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ON THE MARTIN BOUNDARY OF
RIEMANNIAN PRODUCTS

ALEXANDRE FREIRE

Abstract

We describe the minimal Martin boundary of a Riemannian product
X = Xχ x X2 where the factors are complete manifolds with Ricci cur-
vature bounded below. As a consequence we obtain a splitting result for
bounded harmonic functions.

0. Introduction

The goal of this paper is to prove a splitting theorem for positive har-
monic functions on a Riemannian product, under very general assump-
tions: we require only that each factor be a complete, noncompact Rie-
mannian manifold with Ricci curvature bounded below.

Given a complete, noncompact Riemannian manifold X, denote by
λo(X) < 0 the supremum of the closed L2 spectrum of the Laplace-
Beltrami operator on X . For each λ > λQ , the eigenvalue problem

Aφ = λφ

has positive solutions. For λ > λQ, A-λ is coercive, has a Green function

Gλ(x, y) > 0, and the A-eigenfunctions on an open set U c X define a

Brelot harmonic sheaf (for proofs of these facts, see [1], [20]). For each

λ > λ0 , denote by Mλ

{(X) the space of minimal positive A-eigenfunctions:

M\ = {0 < fe C°°(X)\Af = λf, 0<g<f,Ag = λg^g = (const)/}.

Theorem. Let X = X{ x X2 be a Riemannian product, where X{ and
X2 are complete, noncompact, with Ricci curvature bounded below. Then
the following hold.

(i) Each minimal positive harmonic function f on X splits as a product

f(x) = Kλ'(χi)Kλ>(χ2),

where A,. > X0{X,), Kλ' e M.\{Xt) for i = 1, 2, and A, + λ2 = 0.
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(ii) Conversely, each product as above is a minimal positive harmonic
function on X.

As a corollary, we have a "strong harmonicity" result for bounded har-
monic functions:

Corollary. Let X = X{ x X2 as above. Every bounded harmonic func-
tion f on X is strongly harmonic, that is, satisfies

AJ = A2f=0.

For convenience we state and prove the theorem for two factors; clearly
this implies the result for any finite number of factors.

Example 1. Suppose Ric(^) > 0. Then the corollary and Yau's
Liouville theorem [25] imply that if f(x{, x2) is a bounded harmonic
function on X = Xχ x X2 (for any X2 as in the theorem), we actually
have / = f(x2).

Example 2. Let X = universal cover of V, where -a2 < sectional
curvatures (V) < 0 and V has finite volume. By Theorem 1.8 in [5] in
the de Rham splitting of X,

X = X{ X" xXr,

the irreducible factors Xi are either Rn , symmetric spaces of noncompact
type, or "rank-one" manifolds. Our theorem reduces the identification of
the Martin boundary M j {X) and the Poisson boundary U(X) to the same
problem for each factor. This is trivial for Rn , and classical in the case of
symmetric spaces (see [13] or [14]). If the "rank-one" factors are actually
of strictly negative curvature (-a2 < sect(XJ < -b2, b > 0), the results
of [2], [1] imply that

M\(Xa)~τi(Xa)~Xa(oo)

(Xα(oc) = the "sphere at infinity" of Xa) for any λ > λo(Xa). In the

case of general "rank-one" factors our knowledge of Mλ

{(X) is still very

incomplete, even for λ = 0. This example was the original motivation for

this work.
The classical example of a description of the minimal Martin bound-

ary in the context of complete manifolds is the work of Karpelevic on
symmetric spaces of noncompact type [14]; as a consequence he obtains
a proof of Furstenberg's strong harmonicity of bounded harmonic func-
tions. Our proof proceeds by steps similar to [14], but without the advan-
tage of a large isometry group. More recent results on splitting of minimal
positive solutions of elliptic and parabolic equations with periodic coeffi-
cients have been obtained by Y. Pinchover [21] and Koranyi and Taylor
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[15]. The main idea to obtain these results (as well as ours) is to use a
group of bounded isometries and a suitable Harnack inequality to con-
clude that minimal positive solutions "split"; in the parabolic case, the
role of "bounded isometry" is played by the translation semigroup along
the ί-axis. It is interesting to observe that, by a result of J. Wolf, the de
Rham splitting of a Hadamard manifold which admits bounded isometries
contains a nontrivial Euclidean factor [24]. This suggests that the inves-
tigation of the irreducible cocompact ("rank-one") nonpositive curvature
case will have to proceed via a different method.1

J. C. Taylor has recently obtained a result similar to ours, by probabilis-
tic methods [23].

The first two sections of this paper are largely expository: we outline
the proof of an integral representation formula for positive solutions of
the heat equation on a complete "Riemannian halfspace", based on results
from abstract potential theory. In particular, we show that minimal posi-
tive solutions of the heat equation may be obtained as limits of normalized
heat kernels (the parabolic "Martin boundary" construction). This is no
doubt known to experts, but we have not been able to find a concise presen-
tation in the literature. §§3 and 4 contain the proof of the main theorem:
starting from a characterization of minimal positive solutions of the heat
equation (due to Koranyi and Taylor [15]) we obtain a representation for-
mula for positive harmonic functions on a product, which easily implies
part (i); part (ii) is proved by appealing to a lemma of Cheng and Yau [6].
In the last section we explain how a standard argument in potential theory
implies the corollary.

1. Parabolic Martin boundary of a Riemannian halfspace

In this section we describe the construction of the Martin boundary
associated to the heat equation on a Riemannian 'halfspace':

J/ = * x ( - o o , 0 ] ,

where A" is a complete, noncompact smooth Riemannian manifold with-
out boundary. The presentation draws on results from abstract potential
theory. We are interested in the (Bauer) harmonic space (#, P), where
P is the harmonic sheaf:

P(U) = {u{x) e C(U)\U , e C2(U n M') and Au = | ί ί in U n X1}

Added in proof. In a recent paper, W. Ballmann has shown that the sphere at infinity is
regular for the Dirichlet problem in the compact rank-one case (see [4]).
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for any U c M open, where Xf = X x (-00, 0) and x = (x, t). By
'parabolic function on [/' we shall mean M(JC, t) E P(U). A domain
Z) c X of the form D = B x I, where 5 c X is a geodesic ball and
/ C (—00, 0) is an open interval, will be called a cylinder. It is well known
that the parabolic Dirichlet problem is solvable for continuous functions
defined on the 'parabolic boundary' of D: dpD = dB x [s, t] U ~B x {s} . A
superparabolic function u(x, /) is a lower semicontinuous function with
values in (-00, +00], finite on a dense subset of M , and such that for any
cylinder D c M ,

v parabolic o n ΰ , v <u on dpD => v < u on D.

u is subparabolic if -w is superparabolic; a nonnegative potential on # is
a nonnegative superparabolic function whose greatest parabolic minorant
is zero; the support of a potential is the complement of the largest open
set on which it is parabolic.

Let p(t, x, y) be the minimal positive fundamental solution of the
heat equation on X .The natural Green function associated with (ί/, P)
is

where x = {x, t) e X' and y = {y, s) e X'. For y e X , Gy(.x) = G(x, y)
is superparabolic on X, parabolic on >/ - {y}, and in fact a minimal
nonnegative potential supported on {y} (notice that G- = 0 on {x =
(x, t)\t < s}). Our first observation is that G satisfies a 'proportionality
property'.

Lemma 1. Let X be a complete, noncompact, smooth Riemannian
manifold, X = X x (-oc, 0]. If u is a potential with support {y}, then
y e M' and u is a constant multiple of G{x, y).

Proof First observe that, by Lemma 2.1 in [18], which holds for the
harmonic space (X , P), if u is a potential with support {y} , y - (y, s),
then u{x, t) = 0 for ί < s. Consequently, u{x, t) -> 0 as ί —• 5 for
any x φ y . If 5 = 0, this implies w = 0 on X by lower semicontinuity,
contrary to assumption; hence y e X'.

Let y = (y 9 s). Then M(X , t) —> 0 as t —• 5, ί > 5 , for any x Φ y .
If C/ c c Λf is an open neighborhood of y with smooth boundary and
D = (7 x [5, 0], define 0 e C(dpD) by 0 = 0 on ί / x { ή , </> = M on
a t / x [ J , 0 ] . Let

v{x) = u{x)-ωx

D(φ).

Since w > φ on δpZ) and u = φ on dpD - {y}, we have υ(x) > 0 and
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smooth parabolic on int D, and v(x) -• 0 as ϊ ^ β e 9 p ΰ - { y } . Hence

is a parabolic 'kernel function' at (y, s) for the cylinder D, normalized
at (y, 0). Since we may assume U is contained in a coordinate neigh-
borhood of X, Theorem 2.7 of [12] (uniqueness of kernel functions for
divergence-form time-independent parabolic operators on bounded
Lipschitz domains in Rn) implies

for {x,ή 6 D, where pυ denotes the heat kernel of U, vanishing on
dU.

Taking two potentials uχ and u2 with support {y}, this argument
shows

u{{x) = v{{y, 0)Kv{t, x , y ) + ωx

D{φι),

where υχ and φχ are obtained from ux as above. Thus, normalizing u2

bv

we obtain, for the corresponding φ2,

Mj (5c) - fi2Cx) = ω^ί^j - φ2),

which implies ω^(0j - φ2) = 0, since u{ and fi2 are potentials. This
shows u{ = u2 on D (hence on >/), proving that two potentials with
support {y} are proportional, q.e.d.

The construction of the parabolic Martin compactification of U = X x
(-oo, 0] follows the lines of the elliptic case (for the parabolic case in Rn ,
see also [11]), with slight but important changes. We begin by defining the
Martin kernel with pole y e # ' :

H-{x) = H(x9 y) = H(x9 t;y9 s) = $j^4r,

where x0 = (x0, 0) and xQ is a fixed point in X. Let (y/)l->i be a

sequence in ί/; without accumulation points in H1. Since Hy(x0) = 1 for

all / > 1, and x 0 is 'above' # ' , the parabolic Harnack principle implies

that some subsequence (j7|. ) converges uniformly on compact sets of Mf

to a nonnegative C 2 solution of the heat equation on # ' , i/fx, Q) =
HQ(X). Define (j7/)/>1 to be a fundamental sequence if either (i) (7f.) has
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no accumulation point in H and

a nonnegative C 2 solution of the heat equation, uniformly on compact
sets of M1 or (ii) y. = (y., sέ), st. —• 0 and (j;f.) is bounded in X.
In this case we assign to (JΛ) the trivial Martin kernel HQ(X) = 0, the
identically zero function on ί/. Notice that if yi = (yi, sj is a sequence
on M' and s,. -> 0, //- \Mf -+ 0: H- = 0 on I x ( / , 0] as soon as st> t.
For all fundamental sequences, HQ extends continuously to M, and we
have HQ G P ( ) / ) . Identifying two fundamental sequences if their limiting

Martin kernels coincide, we define the parabolic Martin boundary of #'
as:

P = {equivalence classes of fundamental sequences},

and the parabolic Martin compactification of Uf is

As in the harmonic case, we shall frequently identify Q e P and the
corresponding limiting parabolic function HQ(X) .

We may endow H with a metric in the following way [11]: choose a
smooth positive function 0 < φ < 1 on X such that /^ φ(x, ήdxdt <
oo, and define

x 72) = | min{l, | t f-(*) - /f-2(

for ^ j , y2 G >/. It is easy to check that '(U, rf) is a compact metric space,
and that the topology defined by d coincides with the original topology
on X' (with X' dense in K) y. 4 β € P if and only if 7/- -^ / /^ in M'

uniformly on compact sets of M1. Finally, for l e ) / ' , ^ (J 7 ) = ^(^» 7)
extends continuously to ¥ - {x} , as a function of y .

Remark. As just noted, the first major distinction with the harmonic
case is that Martin's method allows one to compactify U', not H. A
second important distinction is that, as seen above, the normalization
# ( ^ o ' y) ~ ^ ι s n o t a ^ a y s preserved in the limit (it is only lower semi-
continuous, as y.: —• Q e P).

If X has bounded geometry, one may obtain estimates for the heat ker-
nel of X similar to those in [3]; namely, for each T > 0 one has positive
constants c, cx, and γ > γχ, depending only on T and the bounds on
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curvature and injectivity radius, such that, for x, y e X and / e (0, T]:

where r = dist(x, y). The upper estimate is Theorem 4 in [7]. By the
main result in [6], the lower bound holds whenever the Ricci curvature
of X is bounded below, provided we can verify it for the n -dimensional
space form with curvature -a2. For this case, one may use the explicit
expressions in [10].

With these estimates for the heat kernel, the argument of Proposition
2.2 in [18] may be used to show that H- —• 0 in M if y. = (y.9 st) 9

st: —• s < 0 and ytr —> oc in X.

2. Integral representation of positive parabolic functions

We next obtain a representation formula for positive parabolic functions
in # as an integral of the Martin kernels H(x, Q) with respect to a
unique positive Borel measure on the minimal parabolic Martin boundary
Pχ. This is standard in the case X = Rn [11, Chapter XIX], and was done
in [9, Chapter 11] in the context of abstract potential theory; hence we will
just indicate the main steps.

Denote by S (resp. £, C ) the convex cone of nonnegative superpara-
bolic functions on X (resp. nonnegative potentials, nonnegative parabolic
functions). Any u e S may be written uniquely as a sum u = p + h,
where p e £ and h e C . S is a lattice, and may be extended to a vector
lattice [S]. As described in [9, 11.2], [S] may be endowed with a locally
convex, separated topology T . T restricts on C to the topology defined
by uniform convergence on compact subsets of # ' . With this topology, S
is a closed convex metrizable cone in [S] with countable base. Thus, we
may appeal to Choquet's theorem to represent points of S as barycenters
of measures.

Due to the normalizations HQ{X0) = 1 and Hy(x0) = 1, we may only
represent 'admissible' superparabolic functions:

S = {ueS\u(x0)<oo}

(with £, C = C defined similarly). Since the evaluation map S x )i —• R+U
{oo} is lower semicontinuous in the T-topology [9, 11.2], S is a closed
subcone of S . As observed before, the section Σ = {u e S\u(xQ) = 1} is
not compact; however, the same semicontinuity property implies that

K = {ueS\u(xo)<l]
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is a cap for 5 (i.e., compact, convex, with convex complement); moreover,
5 = \Jn>0 nK . It follows from this that the set of nonzero extremal points
of K coincides with the extremal points of Σ (:= Σe), and Choquet's
theorem implies that each point u of S is the barycenter of a unique
positive Borel measure on Σe. Clearly, if u is a potential then the subset
of potentials in Σe has full measure.

Denote by Ze {Ce, Se) the union of extremal rays in the cone t (resp.
C, S) of admissible potentials (resp. parabolic unctions, admissible su-
perparabolic functions) and by )ί* = M U {*} the Alexandroff compactifi-
cation of M . The support in #* of u e Se consists of a single point (= *
iff u e C) and the map Π: Se —• )/* so defined is continuous [9, 11.4],
and restricts to Π: Ce —> M' (see Lemma 1; in particular, every extremal
superparabolic function is 'admissible').

Recall that the Riesz space of M is defined as the quotient space:

Ry = Le /multiplication by constants.

The continuous map Π: Ce —•)/' projects to a map Π;:i?y —• Ή1. We will
denote by (p) the equivalence class in R^ of a potential p e ίe. The
representing measure for a potential on Σe projects to a measure on Z^ ,
and we obtain: Given an admissible positive potential on M , there exists
a unique measure v on i? v such that

u(x)= f H{x,τϊ{ζ))dv(ξ).

To translate this into a representation formula on ί/', we need the
following lemma.

Lemma 2. The map n ; : i?^ —• H1 is a homeomorphism, where R^ is
given the quotient T -topology.

Proof. Since Π' is continuous, surjective and injective (by Lemma 1),
it is enough to show that it is proper. Take (y., st) =yi -^y = (y, s) e H'.
Then H- e K and U(H- )=y, . Assume a subsequence H- e P{X - D)

y i * i yij

for j > jo(D) this implies H- —»• p uniformly on compact subsets

of M - D. In particular, support(/?) c {y}. If support(p) = 0 (i.e,
p e P(){)), from p(x, s') = 0 for any s < s and all x eX would follow
p = 0. This would contradict //- (z.r, ^ - 5/2) > c if ί/(y/? zz) = 1,
where c depends only on y (by the lower bound on the heat kernel).
Hence support(p) = {y} , and (p) = (//-). This shows that (H- ) -> {p),

concluding the proof, q.e.d.



THE MARTIN BOUNDARY OF RIEMANNIAN PRODUCTS 223

From this lemma and the representation formula preceding it, we obtain
the Riesz representation theorem for parabolic potentials: for any admis-
sible potential p(x) in # , there exists a unique finite Borel measure μ
on M' such that

p(x)= ί ιH(x9y)dμ{y),
J Ή

The existence part of the Martin representation theorem follows from
this proposition essentially by the same method as in the elliptic case.
Define the reduction of a nonnegative superparabolic function u over a
set D c X by:

Ru

D{x) = inf{t> e S\υ > u on D},

and the balayage Ru

D(x) as the lower semicontinuous regularization of
RU

D . Then RU

D is superparabolic, RU

D = u on D if D is open, and on ϊl -
D, RU

D equals RU

D and is parabolic. The main property of RU

D used in the
proof of the Martin representation theorem is that if D is compact in X ,
RU

D is a potential. This is easy to see if u is parabolic: since u is bounded
on D, u(x) < MG(x, y), x e D, for any y 'below' D, and so RU

D <
MG- on X, hence is a potential. Thus, if u is a nonnegative parabolic
function on ί/, taking an exhaustion of U by cylinders Dt containing x0 ,
whose closure in )l is compact, and applying the representation formula
for potentials, we get:

Ru

D{x) = j H(x, y) dμβ), μβ') = u{x0).

In fact, since RU

D is parabolic on Dt and on M - Di, it follows that

support(μ.) c dpDi. Since

passing to a subsequence and taking a weak limit of the measures μi we
obtain the existence part of the Martin representation theorem: there exists
a finite Borel measure μ on P such that

u(x) = ί H{x, Q) dμ(Q), μ(P) = u(x0).
Jp

Now let u(x) be a minimal nonnegative parabolic function on X . Then
for some Q e P , //^ ̂  0, we have

M(JC) = (const)//g(x).

This follows immediately from the preceding representation formula and
the fact that, by minimality, any measure representing u on P must
consist of a single atom {Q} .
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As in the elliptic case, one always has a unique representing measure on
the minimal parabolic Martin boundary:

Px = {0 < u e P(X)\u(x0) = 1 and 0 < v < w, v e P(M) => v = (const)*/}.

As seen above, Pχ may be identified with a subset of P .
To obtain the unique representation theorem on Pχ, one may either

proceed directly (as in [11]), or appeal to Choquet theory, as explained
above in the case of potentials; Theorem 11.3.1 in [9] implies that any
u E C is the barycenter of a unique measure μu on the section Pχ of the
extremal rays of C :

Parabolic Martin representation theorem. Let u(x, t) >0, ue P()ί).
There exists a unique finite Borel measure μu on Px such that

u(x,t)= ί H(x,t',Q)dμu(Q)

for (x,t)e)i, and

Under a mild geometric assumption, a theorem of A. Koranyi and
J. C. Taylor [15] gives a complete characterization of the minimal pos-
itive parabolic functions. As before, let X be complete noncompact with
bounded geometry, )/ = I x ( - o o , 0 ] .

Proposition 1. Assume X has Ricci curvature bounded below. Then

Pχ()ί) = {QeP\Hό(x,t) = eλtKλ(x,Q), λ>λo(X), QeMλ

χ(X)}.

Proof, (i) The fact that any minimal positive parabolic function u(x, t)
normalized at (xQ9 0) has the above form was proved in [15]. For com-
pleteness, we sketch the idea of a slightly different proof. For s > 0, let
us(x, t) = u(x, t - s). Then us e P{M), and by the parabolic Harnack
inequality of [15],

us{x, t) < c s u ( x , t) f o r ( x , t ) e H ,

where cs depends only on s and the lower curvature bound of X. Since
u is minimal, this implies

us(x, t) = u(x0, -s)u(x, t).

Letting 0 < φ(t) = u(x0, -t) e C([0, oo)), it follows that φ(t + s) =

φ(t)φ(s) for all s, t > 0, and 0(0) = 1, so φ(t) = eλt. This implies

u{x,t-s) = e~λsu{x,t), {x, 0 e M , s > 0 , so

— λ t
u(x, t) = e u{x, 0).
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Letting uo(x) = u(x, 0), one has Δu0 = λu0 , so λ>λ0. The minimality

of u(x, t) clearly implies that of u0, so uQ e ΛΓj(ΛΓ).
Remark. Part (i) of the proof allows us to define the continuous map:

p: Pχ -> [λo(X), oo), Q H-> λ such that

H(x,t;Q)= eλtφ(x), where φ e Mλ

χ{X).

In fact p is the restriction of the continuous map p: P —> [λo(X), +00)
defined by p(u) = -log(u(x0, -l)/u(x0, 0)).

(ii) One may also show that, conversely, each positive parabolic function
having the form

u(x, t) = eλtφλ(x),

where φλ e Mλ

χ, is minimal parabolic.

In the following proof, we denote by {p(Q) > λ} the subset p~\(λ, 00))
of Pχ . Given the equality

' H(x,t,Q)dμ(Q) = eλtφλ(x)

for a probability μ on Pχ, we must show that μ consists of a single atom

β , such that HQ = eλtφλ{x). First notice that μ({p{Q) < λ,}) = 0 for

any λχ < λ, since evaluating the above equality at (xQ, t) gives:

e } dμ(Q) <e < e ι

for arbitrary t < 0. Thus,

l=φλ(x0)= ί e-λ'ep{U)'dμ(Q),
J{p(Q)>λ}

or

1 _ / e-{λ-p{ύ])ί dμ(Q) = / e- ( Λ - p ( ό ) ) ί dμ(Q).

Since the right-hand side is decreasing as t —• -00 and the left-hand side

is constant in t, both must vanish. This implies μ({p(Q) = λ}) = 1.

Denoting by v the probability ί/ = (^)*(%p«2)=/i}) o n ^^ ' w e h a v e

eλtφλ(x)= ί eλtKλ(x,Q)du(Q)

for t < 0. Setting / = 0, the minimality of φλ shows that v must consist

of a single atom [Q] , such that 0A = ̂  . This concludes the proof.
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3. A representation formula for harmonic functions

The proof of the main result starts by considering the Martin representa-
tion of a positive parabolic function / on X (complete, with Ric bounded
below) as a positive harmonic function on >/. Assuming f{xQ) = 1, we
have

(1) /(*)= / H(x,t,Q)dm(Q)

for a unique Borel probability m on P{. It is natural to expect that m
gives full measure to the set of Q whose kernel is independent of t. This
may be proved by an argument similar to that in [20]. Denote

(the map p: P{ —• [λQ(X), +oo) was defined in §2).
Proposition 2. If f > 0 is harmonic on X, the probability m in (1)

satisfies m(P{ - P*) = 0.
Proof. Denote

P + = p " 1 ( ( 0 , o o ) ) c P 1 ,

Pλ~ =P~\(λo(X),λ))cPι forλ<0.

Then

H(x,t,Q)dm(Q)<f(x).L
By Proposition 1, this inequality evaluated at (xQ, t), t < 0, gives

ep(ύ)dm{Q)<f{x0).I,
If t < 0, the left-hand side is bounded below by m(P[)eλt. Letting

t —• -oo shows that m(P^) = 0 for any λ < 0. Thus,

f(x)- ί H{x,t,Q)dm{Q)= [ H{x,t,Q)dm{Q).
Jp? Jp+

As t T 0, t < 0, evaluating the left-hand side at x0 gives a constant, the
right-hand side an increasing function of t. This shows that m(P+) = 0,
concluding the proof.

Proof of the main theorem, part (i). In the following, for each factor
Xa, a = 1, 2, we adopt the notation Ua = Xa x (-00, 0], with coordi-
nates (xa, t), Pa is the parabolic Martin boundary of )ia , where we nor-
malize the Martin kernels Ha(xa ,t\ya, s) and Ha(xa, t Q J , Qa e Pa ,
at (JCQ , 0), and /^ is the minimal parabolic Martin boundary of )ia .
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Let / be a positive harmonic function on X, f(x0) = 1. By Proposi-

tion 2, / is represented by a unique probability on Pχ :

(2) = JoH(x,t,Q)dm(Q),

where the Martin kernels in Pχ are independent of t.

Claim. If Q e Pχ , then

with λa > λo(Xa), λ{ + λ2 = 0, and Qa e M^{Xa).
The main observation is that the heat kernel of X is given by

p(t,x,y) =px{t, xι, yι)p2{t, x2, y 2 ) ,

where p f l(ί, xa, ya) is the heat kernel of Xa. This implies a similar

splitting for the parabolic Martin kernels with pole at (y, s) e M1:

(3) / / ( * , ί y, s) = ^ ( J C 1 , ί y 1 , ^)//2(x2 , t\ y\ s).

Now take a fundamental sequence (y/, J, ) -> β G P . By taking subse-

quences, we may

Then (3) implies
quences, we may assume (y], st) -+ Q{ e Pι and {y2

t , st) -+ Q2 e P2.

(4) H(x,t,Q) = H{(χl, ί, Q{)H2(χ2,t, Q2).

If Qe Px,it follows easily that any βj G P 1 , Q2e P2 satisfying (4) are
also minimal; thus, by Proposition 1

H(x, t, Q) = eλ*tKλ*(xι, Qx)e^Kλ\χ2, Q2)9

with λa > λQ(Xa) and Qa e Mλ

{

a(Xa) (since this expression implies easily

that the Kλ° are minimal in Mλ°{Xa) if HQ e Px). In particular, p(Q) = 0

implies λχ + Λ,2 = 0, and we have

for any Q€ Pχ , proving the claim.
If / is minimal positive harmonic, the support of the measure m in

(2) must consist of a unique Qe Px , so that

f(x) = HQ(X, t) = Kλ>(χl, Qx)Kλ\χ2, Q2).
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4. Minimal positive harmonic functions

Before proving part (ii) of the main result, we recall some results in
potential theory. We preserve the notation of the preceding sections. For
any λ > λo(X) and any relatively compact open set U c X with smooth
boundary, one may solve the Dirichlet problem for (Δ - λl) and contin-
uous data on d U . For the (Brelot) harmonic space defined by (Δ - λl),
a continuous function / on X is /Usubharmonic if f(x) < cox(fιdU) for
any λ-regular open set U c c X, where ωx

λ denotes A-harmonic measure
on 9(7. Clearly, if a sequence (fk)k>ι of continuous Λ-subharmonic
functions on X converges uniformly on compact sets of a continuous
function / , / is also Λ-subharmonic. It is well known that a smooth
function / on X is A-subharmonic iff Δ/ > λf.

Let X - Xχ x X2 be a Riemannian product, where X{ and X2 are
complete noncompact Riemannian manifolds whose Ricci curvature is
bounded below. For λ > λQ(X{), define

Eι

λ = {υ e P(M)\υ > 0 and v(-l, xχ, x2) is λ-subharmonic on X{},

Fx

λ ={ve P(M)\υ > 0 and Δ ^ ( - l , xχ, x°2) = λv{-l, x{, x2)}.

Then E\ and Fι

λ are convex subcones of C = {v e P(H)\υ > 0}, closed

\ C Eιunder uniform convergence on compact subsets of ί/;. Clearly E\ C Eι

if λ > μ. E\ and F^ are similarly defined for the factor X2 (and

λ > λQ{X2))\ denote Fλ ^ = F[ Π F] . If Aj + λ 2 = 0, Proposition 1

implies

°= U

The proof of part (ii) is based on the following lemma, due to Cheng and
Yau.

Lemma 3. Let X be a complete Riemannian manifold with
Ric(ΛQ > K

(a) [8, Theorem 6] // / e C2(X), / > 0, and Δ/ = λf on X, then
\A\o&f\<cnmax{\λ\,\K\}.

(b) [8, Theorem 3] Let f e C2{X); suppose f is bounded above and
does not attain its supremum on X. Then 3xk —> oo on X such that
f{xk) - * s u p / and

(c) \Vf\(xk)<cJrk,
(d) Af(xk)<c2/rk,
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where rk = d{xk,x0), cχ depends only on άivaX and sup/, and c2

depends additionally on K.

Proof of the main theorem, part (ii). Let v > 0 be harmonic on X,

v{x0) = 1. Assume υ < Kλ'{xχ)Kλl{x2) (where Kλ> e ^(ΛΓ.) and

λj + λ2 = 0) and denote by mυ the representing probability on Pχ :

Claim. For any λx > λχ, mv(Ej Π Px ) = 0.

Proo/ If not, let

Then 0 < w < KλχKλl and w e E\ , SO defining f(xΛ = w(-l, xλ, x,),
Λ, 1 1 Z

we have / € C 0 0 ^ , ) , 0 < / < Kλ' and AJ > I , / . Now let Λ(x,) =

. Then h satisfies 0 < h < 1 and

>Cλx-λχ)h-c\Vχh\,

by part (a) of Lemma 3.
By part (b) of Lemma 3, 3xk - ^ o o o n l such that h(xk) -> sup A (the

preceding inequality implies A cannot have a positive interior maximum).
\Vχh\(xk) < cχ/rk and Aχh(xk) < c2/rk, so (by the inequality

above) h(xk) —• 0. This shows A = 0, a contradiction. Analogously,

mv{EJ Π Pj0) = 0 for any λ2 > λ2. Thus,

which implies Δ2v = λ2υ . Since υ(x^, JC2) < Kλl(x2), the minimality of

Kλl gives v ^ , ^ ) = Kλl{x2). On the other hand, since Δχv = λχv,

v < KλχKλl, and Kλχ is minimal,

,(x,,x2) = t ;(x»,x 2 )^

so v(x,, x2) = Kλι(xι)Kλl(x2), concluding the proof.
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5. Bounded harmonic functions and Poisson boundary

In this section we indicate how the minimality of product kernels im-
plies a strong harmonicity theorem for bounded harmonic functions.

Let X be a complete Riemannian manifold and / a positive harmonic
function on X. The unique measure μr representing / on the minimal
Martin boundary

/(*)= / K(x,Q)dμf(Q)

satisfies the following monotonicity property:

Δ/ = Δ* = 0, 0<f<g=>μf<μg.

This follows immediately from the fact that, for any Borel set A c Λί ,

where the reduction R^ of / over A is defined as the infimum of k{j

over all traces U in X of open neighborhoods of A in X , with R^

defined as in §2 (see [19] or [11, Chapter XII]).
This property allows one to obtain a representation formula for bounded

harmonic functions. Denote by ω the unique probability on M{ repre-
senting the constant function 1 on X ('harmonic measure' on Mι ), and
by Π(X) c M the closed support of ω.

Definition. The Poisson boundary of X is the pair (Ώ(X), ω).
Let / be a bounded harmonic function on X (which we may as-

sume positive by adding a constant). Since μf < ω, we have φ e

L{(Ϊ1(X), ω), ω-a.e. uniquely defined by / , such that

f(x)= ί K(x9Q)φ(Q)dω(Q).
JΠ(X)

Now consider a Riemannian product X = X{ xX2, as in the main theorem.

By part (ii), if KQ{xa , Qa) e M{(Xa), the product

f(x) = Kχ(x\ Qx)K2(x\ Q2)

is a minimal positive harmonic function on X. This gives a continuous
injective map

Denote by ωa the probability on Mx(Xa) representing the constant func-
tion 1 on I :

a

K(x\Qa)dωa(Qa).
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Clearly, for the constant function 1 on X we have the representation
formula

1 = f K(x\Qx)K(x2

9Q2)dωx{Qx)xdω2(Q2)9

JMι(Xι)xMι(X2)

so that the (unique) measure ω representing 1 on MY(X) is

ω = I+{ωx x ω2).

Thus, given a bounded harmonic function / on X, we have φ(Q) e

Lι(Mx, ω) (ω-a.e. uniquely defined by /) such that

f(x) = f K{x, Q)φ(Q)dI,(ωx x ω2)(β)

* ( * ' , Qx)K(x\ Q2)ψ(Q{,Q2)dωχxdω2(Qχ,Q2),

where ψ = φ o / . It follows immediately from this formula that Δ f l/ = 0,
a=l,2.
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