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KAHLER HYPERBOLICITY
AND L2-HODGE THEORY

M. GROMOV

0. Basic definitions and results

0.1. Bounded and ^(bounded) forms. A differential form a on a Rie-
mannian manifold X = (X, g) is called bounded with respect to the Rie-
mannian metric g if the L^-norm of a is finite,

\\a\\L

 d=l fsupHx)|| <oo.
0 0 xex

We say that a is d (bounded) if a is the exterior differential of a
bounded form β , i.e., a = dβ , where ||/?L < 00.

00

Remark. It is not required that a is bounded, yet in all our applica-
tions the notion " d (bounded) " applies to bounded forms a.

If X is a compact, these notions bring nothing new. Namely, every
smooth (or just continuous) form a is bounded, and a is d(bounded)
if and only if it is exact. However, if X is noncompact, then an exact
bounded form is not necessarily d (bounded).

0.1 .A. Example. The form
a = dxχ Λ dx2 Λ Λ dxn on Rn

is bounded and exact but not d (bounded).
Proof. Write a = dβ and apply Stokes formula to a ball B of large

radius R - 00 in R \ Then Volrt B = fβa = fdBβ< \\β\\L^ V o l ^ dB,
and \\β\\L > VolnB/Voln_{dB = R/n. This shows that J\β\\L = 00;

moreover, β grows at least linearly on R" , i.e., supx € a 5 ||/?(*)|| > R/n .
0.1.B. Hyperbolic manifolds. (See [4], [10], [22].) If {X, g) is com-

plete simply connected and has strictly negative sectional curvature
supχeχKχ(X) < -c < 0, then every smooth bounded closed form a
of degree / > 2 is d(bounded). This immediately follows from the
well-known bound on the volume of the geodesic cones over the (/ - 1)-
dimensional submanifolds S c X,

(*) Volz (Cone5) < (c(i - I ) )" 1 Vol^, S.
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Notice that (*) is vacuous for i = 1 as well as for c = 0 (e.g., for the
Euclidean space where K = 0).

O.l.C. Symmetric spaces. (See [3], [18].) Let I b e a Riemannian sym-
metric space of noncompact type. One knows that such an X is complete
simply connected with K(X) < 0, but the strict inequality K(X) <-c<0
holds true only for rank X = 1. Recall that "rank" denotes the dimen-
sion of a maximal flat in X that is a subspace isometric (for the distance
induced from X) to a Euclidean space.

It easily follows from Lemma 6.4 in [18] that every closed bounded
form on X of degree / > ranker is d(bounded), and one has trivial
counterexamples for all / < rank X.

0.1.C'. Kahler case. Let X be a Hermitian symmetric space, and let
ω denote the imaginary part of the Hermitian metric of X. This ω is
an exterior 2-form which is well known to be closed for symmetric X. In
other words X is Kahler, and ω is called the Kahler form of X.

It is obvious that ω is bounded for all Hermitian manifolds. Fur-
thermore, one knows that if X is a Hermitian symmetric space with no
Euclidean factor, then the Kahler form ω is d (bounded). In fact, X
admits a proper positive function (Kahler potential) of the form f(x) =
p(dist(jc0, x)), such that dJdf = ω where df is bounded.

Recall that "no Euclidean factor" condition rules out isometrically split

manifolds X = X' x R* , k > 1, but admits manifolds of rank > 2.

O.l.C". It is not hard to generalize the above to all symmetric Rie-
mannian spaces X of noncompact type. Namely, every closed invariant
form (of any degree) on X is d (bounded), where "invariant" refers to
the isometry group of X.

0.2. ί/(bounded) forms. A form a on X = (X, g) is called J(bounded)
if the lift a of a to the universal covering X —• X is d (bounded) on X
with respect to the lift g of the Riemannian metric g.

If a is d(bounded), then it is, obviously, J(bounded). Thus, if a
becomes ^(bounded) on some (not necessarily universal) covering of X,
then a is rf(bounded). On the other hand a J(bounded) form a on X
need not be d (bounded). In fact, a need not be even exact.

O.2.A. Example. If X is complete and of negative curvature, K(X) <
-c < 0, then every closed bounded form a on X of degree / > 2 is
J(bounded) by 0.1.B. In particular, if X is compact and of negative cur-
vature, then every closed form of degree > 2 is ^(bounded).

0.2.A'. Opposite example. If a is a J(bounded) form on a compact
manifold with an abelian fundamental group Γ, then a is exact. This is
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seen by generalizing the argument in 0.1 .A. (In fact that argument applies
to all amenable groups Γ.)

O.2.B. Homotopy invariance. If X is a compact manifold with or with-
out boundary, then the J(boundedness) property of forms on X is obvi-
ously independent of the metric g on X. Furthermore, since the exact
forms are J(bounded), the ίZ(boundedness) of a closed form a on X
depends only on the cohomology class [a] e H* (X R). Then one sees
that J(boundedness) is a homotopy invariant property for compact man-
ifolds. In fact, if / : X —> Y is a continuous map, and a is a J(bounded)
form on Y, then the induced form f*(a) is tff(bounded) on X, provided
X is compact. (If / is not smooth, then f*{a) should be thought of as
the cohomology class f*[a] eH*{X\ R).)

O.2.C. d(bounded) cohomology. The above discussion leads to the fol-
lowing d(boundedness) definition for the cohomology of an abstract group
Γ. A cohomology class h e //*(Γ; R) is called J(bounded) if for ev-
ery compact manifold X and every continuous map / of X into the
Eilenberg-MacLane space K(Γ, 1), the induced class f(h) c H*(X\R)
is J(bounded) where H*(K(Γ9 1)) is identified in the usual way with
//*(Γ).

0.2.C'. Example. If Γ is the fundamental group of a closed (i.e.,
compact without boundary) manifold of negative curvature, then all coho-
mology of dimension > 2 is J(bounded) by O.2.A. This remains true for
compact manifolds with convex boundary as well as for general hyperbolic
groups Γ (see [10], [12]).

0.3. Kahler hyperbolic manifolds. A compact complex manifold X
without boundary is called Kahler hyperbolic if it admits a Kahler metric
whose 2-form ω is d (bounded).

0.3.A. Examples, (a) If X is homotopy equivalent to a compact Rie-
mannian manifold with negative sectional curvature (K < 0) and having
convex boundary (if any), then X is Kahler hyperbolic provided it admits
some Kahler metric (compare 0.1, 0.2.C').

(b) If the universal covering X of X is (biholomorphic to) a bounded
symmetric domain in C", n = dim X, then X is Kahler hyperbolic by
0.7.C'. This, probably, remains true for many nonsymmetric bounded do-
mains, e.g., for those where X is compact, and for the Teichmuller space
with the Bergman metric. On the other Jean-Pierre Demailly pointed out
to the author that all hyperconvex bounded domains are Kahler hyperbolic
(compare [7]). Recently, the hyperconvexity of the Teichmuller space was
proven by S. L. Kruskal [16].
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(c) Every complex submanifold X in a Kahler hyperbolic manifold
Y is Kahler hyperbolic. In fact, if X admits a finite (i.e., finite-to-one)
morphism X —• Y, then Kahler hyperbolicity of Y obviously yields that
of X.

(d) Cartesian products of Kahler hyperbolic manifolds are, obviously,
Kahler hyperbolic. Probably, if X is a fibered space where the base and
the fibers are Kahler hyperbolic, then X is Kahler hyperbolic. (This is not
hard to prove in the case where the base is real hyperbolic, for example, if
X is a Kodaira surface.)

(e) Every projective manifold X of dimension n can be dominated by
a Kahler hyperbolic manifold as follows. Start with an arbitrary Kahler
hyperbolic manifold Y of dimension n , and then take an ^-dimensional
submanifold Xf c XxY whose projections to X and Y are finite-to-one.
(One obtains such an Xf by intersecting n sufficiently ample nonsingular
hypersurfaces in X x Y in general position.) Alternatively, one takes the
fiber product of generic morphisms of X and Y to CPn .

O.3.B. Remark on different notions of hyperbolicity. The most general

notion of hyperbolicity is due to Kobayashi: A compact complex mani-
fold X is called Kobayashi(-Broody) hyperbolic if every holomorphic map
C —> X is constant. A much stronger notion is that of real hyperbolicity
for compact Riemannian manifolds X: Every absolutely minimizing con-
formal map / : R2 —• X is constant. Here, "absolutely minimizing" means
that no homotopy of / fixed outside a compact subset of R2 can decrease
the area of / . It is not hard to see that real hyperbolicity is a purely topo-
logical notion. In fact, it is equivalent to the following conditions (i) and
(ii):

(i) The fundamental group Γ = πχ (X) is hyperbolic in the sense of [12].
(ii) π2(X) = 0.

It is easy to show (compare 6.4 in [10]) that Kahler hyperbolicity is pinched
between "real" and "Kobayashi,"

(real hyperbolicity + Kahler) => (Kahler hyperbolicity)

=> (Kobayashi hyperbolicity).

0.4. The sign of χ{Ωp). Let Ωp = ΩP(X) denote the sheaf of holo-
morphic p-forms on X and

9=0

where hp'q are the Hodge numbers hp'q = dimHq{Ω").
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O.4.A. Theorem. IfX is Kάhler hyperbolic, then for every p = 0, 1,
n = άimX, the Euler characteristic χp(X) does not vanish and

This is proven in §§1 and 2 by passing to the universal covering X of
X and by showing that the L2Ήodge number hp'qL2{X) vanishes if and
only if p + q < n .

O.4.B. Remarks. The above theorem settles a special (namely the
Kahler) case of the Chern conjecture claiming that the topological Euler
characteristic of a real 2«-dimensional manifold X of negative curvature
satisfies

The idea of using here the L2-Hodge theory was suggested by Atiyah and
Singer. Later, Anderson gave an example of a 3-dimensional hyperbolic
manifold with nontrivial first L2-Betti number (see [1]) which has made
the L2-approach look invalid in the real case. (Though there is no serious
ground for the belief in the Chern conjecture, one has no counterexample
even for the stronger conjecture claiming that all aspherical manifolds X
satisfy (++) unless χ(X) = 0.)

Our major tool in the Kahler case is the strong L2-Lefschetz theorem
which provides a lower bound on the spectrum of the Laplace operator on
the L2-forms on X and shows, in particular, that the L2-Betti numbers
bιL2(X) vanish for / Φ n = dim c X (compare [13]). Then the desired
nonvanishing for i = n is achieved with an upper bound on the spectrum
which exploits a twisting trick of Vafa and Witten in the ambience of
"large manifolds" (see [11], [14], [15], [23]).

The vanishing of hp'qL2 was independently proved by Stern [21] for
complete simply connected Kahler manifolds Y with negatively pinched
sectional curvature, -b < K(Y) < -a < 0. Then Stern used the positivity
of hn'°L2 due to Green and Wu [9] and derived the above (+) for p = 0
and p = n .

O.4.C. Quasiampleness of CanX. Using the existence of holomorphic
L2-forms of degree n on the universal covering X of X, we obtain in §3
the following:

Corollary. The canonical bundle of a compact Kahler hyperbolic mani-
fold is quasiample. That is the Kodaira dimension of {the canonical bundle
of) X equals d i m c X . It follows that X is Moishezon and, hence, projec-
tive algebraic.

Questions. Is the canonical bundle ample? Is the cotangent bundle of
X ample?
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Remark. Eckart Viehweg pointed out to the author that since X con-
tains no rational curve (as all hyperbolic curves have genus > 2), the
results by Mori [17] and Shokurov [19] imply that the canonical bundle of
X is semipositive and the canonical map is regular.

Acknowledgements. The author wishes to thank Jean-Michel Bismut
who attracted his attention to the paper by Vafa and Witten. Then several
important points were explained by Jeff Cheeger. The author also had
illuminating conversations with Helene Esnault, Jean-Pierre Demailly, and
Eckart Viehweg. Finally, several useful remarks and corrections are due
to the referee of this paper.

1. L2-Hodge theory on complete Riemannian manifolds

Basic facts of the Hodge theory for compact manifolds remain valid
for complete Riemannian manifolds X (see [8]). In particular, if X is
Kahler, one has the L2-Lefschetz theorem which becomes especially useful
if the Kahler form is d (bounded).

1.1. Cutoff functions and Hodge decomposition. The standard opera-
tors of Hodge theory, d, δ, * as well as d , L, etc., in Kahler geometry
are defined locally and thus make sense without the compactness or com-
pleteness assumptions. The compactness becomes important when one
integrates by parts. For example, one shows that δ = d* = d e f ± * d* (here
± sign is (-\)n+np+ι

 9 where n = dimΛf and p is the degree of the forms
in question) is the adjoint of d by first observing the (local!) formula

dφ Λ *ψ - φ Λ *δψ = ±d(φ Λ *ψ),

and then deriving the desired relation (dφ , ψ) = (φ, δ ψ) by applying the
Stokes formula

/ ,
Notice that (*) is valid for all Cι-smooth (n - 1)-forms η in place of
φ Λ *ψ on closed (i.e., compact without boundary) manifolds X.

If X is noncompact or has a nonempty boundary, then (*) is not true
any more. In fact, the integral f dη over X now equals the boundary
term, fχdη = fdX η, which need not be zero for nonempty dX.

However, if X is complete, then (*) remains true for all L{-forms η
on X.

1.1.A. Lχ -Lemma. Let η bean Lχ-form on X of degree n-\, i.e.,

η{x)\\dx < o o ,
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such that the differential dη is also L { . If X is complete, then

(**) f dη = O.
Jx

Remark. What is important here is the behavior of the forms η and
dη at infinity, while the smoothness of η plays no essential role. In fact
the relation (**) for C°°-smooth forms easily yields that for nonsmooth
η where dη is understood as a distribution.

Proof. The completeness of Y enters the proof via the (obvious) ex-
istence of the following:

Cutoff functions. Such a function aε on X must satisfy the following
conditions:

(i) aε is smooth (say C°° if X is C°°) and takes values in the interval
[0, 1] furthermore, aε has compact support.

(ii) The subsets a~ι{\) c X (i.e., of the points x e X where
aε(x) = 1) exhaust X as ε —• 0.

(iii) The differential of aε everywhere bounded by e,

| | ε | | L o o | | ε ( ) | |

Now, we apply the Stokes formula to the cutoff form aεη which has
compact support

0= / d{aεη)= [ daεΛη+ [ aεdη.
Jx Jx Jx

Then we conclude

ί aεdη <\ ί
Jx \Jχ

da Λ η <e

and since dη e Lχ we have

/ dη = lim / adη = 0.

l.l.B. The Gaffney cutoff trick can also be applied to one of the forms
φ and ψ in the integral fd(φΛ*ψ). Thus one obtains another useful

Lemma. If an L2-form a is A-harmonicf Aa = d e f (dδ + δd)a = 0,
then a is (d + δ)-harmonic, i.e., da = 0 and δa = 0.

Proof We want again to justify the integral identity

(Aa, a) = (da, da) + (δa, δa).

If da and δa are L2 (i.e., square integrable on X), then this follows
by 1.1.A. To handle the general case we cutoff a and obtain by a simple
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computation 0 = (Δα, aεa) = Iχ(ε) + I2(ε), where

x i

and

(e) = Jχai(\\da\\2 + \\δa\\2)

<fjdaΛ\\\\a\\{\\da\\ + \\δa

where the norms under the integrals are understood pointwise on X. Then
we choose (this is, obviously, possible) aε, such that ||dtfε||

2 < εaε on X
and estimate I2 by Schwartz inequality. This yields

1/2

and hence Iλ(e) —• 0 for ε —• 0.
Example. Every harmonic L2 -function on a complete Riemannian

manifold X is constant. In particular, if X has finite volume, then it
supports no nonzero harmonic L2-function.

l.l.C. With 1.1.A. and 1.1.B. one concludes, as in the compact case,
that the L2-space L2ΩP of exterior /7-forms on a complete manifold X
admits Hodge decomposition

LSf = JTP © d(L2ΩF~ι) © δ(L2Ω
p+ι),

where d(...) is the closure in L2ΩF of the intersection of L2Ω? with the

image of d and £(.. .) has the same meaning.

l.l.C7. Let us indicate one simple corollary of the above decomposi-
tion.

If a harmonic L2-form a is d(L2), i.e., a = dβ for some L2-form β,
then a = 0.

1.1.D. Some examples, (a) If X = Rn , then JTP = 0 for all p =
0, ••• , n. Thus the Hodge decomposition contains only rf(...) and
£ ( . . . ) . In particular, every L2-form a on R1 of degree one can be Lχ-
approximated by differentials of L2-functions. This applies, for example,
to forms α with compact supports which have JR a φ 0, and therefore
are not the differentials of L2-functions.

(b) Let X be the hyperbolic space Hn . It is well known that the space of
harmonic forms ^ p on Hn is zero unless n = 2p and ^ p φ 0 for n =
2p (compare O.4.). Notice that Hn is contractible (in fact, diffeomorphic
to Rn) and so the harmonic forms a on Hn are exact, a = dβ , but one
can not make β e L2 or even L2 -approximate a by the differentials of
L2-forms.



KAHLER HYPERBOLICITY AND L2-HODGE THEORY 271

1.I.E. Homotopy invariance. The above example shows that the space
= %fp{X) is not a homotopy invariant of X, not even a diff-invariant.

Yet, one recaptures the invariance if one restricts to bi-Lipschitz homeo-
morphism. More generally, let / : X —> Y be a Lipschitz map between
Riemannian manifolds, i.e.,

distyC/"^), f(x2)) < const dist^C^, x2)

for all pairs of points x{ and x2 in X. (If / is C1-smooth, this is
equivalent to ||rf/|| < const.) Then the induced map on forms, called f°
sends L2-forms on 7 to I . The composition of f° on %**{Y) with
the orthogonal projection h: L2Ω*(X) -* βf*(X) defines a linear map,
between the harmonic spaces

An easy (and well-known) argument shows that /* is Lipschitz homotopy
invariant. That is, if f{ and f2 can be joined by a homotopy F: X x
[0, 1] —> Y, which is a Lipschitz map for the product metric in X x [0, 1],
then f[ = f*.

Remark. If X and Y are compact, one gets this way the usual ho-
motopy invariance of %** as all maps can be approximated by Lipschitz
maps. A more interesting case is that where X and Y are infinite cov-
erings of compact manifolds, say, Xo and YQ respectively, and pertinent
maps / : X —• Y are lifts of continuous maps f0: XQ —• Yo . Here again
we may assume f0 and / Lipschitz, and then we can see that if f0 is a
homotopy equivalence, then the induced map

f ' : &*{Y) -> &*(X)

is an isomorphism.
1.2. Strong L2-Lefschetz theorem. Let X be a Kahler manifold, and

let ω denote the Kahler form. From the Riemannian point of view, ω is
a closed 2-form, such that

(i) ω is nonsingular,
(ii) ω is parallel for the Riemannian connection on X.

Notice that condition (i) needs no Riemannian metric on X. It means,
in effect, that X is even dimensional, dimX = n = 2m, and the top
exterior power ωm of ω does not vanish on X.

On the contrary, condition (ii) indicates a (very strong) relation between
ω and the Riemannian metric on X.

Since ω is parallel, the operator Lk: ΩF -+ Ωp+2k defined by Lk{φ) =
ωk Λ φ for all p-forms φ e ΩP commutes with d and Δ (the commu-
tation with d only needs ω to be closed, but the commutation with δ
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requires the parallelism of ω) . Thus L sends harmonic form to har-

monic forms, Lk: βPp -> ^ + 2 / c .

I.2.A. Theorem. (Lefschetz.) The map L is injective on harmonic

forms for 2p + 2k <n = dimZ and surjective for 2p + 2k>n.
Proof The core of the proof lies in linear algebra.

1.2.A7. Lemma. Let ω0 be an exterior 2-form on a linear space To

of dimension n — 2m and let LQ : Ap TQ —• Λp+2kT0 denote the linear map

a —> α>Q Λα on the exterior algebra Λ*TQ. If ω0 is nonsingular, then LQ

is injective for 2p + 2k < n and surjective for 2p + 2k > n.

The proof can be found in any textbook on Kahler geometry (e.g., see
[23]).

This lemma immediately yields the "injective" part of the theorem. To
prove the surjectivity we invoke the adjoint operator

Since L is parallel, Λ also is parallel and, hence, sends β?p+lk -> ̂ p .

Now, the algebraic lemma easily implies that the corresponding (alge-

braic) operator adjoint to L^ , say

(Λ,)o: A * T " r 0 - * A T 0 ,

is injective for 2p + 2k < n. Hence Λ^ is also injective and therefore

Lk has dense image. To conclude the proof of the surjectivity of L, we

notice that Lk+ι = Lk o Lι and thus reduce the general case to that where

2p + 2k = n , and where Lk is (as we already know) injective. In fact, our

proof of the injectivity shows that L is a quasi-isometry, i.e.,

(const)"1 | | p | | L < \\Lkφ\\h < const | |p | | L , for all φ e Ωp .

This and the dense image property show that Lk is bijective for 2p + 2k =
n and, hence, surjective for 2p -f 2k > n .

1.2.A/;. Remarks, (a) In the classic case where the manifold X in
question is compact, surjectivity follows directly from injectivity, since
the spaces of harmonic forms are finite dimensional and

for 2p + 2k = n,

by Poincare duality.
(b) What makes the theorem really interesting is the topological in-

terpretation of the spaces β?p as the real cohomology of X. If X is
compact, then the standard corollary is the Lefschetz inequalities for the
Betti numbers bp of J , bp+2 > bp , for p < n/2.
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We are mostly interested in the noncompact case where ά\mβ^p = oo
and the topological interpretation of %?p is not so simple (compare [6]).

I.2.B. Lefschetz vanishing theorem. If the Kάhler form ω is d/(bound-
ed), then %>p = 0, unless p = n/2.

Proof Let ω = dη, where η is a bounded 1-form,

\\η\\L =sup| | f/00| |<oo.
°̂° y€Y

Then for every closed L2-form φ, the form Lkφ = ωk A φ is d(L2),

L φ — dψ, for ψ = η A (dη) ~ι A φ, where y/ is L2 since ^ is L2 and

η A (dη) ~ is bounded. In particular, if φ is harmonic, then L φ = 0

for /: > 0. This implies, by I.2.A., that φ = 0, unless deg#> = w/2.
1.2.B'. Remark. We shall see in §2 that &p φ 0, for p = n/2.
1.3. Von Neumann dimension and the L2-index theorem. A Hubert

space %? with a unitary action of a countable group Γ is called a Γ-
module if %? is isomorphic to a Γ-invariant subspace in the space of L2-
functions on Γ with values in some Hubert space H. To each Γ-module
Γ, one assigns the Von Neumann dimension, also called Γ-dimension, 0 <
d i m Γ ^ < oo, which is a nonnegative real number or +oo (see [2], [6] and
references therein). The precise definition is not important for the moment
but the following properties (i) to (iv) convey the idea of d i m Γ ^ as some
kind of size of the "quotient space" ^ jY:

(i) d i m Γ ^ - 0 ^ ^ = 0.
(ii) If Γ is a finite group, then d i m Γ ^ = dim M? j card Γ.
(iii) d i m Γ ^ is additive. Given 0 -+ ̂  -> ^ -+ ̂  -+ 0, one has

Γ ^ Γ ^ Γ ^
(iv) If ^ equals the (whole) space of L2-functions Γ —• //, then

Γ

In particular, if H = R" , then d i m Γ ^ = n .
Here we are interested in the situation where Γ is a discrete faithful

group of isometrics of a Riemannian manifold X. One can easily show
(see [2]) that the spaces β^p of harmonic L2-forms are Γ-moduli for
all degrees p , and then one defines the L2-Betti numbers bp(X: Γ) ^ f

β^p . The most interesting case is where X/Γ is compact. Then the
L2-Betti numbers are finite bp(X: Γ) < oo, for all p, and the L2-Euler

2

characteristic

f
b=0

equals the ordinary Euler characteristic of the orbifold X/Γ (see [2]).
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For example, if Γ acts freely on X, and X/Γ is a manifold, then the
"ordinary characteristic" satisfies the usual formula

= Σ(-l)pbp(X/Γ).

If Γ has fixed points, one defines χ by taking some Γ-invariant triangu-
lation of X, and setting

where Δ runs over a (finite) set of simplices Δ in the triangulation con-
taining exactly one representative (simplex) in each Γ-orbit of simplices,
and ΓΔ denotes the isotropy subgroup of Δ (compare [6]).

Now we return to the case where X is a complete Kahler manifold of
dimension n = 2m, and combine the above theorem of Atiyah on the
equality of the two characteristics,

with the Lefschetz vanishing theorem. Thus we obtain the following prop-
erty of the ordinary Euler characteristic χ(X/Γ).

I.3.A. Proposition. If the Kahler form of X is ^(bounded), then
χ(X/Γ) is nonnegative for m even and nonpositive for m odd.

1.3.A'. Remarks, (a) The above proposition does not tell us whether
χ(X/Γ) vanishes or not. In fact the major point of the remaining part of
this paper is to prove nonvanishing of χ(X/Γ) by showing that %?m(X) φ
0.

(b) The Lefschetz-type vanishing theorem and the resulting equality
d i m Γ ^ m = χ(X/Γ), for 2m = dimJf, is known to be true for many
non-Kahler manifolds X, such, for example, as symmetric spaces of non-
compact type. In fact one may conjecture on the basis of known examples
(or rather on the lack of counterexamples) that the vanishing theorem for
%fp for p Φ m holds true for all contractible manifolds with X/Γ com-
pact.

(c) We shall see later how to extend I.3.A. to the characteristics χ (X/Γ)
defined in 0.4.

1.4. Lower bound on the spectrum. We want to sharpen the Lefschetz
vanishing theorem by giving a lower bound on the spectrum of the Laplace
operator Δ on L2-forms Ω? ϊox p Φ n/2. Namely, we shall prove in this
section the following:

1.4.A. Theorem. Let (X, ω) be a complete Kahler manifold of dimen-
sion n = 2m and ω = dη where η is a bounded l-form on X. Then
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every L2-form ψ on X of degree p φm satisfies the inequality

(*) (ΨΛΨ) >λl(ψ, ψ),

where λ0 is a strictly positive constant which depends only on n = dim X
and the bound on η,

Furthermore, inequality (*) is satisfied by the L2 forms of degree m which
are orthogonal to the harmonic m-forms.

1.4.A'. Remark. Inequality (*) makes sense, strictly speaking, if Aψ
(as well as ψ) is in L2. In this case (d + δ)ψ also is in L2 by the proof
of 1.1. and (*) is equivalent to

Moreover the cutoff argument in §1.1 shows that the general case of (+),
where we only assume ψ and (d + δ)ψ in L 2 , follows from that where
ψ is a smooth function with compact support. In particular, inequality
(*) with ψ in L2 implies the general case of (+).

Proof To simplify notation we shall write a < b, for a < constΛ b,

and a « b, for b<a<b. Then we recall the operator Lk:ΩF ^ ΩF+2k

for a given p < m and 2p + 2k = n. By the Lefschetz theorem Lk

is a bijective quasi-isometry and so every L2-form ψ of degree p is the

product ψ = Lkφ = ωkAφ , where φ = ZΓ^V and \\φ\\L « | |v | |L . Since

Z^ commutes with Δ, we also have

{Aφ, φ)

In particular,

, φ) < (Δy/, ^ > .

Then we write ψ = dθ-ψ', for θ = η/\ωk~x/\φ and ψ' = ηAωk~ι Adφ ,
and observe that

where we used the abbreviation \η\ = \\η\\r . Next, since

\\dφ\\2

L2<(Aφ,φ)z(Aψ,ψ),

we have | | ^ ' | | L <\η\(Aψ, ψ)ι/2. Now,

11 =(ψ,ψ) = (ψ,dθ- ψ') < \(ψ, dθ)\ + \(ψ,ψ')\,
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where

= \{δψ,θ}\<\\δψ\\L2\\θ\\L2

<(Aψ,ψ){l/2)\\θ\\LiZ\η\(Aψ,ψf/2)\\φ\\L2

and

\<ψ, Ψ')\ < WΨ\\L2\\Ψ'\\L2 S MWUΔΨ , ψfl2).

This yields the desired estimate

(**)

for the forms ψ of degree p > m. The case p < m follows by the
Poincare duality as the operator *: ΩF —• Ωn~p commutes with Δ and is

isometric for
According

L2 -forms ψ

forms satisfy

the L2-norms.
to
of

II

1.4. A'.
degree j

Ψ\\L2 *

the

Pφ

¥H

above inequality

m satisfy \\ψ\\L
2

</\\L . Therefore

< \\c

the

) shows that the closed
)ψ\\L and

2

operators

the coclosed

δ: L2Ω? -

L2Ω
P~X and d: L2Ω

P —• L2Ω
p+{ have closed images for p ψ m since

the orthogonal complement of Kevδ c L2Ω? consists of closed forms,
and the complement of Kerd consists of coclosed forms (see 1.1.C). In
particular, we have the Hodge decomposition in the middle dimension
without taking the closures of the images of d and δ (compare l . l .C).

L2Ω =β? ®dL2Ω ®δL2Ω

Now we are able to prove the theorem (i.e., inequality (**)) for the
form ψ of degree m orthogonal to %?m . We have ψ = da + dβ , where
da is orthogonal to δβ, and the L2-forms a and β of degrees m - 1
and m + 1 correspondingly satisfy δa = 0, dβ = 0. This implies

(ψ9 ψ) = {da, da) + (δβ9δβ) = (Δα, α) + (Aβ, £>,

as well as Aa = δψ and Aβ - dψ . On the other hand, applying inequal-
ity (**) to a and /? yields, in consequence of Schwartz inequality, the
following estimates

(Δα,α) 2

and

Thus

(V. Ψ) S M((<*V, <*V) + (dψ,dψ)) = \η\2(Aψ, ψ).
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2. Twisted operators and an upper bound on spec(ύf + δ)

We show in this section that under certain conditions the spectrum of
the operator d + δ: L2Ω* —• L2Ω* contains zero. This, together with
Theorem I.4.A., ensures the desired nonvanishing of the space %?m of
middle dimensional harmonic L2-forms on X.

2.1. Tensoring differential operators with connections. Let E and Ef

be C°°-vector bundles over a smooth manifold X, and D: C°°(E) —•
C°°(Er) be a differential operator between C°°-smooth sections of these
bundles. If F is a trivial /c-dimensional bundle over X with a given
trivialization, then one can define the (twisted) operator

D : C (J? <8> JF) —»• C (E ® F),

by

where (/j, , fk) is the frame of (parallel) sections trivializing F, and

ef. are arbitrary sections of E. In other words D® equals the "direct sum"

of k copies of D.
Next, let F be a (not necessary trivial) bundle with a flat connection

V. Then one can define

by applying (*) to (locally defined) frames C/j, ••• , ^ ) of V-parallel
sections of F. The linearity of D shows that the right-hand side of (*)
is independent of the choice of the (parallel!) frame, and hence

k \ k

/ ι=l

is globally defined on °°
Now, we turn to the case where V is an arbitrary (not flat) linear con-

nection in E, and we want to construct a linear operator

Z>®V: CCO(E®F)-*CCO(E'®F)

with the following property:

(**) If a frame (/,,-•• , fk) satisfies Vft(x) = 0, for / = 1, , k ,

at some point x e X, then
/ k \ k

(D ^ v) ΠΓ .̂ 0 y: (x) = £(/>*,.
\/=l / f=l

for arbitrary C°° -sections ex, , ^ of
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If such D ® V exists, it is clearly unique. Now we prove the existence
in the case where D is a first-order operator. For such D, we define a
homomorphism S = SD: T* ®E —> E1, where Γ* is the cotangent bundle
of E, by the following condition S{df®e) = D(fe) - fDe for all C°°-
functions / on X and sections e of E. Then we view our connection
V as a differential operator, V: C°°(F) ^ C ° ° ( F 0 f ) , and we consider
the operator 5 Θ : E <8> (F <8> Γ)* -• E1 ® F defined by S®(e <8> f <8> t*) =
S(t* <8> e) <8> / . Finally we define Z> (8) V: C°°(E ® F) -> C 0 0 ^ ' ® i7) by

(2) 0 V)(Σ^ 0 /;.) = Σ{Dei) ®ft + 5Θ(Σ^. 0 V/J).

2.1 .A. Connection as potentials. Suppose we have two connections Vo

and V on the same E. Then the difference A = V - Vo is a homomor-
phism A: E —• E (8) Γ*, which is sometimes called the connection form.
We observe that the difference D®V-D®V0 = D®A is a zero-order
operator C°°(£ 0 F) -> C 0 0 ^ ' ® F) for

/) 0 ^(Σ^z. 0 yj) = 5®(Σe,. 0 Af.).

In particular, if Vo is a trivial connection and

D 0 V = fcΘ/) = f Z) Θ φ D ,

then D ® V is a perturbation of λ;Θ£> by a potential, D ® V = A:ΘZ) +
F , where F is the homomorphism (vector-potential) E ® F —• F ; ® F
corresponding to the (zero-order!) operator D x A.

2.I.B. Hermitian line bundles. Let us specialize the above discussion
to the case where F is the trivial complex line bundle F = C x X -> X
with the trivial connection Vo, and let V be a Hermitian connection in
F. Then the connection form A: F —+ F <g> T* reduces to an ordinary
1-form a on X, such that Af = \ΓΛf®a , and da equals the curvature
of V.

Conversely, let ( F , V) be a complex line bundle with a Hermitian
connection, such that the curvature form ω(V) is exact, i.e., ω(V) =
da. Then, there exists a flat Hermitian connection Vo in F, such that
(V-V o )/ = \ΓAf®a . Namely, one defines Vo by Vo/ = Vy-v^T/βα .
Furthermore, if the underlying manifold X is simply connected, then the
bundle F is trivial, and Vo is (isomorphic to) a trivial connection.

2.2. Perturbation of strictly positive operators D. We assume here that
the fibrations E and E1 in question are given Hermitian (or Euclidean)
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structures and that the manifold X comes with some measure. For ex-
ample, if X is a Riemannian manifold, we shall use the Riemannian
measure. The Hermitian structure in the bundles gives us the L -norms
on the spaces of sections of E and E . Then the measure on X leads to
L2 -norms.

Now we define the lower spectral bound λ0 = λo(D) > 0 as the upper
bound of the nonnegative numbers λ, such that \\De\\L > λ\\e\\L for all
those (distribution) sections e of E where De is in L2.

Next we assume X is a Riemannian manifold, and then we have the
pointwise norm of the homomorphism S = SD: T* <g> E —• E'. The
supremum of this norm over X is denoted by 151 = IISΊI, . Notice that

^ o o

this can be infinite, but we assume below that \S\ < oo.
Finally, we take a complex line bundle with a Hermitian connection, de-

noted by (F, V), and we assume that the curvature ω(V) is ύ?(bounded).
Namely, ω(V) = da, for a e ^ Ω 1 , where the L^-norm of a is de-
noted by \a\ = | |α | | , < oo.

oo

2.2.A. Proposition. // \a\ is bounded by \a\ < λo\CS\~ι, where C =
C(dimX, dimis) > 0 is a universal constant, then KerZ) ® V = 0, pro-
vided the connection Vo = V - y/^Λa is trivial {e.g., X is simply con-
nected).

Proof. The operator D <g) V is the perturbation of D (or of D 0 D if
D is real) by P, where |P | < C\a\ \S\. Since ||(J0 + P)e\\L < \\De\\^ +
IPIII^I^ , the operator ΰ + P = ΰ ^ V has trivial kernel for |P| < λ0 !

2.2.A7. Remark. The triviality of Vo is essential. For example, let X
be the circle Sι , and (F, V) a flat Hermitian line bundle with nontrivial
holonomy. Take the twisted differential on functions on Sι for D = d® V
and observe that d = D (8) V" 1 , where V" 1 refers to the connection in
the reciprocal bundle F~ι (i.e., F~ι®F = trivial bundle, compare 2.2.B.
below). Then λ0 > 0, \S\ = 1, \a\ = 0, yet Kerrf φ 0 as rf(const) = 0.

2.2.B. Hermitian line bundles with connections form an abelian group
for the C-tensor product, where V{ ® V2 on F{®F2 is defined by

If F is (topologically) isomorphic to some power

= ( F 0 ) k = F0®-..



280 M. GROMOV

then FQ = F{ι/k) carries a connection, say V(1//c), such that

and (F{l/k),V{ι/k)) is unique up to isomorphism if Hι(X, Zk) = 0.
Furthermore, if F is topologically trivial, one defines in an obvious way
(Fa, VQ) for all real a, and this Hermitian bundle with connection is
again unique up to isomorphism if Hχ (X) - 0. Notice that the curvature
form of Vα satisfies ω(Vα) = αω(V). As ω(V) = da and V = Vo +
y/^Ίa for a flat connection Vo, one could define Vα by Vα = VQ +
OL\T-ia, where VQ is the flat connection in Fa corresponding to Vo in
F. (Notice that (FQ

α, VQ) is isomorphic to (F o , Vo) for all a e R if

2.2.C. We have with the above discussion the following corollary to
Proposition 2.2.A.

2.2.C'. Corollary. Let λ0 = λo{D) > 0, |S| < oo and \a\ < oo, and
let the connection Vo be trivial. Then KerD ® Vα = 0 for all a in a
sufficiently small interval a e [-ε, ε] c R for some ε > 0.

2.3. Twisted L2-index theorem. Let X be a Riemannian manifold,
and Γ a discrete group of isometries of X, such that the differential
operator D in question commutes with the action of Γ. This presupposes
that the action of Γ lifts to the pertinent bundles E and E1, and then
the commutation between the actions of Γ on sections of E and E1 and
D: C°°(E) —• C°°(Ef) makes sense. A typical example is that of Galois
action for a covering map X —• Xo, where D is pulled back from an
operator on XQ.

Next we consider a Γ-invariant Hermitian line bundle (F, V) on X,
we assume X/Γ is compact, and we state Atiyah's L2-index theorem for
£><g>V.

2.3.A. Theorem. Let D be a first-order elliptic operator. Then there
exists a closed nonhomogeneous form

e Ω*(X) = Ω°θΩ lθ θΩ", n = dim*,

invariant under Γ, such that the L2-index of the twisted operator
satisfies

(*) Ind Γ Z)(g)V=/ /expώ,
Jx/r
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where ώ = (2π)~1ω(V) is the Chernform of V, and

• Λ ώ Λ ώ ώ Λ ώ Λ ώ
exp ω = 1 + ω + + + .

2.3.A'. Remarks, (a) This theorem (as well as the generalization
which follows) remains true for some cases where X/Γ is noncompact
of finite volume (see [5]).

(b) As we noticed earlier, the precise definition of IndΓ is not important
for our applications. What is relevant here is the implication

IndΓ > 0 => K e r D 0 V ^ O ,

for IndΓ defined by (*).

(c) The operators D used in the present paper are the signature operator

(i.e., "one half of d + δ) and <9+ <9*. In these cases the Jo-component of

ΐ(D) is nonzero. Hence j x / T 7exp aώ φ 0, for almost all α, provided the

curvature form ω = ω(V) is "homologically nonsingular" j x / T ω
n Φ 0,

for n = dim X.

2.3.B. We want to indicate here a generalization of the L2-index theo-
rem to the situation where the group Γ does not act on (F, V), but the
curvature form ω(V) on X is still Γ-invariant. For example, we may
start with Γ acting on (F, V) and then pass (if the topology allows) to
the fcth root {F, V)(1//c) of (F, V) for some k > 2. Since the bun-
dle (F, V)(1//:) is only defined up to an isomorphism, the action of Γ
does not necessarily lift to F . Yet there is a larger group Γk acting on
(F, V), where 0 -• Z/kZ -• Γk -+ Γ -+ 1. In the general case where
ω(V) is Γ-equivariant, the action of Γ on (F, V) is defined up to the
automorphism group of (F, V) which is the circle group Sι = R/Z as
we assume X is connected. Thus we have a nondiscrete group, say Γ,
such that 1 -» S{ -+ Γ -* Γ -• 1, and such that the action of Γ on X
lifts to that of Γ on (F, V). This gives us the action of Γ on the spaces
of sections of E ® F and E1 <8>F, and we can speak of the Γ-dimension
of KerD <S> V and CokerD ® V . The proof by Atiyah of the L2-index
theorem does not change a bit, and the formula (*) remains valid with Γ
in place of Γ,

(*) IndpZ)(8)V= / /expώ.
JX/T

Here again, the relevant fact is the implication

(**) / /expώ > 0 => KerZ)<g> V Φ 0.
./ΛΓ/Γ
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2.3.B'. Remark. Suppose we are given no bundle F at all but rather
a closed Γ-invariant 2-form ω on I . If the cohomology class [ω] of ω
is integral (e.g., if ω is exact), then there exists (this is well known and
easy to prove) a bundle (F, V), such that ω(V) = ω, and this (F, V)
is unique up to an isomorphism if Hx (X) — 0.

2.4. Vanishing of λQ(D). Let D be a Γ-equivariant elliptic operator

on X of the first order, and let / = Ϊ(D) = 1° +11 + + In be the corre-

sponding (index) form on X. Let ω be a closed Γ-invariant 2-form on

X and denote by ζ the top component of the product ΐ(D) exp aω, for

a e R. This ζ is a Γ-invariant π-form on X, dim X = n, depending

on parameter a.

2.4. A. Theorem. Let Hχ (X) = 0, and let X/Γ be compact and fχ/r In

a

Φ 0, for some a e R. If the form ω is rf(bounded), i.e., ω = d(ά),

where sup;cGΛ, ||fl(*)|| < oo, then either λo(D) = 0 or λo(D*) = 0, where

D* is the adjoint operator. (Notice that λo(D) = 0 if and only if D~ι is

unbounded and that λo{D) = λo(D*), if KerZ) = KerZ)* = 0.)

Proof We consider the Hermitian line bundle ( F , VQ) for ω(Vα) =

{2π)'ιaω (see 2.3.B'.), and we observe with 2.3.B. that the Γ-index
p D® Vα = fχjT In

a is nonzero for all but finitely many a, as the integral

on the right-hand side is a nonzero polynomial in α. If this polynomial

is positive for some α close to zero, then IndψD (8) Vα > 0 and, conse-

quently, KerD ® Vα φ 0. It thus follows from 2.2.C'. that λo(D) = 0.

Now, if the polynomial / /" is negative for all small a, we pass to the

adjoint operator D* which clearly satisfies λQ(D*) - λQ(D) and /(£>*) =

-ΐ{D). Hence the above arguments show that λo{D*) = 0.

2.4.A'. Remark. The condition H{(X) = 0 is only needed to insure
that the (closed!) forms γ*{a) - a for all γ e Γ represent the integral
classes in Hγ{X\ R).

2.4.B. Examples: the signature operator and d +d*. The space of exte-
rior forms on a Riemannian manifold X admits a splitting Ω*(X) = E®
E' according to eigenvalues of the Hodge operator * on forms, such that
d + δ interchanges E and Ef. The form / for d + δ: C°°(E) -> C°°{Ef)
corresponds to the (full) L-class of X ,-ΐ(d+δ) = 1+LjH— . Since this /
starts with a nonzero term in degree zero, we have fχ,Γ/expaω Φ 0. If ω
is homologically nonsingular, i.e., if fx,Γω

m Φ 0, 2m = dimJf. There-
fore, λo(d + δ) = 0, provided X/T is compact and X admits a closed
Γ-invariant d (bounded) 2-form ω which is homologically nonsingular.
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Now, let us assume X is a complex manifold, and EQ —• X is a Γ-
invariant complex vector bundle. Then we have the operator

d: EQ®Ω -+ E0®Ω ,

where Ω 0 '* is the sum of the sheaves of (0, #)-forms on X:

Ω°'*=0Ω 0 '*, n = dimRX.
q=0

Next, with Γ-equivariant metrics in X and EQ we define <9* and there-
fore obtain <9 + ίΓ acting on sections of JE^ ® Ω 0 ' * . This operator inter-
changes the parity of the 2^-valued forms, and thus we have our operator

Here again Ϊ(D) starts from a nonzero term and so

if the form ω in question is homologically nonsingular.
2.5. Main Theorem. Let X be a complete simply connected Kάhler

manifold whose Kάhler form ω is d(bounded), and let Γ be a discrete
group ofisometries of X, such that X/T is compact. Then the space ^ p ' q

of harmonic L2 forms on X ofbidegree (/?, q) satisfies %fp'q = 0 for
p + qφm = d im c X and ^p'q ^ 0 for p + q = m.

Proof The vanishing of 3Γp'q for p + q Φ m follows from I.2.B. and
the L2 -version of the Hodge decomposition (&p+q=i^

p'q = %?1, which
holds true for all complete manifolds by a straightforward generalization
of the compact Hodge theory (compare §1).

Now, to prove ^p'q φ 0 for p + q = m, we apply the (d + d*)-
discussion in 2 A3. to the holomorphic vector bundle Eo = AP(X) that is
the /7th exterior power of the complex cotangent bundle of X. Thus we
obtain the vanishing of λQ for the d + d* = d + δ on Ω^' *. According to
1.4., the spectrum of d + δ lies away from zero apart from possible har-
monic forms in the middle dimension. Since the vanishing of λ0 amounts
to the inclusion 0 e specif + δ\Ω?'*, the space of harmonic {p, ^)-form
for p + q = m is necessarily nonzero.

2.5.A. Remarks, (a) The conclusion of the theorem remains valid if
X/Γ is noncompact of finite volume, provided X has bounded geometry.
That is, the sectional curvature of X is bounded, i.e., supχeχ \K(x)\ < oc,
and the injectivity radius is bounded away from zero, i.e., infJc€X Rad*. X >
0. This follows from the L2-index theorem in [5].
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(b) The simply connectedness of X can be relaxed to Hx (X Sι) = 0,
and even this weaker condition does not seem truly necessary.

3. Holomorphic forms

One of the most interesting consequences of the Main Theorem is the
existence of holomorphic L2-forms on X. In fact, the Main Theorem
gives us Δ-harmonic forms of type (m, 0) as it claims ^ m ' ° φ 0. Then
the local Hodge theory tells us that Δ = 2(d + δ*) 2 for all forms on
X and by the cutoff argument (see §1), "Δ-harmonic" implies (d + ZΓ)-
harmonic for the L2-forms on X. Finally, we observe that the following
three conditions are (obviously) equivalent for forms φ of type (p,0) (in
particular, of type (m, 0)), (d+~d*)φ = 0&~dφ = 0o φ is holomorphic.

Our major application of holomorphic (m, 0)-forms on X is the con-
struction of meromorphic functions on X and X/Γ.

3.1. Holomorphic sections and meromorphic functions on X. Let F

be a holomorphic vector bundle over X, and let us recall the standard
construction of meromorphic functions on X using holomorphic sections
of F . We fix a linear space 3? of holomophic sections of X, and assign
to each point x e X the subspace %fχ c %f of the sections vanishing at
x. We assume X is connected and then observe that the codimension
of %?χ is constant on the complement of a proper subvariety Z c X, say
c o d i m ^ = k for x e X - Z . Thus we obtain a meromorphic map g of
X into the Grassmannian of /c-codimensional subspaces in %?:

for g(x) = %?χ. Notice that the fibers g~\p) for p e Gr are analytic
subvarieties which form a partition of X — Z . The closures of the fibers in
X c X-Z are also analytic subvarieties, but now they may have common
points in Z c X.

One can equivalently describe the fibers using the field Jί = J({%f) of
meromorphic functions on X associated to %? as follows. Let h0, h{,
• , hk be nonzero sections of %?. Then there exist linear relations be-
tween h{: ]Cι=o βfii = 0 f°Γ s o m e meromorphic functions μz on X.
The field generated by the ratios μ,/// for all (k+ l)-tuples (Ao, , /^)
is, by definition, our ^# .

Example. If k < 1, e.g., if i 7 is a line bundle, then Jf is generated
by the ratios hQ/h{ of the sections in %?. Observe that two generic points
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Xj and x2 lie in the same fiber of g if and only if μ(x1) = μ(x2) for all
μ eJt.

3.1.A. Let the bundle F be endowed with a Hermitian metric, and
let us give a condition for separation of points in X by g. Assume
|| A (x) || —• 0, for x —• oc, for all / / G / , and observe the following is
trivial:

Lemma. For racA po/>rt xπ e X where c o d i m ^ = fc (notice that
these points are generic) there exists a constant Co = CQ(x0) > 0, swcA
the equality g(x) = g(x0) implies \\h(x)\\ < C0 | |Λ(JC0)| | ^or α// j c e l

Let A be a section in %f, such that ||A(jCj)|| is much greater
than ||A(co)|| for some x{ e X. Then the section h' = A/||A(Xj)|| nearly
vanishes at x0 while HΛ1 (jct)|| = 1. It follows that there exists a small
perturbation h" e %? of h', which vanishes at x0 but not at xχ. Hence,
g(x{) Φ g(x0) and the proof follows by contradiction.

Corollary. Suppose X and F are acted upon by a discrete group Γ
preserving the norm in F and the subspace %f'. // h(x) ψ 0, then
g(γ(x)) Φ g(x0) for all but finitely many γ e Γ. Moreover, if some section
A in %? does not vanish anywhere on a compact subset B c X, then the
g-fiber through x0 intersects the subset Γ(B) = \JγeΓϊ(B) c X over a
compact subset. In particular if X/T is compact, then generic fibers of g
are compact.

3.I.B. The above conditions are satisfied if βf consists of L2-sections
and X/Γ is compact. Moreover, assume that X contains no compact
submanifold of positive dimension. Notice that this is so for Kahler man-
ifolds X where the Kahler form is exact (e.g., ^(bounded)). Now, under
these conditions we have the following:

Separation lemma. If the space %" of L2-sections of F is nonempty,
then the generic fiber of g is finite.

Corollary. For a generic point x e X (i.e., x e X - Z for some
proper subvariety Z) there are at most finitely many points x such that
μ(χ') = μ(χ) for all meromorphic functions μ on X.

3.2. Γ-Invariant forms and functions. We assume, as in the previous
section, that Γ acts on X and the bundle F —• X, and we want to con-
struct a nonconstant Γ-invariant meromorphic function on X using (non-
invariant) L2-sections of F . If / is an Lχ-section of F (with respect
to some Γ-invariant norm on F given beforehand), then one can average
/ over Γ and thus obtain an invariant section / ι-> / = ^2γeΓyf- Fur-
thermore, if / is in L2 but not in L{, one can pass to the tensor power



286 M. GROMOV

L ® L and to the section / (8) / of L ® L. If / is in L2 , then / ® / is
in L j , and one can average over Γ, i.e.,

Moreover, in many interesting cases the higher powers of an L2-section,
/ ® / ® / , / ® / ® / ® / , • , are also L j , and so these powers can be
averaged over Γ. This is possible, for instance if X/Γ is compact. In
fact, if X/Γ is compact and / is an Lp-section, then (g)k f is in Lχ for
all k>p.

We assume below for simplicity's sake that F is a line bundle, and
we write Fk for ®^ F and fk for ®* / . Now, besides the averages

/* = E r y(fk) > w e consider products of these Π i i Ϋi, for Σf=i ^ = ^ ,

which are also Γ-invariant sections of F .

3.2.A. Proposition. If X is connected and Γ is infinite, then for each

nonzero Lχ-section f of F there exist an integer k and two partitions

k = Σk and k = Σk' > such thaί the ra^° °f ^ e corresponding products

μ = Π/Π' for Π = Hji and Πf = Tίf i is a nonconstant meromorphic
Y-invariant function on X.

Proof. We start with the following trivial lemma.

Lemma. Let {a } and {b } be countable sets of complex numbers in-

dexed by y e Γ, such that Στ\ay\ < oo and Σ\bγ\ < oo. // ΣΓ

aγ =

Σr^γ f°r a^ k = 1,2, •• , then {aγ} = {bγ} up to a permutation of

V
We apply the lemma to the values of / at the pairs of points in X,

aγ = γ(f(x)), bγ = γ{f{y)), and conclude that if μ is constant for all
k and Σk. = k»t^ien ^ e s e c t i ° n / is "constant" in the following sense.
There exists a function C(x, γ) on X x Γ, which is locally constant on
X and

(*) ?(/(*)) = C(x, γ)f(x) for all y e Γ.

Since X is connected, C is constant in x

C(x,γ) = C(γ),

and as γ(f(x)) = /(yjc) and / is nonzero, the map γ H-> C(y) is a
homorphism by (*) C: Γ -> C x . Since Γ is infinite, Σ
and since f(γx) = C(γ)f(x), the function / cannot lie in Lχ unless it
is identically zero.
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3.2.A'. Remark. Instead of the sums Σr yfk o n e c a n u s e Λe ele-
mentary symmetric functions

Γ Γ Γ

and these can be seen altogether in the infinite product

yer

This product must be viewed as a holomorphic function on the total space

of the line bundle F~ι, and one can characterize Π geometrically as

follows. Let Y c F~ι be the union of the Γ-translates of the graph (or

image) of the section f~ι, Y = \Jγen yf~\X). This Y meets every fiber

F~ι c Γ 1 over a countable set indexed by Γ say Γ^ c F~ι. Since

there exists a unique entire holomorphic function Πχ(z) on the fiber
F~x = C of order < 1 whose zero set equals Γχ and such that 11^(0) = 1.
Clearly, this is our product, Πχ(z) = Π(x, z) .

3.2.B. Corollary. Assume X/Γ is compact, and let X contain no com-
pact submanifold of positive dimension. If F admits a nonzero L2-section,
then the {Y-invariant!) meromorphic functions μ of the form Π/Π' qua-
siseparate points in X (compare 3 A3.). Namely, for a generic point xeX
there exist at most finitely many T-orbits Tx c X, such that μ(x') = μ(x)
for the above functions μ. (Since X/Γ is compact, this is equivalent to the
equality trans. deg^# = d i m ^ for the field Jt generated by μ.)

Proof Let X1 c X be a (generic) Γ-invariant subvariety on which all
μ are constant. By applying 3.2.A. to a connected component Xf

Q of X',
we conclude that X'o is compact and hence finite.

3.2.B'. Remarks, (a) If the action of Γ is free, then X -• X/Γ is the
covering map, and the above corollary implies that the bundle F/Γ -> X/Γ
is quasiample. This applies, for example, to the canonical bundle of a
Kahler hyperbolic manifolds X/Γ, where X supports nonzero holomor-
phic m-forms.

(b) The above construction of meromorphic functions as ratios of av-
eraged sections of a line bundle goes back to Poincare. In the modern
times this was used by Kodaira who proved that if a compact complex
manifold V can be covered by a bounded domain in a Stein manifold,
or more generally, if the Bergmann metric of some covering X of V is
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nondegenerate, then the canonical bundle of V is ample. In particular,
V is projective algebraic.

3.2.C. We can generalize 3.2.A. and 3.2.B. to the case of rank F > 2
by reducing the general case to that of rank= 1 as follows. The L2-sections
of F span at a generic point x e X a /:-dimensional subspace, Lk

χ c
Fχ C F. Then by passing to kth exterior power we get 1-dimensional
subspaces

which define in a usual way a line bundle Z —• X together with a ho-

momorphism Z —> f\ F whose image equals the union [jxeX Lχ . Then

3.2.A. and 3.2.B. apply to Z and yield the corresponding statement for

F.
3.2.C'. Corollary. Let V be a compact Kάhler manifold whose arith-

metic genus does not vanish, i.e.,

T(V) = χ{0{V)) = £(-l)V'°(F) ^ 0.

If the universal covering X of V contains no compact submanifold of
positive dimension, then V is Moishezon and hence projective algebraic.

Proof The relation / Φ 0 implies via the L2-index theorem the exis-
tence of nonzero holomorphic L2-form on X of some degree d . Then

the above applies to F = /\d T*(X).
3.3. Holomorphic 1-forms. We prove here a result stated in [13] con-

cerning holomorphic L2-forms φ of degree one on a complete Kahler
manifold of bounded geometry. We start with the simple case (compare
1.2. in [13]) where φ is exact and nonzero, i.e., where φ — df for a non-
constant holomorphic function / : X -> C on X. We recall the coarea
formula for holomorphic functions,

L\o\r\z)dz = \\df\\
/c 2

where Vol refers to the («-2)-dimensional volume of the levels f~1 (z) for
n = dimRΛ\ As \\df\\L = \\φ\\L < oo, we conclude that Vol f~\z) < oc
for almost all Z G C , and since X has bounded geometry, the complex
hypersurfaces f~\z) c X are necessarily compact for almost all z e C.
This is immediate with the following:

Standard fact. Let Σ be a k-dimensional complex subvariety in a Kάh-
ler manifold X with bounded geometry. Then for each x e Σ the Ik-
dimensional volume of the part of Σ contained in the unit ball around x
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is bounded from below

Vol2k(ΣnBχ(l))>C>0,

where C depends on the implied bound on the geometry of X.
Now, since

Vol/"1(z)= I
Jf-

ωm~\
c

f-\z)

for the Kahler form ω on X, we see that Vo\f~\z) is constant in z
and so all levels f~\z) are compact. Thus by the Stein factorization
theorem (see [20]) there exist a Riemann surface S and a holomorphic

map / : X -» S such that each level / (s) is a connected component of
some level / " (z). Finally we notice that if we take another function, say
g, with dg in L2, we obtain the same factorization, as g is constant
on each (compact!) level of / . Therefore, the factorization X —• S is
compatible with the isometries of X. Thus we arrive at the following:

3.3.A. Theorem. If X admits an exact nonzero L2-form of degree one,
then there exists a smooth Riemann surface S which is acted upon by
the isometry group Γ of X and a proper holomorphic Y-equivariant map
σ: X -> S, such that the induced map σ* is a bijection of the space of
holomorphic L2-forms of degree one on S to that on X.

3.3.A'. Remark. If Hι(X;R) = 0 (for example, if X is simply
connected), then holomorphic L2-forms of degree one one-to-one corre-
spond to real harmonic L2-forms. In particular, the existence of such a
(nonzero!) form on the universal covering X of a compact manifold V
is a purely topological property of V. In fact this depends on the funda-
mental group π{(V) alone (see [13] for further discussion).

3.3.B. Now, we turn to a more general case where the holomorphic 1-
form φ on X is not necessarily exact, but the real part of φ is exact, i.e.,
φ - a + iβ for a = dh , where h: X —• R is a (necessarily) pluriharmonic
function on X. Since φ is closed, it is locally exact, i.e., φ = df, where
/ is defined on each small neighborhood up to an additive constant. Then
the levels of these local functions fit into a (singular) holomorphic foliation
on X whose leaves need not be compact or closed subsets in X.

The following trivial lemma relates these leaves to the levels of h :
3.3.B'. Lemma. The leaf through the point x e X is the maximal con-

nected complex subvariety in X, which is contained in the level h~{(y) e X
for y = h(x).
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Now we want to show that the above holomorphic foliation associated
to φ is, in fact, independent of φ . We start with the following:

3.3.C. Cup-product Lemma. The cup-product is trivial on the exact part
of the \-dimensional L2-cohomology. Namely, if φ and ψ are closed L2-
forms where φ = df for some function / : X —• R, then the product φ A ψ
is in the L2 closure of the differentials of L2-forms, i.e., φ A ψ e d(L2Ω

ι),
for i = deg ψ.

Proof For every c > 0, there exists a unique continuous function
fc on X, such that f(x) = fc(x) for \f(x)\ < c and \fc(x)\ = c for
\f{x)\ > c. Clearly, dfc-+fforc-^oc and since fc is bounded,

L2

dfcAψ = d(fcAψ)cd(L2Ω
i).

3.3.D. Let us apply the cup-product lemma to holomorphic 1-forms
φ = a + iβ and φ = a + iβ', where a and a are exact. Then φ A φ =
a + ib, for a = aAa-βAβf a n d b = aAβ' + βAa. According to t h e

lemma b e dL2Ω
ι. On the other hand, since a + /6 is holomorphic, b

is harmonic; thus b = 0 and therefore α = 0. Now we observe that the
relation φ A φ = 0 implies that the foliations respectively defined by φ
and φ coincide.

Conclusion. The holomorphic foliation defined by φ is independent of
φ.

This conclusion sharply contrasts with what happens to the foliations
corresponding to the real parts of holomorphic forms.

3.3.D'. Lemma. Let a and a be real exact forms, such that a = dh
and a = dh', where h and h' are pluriharmonic functions on X. If the
{real of codimension one) foliation corresponding to a is equal to that for
a , then a = const a .

Proof If a is not identically zero, then there are local coordinates at
almost every point in X, say

χl9yl9χ2,y29' ' ,χm,ym,

such that

Now, the equality of the foliations means that h depends only on xχ,
h = A(JCJ) and since h is harmonic, h = h(x{) = constx{ + const0 .

Now, suppose that our forms φ = a + iβ and φ = a + iβ', where a =
dh and a = dh' are linearly independent. Then the generic leaves of the
foliation corresponding to φ (and to φ') equal the connected components
of the levels of the map H: (h, h'): X -> R 2 .
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Here we are again in a position to apply the coarea inequality

( Vo\H-\y)dy<\\dH\\L <oc,
JR2 2

which implies, as in 3.3.A., that there exists an equivariant factorization
σ: X —• S, dim c 5 = 1 , which is bijective on the space of those holomor-
phic L2-forms of degree one whose real parts are exact.

Remark. The above argument uses two independent forms rather than
a single nonzero form φ as in 3.3. However, if the isometry group Γ is
noncompact, then yφ is linearly independent of φ for γ —• oc, and so
again a single φ does the job.

3.3.D" . The above factorization X -> S applies to a Galois coverings
I of a compact Kahler manifold V insofar as the Galois group Γ is
infinite and has nontrivial L2-cohomology in degree one, i.e., L2H

ι(T) Φ
0. In this case 5/Γ is a compact Riemann surface, and the map X —• S
factors to a surjective holomorphic map V —• S/Γ.

For example, if πλ(V) admits a surjective homomorphism onto a free
group Γ = Fk for k > 2, then V admits a holomorphic map onto a
Riemann surface, since L2H

ι(Fk) φ 0 for k > 2. We refer to [13] for
further examples of this kind.
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