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ON THE FORMATION OF SINGULARITIES
IN THE CURVE SHORTENING FLOW

SIGURD ANGENENT

Abstract

In this paper the asymptotic behavior of solutions of the so called "curve
shortening equation" for locally convex plane curves is studied. This is
done by looking at the blow-up of solutions of the quasilinear parabolic
PDE

dt dθ2

with periodic boundary conditions.
The main results (Theorems A, B, D, and D) may be summarized as

follows: "small convex nooses get tightened by the Grim Reaper." In
other words, a convex plane curve C{t) (0 < t < T) which evolves
according to its curvature will either shrink to a point in an asymptoti-
cally self similar manner (as described by Abresch & Langer, and Epstein
& Weinstein), or else its maximal curvature will blow up faster than
(Γ - t)~1^2 . In the second case, there is a sequence of times tn T T
such that the curve obtained by magnifying C{tn) so that its maximal
curvature becomes 1 will converge to the graph of y = - log cos x .

If the total curvature which disappears into the singularity is less than
2π , then it must actually be π . Moreover, the last statement of the
previous paragraph is true for any sequence tn T T, instead of just for
some sequence. In this situation we also have an upper bound for the
rate at which the maximal curvature κ{t) of C(t) blows up:

w ~ <r-o I / 2 + e

for any ε > 0 .

1. Introduction

In this paper we take a look at the way in which a plane immersed curve

becomes singular, as it evolves according to its curvature.

Let Sι be a unit circle, and R2 a Euclidean plane. A family of im-

mersed curves X: Sι x [0, T) —• R2 evolves according to its curvature, if
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at any (u, t) e Sι x (0, T) one has

0)

in which k and N denote respectively the curvature and unit normal of
the immersed curve u-> X(u, t).

For any C 1 immersed curve Xo: Sι —• R 2 , one can construct a family
of immersed curves X: Sι x [0, T) -> R 2 , for some small T > 0, which
satisfies (1), and has X(u9 0) = X0(u) i.e., the family X is a solution to
the initial value problem (1) with Xo as initial data. Assuming that the
initial curve is C°° smooth, M. Gage and R. S. Hamilton showed in [8]
that this is a special case of a much more general local existence theorem,
the proof of which uses the Nash-Moser implicit function theorem. In [2,
part 1 ] another proof for locally Lipschitz and even worse initial data was
given, using the more specialized theory of parabolic partial differential
equations.

A special solution of the curve shortening equation is given by a cir-
cle centered at the origin, whose radius at time t is given by R{t) =
[2(T - t)γβ , for some constant T > 0.

This example is typical in the sense that any solution of (1) must be-
come singular in finite time. In [8] Gage and Hamilton showed that if
the initial curve is convex, then the corresponding solution of the initial
value problem will shrink to a point in finite time, and will asymptotically
behave like the shrinking circle.

M. Grayson [9] subsequently showed that for Xo any simple closed
curve (i.e., XQ: Sι —• R2 is a diffeomorphism onto its image), the solution
will become convex in finite time, and hence, by the result of Gage and
Hamilton, it will shrink to a "round point."

If the initial curve has self-intersections, then the corresponding solution
can become singular without shrinking to a point. Consider as an example
the closed cardioidlike curve C(0) with one self-intersection and index
+2 depicted in Figure 1. Let C(t) be the family of curves which evolves
according to its curvature and has C(0) as its initial value. We showed
in [2, part 2] that the number of self-intersections of an evolving curve
cannot increase with time, so that the curve C(t) will always have exactly
one self-intersection. Let Cx{t) and C2{t) denote the outer and inner
loops of C{t), respectively, and let Aχ{t), A2{t) denote the areas which
they enclose. If one computes the rates at which these areas decrease with
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FIGURE 1. A CARDIOIDLIKE CURVE.

time, then one finds
, r ( 3π - a(ή, if j = 1,

Aj{t) = Jcj{t) Xπ + ait), ifj = 2,

where 0 < a(t) < π is the angle of the self-intersection.
At any time one has π < -A2(t) < 2π < —A[(t) < 3π, so if ^ ( 0 ) >

3A2(0), then the area in the smaller loop must disappear before t =
A2(0)/π, while the area in the larger loop C{ (t) stays positive, and bounded
from below. Obviously, the curve becomes singular when this happens; it
becomes singular before it shrinks to a point.

In this paper we shall give a more detailed description of the way in
which the loop C2(i) "contracts." We shall restrict our attention to con-
vex immersed curves, i.e., immersed curves without inflection points—in
general, such curves can have self-intersections, and the curve of Figure 1
falls in this class.

The reason for restricting our attention to convex immersed curves is
that they admit a parametrisation in which (1) turns out to be equivalent
to a scalar quasilinear parabolic PDE.

Let X: Sι —• R2 be a convex immersed curve, and for each u e Sx

denote the unit tangent to X by t u e Sι. Since the curve is convex,

t: Sι —• Sι is locally one-to-one, and t is a covering. The degree v

of the covering is of course the index of the curve ("number of times its

tangent winds around as one goes along the curve").

Let Ύv = (R/2i//r)Z. For any u e Sι we can write 7(w) as (cos0(w),

sin0(w)) for some θ(ύ) e Ίv , and we can choose θ(u) so that it depends

continuously {Cn~ι if the curve is Cn) on u e Sι . Then θ: Sι -> T^

is one-to-one and onto, so that X o θ~ι: Ύv —• R2 is a parametrisation of

the curve for which the tangent ^(0) is (cos θ, sin θ).
If the curvature k of the curve is known as a function of the angle θ,

then the curve is completely determined, up to a translation. The inversion
is quite easy; the arc length and the angle are related by dθ = k{θ)ds, so
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that X{θ) is given by

(2) X(θ0) = X(0) + Λ 7(0) ds = X(0) + f° ^ dθ,
Jθ=0 Jθ=0 K\V)

where we have identified R2 and C.
This formula shows that any positive function k e C(ΎU), for which

rlvn pV^Θ

/

holds, defines a C 2 convex immersed curve. Thus, instead of consider-
ing curves, we can look at functions k e C ( T J , which satisfy (3). It
turns out that the curve shortening equation for convex immersed curves
is equivalent to the following PDE for the curvature k, as a function of

( 0 , 0 ,

(4) kt = k2(kθθ + k) {θeτv,o<t<T).

The special solution given by the shrinking circle corresponds to the
solution k(θ9 t) = [2(T - t)]'xβ of (4). The form of this solution sug-
gests that one might separate variables, and find other solutions of (4) of
the form k* = K(Θ)[2(T - t)]~l/2. A short computation shows that k*
satisfies (4) if and only if A' is a 2z/π periodic solution of

(5) κββ + K-jR = 0.

In [1] U. Abresch and J. Langer classified all solutions of this equation
(note that, since l/K is of the form fθθ + f, it automatically satisfies (3),
and hence represents a closed curve).

The solutions of (5) represent convex curves which do not change their
shape while they evolve under the curve shortening flow; i.e., they repre-
sent curves which shrink to a point simply by dilation. We refer to these
functions as "Abresch-Langer functions."

Now let k: Sι x [0, T) —• R+ be a maximal classical solution of (4)
and define

*(0 = ll*( ,0lloo (0<t<T).

Since our solution k blows up at t = T, and its maximum satisfies

κ\t)<κ{t)\

we know that

(6) κ(t)>[2(T-t)Γl/2.
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Our first result states that, if the maximal curvature blows up like
(T- t)"1^2 , then it must shrink to a point in an asymptotically self-similar
manner.

Theorem A. // (T - t)'ι/2κ(ή remains bounded as t ] T, then the
reseated curvature (T - t)ι/2k(θ, t) converges in C°°(TJ to one of the
Abresch-Langer functions.

This shows, for example, that for the cardioidlike curve of Figure 1, the
maximal curvature blows up faster than (Γ - ί)~1//2.

Although the precise rate at which the curvature must blow up still seems
to be unknown, we can prove the following rough upper bound.

Theorem B. For any solution k(θ, t) of {A) which blows up at t = T,
one has

lim(T-t)κ(t) = 0.

If the family of curves becomes singular, without being asymptotically
self-similar, then one expects that "one of its loops contracts." The fol-
lowing theorem is the most precise version of this statement which we can
prove at the moment.

Theorem C. // (T - t)~ι/2κ(t) is unbounded when t ] T', then there
exist sequences tn\T and θn € Ύv such that

where the convergence is uniform for \θ\ < π/2. Furthermore, the limit
also exists in C°°([-π/2 + δ9π/2- δ]) for any δ > 0.

For any t e(0,T) choose a point P(t) e C(t) at which the curvature is
maximal, and let C(t) be the curve which is obtained by translating C(t)
so that P(t) becomes the origin, rotating C(t) so that the unit tangent at
P{t) becomes the vector (1,0) , and finally dilating the curve so that its
maximal curvature becomes 1.

If (T - t)ι/2κ(t) is not bounded, then Theorem B states that there
is a sequence of instances in time tn] T, such that the curve C(tn) will
converge to what M. Grayson has called the "Grim Reaper," i.e., the graph
of y = - log cos x.

Define the blowup set to be the set

Σ = {θeΊu\limk(θ,t) = oo}.

We shall show that Σ is the union of a finite number of intervals, whose
lengths all are at least π (in view of the earlier results of Gage and Hamil-
ton, Grayson, and others, this is not at all surprising). Each component of
Σ corresponds to a singularity of the limit curve C(T).
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Theorem D. If the blowup set consists of exactly one interval and the
length of Σ is less than 2π, then for some a e Ύv one has Σ = [a -
π/2, a + π/2], and

(a + φ , t)

uniformly in φ e [-π/2, π/2]. Moreover,

lim{T-t)l/2+eκ(t) = 0

for any e > 0.
The organization of this paper is as follows.
In §2 and 3, we recall the "Sturmian theorem" and some of its conse-

quences for solutions of the curve shortening flow. These results are an
essential ingredient in the proof of Theorems A, B, and D.

In §4 we observe that solutions of (4) eventually become monotone
increasing, or, what is the same, subsolutions.

The proof of Theorem A is contained in §5,6 and 7. The main part
of the proof is concerned with showing that if (T - t)ιl2κ(t) is bounded
from above, the function (T - ί)~1/2/c(0, t) is also uniformly bounded
away from zero. This fact is proven in §7, by comparing a rescaled version
of k(θ, t) with certain special solutions of the curve shortening equation,
which correspond to "shrinking spirals."

Theorems C and D are then proven in §§8 through 10.
Finally, in the last section we give an example of a class of curves to

which Theorem D can be applied (the curve of Figure 1 belongs to this
class).

In their paper [7] A. Friedman and B. McLeod also studied the blowup
of solutions of (4) (and various generalizations, with more independent
variables). As M. Gage pointed out, the proof of their Theorem 4.1 con-
tains an error; the fourth line on page 72 should read c < y/^twλ < C,
instead of c < wλ < C. Indeed, Friedman and McLeod never use the fact
that their solution of (4) satisfies Dirichlet boundary conditions, while the
Abresch-Langer functions would provide counterexamples for their The-
orem 4.1, if those boundary conditions are dropped. Nevertheless, some
of the ideal in [7] have proved to be useful, and our proof of Theorem D
was inspired by the discussion in [7, p. 73].

Acknowledgements. Several conversations with Matt Grayson and
Michael Gage on curve shortening have been helpful and inspiring.
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2. The Sturmian theorem

Let u(x, t) be a classical solution of

(7) ut = a(x, t)uxx + b(x, t)uχ + c(x, t)u

on the rectangle Qτ = [x0, xχ ] x [0, T], where the coefficients are assumed
to be smooth (i.e., C°°) functions on Q Γ , and a must also be positive.

The (classical) maximum principle states that the solution u either van-
ishes everywhere in Qτ or else is strictly positive in the interior of Qτ,
if it is nonnegative on the parabolic boundary Sτ = {x0, xχ} x [0, T] u
[ 0 , l ] x { 0 } .

The Sturmian theorem is a refinement of this principle, and unlike the
maximum principle it describes a strictly one-dimensional phenomenon.
There is no known generalization to parabolic equations in more than one
space dimension.

The Sturmian theorem gives a precise description of the zero set of a
solution of (7). In its formulation we shall use the following terminology.
If f(x) is a C°° function of one variable, which vanishes at some x0 e R,
then JC0 will be called a simple zero if /(XQ) φ 0. The order of the zero

is the smallest integer k for which f^k\x0) φ 0; if all derivatives of /
vanish at x 0 , then x0 is a zero of infinite order.

The number of zeroes of f in {a, b) counted with multiplicity is, by
definition, the sum of the orders of all zeroes of / in the interval (a, b).

Theorem 2.1. If u e C°°(QT) is a solution of (7), and

u(xj,t)φθ (0<t<T;j = 0,l),

then at any time t e (0, T] the zero set of x —• u(x, t) will be finite, even
when counted with multiplicity.

The number of zeroes of x —• u[x, t) counted with multiplicity is a
nonincreasing function of t; at any time t when x -> u(x, t) has a zero
of order k > 1, z(t) drops by at least k - 1.

The first proof of this result was given by C. Sturm in 1836 [14]; he
assumed that the equation had the form ut = (k(x)ux)x •+ q(x)u, but his
analysis of the zero set by looking at the Taylor series of the solution near
its zero set would work without any substantial change for solutions of (7)
(see [4]).

Sturm also assumed (implicitly) that the solution u is a real analytic
function; i.e., he assumed that solutions (7) cannot have zeroes of infi-
nite order, without vanishing identically. That this is actually true under
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the assumption that u does not vanish on {xQ, xχ} x [0, T] is in fact a
conclusion of the theorem.

Since 1836 the result has been rediscovered several times in several
forms (see the references in [4]), and in the form in which we use it here
it was proved in [3], under even weaker assumptions on the coefficients a,
b, and c in the equation.

The Sturmian theorem can also be applied to solutions of nonlinear

equations. Let / = f(x, t9u9p9q) be a smooth function of its five

variables or, alternatively, consider an / e C°°([0, T]xJ2[x0, x{]), where

J2[x0, x{] is the space of two-jets on the interval [x0, x{].
Let u and v be two smooth solutions of the nonlinear equation

(8) ψt=f{x,t,u,ux,uxx).

Assuming that

so that (8) is parabolic, the difference w = v - u will satisfy a linear
parabolic equation like (7) in which the coefficient a(x, t) is given by

a{x9 t) = Jl ^(x9 t, u\x, 0, ux(x, t),uxx(x, t))dθ9

n

and b and c are given by similar expressions. Here we have written u
for (l-θ)v + θu.

The Sturmian theorem now implies that if u(χ., t) Φ v(Xj, t) for 0 <
t < T and 7 = 0 , 1 , the number of zeroes of x —• υ(x, t) - u(x, t),
when counted with multiplicity, is finite for any t e (0, T], and does not
increase with time.

3. Vertices

As a simple application of the Sturmian theorem, we prove the following
statement about the vertices of a family of curves which evolve according
to their curvature. Recall that a vertex of an immersed curve is a point
on the curve at which the curvature is stationary. If kθθ Φ 0 at a vertex,
so that the curvature attains a strict local maximum or minimum at the
vertex, then the vertex is by definition nondegenerate.

Theorem 3.1. Let {C(t), 0 < t < T} be a family of convex immersed
curves which evolve according to their curvature. Then, for any t > 0, the



SINGULARITIES IN THE CURVE SHORTENING FLOW 609

curve C(t) has at most a finite number of vertices, and this number is a
nonincreasing function of time. In fact, it decreases whenever the curve C(t)
has a degenerate vector.

This theorem follows immediately from the Sturmian theorem, if one
observes that vertices correspond to zeroes of h = kθ(θ, t), and that h
satisfies

ht = k2hθθ + (2kkθθ + 3k2)h,

a linear parabolic PDE like (7). (Just differentiate (4) with respect to θ .)
In [2] we already proved this, without assuming that the curve is convex.
We also proved the following statements about the way in which the

solutions of the curve shortening equation (and various generalizations
thereof) intersect. See Theorem 1.4 of [2, part 2].

Theorem 3.2. // Cx{t) and C2{t) (0 < t < T) are two families of
immersed plane curves which evolve according to their curvature, and their
initial values C{(0) and C2(0) are different, then for any t > 0, the
two curves C{(t), C2(t) have a finite number of intersections, even when
counted with multiplicity. This number of intersections does not increase
with time, and must decrease whenever the two curves have a nontransversal
intersection.

If one considers only one family C(t) of curves, evolving according to
its curvature, then the same statements are true for the self-intersections of
C(t).

Just as with the theorem on vertices, this theorem is true for general
solutions of the curve shortening problem; convexity plays no role in the
proof.

4. Eventual monotonicity

Let k(θ, t) be a 2vπ periodic solution of

k t = k 2 { k θ θ + k) {θ e R , 0 < t < T ) ,

which blows up at time t = T, and assume that the initial data satisfies

(9) k{θ,0)>δ9

(10) k(θ,0)2 + kθ(θ,0)2 <A2,

for certain constants δ and A.
Lemma 4.1. At each point (ΘQ, tQ) e R x (0, T), one either has

(k + kθθ)>0
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or
k2 + k] < A2.

This lemma implies that whenever and wherever the solution k be-
comes larger than A, it automatically becomes a subsolution.

Proof. Put B = {k(θ0, tQ)2 + kθ(θ0, tQ)2}ι/2, and assume that B > A .
Choose a φ e (-π/2, π/2) such that

kθ(θQ, tQ) = Bsin(φ),

and consider the functions

w{θ9t) = k(θ,t)-k*{θ).

Then /:* is a time-independent solution of (4) on the region Ω x [0, T),
where Ω = (0O - φ - π/2, θo-φ + π/2).

Since B > A, one has wθ < 0 at each zero of iu(0, 0) in the interval
(0O - φ - π/2, θ0 - φ), and lί^ > 0 at each zero in (θ0 - φ , 0O - $? + π/2).
Moreover, w(0o -φ,0)<A-B<0 and w(0o - p ± π/2, 0) > 0, from
which we conclude that the function w(θ, 0) has exactly two zeroes in
Ω. By the Sturmian theorem this number cannot increase with time.

The function k* was chosen so that at t = tQ, the function w(θ, t)
has a multiple zero at θ = θ0. Since θ —• w(θ, ί) has at most two zeroes
when counted with multiplicity, w(θ, ί0) has no other zeroes besides ΘQ .
On dΩ, κ;(0, ί0) is strictly positive, so wθθ(θ0, t0) > 0, which implies
that k + kθθ>0 at (0O, ί o ) .

Corollary 4.2. Γ/ẑ  .s^

Ω(ή = {θeR\k(θ,t)>A}

is increasing with time, and for any θ e Ω(ί0) the function t —• /c(0, ί) w
strictly increasing for t>t0.

Proof The second statement clearly implies the first. Let 0 e Ω(ί) be
given, and assume that there is a t' > t such that k(θ, t') <k(θ, t). Since
Lemma 4.1 implies that kt(θ, ί) = k2(kθθ -f /:) > 0, there is a minimal
ί; > ί with λ:(0, t') < k(θ, 0 . But then k{θ, t") > A for all t" € (t, t'),
and we can apply the lemma again to conclude that kt(θ, t") > 0 for all
ί" e (t, t1). This is a clear contradiction, q.e.d.

The eventual monotonicity of the solution also allows us to estimate the
derivative kQ in terms of κ{t).

Lemma 4.3. For any (0, t) e R x (0, T) one has \kθ(θ, t)\ < A +



SINGULARITIES IN THE CURVE SHORTENING FLOW 611

Proof. Let θx and tχ be given, and assume that \kθ(θι, tx)\ > A.
Without losing generality, we may assume that kθ > 0 .

Let θ2 be the smallest θ2 > θχ for which either kθ(θ2, tx) = 0 or
k2 + kβ < A2 holds. Such a θ2 must exist, because θ —• k(θ, ίj) is
periodic so that kθ vanishes somewhere in the interval (θ{, 0 t + 2vπ).
In both cases we have /c + kθθ > 0 on ( θ j , θ2) and |fcβ(θ2, ^ ) | < A.
Hence

kθθdθ

< k θ ( θ 2 , t ι ) + Γ

Since /c is 2vπ periodic, we have θ2 < θχ, and therefore kθ < A +
2vπκ(tx), as claimed.

Corollary 4.4. The family of functions

is uniformly Lipschitz continuous, and hence precompact in W^Ύj with
the weak* topology.

5. The rescaled flow

To analyze the way in which the solution blows up, we consider the
rescaled curvature

( 1 1 ) K(θ,t) = e-t/2k(θ,T(l-e-t)),

which satisfies

(12) Kt = K

2

Kθθ + Ki-X

for θ £ R and all / > 0. This substitution is motivated by the fact that

k(θ,t)< Const x(T- t)~ι/2 is equivalent to the uniform boundedness of

K(θ, t) as t tends to infinity.

A straightforward computation shows that

plvπ

-L {
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is a Lyapunov function for the PDE (12). Indeed, one has

rlvπ / if \ 2-cm dθ.

The equilibria of (12) are exactly the Abresch-Langer functions, which
we mentioned in the introduction. Let ALv c C°°{ΊU) denote the set of
Abresch-Langer functions of period 2vπ . Then ALV is the union of a
finite number of disjoint circles ALV N, where ALυ N consists of those
Abresch-Langer functions whose minimal period is 2vπN;the TV's which
can occur are exactly those for which \Γλv < N < 2v holds. Each circle in
ALV N contains all translates of one particular 2ι/π/iV-periodic solution
of Kθθ + K = \K, which is why it is a circle.

Lemma 5.1. If sup^€Λ J>QK < oo and infθ£R t>0K > 0, then as
t -> oo, the function K( , t) converges in the C°° topology to one of the
Abresch-Langer functions.

Proof Let e < K < e" 1 for some e > 0. Then (12) is a quasilinear
uniformly parabolic equation, and the standard results on such equations
(as in the book of Ladyzhenskaya, Ural'ceva and Solonnikov [11]) im-
ply that all derivatives of k(-, t) remain uniformly bounded. Therefore
f{K{;,t)) is bounded from below, and

2

^ ) dθdt <oo

so that
lim Γ

n^°° Jn
{KλΓdθdt =

i.e., Kt tends to zero in the L2 norm. The derivative bounds then guar-
antee that Kt(> ,t)-+0 in C°°(TJ.

Any limit of a subsequence K{-, tn), with tn ] oo, must satisfy Kt = 0,
or rather Kθθ -h K = 1/2K, so the only limits which can occur are the
Abresch-Langer functions. Since the Abresch-Langer functions appear on
disjoint circles in COC(TI/), the K(-, t) must converge to one of these
circles, and by the result of C. Epstein and M. Weinstein [6] they must
converge to exactly one function on such a circle.

6. Shrinking spirals

We shall prove Theorem A by comparing the given solution of K of
(12) with special solutions of the form K(θ, t) = K(θ - ct). Clearly, a
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function K(θ) will generate a solution of this form if and only if it satisfies
the equation

(13) K2Kββ + cKβ + K3-£ = 0.

The function §? given by

) = κθ= κ2

θ+κ2 -log A:

satisfies

(14) Jf'(0) = - 2 c ^ ,

so that ί?(0) is monotone if c Φ 0, and the only periodic solution of (13)
with c Φ 0 is the constant A: = \\/ϊ.

For c = 0, the periodic solutions of (13) are, of course, the Abresch-
Langer functions.

There is one particular solution of (12) which we shall need; its existence
and its relative properties are given below.

Theorem 6.1. For any c > 0, there is a unique solution Kc e
C°°({-oo, 0]) of (13) with the following properties:

K'c(θ)>0 for θe (-oo,0),

<(0) = 0,

K'c(θ)<λcKc{θ) forθ<0.

As a function of c > 0, Kc(0) is strictly decreasing, and given any δ > 0
and A>0, one can choose c = c(δ, A) > 0 so small that

(15) * c ( 0 ) > < Γ \

(16) K(Θ)>A whenever δ < Kc(θ) < δ~ι.

Proof It will be convenient to deal with H = y/K instead of K itself.
A short computation shows that (13) is equivalent to

(17) HHΘΘ - i/zj + cHθ + 2H2-H = 0.

This ordinary differential equation is equivalent to the first order systems
of ODE's

(18)
1

(19) " ~ β - 2 '
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Thus up to a reparametrisation, the solutions of (13) are in one-to-one
correspondence with the orbits of the vector field

/2XC(H, G) = HG-^j + (±G2 - cG + H - 2//
2) A ,

which has three zeroes, ( 0 , 0 ) , {\ , 0 ) , and (0, 2c). When one computes
the linearization of Xc, one discovers that (0, 2c) is a source, and also
that ( j , 0) is a spiraling sink. The origin is a degenerate zero of Xc, so
that we have to take a closer look at the vector field near ( 0 , 0 ) , to see
what its unstable set is.

0.4 -

0.2 -

-0.2 -

- 0 . 4 -

FIGURE 2. THE UNSTABLE MANIFOLD OF THE ORIGIN.

(c = 0.3).

By definition, the unstable set WU(O) of the origin consists of all orbits
of Xc, which tend to O as θ | -oo . Since the origin is not a hyperbolic
fixed point of the vector field Xc, it is a priori not clear what the unstable
set will look like.

If K is the solution for which we are looking, then

(H(Θ),G(Θ)) =

parametrizes a trajectory of X in the unstable set of the origin WU(O).
c

Existence of a trajectory in WU(O).
λH{H > 0). On this half line we have

JG-λH

Let lλ be the half line G =

(20) H-
dθ

= i\ -λc - (l + ̂ λ1) H\H.
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Choose two λ 's such that λ{ < c~ι < λ2, put h* = (1 - cλ{)/(2 + λ]/2),
and define the points

A = (h*, ^Λ*) ,B = (h\ λ2h*), and 0 = (0, 0).

From (20) one sees that the trajectories of Xc enter the triangle OAB
through the sides OA and OB, while they leave OAB through the re-
maining vertical side AB. Since Gθ > 0 in the triangle, it follows from
Wazewski's principle that at least one of the trajectories through AB tends
to the origin, as θ —• -oo.

Uniqueness of the trajectory in WU(O). First of all, we observe that
near the origin, one has Gθ < 0, if G > λH for sufficiently large λ (i.e.,
λ > c~ι). This implies that any trajectory (H, G) in WU(O) satisfies
G < λH for some λ > 0, as θ -> -oo.

Let (Hl9 Gx) and (H2, G2) be two different orbits in Wu{0)\ then
near the origin they can be represented as graphs Gi = g^H), where the
gt are solutions of

g ( ' H HΘ H g(H) "

Orbits cannot intersect, so we may assume that £,(//) < g2{H). Their
difference w(H) = g2(H) - g{(H) then satisfies

w 1-2//

which implies that w'(H) < 0 for sufficiently small H > 0 in view of
the fact that gt(H) < λH for some λ; but then iί;(/ί) = 0, because
\imHίOw(H) = 0. So the two solutions were equal after all.

Let (Hc, Gc) denote the trajectory whose existence and uniqueness have
been just established, and let Kc be the corresponding function of θ.

It follows from (14) that the quantity

is strictly decreasing on orbits of Xc, except when G - 0. Thus H -
\ log//, and therefore H, are bounded from above on any orbit of Xc.
Using the fact that (\, 0) is an attracting spiral point, one easily shows
that any orbit converges to {\ , 0), and winds around this point infinitely
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often. In particular, any orbit will intersect the //-axis. For the function
Kc, this means that it will converge to \Vl, as θ —• oo, and that it will
oscillate infinitely often around its limit value. Its derivative K'c(θ) must
therefore vanish infinitely often; by replacing Kc{θ) with Kc(θ - θ0) for
some ΘQ e R, we can arrange that the first zero of K'c(θ) is θ = 0.

This completes our construction of Kc. To finish the proof, we have to
show that Kc has the properties (15) and (16).

To verify (15), we observe that the segment of WU(O) which lies in the
first quadrant is the graph of some function G = gc(H) for 0 < H < hc,
where (λ c,0) is the first point of intersection of Wu{0) with the //-axis.

Since Kc{0) = \fhc, we have to show that hc is monotone decreasing

in c.
Let c < c be given, and suppose that hc< < hc. Then, keeping in

mind that the left side of (19) is strictly decreasing in c, one finds that the
backwards orbit of Xc, through (hc>, 0) cannot pass through the graph of
gc. As a consequence, it would have to hit the //-axis before it reaches
the origin, but that is a contradiction, because the orbit of Xc> through
(hc>, 0) is contained in the unstable set of O (relative to the vector field
Xc,). Thus we see that hc> > hc if c < c.

A similar argument also shows that gc{H) is a strictly decreasing func-
tion of c for fixed //; i.e., as c | 0 to the unstable set WU{O)C moves
upwards.

Assume that Kc(0) were bounded, as c | 0. Then the hc 's would con-
verge to some h0 > 0. The vector field Xc is well defined and smooth
for all c € R, so the unstable set WU(O)C, being the orbit of Xc through
(hc, 0), would converge to the orbit of XQ through (hQ, 0). But XQ has
%(H, G) as a conserved quantity, and all its orbits are periodic. In partic-
ular, for c = 0, the orbit through (hc, 0) will intersect the //-axis, when
followed backwards in time. By continuous dependence on parameters,
the same will be true for some small c > 0-a clear contradiction! This
shows that (15) is indeed true. A similar argument shows that gc{H) ] oo
as c I 0, and uniformly so on intervals δ < H < δ~ι. Therefore (16)
also holds.

7. Proof of Theorem A

In view of Lemma 5.1, we only have to show that K is bounded from
below if we know that it is bounded from above. So we shall assume that
K is bounded from above, and we choose a constant A so large that
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K{θ,t)<A (θeR,t>0),

\KΘ(Θ,O)\<A ( 0 € R ) ,

K{θ,0)>A~\θeR).

Choose c > 0 so small that the shrinking spiral of Kc of the last
section satisfies Kc(0) > A, and K'c(θ) > A whenever A~ι < Kc(θ) < A.
By Theorem 6.1 such a c exists, as well as a λ > 0 for which 0 < K'c{θ) <
λKc(θ) holds for all 0 < O .

Lemma 7.1. At any (θ, t) eΊvx{Q,oo) one has \KΘ(Θ ,t)\ <λK(θ, t).

This implies that (logK)θ < λ, which, after integration, yields a Har-
nack-type inequality:

supK{θ9ή<e2λuπ inf K(θ, t)
θ θ^Ύ

for all t > 0. Combined with

sup K(θ, 0 = e-t/2κ(T(l - e'1)) > ±V29
θeτv 2

this implies that K is bounded from below, and therefore converges to
one of the Abresch-Langer functions.

Proof of the Lemma. Let tQ > 0, θ0 e R be given, and choose c,
λ as above. Since 0 < K(θ0, t0) < Kc(0), and Kc is strictly monotone
on (-oo, 0), there is a unique θχ < 0 for which Kc(θx) = ΛΓ(0O, r 0 ) .
Consider the function

Then AT* is a solution of (12) on the region

Q = {(θ,ή\θ<θo-θ{+ct,t>O},

and the difference w = K* - K satisfies a linear parabolic equation like

(7).
On <9βΓψ> 0}, i.e., when θ = θo-θ{+ct, one has w(θ, t) = Kc(0)-

K(θ, t) > Kc{0) - ^ > 0. On the other part of dQ, i.e., when θ <ΘQ-Θ{

and ί = 0, w(θ,0) has exactly one zero. Indeed, w(θ0 - θλ, 0) > 0,
while limsup ( 9 i_o oϊi;(0, 0) < -A~ι, so that w must have at least one

zero. Moreover, at any zero one has K = K*, so that ^4-1 < K* < A,
and hence Λ^ > Λί > Kθ i.e., at any zero of w(-, 0), one has it^ > 0 so
there cannot be more than one zero.
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By the Sturmian theorem, the number of zeroes of θ —• w(θ,t),
counted with multiplicity, cannot increase with time. But by our con-
struction we have w(θ0, t0) = 0, so that θ0 is the only zero of w(-, t0).
The signs of the boundary values of w , i.e., of w(θ0 — θx+ ct0, t0) and
it;(-oo, t0), are such that wΘ(θ0,t0) must be positive. Thus

Kθ(θ0, ί0) < κ;(θ0, ί0) < λK*(θ0, ί0) = λK(θ0, ί0)

holds at any prescribed point (θ0, tQ).
By applying the same argument to K(-θ, t), we also get -Λ^ < λK,

so that |Λ^| < λK, which is what we had to prove.

8. The noose (proof of Theorem C)

Let k(θ 9 t) be a solution of (4) which blows up at time T > 0. From
the Sturmian theorem we know that the number of local maxima of θ —•
k(θ, t) (i.e., the number of vertices of the curve) does not increase as
t —• T, so that it must be eventually constant. Since we are only interested
in the asymptotic behavior of k as t —• T, we may as well assume that
the number of vertices of the curve is constant. Since the number of
local maxima and minima must drop whenever a stationary point becomes
degenerate, it follows that θ -> k(θ, t) is a Morse function for all t.

In the same way we may assume that the number of self-intersections
of the curve C(t) is constant, so that all self-intersections of C(ή are
transversal for all te[O, T).

Define a noose of the curve C(t) to be an interval (α, β) C R such
that C(ή\{a β) is injective, C(t9 a) = C(t, β), and π < β -a < 2π . The
a r e a o f t h e n o o s e i s t h e a r e a e n c l o s e d b y t h e c l o s e d c u r v e C ( ή \ [ a β].

Lemma 8.1. If C(t0) has a noose with area AQ, and the curve C(t)
becomes singular at time t = T, then

A0>π(T-t0).

Proof. Since all self-intersections are transversal, one can follow a noose
(α 0 , βQ) through a family of nooses (a(t), β(ή) (tQ<t< T) of C{t). A
short computation shows that the area A{t) of the noose at time t satisfies

A\t)= ί ήk(θ,t)ds(θ) = β(t)-a(t),
Ja(t)

so that π < -Af(ή < 2π. Therefore, 0 < UmnτA(ή < Ao - π(T - tQ).
q.e.d.
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For any given t e (0, T), we choose a 0(0 for which fc(0(ί) ,t) = κ(t).
As before, we let A be the constant given by

A= 2 2l/2

Lemma 8.2. // κ(t) > A, then k(θ, t) > κ(ήcos(θ - 0(0) for all θ
with \θ - (9(01 < arccos(A/κ(ή) •

Proof. At 0 = θ(t) one has k(θ, t) = κ{t) and kθ(θ, t) = 0 , so that

fc(fl, t) = κ(t) cos(θ - θ{ή) + / sin(0 - ϋ){kθJϋ, 0 + ik(d, 0} ^ .

If there were a 0 € (0 (0 ,0 (0 + arccos(Λ/κ(0)) for which
k(θ, t) < κ(t) cos(0 - 0(0), then we could choose a minimal 0 with this
property. Since /c > ^ at (θ(t),ή9 we would have kθθ + k > 0 at
(0(0, 0 a n d hence 0 > 0(0- Between 0(0 and 0 we would also have
k > κ(t) cos(0 - 0(0) > A and thus kθθ + fc > 0, which would imply that
fc(0, 0 > κ(t) cos(0 - 0(0), a contradiction, q.e.d.

For each t < T choose a 0(0 G R which maximizes /c(0, 0 , and
define the function

as well as
k(θ±π/2,t)

L e m m a 8.3. If for some sequence tn] T, one has e(tn) —> 0 ,

lim
n—>oo

uniformly on [-π/2, π/2].
Proo/ The sequence / c ^ is uniformly Lipschitz, and we may assume,

after passing to a subsequence, that it converges uniformly. Denote the
limit by K*(θ).

At all points where k{tn) > A/κ(tn), one has k^ + k{tn) > 0, so that in

the limit we have K^θ + K* > 0 in the sense of distributions, on the open

set where K* > 0. Thus k{t*\θ) = maxθk
{t»\θ) = 1, so that iT(0) =

1 >K*(Θ) for all 0.
Let / c R be the largest interval containing 0 = 0, on which K* is

positive. Then / c (—π/2, π/2), since

K*(±π/2) = lim k(t"\±π/2) < lim e(tn) = 0.
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On the interval / we have

K (0) = cos(0) + / sin(0 - ϋ){Kθθ(ϋ) + K
Jo

which implies that K*(θ) > cos0 on / , and hence that / = (-π/2, π/2).
Moreover the inequality is an equality when θ - ± π / 2 , so that the inte-
gral must vanish for those values of θ. Since the integrand has one sign
on / , this can only be true if K*eθ + K* = 0 on / , i.e., if K*(θ) = cos θ .
q.e.d.

In addition to uniform convergence the hypothesis e(tn) —• 0 also

implies that k^tn) converges in C°°{Iδ) for any δ > 0, where Iδ =

[-π/2 + δ, π/2 - δ]. Since we already know that the k^n) converge

uniformly, we only have to prove that they remain bounded in C°°(Iδ)

convergence in the same space then follows immediately.

To bound the derivatives of k^tn\ we consider

ί(0,O = κ(tn)

which is defined on Qn = Ύv x [-κ(tn)
2, 0] (it is also defined for some

positive t 's, but we would not be interested in what happens to ln for
t > 0). On Qn the function tn satisfies \in θ\ < M, in t > 0 wherever
tn(θ, t) > A/κ(tn)9 0 < tn{θ, t) < 1 and ϊΠ(0, 0) = l ' for some finite
constant M.

Lemma 8.4. There is a constant C <oo such that

holds for all θ e Ύv and -κ{tn)
2 <t' <t < 0.

Assume for the moment that this lemma is true. Then, given a ί > 0 ,
there exist τ > 0 and nδ < oo such that for all n > nδ one has t Π ( 0 , 0 >
δ/4 on Iδj2 x [-τ, 0 ] . In fact, this follows from the lemma and the fact
that tn(θ, 0) converges uniformly to c o s 0 , which is strictly larger than
δ/4 on Iδ/2.

Since the ln 's are bounded away from zero on Iδ,2 x [-τ, 0], the equa-

tion kt = k (kθθ + k) which they satisfy is uniformly parabolic on this

domain. The theory of quasilinear parabolic equations in [11] tells us

that each derivative of tn is uniformly bounded on the smaller rectan-

gle Iδ x [-τ/2, 0]. In particular, all derivatives of k{tfl) are uniformly

bounded on any interval Iδ .
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Proof of Lemma 8.4. Let u(θ, t) be the solution of

ut = uθθ + u (\θ\< 1 , 0 < < O O ) ,

u(θ,0) = M\θ\9

u(±l,t) = M.

One could solve this initial value problem explicitly, if one wanted to. The
solution has the following two relevant properties.

First, there is a constant C such that κ(0, 0 < Cy/Ί for 0 < t < 1. In
addition, u is strictly increasing for t > 0, i.e., uθθ + u > 0 holds for all
θ e [-1, 1] and £ > 0 (the initial value is a subsolution).

If θ0 e Ύu and tQ < tx < 0 are given, since | t Λ j β | < Af, the function
w(θ, 0 = fc(0o, t0) + u(θ-θo,t- tQ) satisfies w(θ, ί0) > ί π (0, t0) for
all |θ - θo\ < 1. In addition, whenever w(θ, t) < 1 one has

wt>w wt = w (wθθ + ty),

since w, > 0 . So w is a supersolution for (4) on the set (9 = {{θ, ί) |w(0,0
< 1} . By the maximum principle this implies that ln < w for all t > t0

and 9 € ( f l o - l , 9 o + l ) (recall that ϊn < 1, so that we only have to
compare the two functions on &).

If tQ < t{ < t0 + 1, then this immediately shows us that tn(θ, t{) <
t(θ, tχ) + C(t{ - to)

ι/2 if tx > tQ + 1, then this inequality also holds if we
choose C > 1, since 0 < tn < 1. q.e.d.

In order to prove Theorem C, we may therefore assume that e(t) > e
for some constant e > 0, and try to reach a contradiction. We shall show
that if e = inf 0 < r < Γ e(ί) > 0, then for all / close to T the curve C(t)
will have a noose whose area A[t) is bounded by Const xκ(t)~2. Since
the area of noose must satisfy A(t) > π(T - t), this would imply that
κ{t) < Const x(T - t)~{/2, contrary to the assumption of Theorem C.

Construction of the noose. Recall that for each t we had chosen a θ(t)
which maximizes k(θ, t), and defined

We have \k{

θ

t]\ < 2vπ + A/κ(t), and since κ(t) -• oc as t -> T, we may

assume that \k{

θ

t]\ < 10z/ (we have used 2π « 6.28... < 10).

By assumption we have either k{t\π/2) > e , or k{t\-π/2) > e we

shall assume that the first inequality holds. The Lipschitz estimate for k{t)
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then implies that

kiή(θ)>e-l0v\θ-π/2\

for \θ-π/2\ <e/10i/.
Introduce the function

w(θ) = max(cos0, e - 1OJ/|0 - π

which is defined on the interval -π/2 < θ < π. Then w(θ) is strictly
positive on [0, π/2], and therefore its minimum p = m i n o < 0 < π / 2 w(θ) is
also strictly positive.

If t is close enough to Γ, then κ(t) will be so large that A/κ(t) < p.

Since kfθ+k{t) > 0 at any θ for which k{t\θ) > A/κ{t), this implies that

k{t\θ) >w(θ) for 0 < θ < π/2 + e/lOi/. Applying Lemma 8.2 again, we

get

k{t\θ) > w{θ) for - arccos(Λ/ιc(0) <θ<π/2 + e/(10i/).

Let Γ be the convex curve which corresponds to the function w , i.e.,
the curve parametrised by

rϋ Jθ
Γ{ϋ)= -^TQ)dθ> -π/2<ϋ<π/2 + e/{l0v).

Then Γ is an unbounded curve with two asymptotes, and since its total
curvature (= π + e/(10i/)) exceeds π , it must have a self-intersection.
Let the ϋ angles corresponding to this intersection be -π/2 < a < 0 and
π/2 < β < π/2 + e/(10i/), so that Γ([α, /?]) is a noose. Denote the area
of this noose by Ae.

For all t sufficiently close to Γ, we shall have -arccos(A/κ(ή) < a,
so that k{t\θ) > w(θ) on [a, β]. Thus the curve corresponding to k{t)

will have a noose which is contained in the noose of Γ, and whose area is
therefore bounded by Ae. Since our original curve C(t) is obtained from
the curve corresponding to k{t) by a Euclidean motion, and by shrinking
it by a factor κ(t), the curve C(t) must have a convex noose whose area
is at most A€/κ(t)2.

As we argued in the beginning of the proof, this contradicts the hy-
pothesis of Theorem C, since it implies Aeκ(t)~2 > π(T - t), i.e., κ(t) <
[A/π(T-t)Γι/2.
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9. An upper bound for the rate of blowup

In this section we shall prove Theorem B. The length of a convex curve
C is given by L = fc dθ/k if C{t) evolves according to its curvature,
then the length of C(t) will change according to

(21) L'(t) = - [ k{θ,t)dθ.

But if t is close enough to T, then for some θ0 e Ύv we know that

k(θ, t) > κ{t) cos(0 - ΘQ) holds on the interval \θ - θo\ < arccos(A/κ(ή)

for some constant A > 0. Thus —L'(t) > cκ(t) for some constant c > 0,

and therefore

/ κ(t) dt < L(0) - lim L(t) < L(0)
Jo t^τ oo.

On the other hand κ{t) is eventually increasing, so that for sufficiently

large t one has

(T-t)κ(t)< Γκ(τ)dτ,
Jt

and since we have just shown that /0

Γ κ(t)dt converges, the integral on
the right side will vanish if t tends to T. So Theorem B is indeed true.

To obtain the more precise blowup rate of Theorem D, we consider

/(/)= / \ogk(θ,t)dθ.
J T

Differentiation under the integral, and integration by parts show that

In particular, one sees that l(ί) is a convex function of time.
If the blowup set consists of an interval of length less than 2π, then

it follows from the first part of Theorem D (which we shall prove in the
next section), that the length of Σ actually is π. Thus Σ c [α, α + π]
for some a e Ύu , and as we shall see in the next section, k(θ, t) remains
bounded outside of every interval Σe = [a - e , a + π + e]. By standard
parabolic theory the same will then be true for all derivatives of k, and
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therefore

is finite.
Using Cauchy's inequality we then get

US.,

which, after integration yields

ΐ(ή<(2v-l)πMe+
 π + β

and integrating one more time, we find

</(0) + (2i/-l)πΛ/ cΓ-

On the other hand Lemma 8.2 implies that k(θ, t) > κ(t) cos(θ - θ(ή)
for some θ(ί) e Ίu , and thus

V

r2iτccos(A/κ(ή)raTCCOS{Λ/K{l))

l{t)> / log(κ{t)cosφ)dφ
J-2iTCCOS(A/κ{t))

= 2arccos{A/κ(t))logκ(t) + 0(1) (t ΐ T)

Combining the two inequalities for l(t) then will give us an upper bound
for κ(t):

Since e > 0 was arbitrary, we have shown that the second part of Theorem
D follows from the first part of the same theorem.

10. The blowup set (proof of Theorem D)

Since our solution k(θ, /) of (4) becomes strictly increasing when and
wherever it becomes larger than A, the set ΩM(t) = {θ e Ύu\k(θ, t)
> M} is strictly increasing in time, for any M > A. The blowup set
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Σ = {θ\ l i m ^ Γ k(θ, t) = 00} may therefore be written as

Σ= Π U β*ω

Consider an M > A, and let (α, /?) be a component of Ω M (ί) . Then,
for any θQe (a, β) which maximizes k(θ, ί) on (α, /?) one has

rθ

k(θ, 0 = k(θ0, 0 c o s ( 0 - θ o ) + s i n ( 0 - p ) { f c ^ + *:}(?> ,t)dt,
JΘ0

so that, just as in Lemma 8.2, we find k(θ, t) > k(θ0, t) cos(0 - 0O), for
|^-^ol - arccos(^4//:(0o, ί)), and, as a consequence, that (α, β) contains
all θ with \θ - ΘQ\ < a,τccos(A/M). Thus the length of any component of
UO</<ΓΩΛ/W

 i s a t l e a s t 2arccos(^/M).
As M goes up, the set Uo<i<r^A/W shrinks, while 2arccos(^4/Λf)

becomes larger. This implies that the length of any component of

Uo</<ΓΩA/(O 0 Γ Σ i s a t l e a s t π

From here on we shall assume that Σ is an interval. By rotating our
coordinate system, we can arrange that the closure of this interval is given
by

Σ = [-α,α]
for some α > π/2. In order to prove Theorem D, we shall assume in
this section that α € (π/2, π), and show that this assumption leads to a
contradiction.

Since Σ c \Jt<τ ΩM{t) for any M > 0, {ΩM{ή}ί<τ is an open covering
of any compact interval [-/?, β] c Σ. Therefore one of the ΩM(t) 's
contains [-β, β], or in other words we have

Lemma 10.1. For any β < a and M > 0, there exists a tM B < T
such that k{θ ,t)>M when \θ\ < β and t> TM B.

Lemma 10.2. For any sufficiently small e > 0, there is a te < T such
that for all t€(t€, T) one has

kθ(θ,t)>0«0)

on the interval θ e [-a + e , -a + π/2 -e] (or on the interval [a - π/2 +
e , α + e]).

Proof. By assumption the quantity M€j2 = supt<τk(a - e/2, t) is
finite. We choose te so close to T that

Λ e / 2 '
' sin(e/2)

for t> te and |0 | < α - e .
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Suppose that for some θ e [-a + e , -a + π/2 - e] and t e [te, T) one
would have kθ(θ, t) < 0. Arguing as in Lemma 8.2, it would follow from

k(ϋ, ή = k(θ,ήcos{ϋ-θ) + kθ(θ,t)sin(ϋ-θ)+ / sin(#- φ)p(φ)dφ
JΘ

fϋ
> k(θ, t) cos(# -θ)+ sin(# - φ)p{φ) dφ,

Jθ

where p(φ) = kθθ(φ, t) + k(φ, t), that k(ϋ, t) > k(θ, t) cos(z? - θ) for
all ϋ < θ with θ - ϋ < arccos(A/k(θ, ί)). But then one would have

k(-a - e/2, 0 > fc(θ, t) cos((9 + α + e/2) > k(θ, ί) sin(e/2) > Mφ,

which is inconsistent with the definition of M€,2. Hence the lemma is
true. D

Our proof of Theorem D is based on an analysis of the horizontal dis-
tance Xβ{i) between the two points on the curve which correspond to the
angles ±β , where π/2 < β < a. Thus we consider

The dominated convergence theorem implies that

while, on the other hand, we also have

fβ
x

βW= ~ j cosθ(kθθ + k)dθ

= {kθ(~β, 0 - kθ(β, t)}cosβ - {k(β, 0 + (-β, ή}ύnβ.

Thus for β e (π/2, a), when cos/? < 0 < sin/?, it follows from Lemma
10.2 that X'β(t) < 0 for all t which are sufficiently close to Γ.

Since \imt1.τXβ(t) = 0, this implies:
Proposition 10.3. If π/2 < a < π, then for any β e (π/2, a) there

exists a tβ <T such that Xβ(t) > 0 for tβ <t <T.
Next, we choose sequences tn] T, and θne[-a, a] such that k(θn,tn)

= κ(tn), and for which

(22) k(θn±π/2,tn) = o(κ(tn)) (n-oo).

The existence of these sequences follows from Theorems A and C.
We shall complete the proof of Theorem D by showing that Xβ(tn) <0

for large enough n and some suitably chosen β so that the hypothesis
π/2 < a < π of Lemma 10.3 can never be fulfilled.
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After passing to a subsequence, if necessary, we may assume that all the
θn 's have the same sign, and without loss of generality, we may also assume
that they are all positive. In addition, we may assume that l i m ^ ^ θn = ~θ
exists. Then 0 < 0 < a - π/2, because k{θ, tn) > κ{tn) cos(0 - Θn) when
\θ-θn\<Biccos(A/κ(tn)).

To estimate Xβ{tn), we introduce a rescaled version of Xβ(tn). First
consider

Un(θ)=λnk(θ, tn) With λn = fc(_π)2>g

Our assumptions imply that λn —• 0 as n -* oo , and from the lemma on
eventual monotonicity (i.e., Lemma 4.1) it follows that u"n(θ) + wn(0) > 0
whenever un(θ) > λnA .

Since cos 0 < 0 for π/2 < 0 < j8 , we have

COS0

We shall show that for large « and for β close enough to a, the first term
In{β) dominates the other term, and also that IN(β) becomes negative;
this is what we are looking for since it implies Xn(tn) <0.

To estimate the two terms In , IIn , we first find an upper bound for un

to the left of -π/2.
Let e > 0 be so small that π/2 < a + e < π, and define

u (Q\ = s c o s θ i s i n ( g + a + 6 )

"[ ] Λcos(a + β) sin(-π/2-ha + e)

_ -δn cos 0 H- sin(0 + a + e)

"" -cos(a-fe)

where ίΛ = λΛ max(^ί, M€) and Me = sup 0 < f < Γ fc(-α - e , ί ) . Then C/Π

satisfies C/̂  + Un = 0, t/Λ(-α - e) > un{-a - e), and Un{-π/2) =

un(-π/2)(= 1). We also know that u'n + un >0 wherever un > λnA, so

that the maximum principle implies

un(θ)<Un(θ)(-a-e<θ<π/2),

which gives a lower bound for u'n at -π/2,namely, u'n(-π/2)>U'n(-π/2).
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Combining this with Un(-π/2) = un(-π/2) = 1, we get for |0| < π/2
(i.e., when cos θ > 0)

ίθ

un{θ)= -un(-π/2)sinθ + un(-π/2)cosθ+ / sin(0 - φ)vn(φ)dφ
J-π/2

>Un(θ)+ / ήn{θ-φ)vn{φ)dφ,
J-π/2

where vn = u"n + un .
On the interval [-π/2, 0] the function Un{θ) is bounded from below

by J7w(0) = (-δn + sin(α + e))/(-cos(α + e)). For large enough n e N
one therefore has Un(θ) > λnA on [-π/2, 0], and hence, arguing as in
8.2 we obtain the following lower bound for un(θ)

un(θ)>Un(θ) (-π/2<θ<0),

which holds for sufficiently large n . This allows us to estimate In(β) from
above, for large n :

As /t -^ oc the δn 's tend to zero, so that

nK ' ψ) -cos(α

and hence
β-x/2fβ-x/2

limsup/ (β) < cos(α + e) / sin^{sec(α + 6-h^)-sec(α + e -φ)}dφ
n-^oo Jo

/
Jo

This holds for any positive e , so by putting e = 0

limsup/ (β) < cos(α) / sinp{sec(α + φ) — sec(o; - φ)}dφ < 0.
Λ->OO JO

To estimate the other term, we split it into two parts:

a to\ Γ " π C°S0
IIJβ)= / —Ύ^

COS0

Un{θ)

On the interval [β - π, a - π] we already have the inequality un>Un\
since the minimal value of Un on this interval is Un(a - π), we get
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A short computation shows that

i τi ( \ sin(2α - π) Λ .
hm Ula-π) = — ^ J- = 2sinα,

n-+ooe[0 nK -COSα[ - C O S α

SO

l i m s u p / / / (β)< ("7^
n - o o F nKHJ ~ 2s inα

We can make this quantity as small as we like, by choosing β close enough
to α.

Concerning the last term, we have hxan_¥QθIVn{β) = 0. Indeed, we
have θn - π/2 £ [-π/2, 0], so that λnk(θn - π/2, tn) is bounded from
below by Un(0). The sequences θn, tn were chosen so that (22) holds,
and thus

$ - π/2, tn) x

Using Lemma 8.2 we then conclude that un(θ) —> OD on the interval α -
π < θ < π/2, so that IVn(β) tends to zero, by the dominated convergence
theorem, as claimed.

Combining our estimates for In , IIn , IIIn , and IVn implies

= lim sup In(β) + IIIn(β) + IVn(β)
it—too

< Const x(α - β) + limsup/n(jff)
n—•oo

if j8 is close enough to a. This contradiction shows that our initial as-
sumption π/2 < α < π must have been wrong, so that Theorem D holds.

11. Blowup for symmetric cardioids

In this section we shall point out a class of curves to which Theorem D
is applicable.

Let our initial curve Co have index 2, and assume that its curvature
function satisfies

b ( )
( } k'0(θ)<0 ( O < 0 < 2 π ) .

Such curves are cardioids, and if we assume that the point corresponding
to θ = 0 lies on the y-axis, then they are invariant under reflection in the
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y-axis. An example of such a curve is the curve corresponding to

α + cos(0/2) '

where a > 1 is a constant.
The first condition implies k'Q(0) = k'0(2π) = 0, so that C o has exactly

two vertices. If k(θ, t), 0 < t < Γ , is the maximal classical solution of
(4) with ko(θ) as initial data, then for each t > 0, the solution k(-, t)
will also satisfy ( 9 ) .

Theorem. The blowup set of Σ of the solution k(θ, t) to the curve short-
ening equation, whose initial data satisfies (ζ?) is the interval [3π/2, 5π/2].

Proof Since kθ < 0 for 0 < 0 < 2π and all t > 0, by symmetry that
closure of the blowup set must have the form [2π - a, 2π + α] for some
α > π . Therefore we have to prove that a = π/2, and that the blowup
set is closed, i.e., that it contains its endpoints.

If |Σ| = π , then the arguments of Gage and Hamilton [8] imply that
Σ must contain its endpoints, so that we really only need to show that
|Σ| = π .

Consider the horizontal distance between the two points corresponding
to θ = 0 and θ = π :

/o *(*,*)

Monotonicity of θ -»/c(0, ί) on the interval (0, 2π) implies that D(t) <
0 for all t > 0, i.e., that the point with 0 = π lies to the left of the y-axis.

On the other hand,

D\t) = - / cosθ{kθθ(θ, t) + k(θ, t)}dθ
Jo

= [-ke{θ, /) cos θ-k(θ, t) sin θ%

= kθ(π,t)

So D(t) is decreasing, and it is bounded away from zero.
The symmetry of k implies that

r 2 π COS0 ,„ „i:/o k(θ,t) " " - "

so that the point with θ = 2π also lies on the y-axis. If a > π, then by
the monotone convergence theorem we have

r2πί2π en* ft
limD(t) = -lim / rr^dθ = 0.
tπ w nτjπ k(θ,t)t)
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The contradiction shows that α is less than π , so that |Σ| < 2π and
we can apply Theorem D. Hence the blowup set has length π.
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Appendix:
The local semiflow, and stable and unstable manifolds.

Consider the initial value problem

(ivP) kt = k2kθθ + k3 (θeτu,o<t<τ),

This is a quasilinear parabolic initial value problem, and if the initial
value is a strictly positive function, the equation will be nondegenerate,
so that the theory in Eidelman's book [5] implies the existence of a short-
term solution to (IVP), assuming that the initial function is a smooth
function. The a priori estimates of Ladyzhenskaya et al. [11] then allow
one to prove local existence for arbitrary continuous initial functions k0 .
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In this Appendix, we recall how one can use the theory of analytic semi-
groups to establish a similar local existence result for {IVP). The advan-
tage of this approach is that, except for some facts about Sturm-Liouville
operators of the form a{x){d/dx)2 + b{x) with Holder continuous coeffi-
cients, the whole discussion stays within the realm of "calculus on Banach
spaces."

The only disadvantage, perhaps, is that we have to introduce the fol-
lowing two function spaces:

* (T,)-(«eCfΓ.) lim sup

and

The elements of ha{Ύu) are called "little-Holder continuous functions."
Equipped with the n o r m

M „ . / m ι | w ( 0 ) -
M Aβ(T ) = S U P \U(Θ)\ + S U P J

the vector space ha{Ίu) is a Banach space; it is the closure of C°°{Ύv)

in the usual space of Holder continuous functions, Ca{Tu). Likewise,

h2'*{Ύv) is the closure of C°°(Jy) in C 2 ' α ( T J .
Theorem. The initial value problem {IVP) generates a real analytic

local semiflow on the open subset (9 c /^(TJ consisting of all strictly
positive functions.

The theorem means the following. If we denote the local semiflow by
φ\t > 0), so that the maximal solution k{θ, t) of {IVP) is given by

k{θ,t) = {φt{k0)){θ),

then φ is defined on some open subset 2 c [0, oc) x (9, which contains
{0} x &. The semiflow is a continuous map φ: 3 —• (9, which is real
analytic on 2J^ = {{t, k0) e 3f\t > 0}. It also satisfies the familiar
semigroup properties, namely:

(i) φ°{ko) = ko for all koed?.

(ii) If for some t, s > 0, and k0 e (9, both {t,k0) e 2 and

{s^φ^k^eSf, then {t - + s, k0) € 3f, and φt+s{k0) = φs{φ\k0)).

Once one has proved these statements, one can use the existing proofs
in the theory of dynamical systems to prove (as in [F]) that hyperbolic
fixed points have smooth stable and unstable manifolds.
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Indeed, if kQ e (9 is a fixed point of φ*, then its stable and unstable

manifolds coincide with the same manifolds for the time-one map φι,

which is defined and real analytic in a neighborhood of k0 .
If the semiflow has a compact and hence finite dimensional invariant

manifold, which consists of fixed points and is normally hyperbolic, then
one can again use the existing proofs of the analogous statement in fi-
nite dimensions, to construct smooth stable and unstable manifolds of the
invariant manifold.

The point we wish to make is that, in order to construct stable and
unstable manifolds for fixed points or sets, one only has to prove smooth
dependence of the solution on the initial data, i.e., smoothness of the
time-one map. Once one has a real analytic semiflow on a Banach space,
the particular (PDE or functional analytic) techniques which were used to
construct this semiflow are no longer important.

The reader may object that our semiflow φt has no fixed points or
invariant sets, since all solutions to {IVP) blow up in finite time, but the
previous discussion is also applicable to the rescaled version of the curve
shortening equation,

Kt — K Kθθ + K - — ,

which has the Abresch-Langer functions as fixed points. Thus the analytic
semigroup approach could be used to give an alternative construction of
the invariant manifolds associated to the Abresch-Langer functions.

Instead of proving the theorem here, we merely state that it follows
from one of the various existing theories on "Abstract parabolic initial
value problems," which one can find in the publications listed below (the
list is surely not complete).
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