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COMPLETE SURFACES
WITH FINITE TOTAL CURVATURE

PETER LI & LUEN-FAI TAM

0. Introduction

The goal of this project is to verify a conjecture of Yau and the authors
stated in [12] for dimension 2. The conjecture asserts that:

Conjecture. Let M be an n-dimensional complete Riemannian man-
ifold with nonnegative Ricci curvature. Assume that there exists a point
p e M such that the volume of geodesic balls B (r) centered at p with
radius r satisfies

(0.1) Vol(Bp(r)) = O(ra),

as r —> oc for some integer a > 1. Let k be a nonnegative integer and
r(x) be the distance from p to x, and define

Hk(M) = {/ I Δ/ = 0 and \f\(x) = O(rk(x))}

to be the space of harmonic functions on M which do not grow faster than

rk(x). Then the dimension of Hk(M) must be at most the dimension of

that in Rα, i.e.,

(0.2) dim(Hk{M)) < dim{Hk(Ra)).

Yau originally conjectured that Hk(M) must be of finite dimension
and its dimension is bounded by dim(Hk(Rn)), where n = dimM. In
1989, the authors proved [12] that Hχ(M) has an estimate of the form
dim(//1(Λ/)) < a + 1, where a is defined by (0.1). This lead us to the
refinement of Yau's conjecture in the above form.

In this work, we will verify the conjecture (Theorem 4.6) for 2-dimen-
sional manifolds with nonnegative curvature. In fact, it turns out that if
we only assume the negative part of the Gaussian curvature is integrable,
then there are rigid and powerful geometric and analytic consequences
which are special because of the fact that we are dealing with surfaces. We
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will refer to this special class of complete surfaces as surfaces with finite
total curvature because it follows that the absolute value of the Gaus-
sian curvature is also integrable. We would like to point out that sur-
faces with finite total curvature were studied rather extensively in [2]-[4],
[6]-[9], [15]. We refer the reader to §1 for the essential preliminaries on
the subject.

The main geometric result of this paper is to obtain control of how the
geodesic distance behaves at infinity when compared to the background flat
metric. Specifically, we will show in §§2 and 3 that at a given end E, if we
represent the metric by a conformal metric on R2 with a disk removed,
then the geodesic distance r and the Euclidean distance r0 must satisfy

hm -—- = 1 - a,
x z l o g r ( x )

where a is related to the area growth of the intersection of geodesic balls
with E. It is given by the formula

1 - a = lim
A(Bp(r)ΠE)

πr2

The analytic results are consequences of the asymptotic behavior of the
distance function. In fact, one can provide sharp upper and lower bounds
(see §4, Theorems 4.2 and 4.5) on the dimension of Hk(M) in terms of
the area growth of each end for these surfaces of finite total curvature.
More precisely, if the ends of M are given by {E{, , Em}, and the
ia\' ' " ' αm} a r e defined by

1 - a. = lim τ

then for any positive real number k, the space Hk(M) satisfies

ί m

> d i m / / f c ( M ) > m π W 1 , £
I /=:ι = l ^ ι = l

The number m denotes the number of ends which has quadratic area

growth. The number Ni is the dimension of the space of nonconstant

harmonic polynomials in R2 of degree less than or equal to k{\ - α y ) .

Finally, N[ denotes the supremum over all ε > 0 of the dimension of the

space of nonconstant harmonic polynomials in R2 of degree less than or

equal to k{\ - αf ) - ε .
In §5, Theorem 5.2, we will prove an isoperimetric inequality for those

surfaces whose ends all have quadratic area growth. In this case, the the-
orem asserts that there exists a constant C2 2 depending only on M such
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that for any compact subdomain D of M, the length of its boundary
L(dD) and its area A(D) must satisfy the inequality

L2(ΘD) > C22A(D).

In fact, this can be viewed as the infinitesimal version of the quadratic area
growth condition. A Poincare inequality at infinity will also be proved
in §6, Theorem 6.1. Together with the isoperimetric inequality, one can
use Moser's argument to prove a Harnack inequality for uniformly elliptic
operator with measurable coefficients on M. Finally, we will discuss some
examples in §7 for further understanding of our results.

The second author would like to thank R. Finn for providing reference

[9]

1. Geometric preliminaries

This section is devoted to recalling known results on complete surfaces
with finite total curvature, which will be used in the course of this article.
Let M be a complete noncompact surface with finite total curvature, i.e.,
fM\K\dA < oc, where K is the Gaussian curvature of M. Let p € M
be a fixed point. Let us denote the geodesic ball of radius r with center at
p by Bp(r), and its boundary by dBp(r). For simplicity, when the center
point is p , we set A(r) = A(Bp{r)) and L{r) = L{dBp{r)).

The well-known theorems of Cohn-Vossen [2] and Huber [8] assert that:
Proposition 1.1. Let M be a complete surface with the negative part of

its Gaussian curvature integrable, i.e., JMK_dA < oo, where

κ ,o ifκ>o,., fθ ifK>0,
L" ~ I - K ifK<0.

Then M must be conformally equivalent to a compact Riemann surface
with finitely many points deleted. Moreover

L KdA<2πχ(M),
M

where χ(M) is the Euler characteristic of M. In particular, fM \K\ dA <
oc. If in addition M is simply connected, then M must be conformally
equivalent to the complex plane.

The following proposition was proved by Hartman in [6] for simply con-
nected surfaces. It was later generalized by Shiohama in [15] to arbitrary
complete surfaces with finite total curvature.
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Proposition 1.2. Let M be a complete surface with finite total curvature.
If K is the Gaussian curvature of M, then we have

2πχ(M) - [ KdA = lim ̂  = lim ^fi.

The third result, which was proved by Hartman in [6], asserts an upper
bound of the area growth of a complete surface with finite total curvature.
For a higher-dimensional generalization, we would like to refer the reader
to [13].

Proposition 1.3. Let M be a complete surface with finite total curvature.
Then there exists a constant Cι depending only on fM\K\dA, such that

L(dBx(r))<C{r and A(Bχ(r))<^r\

for all x e M and for all r>0.
The next proposition was also proved by Hartman in [6].
Proposition 1.4. Let M be a simply connected complete noncompact

surface with finite total curvature. Then there exists RQ > 0, such that for
all r > RQ, the boundary of the geodesic ball of radius r centered at p
must be homeomorphic to the circle. In particular, the geodesic ball Bp(r)
is homeomorphic to the disk.

2. Lower bound for the Green's function

In this section, we would like to obtain a lower estimate for the Green's
function on a simply connected noncompact surface with finite total cur-
vature. For a fixed point p e M, we will denote by B(r) = Bp(r) the
geodesic ball centered at p with radius r. Following the notation of § 1,
let us establish the following lemma.

Lemma 2.1. Let R2> Rχ > 0. Suppose g is a subharmonic function
on B(R2)-B(Rι) which is smooth on an open set containing B(R2) - B(R{).
Let s(r) = sup^ ( r ) g and i{r) = inf^ ( r ) g. // s(R2) > i(R{), then

Proof. Let / be the harmonic function on B(R2) - 5(i?j) such that
/ = g on dB(R{) and / = s(R2) on dB{R2). Then g < f on B(R2) -

j ^ . Hence

(2.1) d-±>d-£ ondB{R{)
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Let h be the harmonic function on B(R2) - B(Rχ) such that h = i(R{)

on dB(R{) and h = s(R2) on ΘB(R2). Then h <f on Έ^
Hence

(2.2) § ί < ^ o

Since both / and h are harmonic on B(R2)-B(Rι) it is easy to see that

f ^1= f dJL f dA= f ®h_
JdB(R2) ®r JdB(Rχ) ®r ' JdB{R2) &r JdB(Rγ) &r

Therefore by (2.1) and (2.2), we have

JqdB{Rχ)
 ϋ r JdB(Rχ)

 a r

Let us define the function φ(x) by

Note that φ = h on dB{R{) and dB(R2). By the fact that harmonic
functions minimize Dirichlet integrals, we conclude that

I |VΛ|2 < f \Vφ\
JB(R2)-B(R,) JB(R2)-B(R{)

dB(r)L2(r)f*>(dt/L(tγ

_(s(R2)-i(R{))2

On the other hand,

i

lB{R2)-B(Rχ) JdB(R2)
 σ r JdB(Rχ)

= (s(R2) - i(Rx)) I d-^.
JdB{Rχ)

 ϋ r

Combining this with (2.3), (2.4), and the assumption that s(R2) - i(Rx) >
0, we have
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By setting the function g in Lemma 2.1 to be the Green's function,
g(x) = G(p, JC) , with the pole at p , and the convention that g(x) —• -oo
as x —• p , we conclude the following corollary.

Corollary 2.2. Let M satisfy the assumption of Lemma 2.1, let g be
a Green's function with a pole at p, and take the value of -oo at p. Then

/ '
dt
a i <s(R2)-i(Rx)

for all R2> Rχ>0.

Proof By the maximum principle, we have s(R2) - i(Rχ) > 0. Also,
by the assumption that g is the Green's function, we have

We would like to point out that the proof of Lemma 2.1 and hence of
Corollary 2.2 is valid on any complete manifold with arbitrary dimension.
In general we will interpret the integral J*2 dt/L(t) to have

L(t) = An_χ(t) = (n- l)-measure of dBp(t).

Corollary 2.3. Let M be a complete manifold of dimension n (not
necessarily 2). Let g be a Green's function with a pole at a fixed point
p G M, which takes the value of — oo at p. Then

ΓR2 dt < ( _

for all R2> R{> 0. Here we denote An_χ(t) = (n-l)-measure ofdBp(t),

s(R0) — supΛff to λg > and i(Rλ) = inf. „ (P ,g. In particular, if M admits

a negative Green's function then

dtι: < 00.

This estimate of s(r) of the Green's function is sharp. In fact, when M
has a rotationally symmetric metric around a point p, one checks easily
that the function

( ) d t

is a Green's function with a pole at p .
Corollary 2.4. Let M be a complete manifold of dimension n. Suppose

R2 > 2R{ > 0, and g is a subharmonic function on B(R2)-B(R{) which
is smooth on an open set containing B(R2) - B(R{). Let s(r) = sup^β ( r ) g
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and i(r) = infa5(r) g. If s(R2) > i(Rx), then there exists a constant C2 > 0
depending only on M and R{, such that

(ί g)(/C

where the quantity V(t) denotes the n-dimensional volume of the geodesic
ball of radius t centered at p.

Proof In the proof of Lemma 2.1, if we set the function φ to be

(s(R2)-i(R{))f£x)(t/V(t))dt
Φ(x) = o * + i{Rx),

I^(t/V(t))dt
then the same argument will imply the desired estimate, providing we can
show

rR2 r A _Ar) rRi rdr
(2 5) Λ, -τwdr-Clk WY
Indeed,

2{r)

R\ R] fRr+ + JR V{rY

For a fixed i?,, we can find a constant C3 > 0 depending only on i?, and
Λf, such that

V(R{)- 3JRι V(r)'

Hence if i?2 > 2i?j then (2.5) follows.
When M is a simply connected complete noncompact surface with

finite total curvature, by Huber's theorem [8] M is conformally equivalent
to the complex plane. Let p e M be a fixed point which is identified as
the origin of the plane. Let r(x) and rQ(x) be the geodesic distance and
the Euclidean distance between the points p and x, respectively. By
using Corollary 2.2, we will derive a sharp lower bound for r0 in terms
of r. We should point out a lower bound was first proved by Finn in [4]
for surfaces with nonpositive curvature near infinity. Huber in [9] later
generalized Finn's argument to the general finite total curvature metric. In
both cases, they utilized the existence of a normal metric near infinity of
M, and their estimates agree with ours when the area growth of M is
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quadratic. When M does not have quadratic area growth, our estimate
which depends on the area growth is still sharp while theirs does not yield
a sharp bound. Moreover, the method which we use is rather general
(Corollary 2.3) and more direct.

Theorem 2.5. Let M be a simply connected complete noncompact sur-
face with finite total curvature. Then for any ε > 0, there exist RQ > 0
and a constant C 4 , depending only on M, such that

Γ{x) dt2πJ{ X ^ - ^ O +
for all x e M\Bp(R0). In particular, if

A(r)

2πjA

KdA= 1 - lim
M r-*°° πr2

— 1 - lim -^- (by Proposition 1.2)
r->oo 2nr

= α ,

where K is the Gaussian curvature of M, A(r) = A(Bp(r)), and L(r) =
L(dBp(r))fthen

(2.6) limsup^^I^!-^

Proof By the fact that M is conformally equivalent to the complex
plane, the function ^ log r0 is the Green's function with a pole at p.
Hence Corollary 2.2 implies that

(2.7) ^ Γ d t

for all r > 1 > 0. Here s(r) = s u p ^ ^ l°6ro > *(r) = ^ΘB (r) ̂ °8ro » a n c *
we denote the length of dBp(t) by L(ί).

On the other hand, let us define the function f(x) = ̂  Iogr0(x). Com-
puting the Dirichlet integral of log/ with respect to the Euclidean metric
over the compliment of the Euclidean disk of radius e, we have

2π ,ί
/ | 0 g / | 0 / y 0

M\B*{e) Je rQ log rQ

*, ί°°du o
J\ u

Hence by the invariance of the Dirichlet integral under a conformal change
of metric, we derive that there exists a function η(r), for r sufficiently
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large, with 0 < η(r) < 2π , and η(r) —• 0 as r —• oo, such that

f \Vlogf\2dA<η(r).
JM\Bp(r)

For any pair of sufficiently large R < r, by the Schwartz inequality, we
have

(2.8) Γ( f \V\ogf\dL) 4k^ff \V\ogf\2dLdt<η{R).
JR \JdBp(t) / L\t) JR JdBp{t)

) 4 k f f
Bp(t) / L\t) JR JdBp{t)

Proposition 1.4 implies that if t is sufficiently large, then the set dB (t)
is connected and is homeomorphic to a circle. If x and y are points in
dBp(t) such that logrQ(x) = s(t) and logrQ(y) = i(ή , then they must di-
vide dB (t) into two connected curves. Integrating the function |Vlog/|
along the two curves gives

9Bp{t)

Hence, combining with (2.8) yields

2 r dt
4MΛ^SM

On the other hand, the maximum principle and the facts that / —> -oo
as x —> p and / —• oo as x —• oo imply that both s(t) and i(t) are
monotonic increasing functions of /. Therefore, we conclude that

(2.9) s(R) < i(r) exp ( η (

2{fRdtlL(t)γ

Inequality (2.7) now implies

Since ?/(/?) -> 0 as R -• oc, to prove the theorem for r sufficiently large,
we need to show that we can find a value R < r such that it satisfies

Lr d t

and R —• oo as r —> oo. If not, there exist sequences {rj and {i?z} such

that
Λ = 1

W)
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with r. —• oo but Rι: —• Λ. However, this contradicts the fact that

dtI-
JR

= 00,

- α + ε) /

because L(t) cannot grow faster than linearly.
If we set

t r A(r) v L{r)
1 — a = hm —^f = hm -̂ —^ ,

r—>oo π r

2 r—>oo Z7ΓΓ

then to prove (2.6), it suffices to show that for any ε > 0,

rr dt

This is a direct consequence of the definition of α.

3. Upper bound for the Green's function

For our special class of surfaces, one can also derive an upper bound

for the Green's function. Following the assumption of §2, M is a simply

connected complete noncompact surface with finite total curvature. We

consider M to be R2 with a complete metric of the form ds2 = e2uds\ ,

with dsl being the Euclidean metric. Let p e M be a fixed point which

can be chosen as the origin of R 2, and let B (r) and B*(r0) be the

geodesic balls centered at p with radii r and r0 with respect to the metrics

ds2 and ds% respectively. For any domain D C M, we will denote L{dD)

and A(D) to be the length of dD and the area of D with respect to ds2

respectively.

Lemma 3.1. Let M be a simply connected complete noncompact sur-

face with finite total curvature. Let K be the Gaussian curvature of M,

a - j ^ fM KdA, and i(r) - inf^ ( r )logr 0, where rQ{x) is the Euclidean

distance from x to p. Then

(3.1) l i m i n f ^ > 1-α.

Proof Let Δo = d2/dx2 + d2/dy2 be the Euclidean Laplacian. Then

(3.2) Aou + Ke2u = 0.

Also

if Ke2udxdy= ί KdA = 2πa.
JJR2 JM
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Given ε > 0, there exists Ro such that r0 > Ro implies

if Ke2udxdy<2π(a + ε).
J JB*(r0)

Hence by (3.2), if r0 > Ro, then we have

-2π{a + e)<- [[ Ke2u dx dy
JJβ*(r0)

= / Aoudxdy = / -—

= A-( f u d s \ - - l
~ dro\JdB;{ro)

U S°) rQJdB;{ro

which implies
a+ε d ( 1 f , \

<-7— h s — / udsr,).

r0 dro\2πrJdB;{ro) °J
By integrating, we conclude that there exists a constant C5 depending on
Ro and M, such that
(3.3) - > + ε)logr0-C5 < ^— f udsQ.

However, by Jensen's inequality,

Combining this with (3.3), we conclude that

,~ Λ, ~ - 2 C S l - 2 α - 2 ε . f

(3.4) 2πe 5rQ < I
2M ,

e ds0

for all ro> Ro.
Note that a < 1. If α = 1 then (3.1) is clearly true. Hence we may

assume that a < 1, and by choosing e sufficiently small we may also
assume that 1 -a-ε > 0. Integrating inequality (3.4) from Ro to r0 for
rQ > Ro, we obtain

2(l-α-e)

α)

< / / e u dxdy - e u dx dy.
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Hence there exist constants C6 > 0 and C7 > 0 which depend only on
Ro and M such that if ε is sufficiently small, then for all rQ > Ro we
have

(3.5) C 6 r 2

0

i l - a - ε ) - C Ί ; 0

Now let us choose R{ sufficiently large so that inf^ ( r ) r0 > Ro for all

r > R{. Let B*(p) be the largest disk which is contained in Bp(r). Then

P = P(r) = inf^ (Γ)

 r

0 > ^o i f r > R\ - β y Proposition 1.3, there exists a

constant Cχ depending on M such that

A(Bp(r)) < ^-r2

for all r > 0. By setting rQ = p in (3.5), we have

cya-a-e) < A{B*{p)) + Cη < ^(^(r)) + c 7 < ^-r2 + C7

for all r > R{ . Taking logarithms of both sides and dividing the resulting
inequality by 2logp = 2i(r) we obtain

2i(r)

' (0 logr2

Using the fact that i(r) -• 0, and letting r -• oo and then ε -> 0, the
inequality becomes

1 - a < liminf —r-r ,
~ r-̂ oo l(r)

which was to be proved.
Theorem 3.2. Let M be a simply connected complete noncompact sur-

face with finite total curvature. Let r{x) and rQ(x) be defined as above.
Then

(3.6) hminf- \ \ > 1 - a.
χ^°° logr(x)

Proof. Inequality (3.6) is obvious if a = 1, hence we may assume that
a < 1. Let ε > 0 be any constant such that 1 - a - ε > 0. Then Lemma
3.1 implies that there exists RQ > 0 such that

(3.7)
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for all R > RQ. By the fact that f™ dt/L(t) = oo, for any given r > 0

we can find R > r such that f* dt/L(t) = 1. Applying (2.9) to (3.7) with

the roles of r and R reversed, we conclude that

a
>2(fr*dt/L(t))ι/2

The theorem now follows from the facts that

rR dt fR dt

and η(r) —• 0 as r —• oo .

Theorems 2.5 and 3.2 can be combined to be:
Corollary 3.3. With the assumptions and notation as in Lemma 3.1, we

have

(3.8) l i m i ^ = l - α .

Let us point out that (3.6) is equivalent to saying that for any ε > 0,
there exists Ro > 0 such that for r(x) > RQ,

-a-ε, v r(χ)

In the event that M is a complete surface with nonnegative Gaussian
curvature outside a compact set, then Huber's theorem in [8] implies that
M must be of finite total curvature. In this case we can sharpen the above
estimate as follows.

Corollary 3.4. Let M be a complete simply connected surface with non-
negative Gaussian curvature outside a compact set. Then following the no-
tation of Lemma 3.1, there exist a constant C9 > 0 and Ro > 0 such that
for r(x) > RQ, we have

(3.9) rl

0~
a(x) < C9r(x)

and

(3.10) \ogr0(x)<C9r(x).

Proof Suppose K > 0 on M\B (R{). By enlarging R{ if necessary,
we may assume that ro(x) > 1 if r(x) > R{ . By [16], we have

\r 1

(3.11) ι/ r-Rχ (r-RχY

in the sense of distribution for r(x) > R{ .
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On the other hand, Theorem 3.2 implies that for any ε > 0, there exists
R2>2Rχ such that if r(x) > R2 then

(3.12) (1 - a - ε) Iogr0(x) < log(r(x) - Rχ).

This follows from the fact that the function logrQ(jc) > 0 if r(x) > R2>
2R{ and that

WMR,) _
*—oc \ogr(x)

Combining (3.11), (3.12), and the maximum principle, we have

(1 -α-δ) logr 0 ( .x) <\og(r(x) - RΛ + (1 - a) sup logr0

dBp{2Rx)

for all x E Bp(r)\Bp(2Rx). However, r can be taken to be arbitrarily
large, so the above inequality is valid on M\Bp(2Rχ). Note that R{ is
independent of ε . Hence by taking ε —• 0, (4.9) is valid with Ro = 2R{

and C9 = ±εxp((\-a)s(2R{)).

Inequality (3.10) is a consequence of Theorems 4 and 5 in [11] and the
facts that ^ log r0 is a Green's function on M and M has at least linear
area growth.

We would like point out that (3.9) was also proved in [4], [9].

4. Polynomial growth harmonic functions

In this section we would like to study the space of polynomial growth
harmonic functions on a complete noncompact (not necessarily simply
connected) surface with finite total curvature. More specifically, we will
give detailed descriptions on the space of harmonic functions which grow
at most like rk in terms of k and the geometry of M.

Due to the fact that each end of a complete surface with finite total
curvature is conformally equivalent to a punctured disk, which in terms is
conformally equivalent to R \ disk, we will prove the following lemma.

Lemma 4.1. Let h be a harmonic function on E = {z eC\ \z\> R},

which is smooth up to the boundary dE = {z eC\ \z\ = R} . Suppose that

there are constants k > 0 and C 1 0 > 0 such that

| * ( z ) | < C 1 0 ( l + |z|)* onE.

Then h can be expressed uniquely in the form

(4.1) A(z) = A(z) + A*(z)
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for \z\ > R, where h is a harmonic polynomial of degree < k with zero
constant term, h*(z) is a bounded harmonic function on E, and β is a
constant.

Proof Let B*(R) = {z e C | \z\ < R} . Define the number β as

1 f dh ,

where ds^ is the Euclidean metric, and rQ is the distance function with
respect to the origin. Set u(z) = h(z) - β\og\z\. Then for any simple
closed curve γ in E, we claim that

du Ί

where v is the unit normal vector of γ. Indeed, if γ is homotopically
trivial in E, then by Stoke's theorem and the fact that u is harmonic
the claim is obvious. On the other hand if γ is not homotopically trivial
in E, then γ and dB*(R) must bound a topological annulus. Applying
Stokes's theorem again, we have

du. f du ,ds L d s

= 2πβ-β ί 0
JdB*(R)

This justifies the claim, and implies that u = 9t(/) for some analytic func-
tion / defined on E. Moreover, the growth assumption on h yields that
1/(̂ )1 < C n ( l + \z\)k for some constant C π > 0. Hence the Laurent's
series expansion of / is of the form

[k] oo

7=0 j=\

where [k] is the integral part of k . Therefore

which can be expressed in the form (4.1), and this expression is clearly
unique.

Before we state the main theorems, let us fix our notation. Let (M, ds2)
be a complete noncompact surface with finite total curvature. By [8], M is
conformally equivalent to M\{p{, p2, , pm} , where M is a compact
Riemann surface and the {/?,} are points in M. Denote the ends of
M by {Eχ, E2, " , Em}, such that pz is the point at oo of Ei, for
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1 < / < m. Hence each E{ is conformally equivalent to the exterior of

a disk in C. We may assume that there are complete conformal metrics

ds] = e1Uιds\ on C so that ds] = ds2 on C\J9*(1), where we identify

Et with C\5*(l). Let p be a fixed point in M. For all x e M , let

r(x) be the distance from p to x with respect to the metric ds2. Also

if x e Et, let ro(x) and r^x) be the distances from the origin to x with

respect to the metrics ds% and ds2, respectively. Denote by K{ and dA{

the Gaussian curvature and the area element of ds2, respectively. Then

it follows from the assumption on M that C with the metrics ds2 has

finite total curvatures. Define

for 1 < / < m . Clearly, we have

lim
r(x)

Hence by Proposition 1.2, we conclude that

1 - a • = l im
Γ—°° nr

for 1 < / < m . In particular, ai < I if and only if Ei has quadratic area
growth.

Let Pι be the space of harmonic polynomials in R2 of degree less than
or equal to / with zero constant term. In particular, Pι can be viewed
as the space spanned by the set of homogeneous harmonic polynomials of
degree less than or equal to /, which vanishes at the origin. For a real
number k > 0, let Hk be the space of harmonic functions defined on M

k
which grows less than or equal to r . I n other words,

Hk = {h I Ah = 0 on M and |Λ(JC)| < C ( l + r{x))k for some C > 0}.

Theorem 4.2. Let k{ = k{\ - αz ) and Nt = dimPk . Then

Proof. Let h e Hk . Corollary 3.3 implies that for any ε > 0 satisfying
k(\ - ai + ε) < kι•+ 1 for all 1 < / < m , there exists C1 2 > 0 such that

|A(*)I < C1 2(l + ro{x))k{l~ai+e) for x e Ei and for all 1 < / < m . By the
fact that the harmonic equation is conformally invariant in dimension 2,
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h is harmonic on R2\5*(l) with respect to ds^ . Hence by Lemma 4.1,
h can be expressed uniquely as

(4.2) h(x) = *.(*) + h*(x) + βhι Iogr0(*)

for x e Eχ,. The function ht(x) is a harmonic polynomial of degree less

than or equal to ki which vanishes at the origin, h*(x) is a bounded

harmonic function on R2\J?*(1), and βh i is a constant. We can define

the map

Φ:Hk-*P, xP. x-xΛ

by

(4.3) Φ(A) = (A1, ,hm,βh),

where βh = (βhΛ, , βh,m-ι) e R W l l t i s c l e a r t h a t φ i s a l i n e a r

map. Also Φ(A) = 0 implies that h is bounded on E{, , £ O T - 1 and
h = h*m + βh m logr 0 on £"m . In any case, A is a harmonic function
on M which is bounded either from above or from below, which means
h = constant. Therefore the kernel of Φ is of dimension 1, and

d i m / 4 < d i m ^ x x Pk x R" 2 " 1 ) + 1

In order to obtain a lower bound of the dimension of Hk , we need to
study the range of Φ defined in (4.3). Let us first establish the following
two lemmas.

Lemma 4.3. Consider any one of the ends, say Eχ, which we identify
as R 2 \5*(l). Let f be a harmonic function on R 2. Then there exists a
harmonic function g on M such that f-g is bounded on Eχ and g is
bounded on any other end, Ei, for i Φ 1.

Proof Recall that we denote by B*(p) the Euclidean ball of radius p
centered at the origin. Suppose / is harmonic on R 2 . By the compact-
ness of M, for p > 1 there exists a harmonic function gp defined on

M\(E{\B*(p)) such that gp = f on dB*{p). We claim that

(4.4) ^ 1 ^ - / 1 = 0 .

In fact, if g - f > 0 on ΘB*{\), then by the strong maximum principle

and the fact that gp = f on dB*(p), we have gp-f>0 on B*(p)-B*(l)
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and also dgp/dr0 - df/drQ < 0 on dB*(p). However Stoke's theorem

implies that

0 = /
JM-(E,-B*(

[ ^ 0
JdB*(p) °V JdB*(p) Vr0

and

0 = / AofdAo=[ ^ds0,
JB*(P) JdB*(p) °ro

which is a contradiction. The same argument also rules out the possibility

that gp-f<0 on dB*(\). Hence (4.4) holds.

Let ωp denote the oscillation of the function g on dB*(l). We assert

that there exists a constant C 1 3 > 0 such that for all p > 1, we have

(4.5) ωp < C1 3.

If (4.5) is not valid, then we can find a sequence pt —> oc such that

timj-+ooω

p. = oo. Consider the harmonic function on M\(Eι\B*(pJ))

defined by

« - < •

Clearly the oscillation of gj is 1 on dB* (1) for all j . Together with
(4.4), this implies that

on dB*(\) for all j , where A = sup a β* ( 1 ) | / | . Since gj = f/co on

dB*{pj), it is easy to see that (4.6) is true on dB*{pj), and by the max-

imum principle (4.6) is also valid on B*(pj)\B*(l) for all j . Hence for

p > 1 we have

(4.7) -L( inf Λ - -?! - 1 < g. < JLf sup f) + — + 1
ωp\dB*(p) J ωPj *J ωp\dBΊp) J ωpj

on dB*(p) for all j with p > p. The maximum principle now im-

plies that the functions {g.} are uniformly bounded on M\(E{\B*(p)).

Hence by passing through a subsequence, gj converges uniformly on

compact subsets of M\{p{} to a harmonic function g, which is de-

fined on M\{pχ). By (4.7), the maximum principle, and the fact that

lim._>^ ωp = oc, the function g must satisfy -I <g < I. Therefore g
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must be identically constant by the parabolicity of M\{p{} . This contra-
dicts the fact that the oscillations of the functions {g } on dB*(l) are 1,
thus (4.5) is valid.

Applying (4.4) and (4.5), a similar argument shows that the set of func-
tions {gp} are uniformly bounded on compact subsets of M\{pχ}. So
there is a sequence pi —• oo such that g —• g, a harmonic function on

M\{pχ) . Obviously, g is harmonic on M and is bounded on E( for all
/ Φ 1. To see that / - g is bounded on ϋ^ , we simply observe that

Cι3)<gp<f+2A + Cl3

on B*(p)\B*(l) for all /? > 1.
Lemma 4.4. Lei £Ί <zm/ £"2 be any two arbitrary ends of M. There

exists a harmonic function g on M such that g is bounded on all other
ends E( for i Φ 1, 2. Moreover there are bounded harmonic functions gχ

and g2 defined on E{ and E2, respectively, such that

and
g = g2-\ogr0 onE2.

Proof Let dϊ2 be a complete conformal metric on M\{p2} so that
dϊ2 = dsl on E2\B*{2). By the construction of a Green's function in
[11, Theorem 1], there exists a harmonic function g on M\{p2} such
that g(x) —• -f oo as x —• p{, and g < 0 on £ 2 . Note that g must
be unbounded on E2. Therefore # = C1 4logr0 + gj on Eχ and ^ =
-C 1 5 logr 0 + # 2 on E2 for some positive constants C 1 4 and C1 5 and for
some bounded harmonic functions gχ and ^ 2 on E{ and £"2, respec-
tively. Integrating Δg on M\(EX U E2) and applying Stoke's theorem,
we conclude that C 1 4 = C 1 5 . Hence dividing g by C 1 4 , we obtain the
required harmonic function on M.

Following the notation and the assumptions of Theorem 4.2, we are
now ready to prove a lower bound for dim Hk .

Theorem 4.5. Let us consider the following complimentary cases:

(1) If M has subquadratic area growth, i-e.t A(r) = o(r2), then ά\mHk

> 1.
(2) If M has quadratic area growth, then

/=!
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where rf. = dim Pk _ε for all ε > 0, m is the number of ends with

quadratic area growth, and we have adapted the convention that dim Pι = 0

for / < 0 .
Proof Case (1) is obvious. To prove (2), let us fix 1 < / < m. Con-

sider the case where k{\ - at) > 0 is not an integer. We will prove that
for any h{ e Pk there exists h e Hk such that

/th

which Φ is the linear map defined by (4.3). Since ht e Pk , there exists

C 1 6 > 0 such that

in R 2 . By Lemma 4.3, there exists a harmonic function h on M such
that h is bounded on E. for all j Φ i and h - h{ is bounded in E(. The
fact that k(ί - at) > 0 is not an integer implies that there is an ε > 0
such that k\ = [k(l - αf.)] < k(ί - at. — ε). Hence for x e Eχr, we have

By Corollary 3.3 and the fact that h - ht is bounded in Et, there is

a constant C k

heHk, and
a constant C 1 8 > 0 such that \h(x)\ < C 1 8(l + r(x))k on Er Hence

/th

( 0 , - . - , A f . , - , 0 ) .
In the case where fc(l - αz) > 0 is an integer, kχ. - 1 = fc(l - αz) - 1 <

- αf ). A similar argument shows that for each hiePk_{, there exists

he Hk such that
/th

Φ ( Λ ) = ( < ) , • • • , Λ z - , , 0 ) .

Suppose that m = 1 then from the above results together with the fact
that the nullity of Φ is 1, it is easy to see that dimHk > Σ™^ N[ + 1.
Hence we may assume that m > 2. We may also assume that Em and
Ei, for 1 < / < m - 1, have quadratic area growth. By Lemma 4.4, for
each 1 < / < rn - 1, there exists a harmonic function g(/) on M which
is bounded on E. for all j ψ i or m. Moreover, there are bounded

harmonic functions g^ and gz

(/) defined on Em and ^ , respectively,

such that £ ( z ) = -logr 0 + g% on Em and g(i) = logr0 + g^ on £ . .
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By Proposition 1.2, 1 - a.. > 0 for 1 < j < m - 1 or j = m. Hence

Corollary 3.3 implies that g{i) e Hk and Φ{g{i)) = (0, , 0, β) where

£ = ( 0 , . - . , ? , • • - , 0 ) G R W " 1

for 1 < / < m - 1. Hence the rank of Φ must be at least Σ™ , Nf + m-1
and dim//^ > 5^/=1 Nt + m .

When the curvature of M is nonnegative outside a compact set, by
using Corollary 3.4 instead of Corollary 3.3, we obtain the following the-
orem.

Theorem 4.6. With the assumptions and notation of Theorem 4.5, and
the additional assumption that M has nonnegative curvature outside a com-
pact set,

m

dim H, = y N. + m
K / / I

1=1

for all k>\.

5. An isoperimetric inequality

In this section we will prove that a complete surface with finite total
curvature which has quadratic area growth at each end must satisfy an
isoperimetric inequality. On the other hand, any surface satisfying this
isoperimetric inequality must have quadratic area growth. Hence we can
view the isoperimetric inequality and the area growth condition as equiv-
alent conditions in our special class of complete surfaces.

We will first prove the isoperimetric inequality for simply connected
surfaces.

Theorem 5.1. Let M be a simply connected complete noncompact sur-
face with finite total curvature. Suppose that

JM
2π- / KdA = a>0.

IM

Then there exists a constant C1 9 > 0 depending only on M such that for

any relatively compact domain D c M, we have L2(dD) > Cl9A(D).

Proof By Proposition 1.2 and the assumption that a > 0, for any
ε > 0 if r is sufficiently large, then

(5..) ^ 2 < 2 - *
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and

(5.2) A(r) > ί l ^ V .

We can also choose Ro > 0 such that

(5.3) / \K\dA<π.
JM\BP(R0)

By enlarging Ro if necessary, we may assume that (5.1) and (5.2) hold for
all r > i? 0, and also that dBp(r) is homeomorphic to a circle for r > Ro

because of Proposition 1.4.
In order to prove the theorem, it is sufficient to consider the case where

D is simply connected. Indeed, by the fact that M is homeomorphic to
R2 , D must be homeomorphic to a domain of the form

where the domains Do and Dt, for 1 < / < k, are mutually disjoint and
homeomorphic to the unit disk with Dt c Do. Clearly, an isoperimetric
inequality for DQ will imply the same inequality for D .

For a relatively compact simply connected domain D c M, let us de-
note σ = dD, p = minΛ.Gσ r(x), and R = maxχeσ r(x), where r(x) =
d(x, p) is the geodesic distance between x and p . By the definition of
p and R, we have the inequality

(5.4) L{σ)>R-p.

We will now consider the following cases:

Case 1. Suppose R < 2R0 . Then by the definition of R, σ c Bp(2R0).

In fact, D C Bp(2RQ), since DΠ{M\Bp(2R0) is a compact connected com-

ponent of M\Bp(2R0), which is impossible because M\Bp(2RQ) is home-

omorphic to R2\2?*(l). By the relative compactness of the ball Bp(2R0),

there exists a constant C2 0 > 0 depending on Ro such that

(5.5) L\σ) > C20A(D).

Case 2. Suppose R > 2RQ and R- p > R/2. Inequality (5.4) implies

(5.6) L

2 ( σ ) > ( / ? - / > ) 2 > ^ .

However Proposition 1.3 and the fact that D C Bp(R) implies

C{R
2>A{R)>A{D).
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Hence

Case 3. Suppose p > R/2 > Ro and p $ D. This shows that σ c
M\Bp(R0), and hence by the simple connectivity of both D and Bp(R0),
we have D n Bp(R0) = 0 . An isoperimetric inequality of Huber in [7]
together with (5.3) yields

L2(σ) > 2 f 2τr - /
(5.7) \ JD

>l(ln- ί \K\dλ)A{D) > 2πA(D),
V JM\BP(R0) )

where K+ = max{0, K} .
Case 4. Suppose i? > 2i?0, R- p < R/2, and / ? E ΰ . As in Case 3,

we conclude that σ C M\Bp(R0). By the assumption that p e D, B (p)
is the smallest geodesic ball centered at p which is contained in D, and
/Jp(Λ) is the largest geodesic ball centered at p which contains D. We
claim that

(5.8) L(σ)>C2ιR,

where C21 = min{l/2, 4>/2(2-ε)(l -ε)/(25Cj)} , with the constant Cx

as in Proposition 1.3. To prove the claim, in view of (5.4) let us assume
that R - p < C2ιR . Hence

(5.9) p>(l-C2{)R.

Note that by the definition of C 2 1 , 1 - C21 > 0. Let x be a fixed point
on σ. Suppose that (5.8) is not true; then σ c Bχ(C2{R/2). For any
y G 2L((1 + C2ι)R)\B (R), let y be a minimal geodesic from /? to y.
We know that γ Π σ ̂  0 , because p e l ) and y e Z) by the choice of i?.
Let z G 7 Π σ then

d(y, z) = rf(p, y) - rf(p, z) < (1 + C21)Λ - (1 - C2ι)R = 2C2ιR,

where we have used the facts that y G ^ ( ( 1 + C2{R) and z G σ c
A / N ^ J C A / ^ α i - C ^ ) / ? ) by (5.9). Therefore Bp((l + C2l)R)\Bp(R)
CBχ(5C2ιR/2),<ιnd

(5.10)

by Proposition 1.3. However, by (5.1) we have A'{r)/y/A(r) = L(r)/y/A(r)
> y/(2 - ε)a forr>R> 2RQ. Integrating the inequality from R to
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(1 + C21)Λ yields

Applying inequality (5.2), we obtain

C2l)R) - A(R) > V { 1

2

 £)aC2lR{y/A(\ + C2l)R) + S/AJR)

Combining this with (5.10) gives C21 > 4y/2(2-e){l-e)/(25Cx), which
contradicts the definition of C 2 1 . Therefore L(σ) > R - p > C2ιR and
by Proposition 1.3

(5.11) L2(σ) > C 2 > 2 > ^ ^

We now conclude that the theorem is valid with the choice of

ί 1 2C2 }

C19 = minjC2 2 ^ Jj 2 0 , — ,2π,-^J.
Theorem 5.2. Let M be a complete noncompact surface with finite total

curvature. Suppose that all the ends of M have quadratic area growth. Then
there exists a constant C22 > 0 depending only on M such that for any
relatively compact domain D c M, we have

L2(dD) > C22A{D).

Proof Let p be a fixed point in M. By [15], there exists a > 0, such

that for r > a, the set M\B (r) can be written as U/Ii^/( r)> where

m is the number of ends of M. Moreover, M^r) is homeomorphic to

S x [0, oo), and ΘM^r) is homeomorphic to S for all /. By Huber's

theorem in [8], each Mt(a) is conformally equivalent to R 2 \5*( l) . By

arbitrarily extending the metric to R 2 , we may assume that the metric

ds2 on Λff.(fl) from M agrees with a complete metric ds2 of R2 on the

set R \B*(1). Let r(x) denote the distance from p to x with respect

to the metric ds2 , and let ^.(JC) denote the distance from the origin to x

with respect to the metric ds2 . Then clearly r.{x)/r(x) —• 1 as x —> oo .

Hence we may assume that for all x e R 2 \5*(l) , we have

i
2



COMPLETE SURFACES 163

Let D be a bounded domain in M with boundary σ = {Jk

j=χ G , where
each Gj is a simple closed curve. Let Rt = sup χ G σ r(x), p. = infJC€σ r(jt),
and i? = max 1 < ; < / t i? y .

Ca.se 1. Suppose R <2a . Then, following the same argument as in the
proof of Theorem 5.1, D c Bp(2a). By the compactness of B (2a) there
exists a constant C2 3 > 0 which depends on Bp(2a), such that

L\G) > C23A(D).

Case 2. Suppose R > 2a. Without loss of generality, we may assume
R = Rχ> 2a. Then D c Bp(Rχ). By Proposition 1.3, A(Rχ) < CχR

2

χ/2.

If Rχ - pχ>Rχ/2, then

M D )
~~C '

On the other hand, if Rχ - pχ < R{/2, then pχ > Rχ/2 > a. Hence
σχ c M\Bp(a). We assume ^ c Mχ(a), and further that D <£ Mχ(a).

Indeed, if D c Afj(fl), then we can view ί ) C R 2 and apply Theorem 5.1

to the metric ds\, and use the fact ds1 = ds\ to conclude that

L\σ) > Cχ9A(D).

Hence D <£ Mχ(a). We claim that dMχ(a) must lie inside Gχ in

R 2 , after we identify Mχ(a) to R 2 \5*( l) . In fact, by the definition of

R = Rχ, the set DnMχ must lie inside GX . Since GX C Mχ, we conclude

that GX must be homotopic to dMχ, otherwise D C Mχ. Moreover, the

origin of R2 is contained inside GX .
The assumption that pχ > Rχ/2 implies that for all x e σχ, we have

Hence the set Dχ = {x \ rχ(x) < R/4} lies inside σχ . Using Theorem 5.1

on the domain D bounded by GX , we derive

L\GX) = L2

χ{Gχ) > Cχ9Aχ(D) > Cχ9Aχ(Dχ) > C24R
2

χ,

where Lχ and Aχ are the length and the area computed with respect to the

metric ds\ respectively. The last inequality follows from the area growth

assumption on M. Proposition 1.3 and the above inequality imply that

L2(σ) > L\σχ) > 2-^ ψ

This completes the proof.
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The fact that the isoperimetric inequality is equivalent to the Sobolev
inequality (see [17]) allows us to state the theorem in the following form.

Corollary 5.3. Let M be a complete noncompact surface with finite

total curvature. Suppose that each of the ends of M has quadratic area

growth. Then there exists a constant C22 > 0 (given by Theorem 5.2), such

that for any compactly supported function f e H\ (M), we have

M
\Vf\dA>C22(J \f\2dA^ .

6. A Poincare inequality and a Harnack inequality

In this section, we will prove a Poincare inequality for the Neumann
boundary value problem, which together with Theorem 5.2 and Propo-
sition 1.3 will imply a Harnack inequality for solutions of second-order
linear elliptic partial differential equations.

For any set E C M and any point x e M, let us define the set

ΘX(E) = {v eSι

χ\ expχ{tQv) e E for some t0

and the geodesic y(t) = expχ(tυ) minimizes up to t0},

where Sι

χ e Tχ(M) is the set of unit tangent vectors at x e M. We also
denote the one-dimensional Lebesgue measure of θχ(E) by

ωx(E) = μ{θx{E))9

and the geodesic cone over E by

Cχ(E) = {y e M \ y = expx(tυ) for some t > 0 and v e θχ(E)}.

For any value of t > 0, let

ΘJC(£, t) = {v G θχ{E) I the geodesic γ(s) = expχ{sv) minimizes up to t},

and

Cχ(E, t) = {y e M \ y = expχ(sv) for some v e Θχ(E, t) and some s < t}.

We also denote the area and the length respectively by

Aχ(E,t) = A(Cx(E)nBχ{ή)

and
Lχ(E,t) = L(Cχ(E)ΠdBχ(t)).
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Theorem 6.1. Let M be a complete noncompact surface with finite
total curvature. Let p e M be a fixed point. Assume that there exists a
constant C25 > 0 depending only on M such that for all x e M and all
r > 0, the area of the geodesic balls of radius r, centered at x, satisfy
Λ{Bχ(r)) > C25r

2. Then there exist Ro > 0 and C2 6 > 0, such that for
R> Ro and q e dBp(5R), the first nonzero Neumann eigenvalue, λ{, for
the Laplacian on B (r) for r < R must satisfy

In particular, we have the inequality

inf/ {f-kfdA<~ ί \Vf\2dA
k JBq(r) ^26 JBq{r)

for all feH2(Bq(r)).
Proof In view of [17], it suffices to show that for all x e B (r) and all

E C Bq(r) with A(E) > \A(Bq{r)) the quantity ωx{E) is bounded below
by a positive constant depending only on M.

Let x and E be as above. By the fact that E C CX(E) Π Bx{2r), we
have

(6.1) jA(Bq{r)) < A(Cχ(E)ΠBχ(2r)) = Aχ{E, 2r).j χ(E)ΠBχ(2r)) = Aχ{

Applying a similar argument as in [3], [6] to CX(E, t) we obtain

<ω(E,ή- ί KdA
Jcx(E,t)

<ωχ{E)+ [ \K\dA
Jcx

in the sense of distribution. Integrating twice from 0 to 2r yields

Ax(E,2r)<2r2(ωx(E) + [ \K\dA).
\ JCχ(E)ΠBχ(2r) J

Combining this with (6.1), we have

(6.2) A(Bq(r))<4r2(ωχ(E)+ [ \K\dA
\ JCχ(E)ΠBχ(2r) )

Suppose the theorem is not true. Then there exists a divergent sequence
{i?z} satisfying: r. < Rn q. € dBp{5R.)9 xi e B^η), and E. c ^.(r .)

with A-iEJ > ̂ A{Bq{ri)), such that
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Using (6.2), we find

A{B (r.)) / r \
limsup \-^— < limsup 4 ωχ (E.) + / \K\ dA

< lim sup A\ \K\dA
I — O O JB^η)

<limsup4 f \K\dA = O,

since JM\K\dA < oo. However, by the assumption that A(Bq(r.)) >

C21r
1

i , this is a contradiction, and the theorem is hence proved.
By applying Corollary 5.3, we conclude the following.
Corollary 6.2. Let M be a complete noncompact surface with finite total

curvature and let E be an end of M. Let p € M be a fixed point. Suppose
E has quadratic area growth. Then there exist Ro > 0 and C2Ί > 0 such
that for R> RQ, we have

for all q e dBp(5R) ΠE and all r < R.
It is known that by a modification of Moser's method (see [1], [14]), the

Poincare inequality (Corollary 6.2), the Sobolev inequality (Theorem 5.3),
and an area growth assumption imply the following Harnack inequality.

Theorem 6.3. Let M be a complete noncompact surface with finite total
curvature. Let p e M be a fixed point. Suppose E is an end of M with
quadratic area growth. Then there exist Ro > 0 and a constant C2 8 > 0
depending only on M such that for R > Ro, q e dBp(5R) Π E, and any
positive harmonic function u defined on B (R), we have

sup u < C9o inf u.
BlR/2) 2SB(R/2)

7. Examples

In this section, we will give some examples to demonstrate some of the
fine points of the previous results.

Example 1. Let M = (R2, ds1), where ds2 = eluds\ for a smooth
function u = u(rQ) with eu = (^ log^)" 1 on R 2\5*(2). For x e M

such that rQ(x) > 2, we have

rM' C" ^k+f,e"v'>dr°=|O8(|O6Λ»W)+c»
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for some constant C2 9 which is independent of x. Hence M is complete

and for rQ(x) > 2, Iogr0(x) = C 3 ( / ( x ) .

On R2\B*(2),

2 d2

Therefore M has finite total curvature and the Gaussian curvature is neg-
ative outside the set B*(2).

This example shows that:
(1) Inequality (3.10) of Corollary 3.4 is not valid without the assumption

that K > 0 outside a compact set. In fact, one does not expect log r0 to
be of polynomial growth.

(2) Note that JMKdA = 2π, and M is of subquadratic area

growth. Also, the conclusion of Theorem 6.3 is not true on M. In fact,

logr0 is positive if ro(x) > 1. If R is sufficiently large and q G

dB0(5R), then logrQ(q) = C3Oe5R . We can find a point x e Bq(R/2) so

that r(x) = (5 + ±)R, and logrQ(jc) = C3Oe{5+ι/4)R. Hence logrQ(x) =

C30e
R^4 logrQ(q), and we do not have the inequality asserted by Theorem

6.3. This implies that the assumption that M has quadratic area growth

is essential for Theorem 6.3.
(3) From this example, it is easy to construct other examples to show

that m cannot be replaced by m in the statement of Theorem 4.5.

Example 2. Let M = (R2, ds2), with ds2 = e2uds]. Set eu =

(log(fQ + 2 ) ) " 1 , check that M is complete, and compute

. 8 4 ^
0 (r2 + 2)2 log(r2 + 2) (r2

0 + 2)2(log(r2 + 2)) 2 '

Hence M has finite total curvature. Also

1 r ί d u A Λ

2 J d ϋ

Since r(x) = /O

r°(x)(log(/2 + I))" 1 dt, we have

lim - = lim 4^ = l i m (log(rj + I))" 1 = 0.

Theorem 3.2 implies that for any ε > 0, r{

Q

ι~n~ε\x) < r(x) asymptoti-
cally. This example shows that the constant ε > 0 cannot be removed,
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because a = 0. Moreover, this example also shows that N^ cannot be
replaced by N. in Theorem 4.5.

Example 3. Let M be the flat cylinder. Then there is a linear growth
harmonic function which is positive at one end and negative at the other
end. In fact it must be asymptotically log rQ + constant at one end and
asymptotically - log rQ + constant at the other end. Hence the function
logr0 must be of linear growth, and Theorem 4.6 does not hold when
k< 1.
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