
J. DIFFERENTIAL GEOMETRY
33(1991) 91-125

AN EXPANSION OF CONVEX HYPERSURFACES

JOHN I. E. URBAS

Abstract

We study the motion of smooth, closed, uniformly convex hypersurfaces
in a Euclidean (/?+l)-space Rn+ι expanding in the direction of their nor-
mal vectorfield with speed given by a suitable degree one homogeneous,
positive, symmetric, concave function of the principal radii of curvature.
We show that the hypersurfaces remain smooth and uniformly convex
for all time and that asymptotically they become round.

1. Introduction

Let MQ be a smooth, closed, uniformly convex hypersurface in a Eu-

clidean (n + l)-space R"+1 . Suppose that MQ is given by a smooth em-

bedding XQ: S" -+ R"+ 1. We consider the initial value problem

( 1 jx — {x,ή = k{x,t)v(x,ή,

where k( 9 t) is a suitable curvature function of the hypersurface Mt

parametrized by X(-, /): Sn -> RΛ + 1, and i/( , t) is the outer unit normal

vectorfield to M{.
Problems of this kind have been studied from several points of view.

The motion of surfaces by their mean curvature was studied by Brakke [3]
using the methods of geometric measure theory, while (1.1) with k(-, t) =
-K( , t), where K is the Gauss curvature, was proposed by Firey [7] as
a model for the wearing of stones on a beach by water waves.

More recently, Huisken [11] considered the case k( , t) = -H( , t),
where H is the mean curvature, and showed that in this case the initial
value problem (1.1) has a unique smooth solution for some maximal time
interval [0, T), and as t —• T, the hypersurfaces Mt converge to a point
P. Moreover, the hypersurfaces Mt, obtained from Mt by a homothety
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about P keeping the area of Mt constant, converge to a sphere as t —•
T. The corresponding one-dimensional result was proved by Gage and
Hamilton [8].

Using different methods, Tso [18] considered the case k( , t) = -K(-, t)
and proved that (1.1) has a unique solution for a maximal time interval
[0, T) and Mt converges to a point as / —• T.

By combining the methods of Huisken and Tso, Chow [5], [6] was
able to prove analogous results for the cases k( , t) = -K( , tγ and
/c( , t) = -R{-9 t)xl1, where K and R are the Gauss and scalar curva-
tures respectively, and β is a positive constant. However, except for the
case k(>, t) = -K{-9 tγfn, his results were not as complete as those of
Huisken for the mean curvature case in that the initial hypersurface Mo

had to satisfy a suitable pinching condition to obtain convergence to a
sphere, while for the case k( , t) = -R{-, t)1^2, this was needed for the
existence of a solution as well as the convergence to a sphere.

The problem for hypersurfaces contracting by other curvature functions
is unsolved at present, but we expect results analogous to those of Huisken
for the mean curvature case.

Here we consider the case of expanding convex hypersurfaces. We shall
prove that a smooth solution of (1.1) exists for all time and that Mt be-
comes spherical as t —> oc for a large class of curvature functions. Our
approach is similar to that of Tso, and involves studying the evolution
equation satisfied by the support function of the hypersurfaces Mt, rather
than working directly with (1.1).

To formulate our results, we shall suppose that the curvature function
k can be expressed as

(1.2) k ( ' , t ) = f ( R l 9 . ' - , R n ) ,

where R{, , Rn are the principal radii of curvature of the hypersurface
Mt, and / € C°°(Γ+) is a positive, symmetric function on the positive
cone Γ+ = {(λ{, , λn) e R": λι > 0 for all /} . The reason for express-
ing k as a function of the principal radii of curvature rather than in terms
of the principal curvatures will become apparent later. The function / is
assumed to satisfy the following conditions:

(1.3) / i s homogeneous of degree one on Γ+ ,

(1.4) jj- > 0 o n Γ ,

(1.5) / i s concave on Γ+.
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Our main result is the following:
Theorem 1.1. Let Mo be a smooth, closed, uniformly convex hyper-

surface in Rn+ι parametrized by a smooth embedding Xo: Sn —• R"+ 1.
Let f € C°°(Γ+) be a symmetric, positive function on the positive cone
satisfying (1.3), (1.4), and (1.5). Suppose that one of the following three
conditions is satisfied:

(i) fe C°(P) and / = 0 on SΓ+

(ii) the function g defined by

g { λ ι ' " ' 'λ")

is concave on Γ+

(iii) n = 2.

Then the initial value problem (1.1), (1.2) has a unique smooth solution

X defined on the time interval [0, oo). For each t e [0, oo), X(-9 t)

is a parametrization of a smooth, closed, uniformly convex hypersurface

Mt in R"+ 1. Furthermore, if Mt is the hypersurface parametrized by

X(.,ή = e-
βtX( ,t), where

(1.6) β = f(l9'" , 1),

then Mt converges to a sphere centered at the origin in the C°° topology
as t —• oo, and there exists a positive constant H*, depending only on n,
f, β, and Mo, such that for any positive γ < 2 and any positive integer
m we have

(1.7) ||*l7( , t)hji{., t) - a / i / V ^ ) < Cme~yβt

and

(1.8) | | ί | 7 ( . , t)hjl{ , t) -δjtfe^Wc^ < Cme-{γ~l)βt,

where gijf hιj, gijf hιj are the metric and inverse of the second funda-

mental form of Mt, Mt respectively, and Cm depends only on n, m, β,

γ, f, Mo, and Xo.
Let us make some remarks about our hypotheses. As we have already

mentioned, we shall study the equation satisfied by the support function
of the hypersurfaces Mt. Condition (1.4) ensures that this equation is
parabolic. Condition (1.5) is used repeatedly in our proof and, together
with (1.4), is essential for our method. We do not know whether the con-
clusion of Theorem 1.1 remains valid if these two conditions are weakened.

We believe that conditions (i) and (ii) are superfluous, but we have not
been able to avoid these except in the case of two dimensions. As we
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shall see later, condition (ii) can be replaced by a weaker, but somewhat
artificial hypothesis, which follows easily from the more natural condition
(ii). Nevertheless, the cases of greatest geometric interest are not ruled out
by hypotheses (i) and (ii).

Before proceeding to the proof of Theorem 1.1 we give some examples
of functions / satisfying the required hypotheses. For any integer m such
that 1 < m < n, the m th elementary symmetric function Sm is defined
by

d 9) SM(V-Λ)= Σ V V
l<ί,

We define

and

(1.11) σ j λ , , - - - , λ n ) = S m ( l β ι , - - - , l / λ n y

Then σm and σm are smooth, positive, symmetric functions on the pos-
itive cone, and both are homogeneous of degree one. It is easily checked
that (1.4) holds for σm and σm . To verify the concavity condition (1.5),
we use a result proved in [16, §2.15], which asserts that for any integers p ,
r with 1 < p < r < n , the function (Sr/Sr_p)

ι/p is concave on Γ+ . The
concavity of σm then follows by choosing r = p = m (we take So= 1),
while that of σm follows by choosing r - n and p = m and observing

m n n m

Condition (i) of Theorem 1.1 is satisfied by σm for all m = 1, , n ,

but not by σm unless m = n. However, σm satisfies the alternative

condition (ii) because σm(l/λi, , lβn)~ι = σm{λ{, • • , λn), and σm

is a concave function on Γ+ . Similarly, σm satisfies (ii), but it is simpler

to use (i) in this case.
The functions σm and σm are the main examples of geometric interest.

The case σm corresponds to the case where the curvature function k is
the reciprocal of the m th root of the m th mean curvature.

In the one-dimensional case, we may allow Mo to have self-intersec-
tions. In this case we take
(1.12) k { . , t ) = p { . , t ) ,
where p(-, t) is the radius of curvature of the curve Mt. We have the
following result.

Theorem 1.2. Let MQ be a smooth, closed, immersed curve in R2 with
positive curvature and rotation number m > 0, and suppose that MQ is
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parametrized by an immersion Xo: Sι —• R 2 . Then the initial value prob-
lem (1.1), (1.12) has a unique smooth solution X defined on the time
interval [0, oo). For each t e [0, oo), X( , t) is a parametrization of a
smooth, closed, immersed curve Mt in R having positive curvature and
rotation number m. Furthermore, if Mt is the curve parametrized by
X( , t) = e~lX{-, t), then Mt converges to an m-fold cover of a circle cen-
tered at the origin in the C°° topology as t —• oo, and there exists a positive
number p*, depending only on Mo, such that for any positive integer I we
have

(1.13) \\Pi',t)-p*\\ci{Si)<Cιe-2"m\

where p( , t) is the radius of curvature of Mt and Cι depends only on I,
m, Mo, and Xo.

We shall prove Theorems 1.1 and 1.2 in the remaining sections of the
paper. In §2 we shall derive the equation for the support function of the
hypersurfaces Mt, assuming a solution of (1.1) exists, and show that the
initial value problem (1.1) can be reformulated as an initial value problem
for the support function. In §3 we derive the a priori estimates we need
to prove the existence of a solution of this problem for all time, and show
that after an appropriate rescaling the hypersurfaces Mt become spherical
as t —• oo. In the final section we indicate the modifications which need
to be made to our arguments if / is replaced by f* in (1.2) for some
constant a e [0, 1). We shall prove the following result.

Theorem 1.3. Let MQ, Xo, and f satisfy the hypotheses of Theorem
1.1 in cases (i) and (ii), and suppose that the curvature function k in (1.1)
is given by

(1.14) k(.,t) = f(Rl9 .' ,Rnf

for some constant a e [0, 1), where R{, , Rn are the principal radii
of curvature of Mr Then the initial value problem (1.1), (1.14) has a
unique smooth solution X defined on the time interval [0, oo) and for each
t e [0, oo), X(-,t) is a parametrization of a smooth, closed, uniformly
convex hypersurface Mt in R" + 1 . Furthermore, if Mt is the hypersurface
parametrized by X{ ,J) = {\+ δβtγ/δX{-, 0 , where β is given by (1.6)
and δ = I -a, then Mt converges to a sphere centered at the origin in the
C°° topology as t —• oo.

A version of Theorem 1.3 for immersed curves Mo in R similar to
Theorem 1.2 also holds. We leave it to the reader to formulate this.
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Gerhard Huisken [12] has proved a version of Theorems 1.1 and 1.2.
His method avoids consideration of the support function and is similar to
that used in his earlier work [11].

The author wishes to thank Gerhard Huisken and Klaus Ecker for sev-
eral informative discussions of this work, and for their interest and en-
couragement. In particular, some suggestions of Gerhard Huisken made
possible the inclusion of case (ii) of Theorem 1.1.

2. The equation for the support function

In this section we show that the initial value problem (1.1) can be re-
duced to an initial value problem for the support function of the convex
hypersurfaces parametrized by X( , t). We shall recall briefly some facts
about convex hypersurfaces.

Let M be a smooth, closed, uniformly convex hypersurface in R"+ 1 .
We may assume that M is parametrized by the inverse Gauss map X: Sn

—• M c R"+ 1 . Without loss of generality, we may assume that M encloses
the origin. The support function H of M is defined by

(2.1) H(x) = (JC , X{x)) for all xeS\

where ( , •) denotes the standard inner product of R"+ 1 . We extend H

and X to be homogeneous functions on R/I+1 - {0} of degrees one and

zero respectively. Evidently we also have

H(x) = sup (JC , y) for all xeRn+ι,
y<EM

so H is convex, since it is a supremum of linear functions. Furthermore,
H is smooth, since X is smooth. Since H is homogeneous of degree one,
we have

i=\

where D = (D{, , Dn+{) is the gradient on R"+1 . If M is a sphere of
radius R centered at the origin, then H(x) = R\x\.

Conversely, if H is a convex function which is smooth and homoge-
neous of degree one on R"+I - {0}, then it can be shown that H is the
support function of a unique convex hypersurface M = dB , where B is
the convex body

5= f){yεRn+ι:(x,y)<H(x)}.
xes"
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B is an intersection of halfspaces, and so is convex. Furthermore, the
coordinates of the point of M with outer unit normal x are given by
Xt - DjH. Proofs of these assertions can be found in [2].

Next we compute the metric and the second fundamental form of M
in terms of the support function. As before, we assume that M is given
as an embedding of Sn via the inverse Gauss map. Let eι, , en be a
smooth local orthonormal frame field on Sn , and let V be the gradient
on Sn . Differentiating (2.1) we obtain

VZ7/ = (VZJT, x) + (X, Vtx) = (X, V,.JΓ) ,

since V.X(x) is tangential to M at X(x), and x is the normal to M at
X(x). Differentiating once again, and writing V(j = V£ V., we obtain

VtjH - (X, V0.χ) + (V,JT, VjX) = (X, VijX) + A/y,

where h.. is the second fundamental form of M . To compute the term
(X, Vf x) we differentiate the equation (JC , x) = 1 and obtain

(2.2) <.x,Vzx) = 0

and

(2.3) (x, VijX) = -(Vz.χ, V x) = - ί 0 . ,

since ^ t , , en is an orthonormal frame -field, and finally,

(2.4) (Vkix,Vjx) + (Vix,Vkjx) = O.

From (2.2) and (2.3), we see that Vjjc, , Vnx form an orthonormal
basis for Tχ,,M, and hence

(X, Vl7x) = ((X, x)x, Vij

= (X,x)(x, V/7

= - HδιJ

by virtue of (2.2) and (2.3). Similarly

( X , V β x ) = - H δ u - ( X , V k j

so by adding together the above two expressions and using the symmetry
of V/;JC together with (2.4), we obtain

(2.5) hij^ jH + δtjH.
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To compute the metric g(j of M we use the Gauss-Weingarten relations

(2.6) Vix = hikg
klVιX,

from which we obtain

δti = <V, * , VjX) = h^'hj^^X, VSX) = hikh}lg
kl.

Since M is uniformly convex, ht. is invertible, and hence

(2.7) g i ] = hιkhjk.

The principal radii of curvature are the eigenvalues of the matrix btj =

hιh gjk , which, by virtue of (2.5) and (2.7), is given by

(2.8) 6i.. = Λi,. = V,,i/ + <5i,.//.

Next we reduce the initial value problem (1.1) to an initial value prob-
lem for the support function. This is carried out in [18] for the case of
the Gauss curvature, and the proof in general is the same. We include it
for completeness.

Let X be a solution of (1.1), and suppose that for each t e [0, oo),
X( , t) is a parametrization of a smooth, closed, uniformly convex hy-
persurface Mt. Let H( , t) be the support function of Mt, and let
vt\ Sn —• Sn be the Gauss map of X(-, t). Note that now we do not
assume that X( , t) is the inverse Gauss map. We define a new parame-
trization Ύ( , t) by

(2.9) X{x,t) = X{u;\x),t)

and

(2.10) k{x,t) = k(v;ι(x),t).

Then, assuming we have extended X to be homogeneous of degree zero

on R n + 1 -{0},wehave

i dX ^dXd{v;)ι

at d atdt dsi dt at dSi at

by (1.1). Thus

since dX/dsi is tangential. We see therefore that the support function
satisfies the initial value problem

(2.11) =F(VH + HI) on 5" x [0,oo),
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where / is the identity matrix, HQ is the support function of MQ ,

(2.12) F(a / 7) = / ( / V - ,/ ι Λ ) ,

where /^, , μn are the eigenvalues of [a^], and the curvature function
k is given by (1.2).

To obtain the higher order estimates needed, it will be convenient to
express the equation for H in a local coordinate chart. The mapping

(2.13) (*!,-• ,xn).

maps Rn onto S"_, and gives a coordinate system for 5" . In this coor-

dinate system the metric etj on S"_ is given by

(2.14) ,(.. = (i + WV^..__^ I j.

Let H be the support function of the convex hypersurface M, and set

(2.15) u ( x ι , . - - , x n ) = (l + \ x \ y 2 H ( X > > } , > * » ' - 1 ) .

By the degree one homogeneity of H, u is just the restriction of H to
xn+ι = - 1 . Straightforward computations yield

(2.16) AJ7 = (1 + W 2 ) " 1 / 2 Z ) / ; M .

From the Gauss-Weingarten relations (2.6) we obtain

(2-17) eu=hikhjlg

kl

and hence

(2.18) * V =V%
Thus by (2.14) and (2.16)

(2.19) gij = (δkl + xkx,)DikuDJιu.

In the coordinate system given by (2.13), the matrix [b(j\, the eigenvalues
of which are the principal radii of curvature, is given by

(2.20) bu - (1 + M2)1/2(<5,7 + x^Dj U.

However, the matrix (δik +xixlc)Djku is not symmetric in general and it is
convenient to replace it by a symmetric matrix. It is not difficult to check
that the matrix

(2.21) bu = (δik +
 X'Xk

 2l/2) (δit + XjX' , U2) Dklu
v lJ \ ι k i + (i + | x | 2 ) 1 / 2 / V i + (i + |jc|2)1 / 2y
is symmetric and has the same eigenvalues as (δilc + xtxk)Djku.
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Now let u be given by (2.15). Since H is homogeneous of degree one,
so is dH/dt. Thus

du, . (Λ . ΛΛβdH fx{, ••• , xn, - l \

dΓ ι ' n) y I N dt \ (i + | JC | 2 ) 1 / 2 )

We see therefore that u = H\χ = 1 satisfies

(2.22) | 7 = d + WV(έ v ) onR"x[0,oo),

Similar equations also hold for if | χ=±ι for any j = 1, , rc + 1.

In §3 we shall also consider the initial value problem (2.11) in the case
that V2i/ + HI is not necessarily positive definite. In view of this, we
note that in this case, in the local coordinate system given by (2.13), the
function u defined by (2.15) still satisfies the initial value problem (2.22).

From (2.20) we see that at (0, , 0, - 1 ) ,

r for i,j<n.

By a rotation of the coordinates x{, , xn we may diagonalize
[DijH]i j<n at (0, , 0, - 1 ) . The eigenvalues of this matrix are the
principal radii of curvature of M at the point with outer unit normal
(0, ••• , 0 , - 1 ) . The remaining eigenvalue of D2H, corresponding to
the radial direction, is of course zero, since H is homogeneous of degree
one.

Now suppose that we have a smooth solution of (2.11) such that the
matrix V H + HI is positive definite on Sn x [0, oo). Then if we extend
H( , 0 to be homogeneous of degree one on RΛ + 1-{0}, H( , 0 is convex
for each /. To see this, we observe that in the coordinate system given by
(2.13), for M = i f ( . , 0 l Λ | | + i = . 1 we have

V l7if (0 , - 1 , 0 + δijH(0 , - 1 , 0 = ̂ l 7M(0),

so D2u(0) is positive definite. Since similar assertions hold for i/( , 0
restricted to any ^-dimensional hyperplane in R"+1 - {0}, we conclude
that i/( , 0 is convex. For each / e [0, oo), //(•, 0 is therefore the
support function of a unique convex hyper surf ace Mt. Let M(-, t) be
the parametrization of Mt given by the inverse Gauss map. We want to
show that there exist diffeomorphisms φ{ , 0 : Sn -* Sn such that

(2.23) X{s, 0 =
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satisfies (1.1). We have

dX__8M_dφ1 ΘM__dM_dφ1 fdM\T

at ~ dXj at + at ~ dXi^Γ + \~dΓ) +kφ'

where (dM/dt)τ denotes the tangential component of ΘM/dt, since

dH .
k

Therefore we require φ to satisfy

(2.24)

Now let s G Sn and choose a coordinate system so that φ(s, t) = (0, - 1 ) ,
and R Λ x{-l} is the tangent hyperplane to Sn at φ(s, t). The coordinate
functions Mi are given by M. = D(H, so we also have D.M. = D.jH.
Since H is homogeneous of degree one, and therefore D χH = 0 at
(0,-1) for all / = 1, , n + 1, at (s, ί) we can write (2.24) as

T

V̂  ^^/ ( j\

Since [DijH]i j<n is positive definite at (0, - 1 ) , we deduce that φ sat-
isfies a system of the form

(2.25) 7 Γ ^ ' *) = ^ ^ ( 5 ' ^ ' *) f o r a 1 1 5 e S"'

where 7( , t) is a smooth tangential vectorfield on Sn . Standard results
on ordinary differential equations with a parameter imply that (2.25) has
a unique smooth solution for any given initial condition, in particular for

(2.26) φ(s,0) = s.

We have proved that (1.1) is equivalent to (2.11) together with the con-
dition

(2.27) V2// + / / / > 0 o n S " x [ 0 , o c ) .

In the remainder of the paper we shall study the initial value problem
(2.11), and we shall prove the existence of a solution satisfying (2.27).

We end this section by recalling the definitions of the various function
spaces and norms which we shall use. Let k be nonnegative integer and
let a G (0, 1]. Ck(Sn) is the Banach space of real valued functions on
Sn which are A:-times continuously differentiable, equipped with the norm

Il̂ llc*(5i/I) * <*
\β\<k
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Ck'a(S") is the space of functions in Ck(S") such that the norm

.. „ .. .. \Wβu(x)-Vβu(y)\
Mc,^ = \\u\\c,{SΊ + sup ^

is finite. Here |JC — jv| denotes the distance between x and y in Sn .
We shall also need norms defined on Sn x / , where I = [a, b]cR. We

denote by Ck(Sn x /) the space of real valued functions on Sn x / which
are /c-times continuously differentiable with respect to x , and [̂ /c]-times
continuously differentiable with respect to /, such that the norm

IMIc*(S"χ/)= Σ suplV^i i l
\β\+2r<kS x /

is finite. We denote by Ck'a(Sn x /) the space of functions in Ck{Sn x /)
such that the norm

||jy|| ||jy||
WU\\ck<"(S"xI) ~ "U"Ck{S" xl)

\VβDr

tu(x,s)-VβDr

tu(y,t)\
+ s u p s u p j L^r3

\β\+2r=kix,s)Λy,t)esnχi {\x - y\ +\s- t\r
(x,s)ϊ(y,t)

is finite.

We shall also use the spaces C*(Ω), Ck'a(Ω), Ck{Ω x / ) , and

? ' α ( Ω x / ) , where Ω is a bounded domain in R" . These are defined in

the same way as above.

3. Initial value problems on Sn x [0, oo)

In this section we shall study initial value problems of the form

o n S " x [ 0 , o c ) ,

where F is a smooth positive function of the form (2.12). In the previous
section we reduced the solvability of the initial value problem (1.1) to the
solvability of a problem such as (3.1), subject to the additional restriction
(2.27). It may be that / is in fact defined on some larger cone Γ than the
positive cone and / satisfies (1.3), (1.4), and (1.5) on Γ, but nevertheless,
for application to the initial value problem (1.1), we should consider only
solutions H of (3.1) which satisfy (2.27). However, from the point of
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view of the theory of partial differential equations, such a restriction is
generally neither natural nor necessary.

We shall consider therefore a somewhat more general situation. We
shall assume that F is given by (2.12) where / is a smooth, positive,
symmetric function on some open convex cone Γ ^ R" having vertex at
the origin and containing the positive cone. Γ is assumed to be invariant
under the interchange of any two coordinates λi and λ.. It is not difficult
to see that

(3.2)

We shall assume furthermore that / satisfies the following conditions:

(3.3) / is homogeneous of degree one on Γ,

(3.4) — > 0 o n Γ ,

(3.5) / i s concave on Γ.

The main examples of functions / which satisfy the above hypotheses
on some cone Γ strictly larger than the positive cone are the functions
σm with m = 1, , n - 1. It is shown in [4] that σm satisfies (3.4) and
(3.5) on the cone Tm which is the connected component containing Γ+

of the set where σm is positive. It is clear then that σm = 0 on dTm .

Any smooth function φ on Sn for which the eigenvalues of V2φ(x) +
φ{x)I belong to Γ for all x e Sn is said to be admissible with respect to
Γ, or Γ-admissible. Usually we will just write "admissible" when the cone
Γ is understood from the context. We also use the term "admissible" for
functions φ on Sn x [0, T) to mean that for each te[0,T), φ{ , t) is
admissible.

Our main result in this section is the following:
Theorem 3.1. Let F, T, and f be as above, with f positive, smooth

and symmetric and satisfying (3.3), (3.4), and (3.5). Suppose also that one
of the following three conditions is satisfied:

(i) feC°{T) and / = 0 on dT\
(ii) Γ = Γ+ and the function g defined by

1

is concave on Γ
(iii) n = 2 .
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Then for any smooth admissible function HQ on Sn , there exists a unique
admissible solution H e C°°(Sn x [0, oo)) of the initial value problem
(3.1). Furthermore, there exists a positive constant H*, depending only on
n, f, Γ, HQ, and β, where

(3.6) j? = / ( l , •• , 1),

such that ifH= e~βtH, then H converges to H* as t —• oo, and for any
positive γ < 1 and any positive integer k we have

(3.7) \\H( ,t)-H*\\ck{sn)<Cke-γβt,

where Ck depends only on n,k,β,γ,f,Γ, and Ho.
The existence and uniqueness assertions of Theorem 1.1 follow from

Theorem 3.1 for the case Γ = Γ + , by virtue of the results of §2. The
assertions of Theorem 1.1 concerning the asymptotic convergence will be
explained at the end of this section.

Before proceeding to the proof of Theorem 3.1, we make some remarks
about (3.1). First, by introducing the new time variable s - βt, it suffices
to consider the case β = 1. Henceforth we shall assume this. Next, since
/ is homogeneous of degree one, we see that

(3.8) F is homogeneous of degree one on Jt(Γ),

where Jt(Γ) is the cone of real symmetric n x n matrices [α ] such that

the eigenvalues of [atj] belong to Γ. Clearly we have ^f (Γ+) = S^xn,

the cone of real positive symmetric n x n matrices.

From (3.6) and the normalization β - 1, we see that

(3.9) F(δu) = 1.

Next, it is not difficult to see that the eigenvalues of [F^] = [dF/da^ are
df/dλ{, , df/dλn . Thus from (3.4) we obtain

(3.10) [ ^ ] > 0 onΛf(Γ),

which yields that the equation in (3.1) is parabolic for admissible solutions.
In [4], it is proved that the concavity of / on Γ implies the concavity

of F on Jt{T). Thus

(3.11) Fu

for all a = [α, ] e Jt(Γ) and all real symmetric n x n matrices [η^],

where Ftj kl = d2F/dakldau .
We shall need two inequalities concerning F which follow from the

hypotheses (3.3), (3.4), and (3.5).
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Lemma 3.2. We have

(3.12) ^ =
i=\

Proof. It is sufficient to prove the inequality

(3.13) Σ f x ^ 1 onΓ-

Let A = (A,, • , λn) € Γ and suppose without loss of generality that λ, <
••• <λn. For any / i > 0 w e have (μ + A,, , μ + λn) e Γ. Thus using
(3.3), (3.4), (3.5), the convexity of Γ, and the fact that A; < < Aπ , we
obtain

Dividing by μ and letting μ —> oo yield (3.13).
L e m m a 3 . 3 . L e t λ = ( λ λ , , λ n ) E Γ a n d s u p p o s e t h a t λ { < -•- < λ n .

(3.14) ^

/ We have

Thus since / is symmetric and (3.3) holds, we find

(3.15) Jχ=\ o n t h e d i aε°n a l & = {λeΓ:λι = - = λn}.

Using this together with (3.3), (3.5), and the convexity of Γ, we obtain

(3.16) f ( λ l 9 . . . , λ Λ ) <

n

(3.14) follows from this, so the lemma is proved.
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Remark. Condition (3.4) with the strict inequality was not used in the
proof of Lemmas 3.2 and 3.3. Thus they are valid in the degenerate case
where

(3.17) f £ > 0 onΓ.

Since Γ D Γ+ , this condition is implied by the positivity and concavity of

/ .
Lemma 3.2 is used to show that the lower bound on F , the upper bound

on the maximum eigenvalue of V2H+HI, and in case (ii) of Theorem 3.1,
the lower bound on the minimum eigenvalue of V2H+HI, are preserved,
as well as in the proof of the asymptotic convergence. Lemma 3.3 is used
only for the last of these and is not essential for the proof, for at that
stage uniform parabolicity has already been established, and thus (3.14)
holds with the constant £ replaced by a constant depending only on the
parabolicity. However, much of our proof is valid in the degenerate case
(3.17), and for this reason we prefer to use Lemma 3.3.

In establishing the necessary a priori estimates it will be convenient to
work with the equation for H = e~*H rather than that for H itself. Using
the degree one homogeneity of F , we see that H satisfies the initial value
problem

(3 18) ^=F(VH + HI)H on S" x [0, oo),

and H is admissible if H is. We shall derive all our a priori estimates
for H these are then readily translated into a priori estimates for H.
Thus for the remainder of this section, H will denote a solution of the
normalized problem (3.18), rather than of (3.1).

We begin with the estimate for H.
Lemma 3.4. Let H be an admissible solution of (3.18) on Sn x [0, T).

Then

(3.19) m™Ho < H( > 0 ^ ™ o

for all te[0, T).
Proof At a point where H attains a maximum with respect to the

spatial variables, we have V2// < 0. Thus using (3.8), (3.9), and (3.10),
we see that dH/dt < 0 at such a point. Now let 0 < t{ < t2 < T and set
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Since H is smooth, Hmaκ is evidently a Lipschitz function of t. Suppose
t h a t #m«('l) = H(xl ' Ί

, ί2) - H(x2 , /,) + tf(x2 , ί,)

<//(x 2 , ί 2 )-/ ί(x 2 , ί 1 ) .

It follows that

a . , , " - " + *>-"-"> <o
A->0+ Λ

for all t e (0, Γ) . By a result of Hamilton [10] we conclude that

" m a * ω < ^maχ(θ)

A completely analogous argument yields

^ m i nW = m m i / ( x , r ) > / / m i n ( 0 ) ,

so the lemma is proved.
We now prove an upper bound for the eigenvalues of V2H + HI. Sim-

ilar ideas were used by Pogorelov [17] in the elliptic case, and later by Tso
[18] and Chow [5], [6] in the parabolic case.

Lemma 3.5. Let H be an admissible solution of (3.18) on Sn x [0, T).
If at t = 0 we have

(3.20) V2H + HI <KI

for a positive constant K, then this remains true for all t € [0, T).
Proof Let t € (0, T) and suppose that the maximum eigenvalue of

the matrix [/z/y( , ή] = V2//( , t) + H( , t)I on Sn is attained at xt e Sn

with unit eigenvector ξt E TχS
n . By a rotation of the frame e{, , en

at xt, we may assume that ξt = eχ at xt.
Let us now differentiate the equation

(3.21) ^ = F(V2H + HI)-H
at

twice. We obtain

(3.22) —VH = FV(VH + δH)

(3.23) d ί 'J 'J u

•W)-VklH.
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Using the standard formulas for interchanging the order of covariant dif-
ferentiation, we have

(3.24)

where R/ kl is the Riemann curvature tensor of Sn . Since ex, , en is

a local orthonormal frame on Sn , using the Gauss equations we have

(3.25) R/kι = RίJU = δikδjΊ - δuδjk ,

which together with (3.24) gives

, , 26) VkHjH = VijklH + 2δklVuH - 2όuVuH
{ ' ^ +δ]kVaH-δaVJkH.

Using (3.26) in (3.23), we obtain

( 3 2 7 ) +WaH-Fu*&H
+ Fij^^ij" + δtJH)VkΦnH + δrsH) - VklH.

Since F is homogeneous of degree one, from (3.21) it follows that

(3-28) δjg- = δklFυVuH + δkl{^ - \)H.
Adding this to (3.27), and using the degree one homogeneity of F once
again, we see that hkι = VklH + δklH satisfies the equation

(3 29)

Let us now set k = I = 1 in (3.29). Using the concavity of F to
estimate the term involving F(j rs we get

(3.30) ^hn<FijVijhn-{cr+l)hn+2F.

Then the fact that the maximum eigenvalue of [Af. .(•, ή] over Sn is equal

to hn(xt, t), together with (3.8), (3.9), (3.10), and Lemma 3.2, leads to

(3.31) ^ A M < 0 at (*,,/)•
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An argument similar to that used in the proof of Lemma 3.4 now implies
the conclusion of the lemma.

Remark. Since (3.16) holds, the above proof also shows that the upper
bound for AH+nH is preserved. However, we do not get an upper bound
for the eigenvalues of V2H + HI from this, unless we also have a suitable
lower bound, for example V2H + HI > 0.

A bound for H in the C2 norm now follows easily.
Lemma 3.6. Let H be an admissible solution of (3.18) on Sn x [0, T].

Then we have

(3.32) cVχ,p.7Ί>

where C depends only on n and ||#0llc
2(s'1)

Proof. We can obtain an upper bound for the eigenvalues of V2H
from Lemmas 3.4 and 3.5, and a lower bound from the upper bound and
the inequality AH + nH > 0. Then we have a full second derivative
bound, and the gradient bound for H follows easily from this. To prove
the bound for dH/dt, we use (3.21), together with the bounds we have
already established and the fact that F > 0.

The next step is the derivation of a suitable lower bound on the eigen-
values of V2// + HI which, together with Lemma 3.5, will imply that
(3.21) is uniformly parabolic. First we show that the lower bound on F
is preserved.

Lemma 3.7. Let H be an admissible solution of (3.18) on Sn x [0, T).
Then for all te[0,T) we have

(3.33) min F(V2H( , t) + H{ , t)I) > min F(V2H0 + HQI).

Proof Differentiating equation (3.21) with respect to / we get

Since F is homogeneous of degree one we have

β H

(3.35) _ _ = j F / . v / 7 / / + ( ^

Thus F = dH/dt + H satisfies the equation

f)F

(3.36) _ = = / r . v . . F + ( ^

Since F > 1 by Lemma 3.2 and F > 0 at t = 0, the conclusion of the
lemma follows.
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Lemma 3.8. Let H be an admissible solution of (3.18) on Sn x [0, T).
Then in each of the cases (i) and (ii) in Theorem 3.1, the eigenvalues of
V H + HI lie in a compact subset of Γ, and moreover, in case (ii), if for
some constant ε > 0 we have

(3.37) V2H + HI>εI

at t = 0, then this remains true for all t e [0, T).
Proof We need to consider each case separa ήy.
(i) By Lemma 3.5 the eigenvalues of V 2 //+HI are bounded above by a

positive constant K independent of t. Since / is uniformly continuous
on Tκ = {λeT:λi<K for all /} , and F{V2H + HI) is bounded from
below by a positive constant by Lemma 3.7, condition (i) implies that the
eigenvalues of V H + /// remain in a fixed compact subset of Γ, which
is independent of t.

(ii) To show that the lower bound on the eigenvalues of [Af..] is pre-
served we would naturally like to use (3.29) directly. However, this does
not seem to work, and instead we consider the equation satisfied by the
inverse matrix [hlJ] and try to bound its maximum eigenvalue. Let us
compute the evolution equation for hM . We denote the partial deriva-
tives dhpq/dhkl and d2hpq/dhrsdhkι by A£? and hp

k

q

lrs respectively. We
have

(3.38) hp

k] = -hpkhqϊ\

(3.39) hp

k

q

rs = hprhkshql + hpkhqrhl\

(3.40) V,/Λ = Λ - V Λ /

(3.41) VtfA" = O Z ,Λ/ + C « V ι W * /
Use of (3.29), (3.38), (3.39), and (3.41) gives

ιkl

- 2Fhpkh"k

Fu{hprhkshql + hpkh9rhh)VihrsVJhkl.
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To proceed further we use the fact that Vthjk is invariant under the in-
terchange of any pair of indices. Since h. is symmetric, it suffices to show
that Vihjlc = V'jhik . By means of the standard formula for commuting
the order of covariant differentiation, together with (3.25), we obtain

δJkV,H

Notice that we have not used the positivity of [A;..] to derive this. Using
this we find

,„ + Frjh
pkhish<» + Firh

plh'khJs)VkhrsVιhij

Substituting the above equation into the equation for hpq gives

(3.42) Lrf* = F..v..hpq - 2Fhpkhql + (Sr+\)hpq

In particular, for p = q we have

(3.43) ! _ / , " = FiiViih
pp - 2Fhpkhpk + (^+ \)hpp

at lJ J

and if we impose the condition

(3-44) (Fu,rs + 2F

irh
J%As>0

for all real symmetric n x n matrices [η.j], then

(3.45) J L A " < FijV.jh1" - 2Fhpkhpk + (<T + \)hpp

for any p = 1, , n .
Now let us suppose that the maximum eigenvalue of [hlJ] over Sn at

time t is attained at a point xt e Sn with unit eigenvector ζt e TχS
n .



112 J. I. E. URBAS

By a rotation of the frame eχ, , en at xt, we may assume that at xt

we have ζt = ex. At (x,, t) we thus have

|~AΠ < - 2F{hUf + ( ^ + \)hU < -2^hU + ( ^ + l)/zπ

= - ( ^ - 1 ) Λ Π < 0

since y > 1 and hn > 0. By an argument similar to the one used in the
proof of Lemma 3.4, we conclude that the maximum eigenvalue of [hιj]
over Sn at time t is bounded by the maximum eigenvalue of [hιj] over
Sn at ί = 0.

Case (ii) is proved, except for the verification of condition (3.44). This
condition appears to be somewhat artificial, but as was pointed out to us
by Gerhard Huisken, it follows easily from the more natural hypothesis
(ii). For, by condition (ii), the function F defined by

(3 46) F^ = 7W)
is a concave function, and we have

(3.47) Pu-F'2Fmnh
mihnj,

r» T-'—2 pί / j YYIT i is i nj * mi i nv j js\

(3 48) FV>"=~F F™{h k k + h k k )

-F-2Fmnp

Using the concavity of F, and the symmetry of Fmn to interchange some
indices, we obtain

(3.49) {Fijn + 2Firh
is)ηuηrs > IF^F^)1 > 0

for any real symmetric n x n matrix [η.j]. Thus (3.44) holds and the

lemma is proved.
Remarks, (i) In case (i) of Lemma 3.8 it is sufficient to assume

limsup f(λ) < min F(V2H0 + HQI),
s"

where K is the maximum eigenvalue of V2//0 + H0I over Sn and Γ^ =
{λ e Γ: Af. < K for all /}.

(ii) Lemmas 3.5, 3.7, and 3.8 are of special interest for the case Γ = Γ+ ,
for in the context of the initial value problem (1.1), they imply that the
upper and lower bounds for the principal radii of curvature (and hence also
for the principal curvatures) of the normalized hypersurfaces Mt, and the
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lower bound for the normalized curvature function k, are preserved by
the evolution. In particular, all three assertions are valid in the case that
/ is given by σm or σm .

Once we know that the eigenvalues of V2H + HI remain in a fixed
compact subset of Γ, (3.21) is uniformly parabolic by virtue of (3.4)
and the smoothness of / . Thus there exist positive constants λ and Λ,
depending only on /i, / , Γ, and Ho, such that

(3.50) λ\ξ\2 < FU{V2H + Hηξfij < A\ξ\2

for any ζ e Rn . Holder continuity estimates for V2H and dH/dt now
follow from results of Krylov and Safonov [13], [14], and once we have
these, estimates for higher derivatives follow from the standard theory of
linear uniformly parabolic equations.

Lemma 3.9. Let H be an admissible solution of (3.18) on Sn x [0, T].
Then for any t e (0, T] we have

(3.51) £ |

where a e (0, 1) depends only on n, Λ, and λ, and C depends in

addition on Γ 1 and \\H\\^2{Snχ[QT]y

Proof The results of Krylov and Safonov are proved for equations
on domains in Euclidean space, so it is convenient to work in a local
coordinate chart in order to apply these. Let u be given by (2.15). In the
local coordinate system given by (2.13) u solves

"(3.52) | j = (l + WV(6 l 7)-« onR"x[0,Γ],

M( , 0) = uQ9

where btj is given by (2.21), and u0 by (2.15) with w, H replaced by
u0, HQ. Since we have bounds for the spatial derivatives of H up to
order two and for the first time derivative of H on Sn x [0, T], we also
have similar bounds for u on 52(0) x [0, T]. Furthermore, (3.52) is
uniformly parabolic on B2(0) x [0, T] with parabolicity constants λ and
Λ depending only on λ and Λ in (3.50).

Differentiating (3.52) with respect to t yields

where

A -ίl + \χ\2)F (δ I x'x" \(s - XiX'

*ii - U + W ^ | I β Λ + , + ( , + | j c | 2 ) 1/2 j ^,7 + j + ( 1 + M 2 ) 1 / 2
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Thus du/dt satisfies a linear locally uniformly parabolic equation on R"x
[0, T]. A result of Krylov and Safonov [14] (see also [13, Theorem 4.2.7])
implies that for any t e (0, T) we have

(3.54) I ^ I U ϊ Π Γ ,τ - C "

where a{ e (0, 1) depends only on AZ, A, and Λ , and C{ depends in

addition on Γ 1 and \\du/dt\\~0(S^)x[^T]).

Next, since F is concave we may apply a result of Krylov [13, Theorem
5.5.2] to deduce that for any t e (0, T) we have

where a2 e (0, 1) depends on the same quantities as α p and C2 depends

in addition on Γ 1 and I M I ? ( 5 r ^ x [ 0 f 7 Ί Γ

Notice that in the estimate (3.55) there is no explicit dependence on the
derivatives of F. This is because the first derivatives F(J are controlled

by the parabolicity constant Λ, and an examination of the proof of (3.55)
shows that dependence on the second derivatives of F does not occur,
since the right-hand side of (3.52) is concave as a function of the matrix
b{-, and not just of D2u.

Finally, since H restricted to any hyperplane x., — ± 1 , j = 1, , n +
1, satisfies equations similar to (3.52), a covering argument yields the
conclusion of the lemma.

Standard parabolic theory (see [15]) applied to (3.52) together with ap-
propriate covering arguments yields higher order estimates.

Lemma 3.10. Let H be an admissible solution of (3.18) on Sn x [0, T].
Then for any t e (0, T), any positive integer k, and any α e (0, 1) we
have

(3.56) PΊIc-W.Γ])^'

where C depends only on n, k, a, Λ, λ, t~ι, F, and \\H\\~2,cn m ™.
c (ύ x [u, / JJ

Remark. The estimates (3.51) and (3.56) blow up as / —• 0. They
may be extended up to t = 0, but we do not need this.

We are now in a position to prove the existence assertion of Theorem
3.1 in cases (i) and (ii). Since HQ is a smooth admissible function, a
standard argument using the implicit function theorem yields the exis-
tence of a unique smooth admissible solution of (3.18) on Sn x [0, T) for
some small positive T. Let [0, Γ*) be the maximal interval for which



AN EXPANSION OF CONVEX HYPERSURFACES 115

a smooth admissible solution exists, and suppose that T* < oo. The es-
timates obtained above show that this solution can be extended smoothly
to [0, T*] and that //(•, T*) is admissible. We may now use the im-
plicit function theorem again to obtain a smooth admissible solution on
an interval strictly larger than [0, T*]. This contradicts the maximality
of T*, so we conclude that a smooth admissible solution of (3.18) exists
for all time.

The uniqueness of smooth admissible solutions of (3.18) is easily es-
tablished. If Hχ and H2 are two such solutions, using the convexity of
^f(Γ) it is easy to see that w = Hχ - H2 satisfies a parabolic differential
equation of the form

(3.57) ηj£ = auVjjw + cw ,

where c > 0. By arguing as in the proof of Lemma 3.4, we see that w < 0
on Sn x [0, oo). The proof that Hχ > H2 is similar.

Notice that this argument also shows that if Hχ and H2 are two ad-
missible solutions of (3.21) and Hχ<H2 at / = 0, then Hχ < H2 for all
time.

Let us now prove the existence of an admissible solution in case (iii)

of Theorem 3.1. Thus we assume n -2. Since Ho is admissible and

smooth, the eigenvalues of V2//0 + H0I lie in a compact subset K of Γ.

Thus we may find a symmetric, convex cone Γ7 with vertex at the origin

such that K c Γ7 and T1 - {0} c Γ. We may suppose that Y1 is given by

<3 5 8> ϊ

for some constant μ > -1.
Let us now define a function / by

(3.59) f(λ) = inf {/(Ao) + Df(λ0) • (λ - λ0)}.
λoer

Using the properties of / , it is not difficult to check that / agrees with

/ on Γ , the set f where / is positive is a convex, open, symmetric

cone with vertex at the origin containing Γ7, and that conditions (3.3),

(3.4), and (3.5) with / , Γ replaced by / , Γ are satisfied. Furthermore,

since / is smooth, we have / e C 1 ! ( f ) n C°(f), and / ΞΞ 0 on df.
Thus / satisfies all the hypotheses of Theorem 3.1(i), except that / is
of class C 1 ' 1 rather than C°° . By a straightforward approximation argu-
ment, we deduce the existence of a unique Γ-admissible solution



116 J. I. E. URBAS

H e C2'a(S2 x [0, oo)) of the initial value problem

(3.60) QΓ = F(VH + H I ) H o n S 2 χ [ 0 , o o ) ,

where F is defined in the same way as F, with / replaced by / . Since
the eigenvalues of V2//0 + H0I lie in a compact subset of Γ7, the same
is true for H on a sufficiently small time interval [0, T). We assert that
the eigenvalues of V2H + HI in fact remain in Γ7 for all time. Once we
have shown this, we see that H is a Γ-admissible solution of (3.18) on
S2 x [0, oc), since / agrees with / on Γ . Thus Theorem 3.1 in case
(iii) will be proved.

Let us denote the ratio of the minimum and maximum eigenvalues of
[hy] = [V2// + HI] by w. Then we want to show that w > μ on

S2 x [0, oc). Suppose that at time t, w{ , t) attains its minimum at a

point xteS2. By a rotation of the frame e{, e2 at xt, we may assume

that w = hn/h22 at (xt,t) with hn < h22 and h22 > 0 there. Let

us also assume that w(xt, t) < μ. Then at (xt, t) the eigenvalues of

[h.j] lie in f - Γ ' , and since u is of class C 2 α , this is also true on

a small neighborhood of (xt, t). Since n = 2, / i s linear on each of

the two components of f - Γ 7 , and we see that H is of class C°° in

a neighborhood of {xt, t). We may also suppose that h22 > 0 on this

neighborhood. Then we may differentiate hn/h22 twice near {xt,t) to

obtain

22) h22

( A )

Using (3.29), we see that near (xt, t), t> = hn/h22 satisfies the equation

(3.63)
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Since / is linear on each of the two components of f - Γ7 we have
Fijrs = 0 at (xt, t), and so we deduce that

(3.64) ^ > 0 at(jc,,O-

Since w > μ at / = 0, a slight modification of the argument used in
Lemma 3.4 now shows that w > μ for all time. The existence assertion
of Theorem 3.1 in case (iii) is proved.

Remark. If n > 3, then / is not linear in f - Γ'. All we obtain in
this case is that two of the eigenvalues of D2f on f - Γ7 are zero, which
is not sufficient for our argument. However, we expect that if H is a
smooth solution of (3.18) and //( , 0) is Γ-admissible, then H remains
Γ-admissible for all time, without the hypotheses (i) or (ii) of Theorem
3.1. More precisely, we conjecture that if Γ7 is the smallest closed, convex,
symmetric cone with vertex at the origin which contains the eigenvalues
of V2H + HI at t = 0, then the eigenvalues of V2H + HI remain in Γ'
for all time.

The only assertions of Theorem 3.1 which are still to be proved are those
concerning the asymptotic behavior of H. To do this we consider the
matrix [r ] = V2H + (H-F)I, and suppose that its maximum eigenvalue
over Sn at time t is attained at a point xt e Sn with unit eigenvector
ζt eTχS

n . As usual we may assume that ζt = eχ at xt. From (3.30) and
(3.36) it follows that rn satisfies the differential inequality

(3.65) —rn <FijVijrn - (<T + l ) r n - 2(<T - l)F.

Since rn is the maximum eigenvalue of [rtj\ at (xt, t) and F satisfies
(3.8), (3.9), and (3.10), we see that rn is nonnegative at (xt, t). Using
this together with the fact that F > 0 and F > 1, we obtain

(3.66) <ίrn<-2rn at (*„ 0-

An argument similar to that used in the proof of Lemma 3.4 then yields

(3.67) max [λmax(x, 0 - f(λ(x, t))] < Cχe~2i,
xes"

where λ(x, t) = (λ{(x, t), , An(x, 0) denotes the set of eigenvalues of

V2//-h//7 at (x9t)9 λmaχ(x, t) is the maximum eigenvalue of V2H+HI

at (x9t)9 and C{ is a positive constant depending only on HQ and / .

Using Lemma 3.3 we obtain

(3.68) (λ(χ,t)-λttύn(x,t))<nCιe-2t
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where λm[n(x, t) denotes the minimum eigenvalue of V2H+HI at (x, t).

Thus for each x eSn ,

(3.69) dist(λ(jc, 0 , 3f) < Ce~2t,

where ^ is the diagonal of Γ. Since / is smooth on Γ and the eigen-

values of V2// + HI remai

using (3.15) we deduce that
values of V2// + HI remain in a fixed compact convex subset K of Γ,

(3.70) < s u p \D2f\ dist(A(jc 9t)9&)<Ce 2t,
dλ,

and hence, using (3.16), we obtain

-AH + H- Ce~2' < Fi...(V, H + δ..H)
(3.71) » 2 1

= F(V H + HI) < -AH + H,

( 3 * 7 2 ) n~* " ^ dt ^ n

Next we show that Ή(t) = (l/ |5 / l | )/ 5ι,/f(^, 0 ^ converges as t -•

oc. Integrating (3.72) over S" and using the divergence theorem give

-Ce~2t < jfH(ή < 0, and then integrating this over any interval [tχ, t2] c

[0, oo) we obtain

Since // is a nonincreasing function and H is bounded below, we con-
clude that H* = \imt_¥θoΉ(t) exists, and furthermore, that

(3.73) \Ή(t)-H*\ < Ce~2t.

To show that //, and not just Ή, converges to H* multiplying (3.72)
by H, integrating over Sn , and using the Poincare inequality on Sn we
obtain

H2<-lf \VH\2 + Ce~2t<-

Since H > 0 and -Cέ? 2/ < ftH < 0 by (3.16), and

/ (H2-Ή2)= f (H-Ή)2,
Jsn Jsn

we have

(3.74) f (H-Ή)2<C(γ)e-γι,
Js"
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and hence

e~yt(3.75) / (H-H*)2<C(γ)
Jsn

for any γ < 2 .

To obtain the convergence of H to H* in the Ck norms, we use an
interpolation inequality (see [9, Corollary 12.7]).

Lemma 3.11. Let T be a smooth tensor field on Sn . Then for any
integers k, m such that 0 < k < m, we have

/ \ k/m / r \ 1— k/m

(3.76) / V 2 ( / V " 2 ) φ ή
where C depends only on m and n.

Applying this to H - H* and using the fact that all derivatives of H
are bounded independently of t, we obtain

(3.77) / \VkH\2<Ck{γ,γ)e~
Js"

for any γ < γ
§2.7]) we have

|v n\ v. <^y, γ)C
Jsn

for any γ < γ < 2. By the Sobolev embedding theorem on Sn (see [1,

(3.78) \\H - H*\\C,{SΛ) < C(fc, /) ( / IVkH\2 + \H-

for any k> I + n/2. The estimates (3.7) now follow from (3.75), (3.77),
and (3.78), and Theorem 3.1 is completely proved.

Next, we prove the assertions of Theorem 1.1 concerning the asymptotic
convergence. In the case that the matrix V2// + HI is positive definite,
which is true in any case for t large enough, we saw in §2 that //(•, t) is
the support function of a convex hypersurface Mt, and from above, we
know that Mt converges in the C°° topology to a sphere M of radius
H* centered at the origin. Thus Λmaχ(x, t) and λmin(x, t) converge to
H* as / -+ oc for all x e Sn , and from (3.68) it follows that

(3.79) sup IV2H{x, /) + H{x, t)I - HΊ\ < Ce~2t.
xesn

By applying the interpolation inequality (3.76) to V2//( , t) + H( , t)I -
H*I, and using the Sobolev inequality (3.78) as before, we deduce that
(1.7) holds. The unnormalized inequality (1.8) then follows.

Finally, let us prove Theorem 1.2. This can be done working directly
with the initial value problem (1.1). However, it can also be proved using
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our method. Since Λf0 has positive curvature and rotation number m >

0, the Gauss map of Mo covers Sι m times. Thus we may think of

the Gauss map of Mo as a one-to-one map of MQ onto Sι

m , the m-fold

cover of Sι. We may define the support function Ho of Mo on Sι

m in the

obvious way, and arguing as in §2 with only minor modifications, we see

that after normalization, (1.1) can be reduced to the initial value problem

(3.80) dJ = H" - ^ * [ ° > ~ ) '
H( ,0) = H0,

together with the condition

(3.81) /f" + / / > 0 ,

where H" denotes the second derivative of H on Sx

m . The appropriate
assertions concerning the existence, uniqueness, and asymptotic behavior
of solutions of (3.80) and (3.81) are easily proved.

Remark, (i) An examination of the proofs of Lemmas 3.4 to 3.8 shows
that they are still valid in the degenerate case (3.17), and the estimates ob-
tained do not depend quantitatively on / in any way, while in Lemma
3.9 the C 2 ' α bound depends only on positive upper and lower bounds for
df/dλi on a suitable compact subset of Γ, and in case (i) of Theorem
3.1, also on the modulus of continuity of / on Γn5^(0) for some R > 0
depending only on the initial data. Thus by using a suitable approximation
argument we may deduce the existence of C 2 α admissible solutions of
(3.18) for nonsmooth functions / satisfying the hypotheses of Theorem
3.1 in cases (i) and (iii). Thus, for example, we may consider functions /
of the form / = inf ι<k<N fk , where each fk is a smooth function satisfy-
ing the hypotheses of / in Theorem 3.1 in cases (i) and (iii). We may also
allow infima over a countably infinite number of such functions fk , pro-
vided the hypotheses are satisfied uniformly with respect to k . In case (ii)
an approximation argument is more delicate because condition (ii) needs
to be preserved by the approximations to / . In this case however, we
recall that condition (ii) implies (3.44), which in turn, together with the
concavity of F, implies that F is locally of class C 1 ' x . Parabolic regu-
larity theory (see [15]) then yields that C2 admissible solutions of (3.18)
are in fact smooth enough for us to apply the Bony maximum principle
[13, Theorem 3.4.10] in our arguments, and the proofs of Lemmas 3.4 to
3.9, and the consequent existence assertion proceed as before.

(ii) In the proof of asymptotic convergence we can still prove that the

eigenvalues of V2// + HI approach one another at each point of Sn at
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an exponential rate, provided / is of class C 1 ' 1 , or at least CUa for
some a > 0. The proof of (3.75) proceeds as before, but the proof of
convergence in higher norms breaks down, because we do not have bounds
for sufficiently high derivatives of H, if / is not smooth.

(iii) If we drop the hypothesis (3.4), we still have the degenerate parabol-
icity condition (3.17) since Γ D Γ + and / is positive and concave. By
approximation by strictly parabolic problems, we can deduce the existence
of C 1 ' 1 admissible solutions of (3.18) for C 1 ' 1 admissible initial data,
provided the remaining hypotheses of Theorem 3.1, together with (i) or
(iii), are satisfied. The proof that the eigenvalues of V2H + HI approach
one another at each point of Sn at an exponential rate proceeds as before,
as does the proof of (3.75). However, since dfldλi - \jn on the diagonal
of Γ, the smoothness of / then implies that after a finite time T, the
equation becomes uniformly parabolic, and higher order estimates for the
derivatives of H after time T follow, as does the proof of asymptotic
convergence in any Ck norm. However, if / is merely Lipschitz, all we
can conclude is the existence of a C ' admissible solution. An example
of such a function is given by

/ ( V ••• ,λn) = min{λ1, ••• , λn}.

(iv) Similar assertions apply in the case of Theorem 1.1. We leave it to
the reader to formulate these. We remark only that if H is not sufficiently
smooth, then solutions of the initial value problem (2.25), (2.26) may not
be unique. However, the hypersurfaces Aίt will still be unique.

4. An extension

In this section we shall study the initial value problem (3.1), where now
F is given by

( 4 . 1 ) F ( β / y ) = / ( / ! ! , . - • , μ n ) a ,

where μ{, , μn are the eigenvalues of [a^], a € [0, 1) is a constant,
and / satisfies the hypotheses of Theorem 3.1. Then / = f* is homoge-
neous of degree a, and it is easy to see that

(4.2) f r > 0 ° n Γ

and

(4.3) / is concave on Γ,

since a e [0, 1), and / is positive and satisfies (3.4) and (3.5). As in the
previous section, we may reduce to the case where / ( 1 , , 1) = 1.



122 J. I. E. URBAS

It is convenient to consider a normalized problem rather than (3.1). To
derive this, we set δ - 1 - a > 0 and

(4.4) H = (l+δt)l/δH.

Then, using the degree a homogeneity of / , and hence also of F, we
see that H satisfies

(4 5) (\+δt)βf = F(VH + HI)H o n Sa x [ 0 , o o ) ,

By replacing t by the new time variable s = | log(l +<$ί), we may instead
consider the initial value problem

(46) ^=F(VH + HI)H o n Sn x [ 0 , o o ) ,

We shall prove the following result.
Theorem 4.1. Let Γ be an open convex cone in R" as in Theorem 3.1

and let F be given by (4.1), where f e C°°(Γ) is a positive symmetric
function satisfying (3.3), (3.4), and (3.5). Suppose also that f satisfies one
of the hypotheses (i) and (ii) of Theorem 3.1. Then for any smooth positive
admissible function Ho on Sn , there exists a unique positive admissible
solution H e C^iS" x [0, oo)) of the initial value problem (4.6), and for
any positive γ < 1 and any positive integer k, we have

(4.7) \\H(.,t)δ-\\\ck{sn)<Cke-γSt,

where Ck is a positive constant depending only on n, k, a, γ, / , Γ,
and HQ.

Remark. For admissible solutions of (4.5) we get the asymptotic be-
havior

(4.8) \\H(.9 t)δ-l\\ck{sn)<Ck(l+δt)-γt.

The proof of Theorem 4.1 is very similar to that of Theorem 3.1, and
we shall indicate only the modifications which need to be made. Assume
a > 0. We shall use the following modification of Lemma 3.2.

Lemma 4.2. We have

(4.9) 3r =
i=\
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Proof. The function fι/a satisfies the hypotheses of Lemma 3.2. Thus

J hex,-1'
which implies (4.9).

We can now derive the a priori estimates we need.
Lemma 4.3. Let H be an admissible solution of (4.6) on Sn x [0, T).

Then the following hold.

(a) min{ 1, min^ Ho} < H < max{ 1, max^ HQ} .

(b) m i n s , χ [ 0 > Γ ) F{V2H + HI) > min{l, min^ F{V2H0 + H0I)} .

(c) IfV2H + HI<KI at t = 0, where K>1 is a constant, then this
remains true for all t e [0, T).

(d) In each of the cases (i) and (ii) of Theorem 4.1, the eigenvalues of

V2// + HI lie in a compact subset of Γ.

Proof (a) At a nonnegative spatial minimum of H we have V2H > 0,
so using the degree a homogeneity of F, we obtain dH/dt > Ha -H at
such a point. At a negative spatial minimum of H we have dH/dt > 0,
since i 7 > 0. The first estimate of (a) follows, and the second is proved
similarly.

(b) It is easily verified that F satisfies the equation

ηfr-W + ίr-atf.

Since F > aFι~ι/a by Lemma 4.2, the result follows.
(c) From the proof of Lemma 3.5 we see that for any k = 1, , n ,

K ϊ WM + (» + )F

where Λ^ = VkkH+H. At a point (*,, /) where the maximum eigenvalue

over S"
eigenvector e{, we have
of V2// + /// over S" at time ί is attained, which we may assume has

after some manipulations using Lemma 4.2 and the degree a homogeneity
of F. Thus assertion (c) follows.

(d) Case (i) is exactly as before. In case (ii) we see that for any p =
1, , n , hpp satisfies
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To handle this last term, we observe that since the function g given by

... , ι / λ n )
is concave by hypothesis, so is ga , since g is positive. Thus (3.44) holds,

and proceeding as before we see that at a point (xt, t) where the maximum

eigenvalue of [hιj] over Sn at time t is attained, which we may suppose

has eigenvector eχ, we have

JLfc11 < _(i + a)F{hnf + ( ^ + \)hn < hn - (hUf-a

after some manipulations using the degree a homogeneity of F. Thus
the maximum eigenvalue of [hιj] remains bounded, and the conclusion
of the lemma follows.

Higher order estimates now follow exactly as before, as does the exis-
tence of solutions in cases (i) and (ii).

To prove the assertion concerning the asymptotic behavior of H, we re-
call that if H{ and H2 are two admissible solutions of (4.6) and H{ < H2

at t = 0, then H{ < H2 for all time. It is easily checked that positive
solutions of the differential equation du/dt = ua - w, which are not iden-
tically one, are given by u(t) = (1 - (1 - u(0)δ)e~St)ι/δ , where δ = 1 - a.
If a < minsn HQ and b > max^ HQ , with 0 < a < 1 < b , then

( S Λ \ —δt - τ r / .\δ 1 ^ / j δ Λ \ — δ t

a - \ ) e < H ( , t ) - l < ( b - l ) e .
Thus H converges to one exponentially. To obtain the convergence to zero
of the derivatives of H, we use the interpolation and Sobolev inequalities
(3.76) and (3.78) as before.

Finally, Theorem 4.1 in the case a = 0 follows trivially by solving the
initial value problem

and regarding x as a parameter.
We leave it to the reader to work out the analogues of (1.7) and (1.8)

for the problem (I.I), (1.14).

Added in proof

The results of this paper have recently been extended to the case of star-
shaped initial hypersurfaces by the author (On the expansion ofstarshaped
hypersurfaces by symmetric functions of their principal curvatures, to appear
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in Math. Z.) and by Claus Gerhardt (Flow ofnonconvex hypersurfaces into
spheres, J. Differential Geometry 32 (1990) 299-314).
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