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COMPACT CONSTANT MEAN CURVATURE
SURFACES IN EUCLIDEAN THREE-SPACE

NICOLAOS KAPOULEAS

1. Introduction

The main subject of this paper is the construction of closed CMC sur-
faces of any genus g > 3 . The abbreviation "CMC surfaces" is used
throughout the paper and stands for "properly immersed complete bound-
aryless surfaces in E3 of constant mean curvature H = 1 ". We also
talk about "compact CMC surfaces", which means the same except "with
boundary" rather than without. Compact CMC surfaces of any genus
g > 3 with boundary a round planar circle are also constructed. These con-
structions are achieved by properly strengthening the methods employed
in [10] to construct CMC surfaces with ends. The main results of this
paper were announced in [8].

The question of whether such surfaces exist has a long history. In
1853 J. H. Jellett proved that star-shaped closed CMC surfaces are round
spheres. In 1900 Liebmann [13] proved the same for convex surfaces.
S.-S. Chern [3] extended Liebman's result to a certain class of convex W-
surfaces. Hopf [5] established that any CMC topological sphere is round
and asked whether the same is true for all closed CMC surfaces. Alexan-
drov [1] gave an affirmative answer for embedded surfaces. Wu-Yi Hsiang
settled in the negative the higher dimensional analogue to Hopf s question
[6]. Eventually, H. C. Wente [14] settled the so-called Hopf s conjecture
also in the negative by constructing infinitely many CMC tori.

This paper is self-contained in the sense that the results presented here
can be understood without reference to any other papers. However, many
of the proofs are extensions of proofs in [10] and it would be impossible
to make them self-contained without repeating most of that paper. Famil-
iarity with [10] would be helpful also in understanding the basic idea of
the construction which we proceed to outline.
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FIGURE 1.1

We start by specifying a simple graph (Figure 1.1) on which we base the
construction of a CMC 3-torus. The construction is symmetric with re-
spect to the coordinate planes of some Cartesian coordinate system
Oxxx2x3 of E3. The vertices of the graph are p, p , q, and q . p
and p lie on the Xj-axis and they are mirror images of each other with
respect to the x2-axis. q and q lie on the x2-axis and they are mirror
images with respect to the Xj-axis. Each pair of vertices is connected by an
edge, so we have six edges. In order to use this graph for a construction like
the ones in [10], it would have to satisfy various hypotheses [10, II. 1.18],
most important of which are balance and flexibility. Balance amounts to
specifying a nonzero real number τ for each edge of the graph so that
Σ τΰ = 0 at each vertex, where ΰ varies over the unit vectors pointing
away from the vertex in consideration in the direction of an edge with
endpoint this vertex, and τ is the number assigned to the corresponding
edge. Making the graph balanced is easy because we are allowed to use
negative as well as positive values for τ , corresponding to nonembedded
and embedded Delaunay pieces respectively. Indeed we can arbitrarily as-
sign a nonzero τ to qq which we will call τ . Symmetry and balancing
at q then determines τ at pq, and finally symmetry and balancing at p
determines τ at pp1.

Flexibility amounts to the possibility of perturbing the graph so that the
lengths of the edges are slightly perturbed in any preassigned way which
respects the symmetries. The graph under consideration is not flexible and
this is why the construction in [10] fails: Once the lengths of qq and pq
are determined, the length of pp is determined uniquely. To illustrate
this point try to construct an initial surface based on the graph (Figure
1.2). As in [10] we have to use a round sphere for each vertex and a
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FIGURE 1.2. INTERSECTION WITH X ^ - P L A N E .

Delaunay piece for each edge. The distance between the spheres corre-
sponding to q and q is determined by the Delaunay piece of parameter
τ(qq) connecting them. The position of the spheres corresponding to p
and p is then determined by the length of the Delaunay piece of param-
eter τ(qp) corresponding to qp. There is no reason why the Delaunay
piece corresponding to pp should have the appropriate length to connect
the spheres corresponding to p and p1.

We deal with this difficulty in the following way: Connect the sphere cor-
responding to p to a new sphere near the sphere corresponding to p and
repeat the whole construction around the new sphere, that is, everything is
translated by carrying the sphere corresponding to p to the new sphere.
In other words we have a new group of symmetries generated by the old
one and a translation by w in the direction of the Xj-axis. We have re-
placed the initial graph with a periodic graph (Figure 1.3, next page) and
this allows us to construct the corresponding initial surface (Figure 1.4).
We can then perturb the initial surface in the fashion of [10] to obtain
a periodic CMC surface. This periodic CMC surface is actually closed if
w = 0, hence the problem has been reduced to making w vanish.

As a first step notice that we can arrange \vo \ < 2 simply by choosing
the correct number of "lobes" in the Delaunay piece corresponding to pp
(unlike Figure 1.4). The number of "lobes" corresponds to the number of
asr's which we take the opportunity to define:

Definition 1.1. We call the closure of any connected component of
{K Φ 0}, in a Delaunay surface or any initial surface we consider, an
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FIGURE 1.3

FIGURE 1.4. INTERSECTION WITH *

DELAUNAY PIECES DRAWN SCHEMATICALLY.

almost spherical region (asr for short). If K > 0 on it we call it a positive
asr, otherwise a negative asr.

Positive asr's are approximately round spheres minus two small discs,
while negative asr's, when enlarged by a suitable large factor, approximate
a large compact subset of a catenoid [10, Appendix A and Lemma IΠ.3.8].

The perturbations of the asr's required in the construction of the CMC
surface can change the period w . The exponential decay of the perturba-
tion along the edges and away from the spheres ensures that the change is
at most 1 even if the number of asr's in the Delaunay pieces is arbitrarily
large. This will be useful later.

Notice that the construction has τ as a free parameter. By varying τ the
lengths of the Delaunay pieces change and hence they force the period w
to change. This change is small if the Delaunay pieces have few asr's, but if
they have a lot of asr's it accumulates so that it exceeds three. Assume that
w depends continuously on τ . Since we can increase or decrease w by
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varying τ in different directions, we can appeal to the intermediate value
theorem to ensure that w = 0 for some τ , obtaining thus the desired
surface. Actually, we achieve the vanishing of w by incorporating the
above argument in the Schauder fixed theorem used in the proof of the
main theorem in [10].

This paper has three sections besides the introduction. In §2 we describe
a general sort of graph like the one above on which such constructions can
be based. We prove the relevant result and we use it to construct various
examples, in particular infinitely many closed CMC surfaces of any genus
g > 3. All these surfaces have some symmetry. In §3 we generalize
the construction somewhat and for all but a few genera we exhibit closed
CMC surfaces which possess no symmetries. Finally in §4 we extend the
construction to prove that any planar round circle of radius < 1 is the
boundary of infinitely many compact CMC surfaces of any given genus

2. Closed CMC surfaces with symmetries

In this section we prove a general theorem which enables us to construct
a variety of closed CMC surfaces. Unfortunately all of them have non-
trivial symmetries. To construct completely asymmetrical ones we have
to overcome an extra technical difficulty. We postpone this to the next
section in order to make the current construction as simple as possible.
As in [10] we use graphs to codify our constructions. For constructions of
closed surfaces we need new kinds of graphs which we proceed to define.
We will use a tilde to denote c-graphs (Definition 2.1) and an underbar to
denote central c-graphs (Definition 2.4).

Definition 2.1. A c-graph f is a set {F(f), E(f), τ , G] , where:

(1) V(f) is a finite set of points in E3 called the vertices of f,

(2) E(f) is a set of straight line segments whose endpoints are vertices
and they are called the edges of Γ. Edges with a common endpoint point
in different directions,

(3) τ: E(f) »-> R\{0} is a function,
(4) (The group of symmetries) G is a group of Euclidean motions

whose action preserves each of the above.

The above definition is similar to the definition of a graph [10, II. 1.1].
A c-graph has no rays however. If e e E(Γ), we write /~(e) for its length.
This length is not expected to be close to an even integer as it is for a
graph in [10]. In the construction of the surfaces e will be replaced by
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a Delaunay piece whose number of asr's is roughly proportional to lγ(e)
by a large constant N (cf. the proof of Theorem 2.7 and in particular
equations (1) and (l')). Suppose p is a vertex of f . We write Ep for the

set of edges of Γ which have p as an endpoint. If e e Ep , we write ΰep

for the unit vector pointing in the direction of e from p . In analogy with
[10,11.1.2], we define

(2.2) ^ j
eeEp

We assume that E3 is equipped with a Cartesian coordinate system

OXjX2x3 and identify the tangent space at each point of E3 with M3.

dψ is an element of W(Γ) which is defined to be the set of all functions

w: V(f) •-• R3 invariant under the action of G. The norm of an element

w of W(T) is defined by

(2.3) \w\ = max \w{p)\.
ΐ

We distinguish an edge e e E(T) and we define L(Γ, e) to be the space
of functions invariant under the action of G:

L(f, e) is equipped with the maximum norm.

We call two c-graphs Γj and Γ2 isomorphic if the following (intuitively
reasonable) conditions are satisfied:

(1) There are one-to-one correspondences between the vertices and the
edges of the two graphs respecting the "endpoint o f relationship.

(2) The two corresponding groups of symmetries are identical and the
correspondences above are equivalent with respect to the induced
action.

Notice that the lengths of corresponding edges are not required to be
the same. We occasionally abuse the notation by using the same symbol
for corresponding vertices or edges. This applies to isomorphic graphs in
the sense of [ 10, II. 1.1 ] as well. To construct closed CMC surfaces we need
central c-graphs which we now define.

Definition 2.4. A central c-graph Γ is a c-graph equipped with a dis-
tinguished edge e, a collection of c-graphs {f (d, / ) } , each of which is
called a regular perturbation of Γ, and an e > 0. The collection of the
regular perturbations is parametrized by (d, / ) which takes values on the
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closed e-ball centered at the origin of W(Γ) x L(Γ, e). Furthermore, the
following are satisfied:

(1) Γ(rf, / ) depends smoothly on (d, /) and is isomorphic to Γ =

(2) If f = f(d, /), then d~ = ά. (In particular d~ = 0 that is, Γ
is balanced).

(3) If f = f{d, /), then lf(e) = lf{e) + /\e) for each edge e of f

not in the orbit of e under the action of G.
(4) If f = f(<7,/), then /?(e) depends only on / . Let κ{/~) =

(2.5) *(0)τ(e)#
<?<Ξ£(Γ)\Ge

(5) For simplicity we also require that τ(e) does not depend on Γ.

Central c-graphs correspond to flexible central graphs [10, II. 1.18]. No-
tice the following two technical differences between the two definitions:
First, we require that dψ = d always, not just when / = 0 τ depends on

/ as well. Second, we do not require that all edges can have their lengths
perturbed arbitrarily, the reason being that we did not manage to find any
such closed graphs. Instead we require that all edges can have their lengths
arbitrarily perturbed with one—up to the action of G—exception. This
exceptional edge e has its length determined by the lengths of the other
edges. Moreover condition (2.5) is imposed on this for reasons which will
become clear later; this condition is satisfied in the generic case.

We describe now the relation between a c-graph Γ and the correspond-
ing closed CMC surface M produced by our construction. M actually
depends not only on f but on a large real number N > 0 and a small
number τ" > 0 as well. (τ is preserved to denote a different, but re-
lated to τ" , constant in the statement of Theorem 2.7.) Homothetically
expand the configuration of the vertices and edges of Γ by a factor N to
obtain the edges and vertices of a graph Γ (there are no rays). Define τ
at each edge of Γ to be the τ of the corresponding edge of Γ multiplied
by a factor τ " . It should be clear to the reader familiar with [10] that
the collection of the vertices and edges of Γ together with the function τ
on these edges is a graph (which we call Γ) in the sense of [10, II. 1.1].
Let M' be an initial surface associated to Γ. We briefly recall now what
this means to help the reader in following the construction later; we avoid
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repeating too many details however because this would increase substan-
tially the length of this paper.

The definition of an initial surface Mf associated to Γ [10, III.2.6]
assumes that Γ is a member of a family of graphs [10, II. 1.9]. This is rel-
evant only in that a small real number ε > 0 and a function /: E(T) *-• Z+

are implicitly determined in this way. / and ε determine approximately
the length of the edges of Γ through the requirement that each edge e of
Γ has length 2l{e) + /(e), where \/(e)\ < εηl(e). M1 is then a closed—
in this case—surface invariant under the action of the symmetry group G
on Γ, and which surface is the union of the following:

(1) A unit sphere centered at p for each vertex p of Γ, from which
sphere small disjoint discs have been removed, one disc for each
edge of Γ with p as an endpoint.

(2) A perturbed Delaunay piece for each edge e of Γ. This Delaunay
piece contains l(e) negative asr's, l(e) - 1 whole positive asr's,
and two positively curved annuli of width roughly proportional to
ε. The latter are neighborhoods of its two boundary circles and
they are perturbed so that they are smoothly attached to the spheres
minus discs above. The other (whole) asr's of the Delaunay pieces
are also perturbed slightly. The perturbation of each of them is
controlled by a small vector; these vectors are determined by a
sequence of vectors called the configuration ξ of Mr.

ε can be restricted a priori to be quite small. Γ alone determines then
the number of asr's contained in the various Delaunay pieces up to a factor
close to 1. The injectivity radius of Mf is determined up to a factor close
to 1 by τ" and the τ function of Γ. It is close to πτ"min ~ \i(e)\.

(This follows from the geometry of the Delaunay surfaces.) Let X: Mr »->
E3 be the immersion of Mf which we are considering, and v: M1 *-> S2(l)
be its Gauss map.

Definition 2.6. Suppose that M', f, τ " , and TV are as above, and
there is a small (cf. (2.10)), G-invariant, smooth function φ on M1 such
that X = X + φv is an immersion of constant mean curvature H = 1.

We call M = X (Mf) a surface based on (Γ, τ " , N), or for simplicity,

on f.
Since we have a clear description of M1 and φ is small, we feel justified

to talk about the "construction of M " rather than the "proof of existence
of M ". The information on the injectivity radius of M' implies quite
clearly that the shortest nontrivial loop on M is in [πτ"τ, 3πτ"τ], where
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τ = min^ ~ \τ(e)\. The reader who is not familiar with [10] might find
the above definition too technical. For him an alternative (weaker) descrip-
tion is to say that M is built from unit spheres centered at the vertices
of Γ, and Delaunay pieces corresponding to the edges, with the result-
ing surface being slightly perturbed. An even weaker description which
avoids any mention of Delaunay surfaces is possible: Consider the sup-
port of Γ—that is the union of its edges—and homothetically expand it
by a factor N. Slightly perturb it to avoid any self-intersections and con-
sider a small regular neighborhood R of it; that is, a small enough tubular
neighborhood which avoids "self-intersections".

Definition 2.6'. M is based on (f, τ " , N) if there is a homeomor-
phism / from M to the boundary of a regular neighborhood R as above,
such that VZ e M \f{X) -X\<Λ, M has H = 1, it is invariant under
the action of G on the homothetically expanded Γ, and the length of its
shortest nontrivial loop is in [πτ'τ, 3πτ"τ], where τ = min ~ |τ(e)|.

The following theorem is valid with any of the above definitions.
Theorem 2.7. For any central c-graph Γ there are infinitely many closed

CMC surfaces based on regular perturbations of Γ. More precisely there is
TQ(Γ) > 0 such that for any τ e (0, TQ) there is N0{τ , Γ) > 0 such that
for any N > NQ there is a closed CMC surface M based on (f, τ " , N)
for some regular perturbation ΓofΓ and a τ" e [τ , 3τ'].

Before we prove the theorem, we apply it to obtain various examples.
Examples 2.8. The examples presented here are the ones with maxi-

mum symmetry outlined in [8] and constructed in detail in [10]. Consider
a g-gon of radius 1, and hence side length 2 sin | . Let G be the group
of Euclidean motions under which the g-gon is invariant; G is abstractly
isomorphic to the dihedral group of order 2g. We define now the central c-
graph Γ (Figure 2.1, next page). Its vertices are the center and the vertices
of the g-gon. Its edges are the sides and the radii of the g-gon. The group
of symmetries is G. We call e one of the radii and e one of the sides;
all edges are (/-equivalent then to either e o r e . Arbitrarily assign some
nonzero value to τ(e), and define τ(e) = -2s in | τ (e) so that balancing

is satisfied. Because of G both L(Γ, e) and W(Γ) are 1-dimensional.
Clearly f(d, / ) is uniquely determined by the various requirements of
the definitions. It remains to check (2.5). Since (dκ/d/(e))(0) > 0, and
τ(e) and τ(e) have opposite signs, (2.5) is valid.

We can then apply Theorem 2.7 to establish the existence of infinitely
many closed CMC surfaces of genus g and dihedral symmetry of order
2g (Figure 2.2). Note that the content of this paper can be described in
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FIGURE 2.1

#=4

FIGURE 2.2. INTERSECTION WITH XXX2-PLANE (SCHEMATIC).

NUMBER OF BULGES MAY NOT BE CORRECT (TOO SMALL).

a certain sense by juxtaposing this construction to (counter)example [10,
II. 1.20].

Examples 2.9. We now construct examples which have Z2 x Z2 x Z2

symmetry; the group G is generated by the reflection with respect to the
coordinate planes. We first construct examples of odd genus Ik + 1, k >
1. We determine the central c-graph Γ (Figure 2.3): Let p0 be a point on
the positive x2-axis, pk a point in the positive Xj-axis, and p{, , pk_x

points in the first quadrant of the xχx2 coordinate plane. Let p_. be
the mirror image with respect to the x2x3-plane of pi (i = 1, , k -
1), and p\ the mirror image with respect to the xχx3-plane of p. (i =
1 - k, , k - 1). All these points are the vertices of Γ. We require that
Pi-15 P( > and pi+ι are never collinear, that p /p / + 1 is never parallel to any
of the axes, and finally that the x{-coordinate of p. is strictly increasing
with /. The edges are Pt_xPi (for / = 1 - k, , k), their mirror images
with respect to the x{x3-plane, pip\ (for / = 1 - k, , k - 1), and
e = P_kPk f is arbitrarily assigned to e and then uniquely determined
on the other edges by considering balancing successively at pk, , pQ

(and symmetry).
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FIGURE 2.4

To define f (d, / ) , notice that the position of its vertices is uniquely
determined by elementary trigonometry and it depends smoothly (only)
on / . τ is determined also uniquely by considering (2.2) successively
at pk, , p0 for f (d, / ) . Clearly τ depends smoothly on d and / .
We now restrict our attention to those cases where (2.5) is valid. This
is not a strong restriction as the following argument shows. Consider a
central c-graph as above and varying then the xχ -coordinate of pk so that
it tends to +oo, while keeping the other vertices—except for p_k because
of the action of G—fixed. Also τ(e) is kept fixed. We claim that (2.5) is
satisfied for a large xx coordinate of pk . This follows from the fact that
all terms stay bounded with the exception of the ones corresponding to e
and the edges in the orbit of PkPk_{ - Since (dκ/d/(pk_xpk))(0) -» \,
τ(PkPk-ι) -> -ji(e), κ(0) -• +oc, and lγ{pkpk_x) -+ +oc, the claim is
correct. We can apply the theorem then and obtain infinitely many closed
CMC surfaces based on a regular perturbation of Γ, and hence of genus
Ik + 1 (k > 1) and symmetry group Z2 x Z2 x Z 2 .

The case of even genus 2/c + 2 (k > 1) is similar and is obtained by
modifying the previous construction for genus Ik + 3 as follows: Remove
p0 and p'Q and the edges with endpoints those two vertices and put the
edges pxp_x and p'xp'_x instead (Figure 2.4).

Proof of Theorem 2.7. Assume we are given a central c-graph f as
described in Definition 2.4. We fix a small τ > 0 and a large N >0. We
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carry out a construction of a closed CMC surface under the assumption
that τ' is small enough in terms of Γ and TV is large enough in terms of
τ and Γ. Given a c-graph f, define the TV-enlargement f of Γ to be
the c-graph with the same symmetries as Γ, edges and vertices obtained
from those of Γ by a homothetic expansion with factor N, and τ the
same as on the corresponding edges of Γ. We specify the number of asr's
the Delaunay pieces used in the construction will have: For each edge e
of Γ which is not G-equivalent to e, we define

(1) l{e) = l\Nψ)},

where [ ] denotes the integer part. The Delaunay pieces corresponding
to e will have 2l(e) - 1 (whole) asr's. The central graph (see below)
should have edges of length 2l(e). Hence it should correspond to the N-
enlargement of a regular perturbation of Γ whose / we call f0 and is
given by

(2) ζ{e) = ^l{e)-ψ).

We have not yet defined /(e). Now this has to be defined carefully
so that we have good control over the period of the initial surfaces. As
in [10], 2 + 2p(τ) is by definition the period of the Delaunay surface of
parameter τ . In constructing the initial surfaces we intend to reduce all
τ's by a factor of order τ . The construction of the initial surfaces below
implies that one of them will have the Delaunay piece corresponding to e
of parameter 2ττ{e), where this τ is the one of f (0, /0). The / of the
corresponding c-graph is determined to be /{ where we define

(3) S[{e) = 1(2 + 2p(2τ'τ(e)))l(e) - ψ),

where τ denotes the τ of Γ(0, /0). Since we assume that N is as large as

needed in terms of Γ, we can assert that \/0\ < e , where e > 0 depends

only on Γ and will be specified later. By [10, A.2.1], p(τ) —• 0 as τ —• 0.

Choosing τ small enough in terms of Γ guarantees that \^0-/x\ < e'.

Therefore we have

(4) μ g < e ' , K l < 2 e ' .

We will choose t < ±e and then, by 2.4, f (0, /£), f (0, /~), and κ(/~)
are well defined. Let

where the τ used here is again the τ of f (0, /Q).
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We are ready to specify the central graphs which we need. Recall that
central graphs have to be balanced and their edges should have even in-
teger length [10, II. 1.4]. The obvious candidate is the TV-enlargement of
f (0, /Q) which we call f '0. The only problem with it is that the edges
corresponding to e do not have even integer length. Let rx r2 be such an

edge. Replace it by rχ r2 where r2 is defined by the requirement that rχ r2

points in the same direction as F{Ύ^ and has even integer length 2/(e).

Let R be the parallel translation along r2r2 . We define the group of sym-
metries of the central graph Γ to be G, the group generated by G U {R} .
The vertices of Γ are the vertices of ΓQ and their images under the action
of G. The edges of Γ are the edges of Γo which are not G-equivalent
to the edges corresponding to e, rxr2, and the images of the above under
the action of G (cf. Figure 1.3).

It remains to specify τ on the edges of Γ. We let this depend on a
parameter τ" e [τf, 3τ'] and the central graph thus defined will be denoted
by Γτ//. If e is an edge of Γ corresponding to an edge e of f (0, /0)—
r{ r'2 and its images under G correspond to e of course—define

(5) τ(e) = τ"τ(e),

where the τ in the right-hand side is the one corresponding to f (0, /Q).
It is easy to see that because of the properties of Γ, each of the Γτ//

is a flexible central graph and so [10, II. 1.19] applies. We discuss the
construction of each family of graphs Fτ,, in more detail however in order
to stress certain aspects we will need later. The central graph around which
Fτn is built is Γτ,,. Γ = Γ(τ", d, / ) denotes the graph Γ(d, / ) e Fτ,,
we want Γ to depend continuously on all of its parameters, including τ" .
To carry out the construction first fix some ε > 0 which we are free to
assume as small as needed in terms of Γ. Define τ = τ . Suppose we
are given τ" e [τ , 3τ'], d: V(T) *-* R 3, and / : E(Γ) »-> E, where the
last two have length less than 1 in the sense of [10, II. 1.6, II. 1.8]. This
amounts to

\d(p)\<e2τ V p e F ( Γ ) , \/(e)\ < εl(e) Ve

where l(e) = l{e) where e is the edge of Γ corresponding to e. To

define Γ = Γ(τ", d, /) let d: V(Γ) .-> M3 and / : £(Γ) ^ R be defined

by

(6) d(p) = jr d(p), /\e) = ζ{e) + ±/(e),
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where p is a vertex of Γτ#/ corresponding to p and e is an edge corre-
sponding to e. We then have

(7) \d\ < ε2, \ί- /~\ < ε1 max h(e), | / | < e + ε7 max fe(e).
eeE(ϊ) - eeE(Γ) ~

This shows that by choosing ε and e small enough we can guarantee that
f = f(J,/~) is well defined.

The construction of Γ once f is determined is similar to the con-
struction of Γ: f is enlarged by a factor N to f , then the edges of Γ
corresponding to e or their equivalents under the action of G are replaced
with ones of the appropriate length which is 2/(e) + /(rιr2). Suppose the
edge corresponding to e is sγs2 and it is replaced by sχs2, then R acts

by parallel translation along s2s2 . This defines the required action of G,
notice that its O(3)-part is the same as that for Γ as required by [10,
11.1.17(4)]. The vertices and the edges of Γ are then defined by using the
action of G as before. It remains to define τ on the edges of Γ. Since
this has to be independent of / by [10, II. 1.10], we may as well assume
that / = 0. In such a case, if e is the edge of f corresponding to an
edge e of Γ, we define

(8) t{e) = τ"t{e').

We check now that Fχ,, satisfies all the requirements of [10, II. 1.9].
Conditions (l)-(4) and (1.10) of [10, II. 1.9] are clear from the construc-
tion. By (1) and (6) we have

| / - / 0 | < m a x fcφ^

We can then establish [10, II. 1.11] because the angle in consideration is
equal to the corresponding angle for f which depends smoothly on / :
Simply choose ε small enough so that the inverse of ε max ~ l~(e) ex-
ceeds the norm of the appropriate derivatives on the compact ball {(d, / ) :
\d\ < e , | / | < e} . Similarly (1.14) of [10, II. 1.9] is established. Since we
have only finitely many edges and the parameters vary on compact sets,
condition [10,11.1.9.(6)] can also be arranged by choosing ε small enough.

We appeal now to the lemma in [10, IΠ.2.10] to obtain a family of
initial surfaces S^n based on Fτn . This involves the hidden hypothesis
[ 10, III. 1.1] that τ is small enough in terms of ε , which in our case follows
through the hypothesis that τ is small enough in terms of Γ of which ε
is a function. Recall the construction of ^ in [10, IΠ.2.10]. We write
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M(τ", ξ) for the initial surface of configuration ξ in S^,,. We recall the
definition of ξ and the space in which it takes values so that we clarify
what the parameter space is: Z(Fχl,) is defined to be a set of vertices of a
graph defined as follows: Consider Γτ//. Subdivide each of its edges e to
2l[e) new edges by inserting 21 (e) - 1 new vertices equally spaced on e.
Notice that Z{Fχ,,) can be put in a one-to-one correspondence with the set
of asr's of any initial surface associated to some graph in F n . Moreover
two vertices in Z(Fχ,,) are connected by an edge in the graph just defined
if and only if the corresponding asr's share a boundary circle. Notice that
we can clearly identify all the Z{Fχ,,) to each other in a natural way, we
write Z to denote any of them with the identification implied. W{Fχ,,)
is the space of functions w: Z{Fχ,,) ι-> R3 invariant under the induced
action of G. A norm || || for W(Fχl,) is suitably defined to impose
decay away from the vertices of Γ [10, III.2.5]. The W(Fχ,,γs can be
clearly identified to a single space of functions w: Z ι-> R 3, which space
we call W.

There is a unique initial surface M — M{τ", ξ) e < »̂ for each (τ", ξ)
e [τ , 3τ'] x Ξ where Ξ is the unit ball of W [10, III.2.9]. Let Γ =
Γ(τ", d, / ) be the graph to which M is associated, d = £ | F ( Γ ) , while the
rest of ξ controls the perturbation of the Delaunay asr's of M. It is clear
from the construction [10, IΠ.2.10] and the continuous dependence of Γ =
Γ(τ", d, / ) on its parameters that M — M{τ", <!;) depends continuously
on its parameters as well. Recall sx, s2, and s2 defined in the construction
of Γ above. We define the period of M to be

— •

(9) π(τ",ξ) = I V ^ | - | ^ ^ I

The period of M is therefore the signed length of the translation induced
by R. The importance of w is due to the fact that M is closed if and
only if τu (τ", {) = 0. This motivates us to study the way w varies. The
following two lemmas provide a satisfactory answer for our purposes:

Lemma 1. If ε is small enough in terms of Γ and a given e0 > 0, then

for all τ" e [τ , 3τ'] and ξ e Ξ, we have

(10) \π(τ",ξ)-π(τ",0)\<eQ(l+N\τ'logτf\).

Proof Let Γ7 = Γ(τ", 0, / ' ) and Γ" = Γ(τ", d", / " ) be the graphs
to which Mr = M{τ", 0) and M" = M{τ", ξ) are associated. In analogy
with (6), d", /', and / " are then defined. If e is an edge of Γ, we
will write e and e" for the edges of Γ7 and Γ" which correspond to e
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respectively. (9) and the various definitions involved imply that

w(τ",ξ)-π(τ", 0) = N(κ(/") - * ( / ' ) ) - (/"(e") - / ' ( e ' ) )

Since K is a smooth function defined on a compact set, its derivatives are
bounded. (6) implies that N{/" - /') = / " - / ' . Combining all these
we conclude that

(11) \w (τ" ,ξ)-π (τ", 0)| < C max \/'\e") - /\e)\,
eeE(ΐ)

where here C denotes constants depending only on Γ.
Fix some e and consider f"{e") - f\e). This is the difference of

the lengths of M"{e"} and M1 {e}, the two Delaunay pieces used to
replace e" and e in the construction of M" and M1 respectively [10,
IΠ.2.6 and the proof of IΠ.2.10]. Let DP1 = DP(τ , tf', 0) and DP" =
DP{τ", v , ξ") be the two Delaunay pieces in consideration. Clearly τ =
τ"τ(e), where τ is the one defined for Γ(0, /0), and τ" = τ"τ(e) where τ
is the one corresponding to T{d", /Q). τ depends smoothly on ί/ which
varies on a compact set, hence we conclude |τ' - τ" | < Cmax |rf/;(p)| (cf.
(6) also). But d" is the restriction of ξ e Ξ to the vertices, so by [10,
IΠ.2.5 and ΠI.2.8], we have mdx\d"(p)\ < ε2τ . This and the way τ was
defined for Γ' allow us to conclude

|τ;| < Cτ\ l^-τ ' l < CεV.

In order to study the length of DP" recall [10, IΠ.2.11 and (2) in the
proof of III.2.10] and the relevant notation. If we take τn and un of
those inequalities to refer to DP" , we can conclude that \τn - τ'| < Cε2τ .
By referring to [10, A.2.2], we conclude that

\p(τn)-p(τ)\<Cε2\τlogτf\.

Using this and the estimate for |u n -v\, it is straightforward to analyze the
lengths of the Delaunay pieces as in the proof of [10, IΠ.2.10] to conclude
that they differ by at most Cε2(l+l(e)\τlogτ\). By referring to (11) and
since l(e) < CN, we conclude then

\π(τ",ξ) - O7(τ", 0)| < Cε2{\ + N\τ \ogτ'\).

By assuming ε small enough as in the statement of the lemma, we finish
the proof.

Lemma 2. If ε is small enough in terms of Γ, τ small enough in
terms of Γ and ε, and N large enough in terms of Γ, ε, and τ , then
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there is c > 0 depending on Γ only, such that on [τ , 3τ']

d

dτ"
,0) > cN\ log τ I.

f. Let I > = Γ(τ",0,/τ,,) be the graph to which M(τ", 0) is

associated. In analogy with (6) we write /χl, =/0 + j ^ / χ t t . We then have

t<7(τ", 0) = iVΛ(^ι) - /(e)(2 + 2^(τ/rτ(e))),

where τ is the τ of f (0, ^ζ). Combining the last two equalities and
taking the derivative we get

eeE(Γτ,,)\Ge

where we abused the notation by writing e for the edge corresponding to
e in Γ. Since /ζ»(e) = 2l(e)p(τ"τ(e)), we conclude

J ^ O T ( Λ ( ) ) = -2/(e)p/(r//f(e))f(e)

where /?' is the derivative of p . The following replacements in the right-
hand side of the equation introduce only small errors which are acceptable
as far as proving the lemma goes. (dκ/d/(e))(/τ») can be replaced with
(dκ/d/(e))(0) by the smooth dependence of K on / and by choosing
e and ε small enough so to guarantee the smallness of /τu through (7).
In a similar way we can replace τ of f (0, /Q) with the f of Γ. p{τ)
can be replaced by — log |τ| by referring to [10, A.2.2] and assuming τ
small enough. The smallness of τ' allows us then to replace log|τ//τ(^)|
with logτ'. Finally the largeness of N and (1) imply that we can replace
l(e) with yfe(e). All these replacements reduce our expression to

TVlogτ' /c(0)τ(e) -

\ e€E(ΐ)\Ge

This allows us to finish the proof of the lemma by referring to (2.5).
We return now to the proof of the theorem. (I7) clearly implies that

\τσ (2τf, 0)| < 3 . Lemma 2 implies that τ " •-• w {τ" ,0) is a monotone—
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and hence invertible—function. Let J be its image and τ": J »-•
[τ , 3τ'] its (continuous) inverse. J is a closed interval and Lemma
2 implies that

^ D [3 - dV|τ'logτ'|, ciV|τΊogτΊ - 3].

By choosing e0 small enough (and iV large enough) and using Lemma 1,
we conclude that for all τ" e [τ , 3τ'] and ξ e Ξ, we have tu (τ", 0) -
w(τ" ,ξ) €<S". Hence we can define a continuous map

(12) π:SxΞ^J? by {π\ ζ) ^ π' -π(τ\vj') ,ξ).

Clearly M{τ\w'), ξ) is a closed surface if and only if w (wf, ξ) = w'.
We have succeeded already in formulating the closedness question in a

fixed point theorem form. It remains to modify the proof of the main the-
orem [10, V.2.1] so that it incorporates w . For completeness we discuss
the argument in some detail. Recall first the lemma in [10, III.4.4]. The
construction of Dξ can be repeated verbatim to give a difFeomorphism
Dτn ξ: M(lτ , 0) ι-> Af(τ", ξ) which has the same properties as Dξ and
depends continuously on (τ", ζ). Dτ>, ξ is clearly equivariant under the
action of G. Because we are free to assume τ = τ as small as needed
in terms of ε, the lemmas in [10, IV.5.1, IV.5.5, and V.I.3] are valid on
each M = M{τ", ξ) which we are considering. Define then C, σ, and δ
as in the proof of [10, V.2.1], and assume that τ = τ is small enough to
be < T. Let M = M{2τ , ξ) and X = {φ e C 2 ' * (M): φ is equivariant
under G} . The set

/ = {(^U^)GRxrxJ:ίZj'G/5

is a convex compact subset of the Banach space I x F x l . Fix some
(w1, ξ, φ) and let M = M(τ"(τuf), ξ) and φ = φ o A^'1^') ^ . We have
already said that [10, III.4.4] applies to our situation and so

(2.10) \\<p\\4S σ < C .

(Recall that C is a constant depending only on ε.) The definition of σ
and [10, V.1.3] imply then that Xφ (defined in 2.6) is an immersion and

11(2,11, < 1 > where

(2.11) Qφ = 4\A\~2(Hφ -H)-£?hφ,

where Hφ is the mean curvature of Xφ . Apply [10, IV. 5.1] with f=Q

to obtain functions u: M H-> R and λ: Z »-• R 3, and apply [10, IV.5.5] to
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obtain

(2.12)

(2.13)

and 1 : Z H R , such that:

l l < 5 , σ -

The same argument as in the proof of [10, V.2.1] establishes the con-
tinuous dependence of «, A, S, and 1 on (τ", ξ, φ). (12), (2.13), and
[10, III.4.4] modified as above, allow us then to define a continuous map

The Schauder fixed point theorem provides a fixed point (wf, ζ, φ) for
this map. Let τ" = τ"(vj') and M and (P be as above. Clearly the
translation R acts trivially and so ¥ is a closed surface and φ is well
defined on it. (2.11) and (2.12) imply then that Hφ = 1 and hence Xφ(M)

is a closed CMC surface based on (f, τ", N). (Smoothness follows from
standard regularity theory.) It remains to prove that there are infinitely
many such surfaces. But this is clear by giving values to N tending to oo
or to τ tending to 0.

Remark 2.14. Theorem 2.7 can be generalized in two different direc-
tions which we now briefly discuss. The reason we do not pursue this line
in detail is that no new topological types of surfaces would be obtained
and so we feel that the extra technical complications introduced would
not be justified. Certain examples along these lines (3.7), are outlined
later however.

Consider the first c-graph in Figure 2.5 which lies on the x{x3-plane.
The symmetry group is generated by the reflections with respect to the
coordinate planes. Let e{ = p_ιPι and e2 = p^p3. Both e{ and e2

have their lengths determined when the lengths of the other edges are
determined. The lengths of the other edges can be arbitrarily perturbed.
Although now we have two instead of one edge whose length cannot be
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Po

preassigned, on the other hand we can arbitrarily assign both τ\ = τ(ex)
and τ'2 = τ(e 2), and then have τ uniquely determined on the other edges.
Now we can carry out a construction where we vary independently τ\ and
τ2 to close two periods corresponding to e{ and e 2 .

The other generalization would be to allow rays in the graphs corre-
sponding to ends of the CMC surface in construction. For example a
construction based on the graph of Figure 2.6 (symmetry as before) would
be possible with τ predetermined on the rays and varying τ(e = P_xPλ)
to close the period.

3. Closed CMC surfaces with no symmetries

In this section we generalize Theorem 2.7 so that it applies in cases
where there is no symmetry group acting. This allows us to construct ex-
amples of closed CMC surfaces which have no symmetries, something we
did not manage to do using Theorem 2.7 as it stands. We start by explain-
ing what the (technical) difficulty involved is, and how it can be resolved.
Recall the simplest construction of CMC surface under our approach: That
of a 3-ended (topological) sphere [10, II.4.2]. The relevant central graph
Γ has one vertex and three rays. W(Γ) is three dimensional and Γ(d, 0)
is created by keeping two of the rays—and the τ on them—fixed, while
d then uniquely determines the direction and τ up to sign of the third
ray. By applying the theorem, we obtain a CMC surface M associated
to one of the graphs T{d, 0) in the family under consideration. Each of
the ends of M is asymptotically at infinity Delaunay with τ-parameters
equal to the τ of the corresponding ray and axis parallel to the ray. Ap-
plying then Kusner's balancing formula [10, A.3.1], we conclude that the
end corresponding to the third ray has to have axis parallel to the third ray
of Γ = Γ(0, 0) and τ-parameter the corresponding value of τ because Γ
is the only balanced graph in consideration.

It is natural to conclude from the above that the construction of the
Γ(d, 0)'s is unnecessary and one should be able to construct the CMC
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surface by using only the Af(£)'s with ξ = 0 at the vertex. This is in-
deed possible and the reason we have not discussed it in [10] is that it in-
creases the technicalities without giving any new significant examples. In
the above construction for example the desired surface can be constructed
first as usual, and have the behavior of the third end specified afterwards
as above by appealing to the balancing formula. The case is not so however
with closed surfaces. In this case we do not have rays to perturb and the
construction fails with one exception: Notice that even in the three-ended
sphere construction, we can avoid the need to construct the Γ(d, 0)'s if
we impose enough symmetry: Make the three rays coplanar and symmetri-
cally arranged with the same τ . Impose the symmetry group of the central
graph—dihedral of order six—as the symmetry group of the construction.
WG(Γ) then becomes trivial. This is analogous to the constructions of
closed CMC surfaces in the previous section: They all have enough sym-
metry to kill all linear functions on E3. This reduces W(Γ) enough for
us to be able to construct an appropriate family of graphs around Γ. To
construct closed CMC surfaces without symmetries however we have to
incorporate Kusner's balancing formula in the construction from the very
beginning. This is the objective of this section.

Definition 3.1. A weak central c-graph Γ is a c-graph which satisfies

the conditions of 2.4 with W(Γ) replaced by its subspace W(Γ) = {w:

V{L)\V(L) »-* K3} where V{Γ) c V(Γ) can be any one of the following:

(1) A set containing only one vertex.
(2) A set containing two vertices provided that there is an edge in

E(Γ) connecting them.
(3) A set containing three vertices which are not collinear, with each

pair connected by an edge in E(Γ).

Condition (2) is also modified to require that d~ = d only on the vertices

which do not correspond to vertices in F(Γ), with one exception: We still

require that f is balanced, that is dγ = 0.

Notice that we may still have a group of symmetries G acting but the
counting of the number of elements of V(Γ) should not be done modulo
the action of G.

Theorem 3.2. The conclusions of Theorem 2.7 hold for Γ a weak central
c-graph as well.

Before proving the theorem we apply it to obtain various closed CMC
surfaces. The next lemma simplifies the construction of weak central c-
graphs. In the rest of this section we use V(Γ) to denote a set of vertices
of a c-graph like the one in Definition 3.1. The set of the edges connecting
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vertices in V(f) is denoted by E(T). There are only three possibilities

for the number of elements in the sets V{f) and E(T): ( 0 , 1 ) , ( 2 , 1 ) ,

and ( 3 , 3 ) .

Lemma 3.3. Assume that f is a c-graph and d~(p) = 0 for each vertex

p except for those in a set V(f) as above, τ can then be (re)defined in a

unique way on E(T) so that dψ = 0.

Proof We proceed in a case by case basis. In the first case V(Γ) has
only one element and E(Γ) = 0 . Recall (2.2). If e is an edge connecting
p and p , then ΰe = —ve >. This implies

Since all summands but one are 0 by assumption, the last one is 0 also
and the proof is complete in this case.

For the other two cases we recall first some elementary facts: A system
of vectors applied at points is just this: A set of vectors in R3 each of
which has a point of E3 assigned to it. The torque of a vector ΰ applied
at p with respect to q is defined to be qp x v . Two systems of vectors
are defined to be equivalent if they have the same sum (as vectors) and
the same sum of torques with respect to each point of E3. Such systems
of vectors form a vector space which is the dual of the Lie algebra of the
group of Euclidean motions of E3. Each system of vectors is equivalent
to a single vector applied to a point called the resultant of the system, or
two parallel opposite vectors called the resultant couple of the system. We
can always substitute the point of application of a vector with one on the
line through the original point of application and parallel to the direction
of the vector. If the system of two (three) vectors has trivial resultant, then
the sum of the vectors is 0 and they are parallel to the line (plane) through
the points of application of the vectors—assume the points of application
are not collinear in the second case.

Consider now the system of the vectors dγ(p) applied at p (p e V(f)).

This system has resultant 0 because each ve cancels ΰe / as before.

Recall dγ(p) = 0 for p £ V(Γ). In the second case we have V(f) =

[P{ 9 P2} - By the above, dγ(pχ) is parallel to pχp2 and so by redefining τ

on pχp2 , we can achieve dγ{px) = 0. This reduces the problem to the first

case. In the third case V(T) = {px, p2, p3} , and by the above, dψ(px) is

parallel to the plane PXP1PΊ>. We can achieve dψ(p{) = 0 by redefining τ
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8=4

FIGURE 3.1 FIGURE 3.2

on pχp2 and pχp3. This reduces the problem to the second case and the
proof is complete, q.e.d.

Notice that there is no guarantee in the above lemma that the redefined
τ is nonzero, although this should be generically true.

Examples 3.4. We now construct examples of closed CMC surfaces of

any genus g > 3 whose symmetry group is isomorphic to Z2 x Z 2 . Let

G be generated by reflections with respect to the xxx2 and xχx3 planes.

We construct the weak central c-graph Γ (Figure 3.1) first. Its vertices are

p{ and pg on the x raxis, p2, , pg_χ on {x3 = 0, x2 > 0}, and their

mirror reflections with respect to the Xj-axis p2, , pg_χ respectively.

We assume that the xx -coordinate of p{ is increasing with /, and that

Λ-i > Pi > Λ+i a r e n e v e r collinear. The edges are pχp2, ,Pg_{Pg, their

mirror images, p2p'2, ••• ,pg_ιp'g_x, and e = pχpg. τ is assigned an

arbitrary (nonzero) value on e. Considering balancing successively at

P\ > * > Pg-\ 9 we specify τ on all the other edges. V(Γ) = {p^} and

so by Lemma 3.3 our graph is balanced. Γ(d, / ) is determined as in
Examples 2.9. It remains only to check (2.5). This can be arranged as in
Examples 2.9 by giving very large values to the xχ coordinate of pg . This
also guarantees that there are no other symmetries except the intended
ones.

Examples 3.5. We construct CMC closed surfaces of any genus g > 3
with symmetry group isomorphic to Z 2 . The only nontrivial symmetry
is a reflection across a plane on which plane the graph lies. We first de-
scribe the weak central c-graph Γ (Figure 3.2). The vertices of Γ are
px,- ,pg and q. The edges are qpχ, ,qpk, pxp2, , Pg_{Pg ,

and e = pχpg . V(Γ) = {q, pg} . We assign arbitrarily τ(e) φ 0. Balanc-
ing then at pχ, , pg_x determines uniquely τ on all other edges except
for p q. Lemma 3.3 then applies and τ is determined on this edge as
well. To ensure that τ is always nonzero we assume that no three vertices
are collinear. Elementary trigonometry as usual allows us to construct the
regular perturbations and check that they depend smoothly on the data.
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p3

k=2

FIGURE 3.4

(2.5) can be guaranteed by sliding p to oc along pχpg which is kept
fixed (for the details see the similar argument in 2.9).

Examples 3.6. For each k > 1 we construct closed CMC surfaces of
genus 4 + 2k possessing no symmetries. We determine first the weak
central c-graph Γ (Figure 3.3). Its vertices are arranged so that no three
of them are collinear and no four of them coplanar. The vertices are

91, Q2 > Po' P\ > * * * > Pk+i' T h e e d 8 e s a r e a 1 1 ^ / S ) PoP\' * ' ' ' PkPk+i>

qχq2 , and e = PoPk+l. K(Γ) = {qx, q2, pk+ι} . A nonzero value is ar-
bitrarily assigned for τ(PoPk+ι), and then f is determined uniquely on
the other edges except for ^ ^ , qιpk+ι, #2^+1 ^ considering balancing
successively at p0, pχ, , pk . We appeal to Lemma 3.3 to define f on
the remaining edges. The construction of the regular perturbations is as
usual and we omit the details. To guarantee (2.5) we can slide pk+ι to
oc on PQPM as usual. Notice that the existence of no symmetries can be
guaranteed by making Γ asymmetrical enough.

Examples 3.7. We construct examples of closed CMC surfaces of any
genus Ik + 7 (k > 1) which have no symmetries. In this construction we
have two edges e{ and e2 whose length is determined by the other edges
(cf. Remark 2.14). Although we do not provide the details of the proof,
we give enough information for the reader to fill them in.

We first determine the weak central c-graph Γ (Figure 3.4). The ver-
t i c e s a r e p ι , p 2 , p 3 , q ι , q 2 , ' - , q k , a n d r x , r 2 . V(Γ) = { p χ , p 2 , p 3 } .
The edges of the graph are ex = rχqk, e2 = r2qk, and the edges of the
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following tetrahedra: rχpχp2p3, r2pχp2p3, p3qxpxp2, , qk_xqkpxq2 . τ

is arbitrarily determined on ex and e 2 . The rest of the construction is
as usual except for the following: G is generated by two translations, we
have two τ''s, τ"'s, w'% etc. one for each e,. At some stage of the proof
condition (2.5) is replaced by the invertability of a 2 x 2 matrix. By as-
suming the edges with an r. as an endpoint of much larger lengths than
the other edges we can ignore the terms in this matrix corresponding to the
other edges. The matrix then reduces to a diagonal matrix with nonzero
diagonal terms (which can be arranged close to each other by assuming
rχ and r2 close to each other if further simplification is desired). This
is enough to find a fixed point and establish the existence of the desired
surfaces.

Proof of Theorem 3.2. This proof is a modification of the proof of

Theorem 2.7. We start by redefining once more the parameter space for the

regular perturbations. The motivation for this is that τ can be changed on

the edges in E(T) of a regular perturbation and the condition d-d- will

still be valid on the vertices not in V(T). In this spirit we define W(f)

as follows: If F(Γ) has only one element, we define W(T) = W(Γ).

If V(Γ) = {qχ, q2}, we arbitrarily choose qχ and we define W(Γ) =

( f ( Γ ) x l , where the last factor is to be identified with the tangent space

to the line qxq2 at qx. This way we think of W(Γ) as being a subset of

W(t). If f is isomorphic to Γ (usually a regular perturbation), let q[

and q2 be its vertices corresponding to qχ and q2 respectively. We define

~d~ e W(T) by requiring that d~ is the same as d~ on vertices different

than qx,q2, while at qχ it is the x[-coordinate of dγ(q[) with respect

to a Cartesian coordinate system which has the origin at q[ and q2 on

the positive first coordinate axis. Similar definitions can be given to the

case when V{Γ) = {qx, q2, q3} : Let W{Γ) = W(Γ) x R2 x R, where R2

corresponds to the tangent plane at qχ of q{q2q3 and R to the tangent

line of q2q3 at q2. ~dγ(q[) specifies then the two first coordinates with

respect to a coordinate Cartesian system which has the origin at q[, q2 on

the positive first coordinate axis, and q3 on the first coordinate plane with

positive second coordinate. dψ(q2) is the first coordinate of dψ(q2) with

respect to a Cartesian coordinate system with the origin at q2 and q3 on

the positive first coordinate axis.

Because of the assumptions we have it is clear that^we can find some
e > 0 such that for each (d, /) in the e-ball of W(Γ) x L(Γ, e), there
is f (d, /) so that all the conditions in Definition 2.4 are valid except (2)
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which is modified to read as follows:
(2') If f = T(d9 /), then df = d. d~ = 0, that is Γ is balanced.

As we already^mentioned, this is achieved by suitably perturbing τ on
the edges in E(f). Arguing as in the proof of Lemma 3.3 and using the
smooth dependence of Γ on its parameters, we conclude that there is a
constant c > 0 depending on Γ only, such that for each Γ above we
have \dψ\ < c\dψ\. This allows us to repeat the construction of the initial
surfaces in the proof of Theorem 2.7 with only minor modifications. The
families Fχ,, satisfy [10, II. 1.9] modified by replacing d for d and dΓ for
dΓ. These are defined in analogy with d and d~. We obtain a collection
of initial surfaces M(τ", ζ) for each τ" e [τ , 3τ'], and ζ e ΈSλW, where
W is a modification of W in the same way W(Γ) is a modification of
W ( ϊ ) . W can be identified as a subspace of W and this induces to it
all the relevant norms. M{τ", ζ) depends continuously on its parameters
and so does its configuration ξ = ξ(τ", ζ). The estimate of d~ above
implies immediately that \\ξ\\σ < c\\ζ\\σ .

Repeat now the rest of the proof of Theorem 2.7 with the following
modifications: First, all constants depending on ε depend on c as well.
Second, W is replaced by W and f is defined by

where Π is defined as follows: Let Γ(τ", d, / ) be the c-graph to which
M(τ"(π'), ζ) is associated. If F(Γ) has only one element then Π(μ)
is just the restriction of μ to its domain minus the vertex correspond-
ing to the vertex in V(Γ). If V(T) has two vertices, let qx, q2 be the
corresponding vertices of Γ τ" and q[, q2 the corresponding vertices of
Γ(τ", d, 0). We take Π ^ X ^ ) to be the first coordinate of μ(qχ) with
respect to a coordinate system with q[ at the origin and q2 on the positive
first axis. On the rest of the domain, Π(μ) agrees with μ. The definition
in the remaining case is similar and in the spirit of the definition of dγ
above. Notice that these definitions imply that Π(£) = ζ.

As in the proof of Theorem 2.7 we then obtain a fixed point correspond-
ing to a closed surface XΛM) such that

Although we do not have ζ = X+λ from the fixed point theorem anymore,
we do have ζ = Π(λ + λ), so Π(^ - 1 - λ) = 0. We restrict ourselves now
to the case where F(Γ) has three elements, the other case being similar
(and easier). Let Γ(τ", d, / ) be the graph to which M is associated.
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Now let q{, q2, q3 and q[, q2, q'3 be the vertices of Γ and Γ(τ", d, 0)
respectively corresponding to the vertices in V(Γ). Let μ = { - ϊ - λ we
know that μ ^ ) is orthogonal to the plane tfjtf^ > ̂ (#2) *s orthogonal
to the line q2q3, and μ vanishes on the rest of its domain except at q3.
We need to prove μ = 0.

Consider now the (continuous) system of vectors {Hf(X) - \)v'{X) ap-
plied at each X e M1, where Hr is the mean curvature function and v
is the Gauss map of M' = Xφ{M). Following R. Kusner [11], [12], let Ϋ

be a Killing vector field of E3. M' is a closed smooth surface and it is
easy to see that it is the boundary of a smooth 3-chain. An integration by
parts implies then that

L (Hf - \)v 'Ϋ = 0.
M'

Let a be a nonzero vector and r a point in E3. ? = 5 and Ϋ(p) = ηβ xa
are Killing vector fields. Using them in the above equation we conclude
that the system of vectors under consideration has trivial resultant.

H' - 1 is supported on the union of X (M[q ]) (/ = 1,2,3) . The

smallness of φ (by (2.10)) and the definition of Θ [10, IV.3.3] imply that

the subsystem of vectors obtained by restricting to X (M[q.]) is equivalent

to a ui applied at a point q" such that

\q'"-q"\<Cε,

where q" is the vertex of Γ(τ", d, /) corresponding to q{. Since the
resultant of the w 's applied at q" is 0, u{ is parallel to the plane q[q[q3 .
By [10, II. 1.15] the angle between qxq2q3 and <i"q2q!3 is small. Hence
the angle between the planes q[q[q3 and q[qf

2^ is small. Since μ(q{) is
orthogonal to q[q2q3, we conclude that μ(qx) = 0 = uι. It follows then
that u2 is parallel to q[q2 , and since μ(q2) is orthogonal to q[q2, we
conclude that μ(q2) = 0 = u2. Since we have trivial resultant, we conclude
then that μ(q3) = 0 = u3, and this concludes the proof of Theorem 3.2.

The main theorem of [10] can be modified along the same lines as the
modification of Theorem 2.7 in this section. To avoid more technicalities
we do not discuss a general statement along these lines. We demonstrate
the approach however and obtain some interesting examples of CMC sur-
faces in the following example. The details are left to the reader and they
are very similar to the arguments we have given already.

Examples 3.8. Our purpose is to construct two-ended CMC surfaces
of any genus g > 5 which possess no symmetries (cf. [10, II.4.1]). They
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are also a bounded distance from a half-line; that is, they lie in a half-
cylinder. We describe first the central graph Γ (Figure 3.5). The vertices
are p0, pχ, p2, p3 and qχ, q2, , q 4 . No three vertices are collinear
and no four coplanar except for pχ, p3, qχ, , qg_4 which are required
to be coplanar. There are edges connecting p3 to each other vertex. The
other edges are pχqχ, qχq2, , qg_sqg_4, Qg-*P2 > V ^ 3 ' PoP\ > PQPI>

and pχp2. There are two rays r0 and rχ, emanating from p0 and q 4

respectively, τ is assigned an arbitrary nonzero value at pχqχ. Consider-
ing then balancing successively at qχ, , q 5, and pχ, p3, we uniquely
determine τ at the other edges with the exception of qg_4P2 and p2p0 . τ
on these edges is uniquely determined by requiring that dΓ(p2) is orthog-
onal to the plane defined by these two edges. Balancing at p0 and qg_4

uniquely determines then up to the sign of τ the direction and τ of the
rays. To check that Γ is balanced we argue as in the proof of Lemma 3.3:
Consider the system of dΓ(p) applied at p , for each vertex p , where the
summation in [10, II. 1.2] is momentarily modified to exclude rays. This
system has trivial resultant and only three nontrivial elements, those ap-
plied at q 4, p2, and p0. Therefore dΓ(p2) has to be parallel to the
plane ρg_4p2p0 and hence 0.

To determine Y{d, 0) we argue as follows: We demand that pχ, the
direction of pχp3, and the direction of PxP3qx are kept fixed. Consid-
ering d instead of balancing as before, we successively determine the
following: First, the position of qx is already determined. Second, d(qx)
determines the position of q2 and τ on qχq2 and qxp3 Notice that in
general q2 does not lie on the plane pxqxp3 anymore. We proceed the
same way by considering d at q2, , q 5. This determines the posi-
tions of q 4, p2, and finally that of p0 . The rest of τ and the rays are
determined by considering d successively at p{, p3, p2, qg_4, and p0. d
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differs from dΓ only in that it does not determine the orthogonal to the
plane p2Poqg__4 component of dΓ{p2). To construct Γ(d, / ) we demand
that τ , the angles between the planes intersecting at p3qk (1 < k < g - 5)
and containing the other two edges from qk , and the directions of the rays,
are all the same as in Γ(d, / ) . The graph is then determined uniquely as
before.

The rest of the argument goes as usual in the constructions of [10]
modified in the lines of the proof of the theorem above. We miss H = 1
by a term corresponding to the orthogonal direction to the plane above at
p2, where we failed to prescribe dτ. By integrating as before we get one
term corresponding to the term just mentioned and two boundary terms at
oc corresponding to the rays. Since the resultant is trivial, arguing as in the
above proof, we conclude that H = 1, and the two Delaunay ends have
the same axis (asymptotically) at infinity. Provided that we chose the sign
of τ(r0) correctly, the ensuing CMC surface lies in a half-cylinder. Also
it has no symmetries provided we arranged the graphs to be asymmetrical
enough. This construction has clearly one continuous parameter, namely

4. Compact CMC surfaces with boundary a round circle

It is an interesting question whether a circle can be the boundary of a
compact CMC surface of genus g. In this section we give an affirmative
answer provided the circle has radius < 1 and g > 3. The proof is a
relatively straightforward modification of the previous constructions in this
paper. As usual the first step is to codify the data for such a construction
in a graph. Hence the definitions:

Definition 4.1. A cd -graph f is a c-graph equipped with a vertex p,
a unit vector u e TpE

3, and a real number r e (0, 1) such that:

(1) The action of G leaves both p and u invariant.

(2) For each edge e e Ep we have l{u, veyV)> arcsinr.

It will turn out in the course of the proof that there is no approximate

kernel corresponding to p . Motivated by this we redefine W(T) for a

cd -graph to be the space of functions w: V(f )\{p} »-> R 3 . d~ is thought

of as an element of the redefined W(f), so dp(p) is not allowed in this

section. All the other definitions are the same as in the c-graph case. In

particular we have:

Definition 4.2. A central c<9-graph Γ is a c<9-graph which has the same
properties as required in Definition 2.4 with the following modifications:
W(T) is the redefined above version, and the same holds for dγ.
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The regular perturbations of Γ are of course cd -graphs themselves, de-
pending smoothly on (d, / ) . We need to describe now the CMC surfaces
obtained from such a graph. We first modify Definition 2.6 to apply in the
new setting: The only difference is the following: Instead of the initial sur-
face M', we consider the following subset M" of M': Notice that there
is an asr contained in M' which corresponds to p . It contains the subset
of a round sphere whose center we call p ' . Consider the circle of radius
(in E3) r which is the intersection of the plane through p' + \/l - r2u
orthogonal to u, with the unit sphere centered at p ' . By assuming that ε
is small enough and using condition (2) in 4.1 this circle is contained in
the asr of Mf corresponding to p and which is M'[p] by the notation of
[10]. It disconnects M1 into two components, one of them in a geodesic
disc in a round sphere. Let M" be the closure of the other component,
and X: M" I-> E3 and v\ M" I-> S 2(l) its immersion and Gauss map re-
spectively, φ is required to be a smooth function on M" which vanishes
on its boundary. Definition 2.6 applies then to the current case provided
we replace M' with M" .

The other versions of 2.6 apply in the current case as well, provided we
add the requirement that M has a boundary round circle of radius r and
lying on a plane perpendicular to the ί? of Γ. Also in 2.6' we replace the
domain of / with the complement of a small open disc in dR, where this
disc is a small distance from the vertex of the homothetically expanded f
which corresponds to ΰ.

Theorem 4.3. For any central cd-graph Γ, there are infinitely many
compact CMC surfaces with boundary a round planar circle (of predeter-
mined radius r < 1), based on regular perturbations of Γ. More precisely,
there is Γ0(Γ) > 0 such that for any τ e (0, TQ), there is N0(τ , f)
such that for any N > No, there is a compact CMC surface M based on
(f, τ " , N) for some τ" e [τ , 3τ'].

Example 4.4. Let r € (0, 1) and a genus g > 3 be given. We construct
infinitely many compact CMC surfaces of genus g whose boundary is a
round planar circle of radius r. The construction is based on a central
cd -graph f which is a modification of the central c-graph in Examples
3.4: u is a vector at p = pg pointing in the direction of +oo on the xχ

axis. (This is a valid for the regular perturbations as well.) r is already
determined and the conditions of 4.1 are clearly satisfied. By applying
Theorem 4.3 we obtain infinitely many surfaces of the desired type.

Proof of Theorem 4.3. The proof is a modification of the proof of
Theorem 2.7. The differences are the following: First, W is modified
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by removing p' from the domain of the functions it contains, where p'
is the vertex of T2τ> corresponding to p . The construction of the initial
surfaces then is similar to the construction in the proof of Theorem 2.7.
Second, we remove an appropriate disc from each initial surface M{τ", ξ)
as we described above, so that M(τ" 9ζ) is a surface with the appropriate
circle boundary. If M is such a surface we still write M[p] for what is
left of the asr corresponding to p' and which is a unit sphere minus small
discs where transition regions [10, III. 1.4] have been attached, and minus
the smallest of two open discs into which a circle of radius r separates
the unit sphere. Dτ,, ξ is a diffeomorphism still mapping boundary circle
onto boundary circle and it is a Euclidean motion on a neighborhood of
each circle. The rest of the proof goesas before with the modification that
now JV is a subset of R x W x C\ 'a(M(2τ , 0)) that is, φ is required
to vanish on the boundary. We will prove shortly that the lemmas in [10,
IV.5.1, IV.5.5] are still valid in the new setting provided we require that u
and ΰ vanish on the boundary, and I and λ do not assign values to p ' .
The fixed point then has φ vanishing on the boundary and so provides us
with the desired surface.

It remains to check that the modified lemmas are valid. First we need
to understand the approximate kernel of the new surfaces. Notice that
M[p'] now corresponds to Λf[p'] which is not a sphere anymore but a
unit sphere with an open disc removed. The open disc has boundary of
radius r and is the smaller of the two such discs. Let

0 < μx(r) < μ2(r) < μ2(r) < μ4(r) < ... '

be the eigenvalues of the Dirichlet problem for the Laplacian on M[p],
each appearing as many times as its multiplicity. Since the domain strictly
decreases with r, standard theory [2, p. 18] implies that each μk(r) is
strictly increasing with r increasing. For r = 1 the domain is a hemi-
sphere and there is a coordinate function of fixed sign vanishing on its
boundary. Hence μx{l) = 2. On the other hand we know from [10, Ap-
pendix B], or from general theory, that ]imr_¥θμι(r) = 0 and ]imr_¥Qμ2(r)
= 2. We conclude then that for r € (0, 1), μχ (r) € ( 0 , 2 ) and μ2(r) > 2.
In other words there are no eigenvalues close to 2. This implies that there
is no approximate kernel corresponding to p' and this is the reason we do
not need to worry about balancing at p etc.

Straightforward modifications which are left to the reader allow us to
establish the lemmas in their new setting. We only remark that when
boundary estimates are needed we resort to [4, 8.15] instead of [4, 8.17]
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for supremum estimates [10, IΠ.4.3]. For C 2 ' α estimates we use bound-
ary Schauder theory: Notice that the geometry of a neighborhood of the
boundary depends only on r on which all our constants are allowed to
depend through their dependence on Γ.
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