the other hand, the Bishop-Gromov inequality also gives an upper bound for vol(P). Namely,

$$\operatorname{vol}(B_r(p)) + \operatorname{vol}(B_{D-r}(q)) \ge (v(r) + v(D-r)) \cdot \operatorname{vol}(M) / \operatorname{vol}(S^n),$$

and $\operatorname{vol}(S^n) - (v(r) + v(D-r))$ is the volume of a tubular neighborhood of radius $(\pi - D)/2$ around a small sphere of spherical radius $r + \frac{1}{2}(\pi - D)$. By Cavallieri's principle, this volume gets larger if we replace the small sphere by a great sphere, and therefore

$$\operatorname{vol}(S^n) - (v(r) + v(D - r)) \le (\pi - D) \cdot \operatorname{vol}(S^{n-1}).$$

Hence

$$\operatorname{vol}(B_r(p) \cup B_{D-r}(q)) \ge \operatorname{vol}(M) - (\pi - D) \cdot \operatorname{vol}(S^{n-1}) \cdot \operatorname{vol}(M) / \operatorname{vol}(S^n),$$

which shows

(2)
$$\operatorname{vol}(P) \leq (\pi - D) \cdot \operatorname{vol}(S^{n-1}) \cdot \operatorname{vol}(M) / \operatorname{vol}(S^n).$$

Now (1) and (2) cannot hold together if

$$\pi - D < \varepsilon := v(\delta) \cdot \operatorname{vol}(S^{n-1}).$$

746

So, in this case, the function $r_p - r_q$ has only regular points, which finishes the proof.

Acknowledgements

We wish to thank the referee for several useful hints.

References

- U. Abresch & D. Gromoll, On complete manifolds with nonnegative Ricci curvature, preprint 87-27, Max-Planck-Inst. für Math., Bonn, 1987.
- [2] D. L. Brittain, A diameter pinching theorem for positive Ricci curvature, preprint, Philadelphia, 1987.
- [3] J. Cheeger & D. G. Ebin, Comparison theorems in Riemannian geometry, North-Holland, Amsterdam, 1975.
- [4] S. Y. Cheng, Eigenvalue comparison theorems and its geometric applications, Math. Z. 143 (1975) 289-297.
- [5] J.-H. Eschenburg, Comparison theorems and hypersurfaces, Manuscripta Math. 59 (1987) 295-323.
- [6] K. Grove & P. Petersen, Bounding homotopy types by geometry, Ann. of Math. (2) 128 (1988) 171-227.
- [7] ____, A pinching theorem for homotopy spheres, J. Amer. Math. Soc. (to appear).
- [8] K. Grove & K. Shiohama, A generalized sphere theorem, Ann. of Math. (2) 106 (1977) 201-211.
- [9] H. Karcher, Riemannian comparison constructions, Global Differential Geometry (S. S. Chern, ed.), Studies in Math., Vol. 27, Math. Assoc. Amer., Washington, DC, 1989.
- [10] A. Kasue, Applications of the Laplacian and Hessian comparison theorems, Geometry of Geodesics (Proceedings 1982), Advanced Studies in Pure Math. 3 (1984) 333-386.
- [11] A. Katsuda, Gromov's convergence theorem and its applications, Nagoya Math. J. 100 (1985) 11-48.
- [12] K. Shiohama, A sphere theorem for manifolds of positive Ricci curvature, Trans. Amer. Math. Soc. 275 (1983) 811–819.

UNIVERSITÄT AUGSBURG