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1. Introduction

A compact Riemannian ^-manifold with (normed) Ricci curvature
ric := Ric/(Λ - 1) > 1 has diameter < π , and equality holds if and
only if M is isometric to the unit w-sphere (Cheng's rigidity theorem,
cf. [4], [12], [5]). The aim of the present paper is to prove the following
theorem.

Theorem 1. Let Mn be a compact Riemannian manifold with Ricci
curvature > 1. Let -k2 be a lower bound of the sectional curvature of
Mn, and p a lower bound of the injectivity radius. Then we may compute
a number ε = e(n, p, k) > 0 such that M is homeomorphic to the n-
sphere whenever diam(Λf) > π - ε.

More precisely, ε = v(δ)/vol(Sn~ι), where υ(r) denotes the volume
of a ball of radius r in the unit n-sphere and

ί p - cosh~ι{cosh(kp)2)/(2k) for k > 0,

~ \ {l-y/2/2)p foτk = 0.

For sectional curvature, a much stronger result is known:
Theorem 2 (Berger [3], Grove-Shiohama [8], [9]). Let Mn be a com-

pact Riemannian manifold with sectional curvature K > 1 and diameter
D > π/2. Then M is homeomorphic to a sphere.

One may not expect such a theorem for Ricci curvature since, e.g., for
M = Sm x Sm with ric = 1 we have diam(Λ/) = (1 - l/(2m - 1))1/2 π.
So the bound on the diameter must depend at least on the dimension.
A diameter pinching theorem for Ricci curvature in the diffeomorphism
category was first stated by Brittain [2] (whose proof used an incorrect
version of Gromov's compactness theorem) and proved by Katsuda [11,
p. 13] using a result of Kasue [10]. However, the proof needs also an
upper curvature bound, and it would be hard to compute the ε. We give a
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direct proof combining the methods of Grove and Shiohama [12], [8] with
the idea that large diameter implies small excess in the sense of Abresch
and Gromoll [1]. After this work was finished, Grove and Petersen [7]
investigated the excess in more generality and proved our theorem in this
context. In fact, using earlier work [6], they could replace the injectivity
radius bound with a lower volume bound.

2. Proofs

To prove the theorems, we consider points p, q £ M of maximal dis-
tance in M and the functions rp(x) = d(p, x), rq(x) = d(q, x). For
any x e M let Tp(x) and Tq(x) be the sets containing the final tangent
vectors of all shortest unitary geodesies from p and q (resp.) to x. A
point x is called a regular point (in the sense of Grove-Shiohama and
Gromov) for the function rp - rq if there exists v e TχM with

(υ,a-b)>0

for all a e Tp(x) and b e Tq(x). Such a vector v is called admissible.
The admissible vectors at x form an open convex cone. If an admissible
vector v at x is extended to a smooth vector field V, then V(y) is ad-
missible for all y close to x. Otherwise, there would be sequence y. -> x
and aj e Γp(y;.), bj e Γq(yj) with (a. - bj9 V(y.)) < 0. But subse-
quences of (dj) and (bj) would converge to some a e Γp(x), b € Γq(x)
for which we would also get (a- b, V(x)) < 0. This is a contradiction.

The following lemma (cf. [8], [9]) is basic for our proof.
Lemma. If all points of M\{p, q} are regular points for rp -rq, then

M is homeomorphic to the n-sphere.
Proof Any x e M\{p, q} has a neighborhood Ux and a smooth vector

field Vχ on Ux which is admissible. Further, we let Up and Uq be open
balls centered at p and q where the exponential maps have smooth inverse
maps, and put Vp = V(rp) and Vq = -V(rq). Then Vp is admissible
outside p since Tp(x) = {Vrp(x)} for any x e Up and Vrp(x) £ Tq(x);
likewise, V is admissible. By compactness, finitely many of the open sets
Uχ9 x e M, cover M, say Ux, 9 UN with corresponding vector fields
Vχ, jVN. If {φj j = 1, ••• , N} is a corresponding decomposition
of unity, then V = ΣφjVj is admissible outside {p, q} and extends the

vector fields V(rp) and -V(r^) near p and q. In particular, p and q
are the only zeros of V. Thus by the flow of V we get a difFeomorphism
of Br(p) onto M\Br(q) for small enough r, which shows that M is
homeomorphic to a sphere, q.e.d.
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Thus it suffices to prove that rp - rq has only regular points if the di-
ameter bound ε is small enough. In the proof of the previous proposition
we saw that Br{p) \ {p} and Br(q) \ {q} contain only regular points if r
is smaller than the injectivity radius at p and q, in particular if r < p.

Now suppose that x e M is a nonregular (critical) point of rp - rq.
We claim that there exist a e Γp(x) and b e Γq(x) with

Otherwise, Γ (JC) would be contained in the open convex cone C = {υ e
TχM (υ , b) < 0 for any b eΓq(x)}, and C would contain a vector c
with (c,v) >0 for all v € C. Hence (c, a - b) > 0 for any a € Tp{x),
b eΓq(x), and c would be an admissible vector, which is impossible.

It is now easy to finish the proof of Theorem 2. Namely, we find a
geodesic triangle with vertices x, p, q and angle < π/2 at x. By To-
ponogov's comparison theorem, a triangle (xQ, p0, #0) with the same side
lengths in the unit sphere S2 also has angle < π/2 at x0. But such a
triangle cannot exist if the largest side poqo has length > π/2. Namely,
either the length a of, say, qoxo also exceeds π/2, in which case p0 lies
in the convex ball Bπ_a(-q0) whose boundary intersects qQx0 orthogo-
nally at x0, so the angle at x0 is larger than π/2, or both sides pQxQ and
qoxQ have lengths < π/2. The length of poqo is certainly not larger than
the diameter of the triangle (pQ, q0, xQ). If the angle at x0 is < π/2, this
triangle is contained in a triangle of side lengths and angles equal to π/2,
i.e., a quarter half-sphere. This has diameter π/2, so the length of pQq0

cannot exceed π/2. Thus there are no such triangles and hence M\{p, q}
contains only regular points, which proves Theorem 2. q.e.d.

To prove Theorem 1, let a and β be the shortest geodesies from p
and q to x with final vectors a and b satisfying (*). Now we consider
the excess function (cf. [1])

where D = d(p, q) = diam(Λf). By the triangle comparison theorem,
e(x) is bounded from below by the excess

e0 = d(pQ9 x0) + d(q0, xQ) - d(p0, q0)

of a triangle (p0, q0, xQ) in the hyperbolic plane of curvature -k2 with
d(xQ9p0) = rp(x), d{x0, q0) = rq(x) where the angle at * ? equals the
angle between α and β, which by (*) is at most π/2. This hyperbolic
excess is decreasing if we make the angle at x0 larger and the side lengths
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d(x0, pQ) and d(x0, qQ) shorter. Since x is a critical point, we have

rp(x)>p, rq{x)>p

and, therefore, e(x) is bounded from below by the excess eχ of a hy-
perbolic triangle (pι,qι,xι) with angle π/2 at xχ and sides lengths
d(xχ, px) = d(xx, qx) = p. By the cosine law we have

e(x) >ex=2p- cosh~ι {cosh(k pf)/k.

Let us put δ = eχ/2. Then we have

for some r > 0. In other words,

If v(t) denotes the volume of a ball of radius t in the unit ^-sphere Sn ,
we have the Bishop-Gromov inequality (e.g., cf. [5, 4.3]), applied to balls
with radii δ and D,

(1) vol(P) > VO1(5J(JC)) > υ{δ)'Vθl{M)/vol(Sn).

On the other hand, the Bishop-Gromov inequality also gives an upper
bound for vol(P). Namely,

vol(Br(p)) + vol(BD_r(q)) > (υ(r) + v(D - r)) vol(M)/vol(Sn),

and vol(5n) - (υ(r) + υ(D - r)) is the volume of a tubular neighborhood of
radius (π - D)/2 around a small sphere of spherical radius r+^(π — D).
By Cavallieri's principle, this volume gets larger if we replace the small
sphere by a great sphere, and therefore

vol(SΛ) - (υ(r) + υ(D - r)) < (π - D) vo\{Sn~x).

Hence

vol{Br(p) U BD_r{q)) > vol(M) - (π - D) vol^"" 1 ) vol(M)/vol(5"),

which shows

(2) vol(P) <(π-D) vol^"1) vol(M)/vol(Sn).

Now (1) and (2) cannot hold together if

π-D<ε:=v(δ)'Vθl(Sn-{).
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So, in this case, the function rp - rq has only regular points, which finishes
the proof.
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