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Introduction

Let M be a compact connected C> Riemannian n-manifold with
diameter d(M) < D. We say that M has “almost nonpositive” curvature
if the sectional curvature K(M) satisfies K(M) < ¢ for a small ¢ > 0
depending on D and #. In this paper, we study the topology of manifolds
of almost nonpositive curvature under the condition K(M) > —1.

We denote by .#(n, D) the family of compact Riemannian #-mani-
folds M with d(M) < D and K(M) > —1. The main result of this paper
is the following.

Theorem 0.1. There exists a positive number &€,(D) such that the fol-
lowing holds. If M € # (n, D) satisfies K(M) < ¢,(D), then the universal
covering space of M is diffeomorphic to R" .

Theorem 0.1 was conjectured by Gromov [14, §4], where it is stated that
the fundamental group n,(M) is infinite. One might hope to eliminate
the condition K(M) > —1. But, for »n = 3, there is a counterexample due
to Gromov [13, 1.6], which has been verified in a recent paper by Buser
and Gromoll [3]: Namely, for given ¢ > 0, there exists a metric g, on
the sphere S* such that d(g,)<e¢ and K(g,) <e.

In fact, we can prove a more precise result than Theorem 0.1. To state
it we need several notation. For o, 0 < a < 1,a C b nonpositively
curved orbifolds stands for a metric space X/I", where X is a simply
connected complete C ! Riemannian manifold of nonpositive curvature
(in the sense of Definition 1.6), and T is a properly discontinuous group of
isometries of X . (Our terminology is a bit different from that in Thurston
[22]. The orbifold in our sense is denoted as the good orbifold there.) We
say that a map f: M — X/T is a fibration if f has a lift f: M — X
which is a fiber bundle, where M is the universal covering space of M .
The fiber of f is the inverse image f _‘(p) of a nonsingular point p of
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X/T'. In our case, this definition coincides with one in [10, §7]. We define
the structure group of the fibration as in [10, §7].

We consider a compact manifold H/A, where H is a nilpotent Lie
group, A is a discrete subgroup of HXxAut(H), and [A: HNA] < oo.
Put A, = AN H. We take a series of subgroups 1 = A? c AW ¢

- ¢ A™) = A, such that A"/A""" is contained in the center of
AO/A('"_'). Let L be a subgroup of Aut(A,) containing Int(A,). We
assume that A" is preserved by the elements of L. Then we have a
homomorphism J: L — [] Aut(A"™/A" ) =[] SL(k,,; Z). Remark
that our assumption on A” implies that J (Int(Ay)) =1.

Theorem 0.2. If M € .#(n, D) and K,, < ¢,(D), then we have a
Sfibration H/A — M — X/T" such that
(0.3.1) X/I' is a nonpositively curved orbifold of C b class,

(0.3.2) H is a nilpotent Lie group, A C HxAutH, and [A: ANH] < 00,
(0.3.3) the structure group of the fibration can be reduced to
C(H)/(C(H)NA)XL, where Int(A) C L C Aut(A), and
(0.3.4) we can choose A™ so that J (L) is a finite group.

Conversely we have the following,

Theorem 0.4. Let H/A — M — X/T be a fibration satisfying (0.3.2)-
(0.3.4). Suppose that X/T is a Riemannian orbifold of C*-class. Then,
for each & > 0, there exists a Riemannian metric g, on M such that:

(0.5.1) e+Max{0, supK,}>K,, ., >Min{0, infK,} e,
(0.5.2) diam(M, g,) < diam(X/T) +¢,

(0.5.3) lim,_,d, (M, g), X/T)=0.

Remark 0.6. We do not know if X/I" in Theorem 0.2 admits a non-
positively curved metric of C*-class.

Theorems 0.2 and 0.4 imply the following.

Corollary 0.7. If M € #(n, D) and K(M) < ¢,(D), then, for each
€ > 0, there exists a metric g, on M such that (M , g,) € #(n, D) and
K(M,g,)<e.

Corollary 0.8. Let M € .#(n, D) and K(M) < ¢,(D). Suppose that
n,(M) is solvable. Then M s diffeomorphic to H/A, where H and A
are as in (0.3.2).

As an application of our argument to manifolds with almost nonnegative
curvature, we have the following.

Theorem 0.9. Let M € #(n, D) and —¢,(D) < K(M) < 1. Suppose
that M isa K(n, 1)-space. Then M is diffeomorphic to H/A, where H
and A are as in (0.3.2).
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For the proof of our results, we make use of the theory of convergence
and collapsing of Riemannian manifolds. Now we briefly sketch the idea
of the proof of our theorems. We shall proceed by reduction to absurdity.

Let (M;,g;), i=1,2,---,beasequence in .#(n, D) with K(g;) <
i~% such that each M, does not satisfy the conclusion of Theorem 0.1 or
0.2, and assume that (M, g;) converges to a metric space Y for the Haus-
dorff distance. Since the maximal rank radius of the exponential mapping
at a fixed point m; of M, is greater than i, the ball B(i) of radius / in

R” around the origin inherits an induced metric g; . For a subsequence,

(B(i), &;) converges to a C !>* Riemannian manifold X, with respect
to the pointed Hausdorff distance. The space X, has nonpositive curva-
ture. Let G, be the fundamental pseudogroup of isometric imbeddings of
(B(i), &) into (B(2i), &) for the exponential mapping at m; such that
M, is isometric to the quotient space B(i)/G,;. In a sense, G, converges
to a group G of isometries of X, such that Y isisometric to X,/G. The
identity component G, of G is a nilpotent Lie group, and contains no

compact subgroups. Hence G, acts freely on X|,. It will turn out that G,
acts by translations and X, splits isometrically as X, = X x R , where the

R*-factor is generated by G,-orbits. Therefore, Y is isometric toa C b
nonpositively curved orbifold X/I", where I' = G/G,. By passing to the
orthonormal frame bundle of M, , we shall overcome the difficulty in deal-
ing with singular points of X/I", and construct a fibration M, — X/T" for
large i. We can use this fibration to prove Theorem 0.1. More detailed
study of our fibration implies Theorem 0.2.

The organization of this paper is as follows. The constructions of X,
and G are done in §1 and §2 respectively. §3 is devoted to the proof of
the properties of G, and the splitting of X;. The proof of Theorem 0.1
is deferred to §4, where the deduction of Corollary 0.8 from Theorems
0.2 and 0.4 also appears. In §5, we shall rewrite the condition (0.3.4) in
Theorem 0.2 in terms of the homotopy exact sequence of the fibration
M — X/I'. After preliminary arguments in §6, we shall construct in §7
the subgroups AY C A in (0.3.4). The proof of Theorem 0.2 is completed
in §8. §9 is devoted to the proof of Theorem 0.4. In §10, we shall prove
Theorem 0.9.

1. Basic properties of the space X,

For a positive number r and a point x in a metric space X , we denote
by B,(x, X) the metric r-ball around x. For X = R", we set B(r)
instead of B (0, R") for simplicity.
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Let M;, i =1,2, -, be a sequence in the family .#(n, D) such
that K(M;) < i, Let Ji R" — M, be the composition of a linear
isometry of R” onto the tangent space T,, (M;) and the exponential map
at a fixed point m; of M,. By the Rauch comparison theorem, f; has
maximal rank on the ball B(2i). Let g be the induced metric fi* g on
B(2i), where g, is the metric of M,. Remark that B(i) is a convex set
of (B(2i), &). By [15, 8.23], passing to a subsequence if necessary, the
pointed space (B(2i), g;,0) converges to a pointed C ® Riemannian
n-manifold (X, x;) with respect to the pointed Hausdorff distance.

In this section, we study basic geometric properties of X, needed in
subsequent sections. To do this, we use the center of mass technique,
and obtain an imbedding ¢;: B(i) — B(2i) such that the induced metric
g = (p;‘g,. converges to a C"® metric &, of X, on B(R) for each
R >0 [11], [20].

First of all, we note that there is a unique g__-geodesic which satisfies
a given initial condition, and that at each point, the g -exponential map
converges to that of X, uniformly on each compact subset in the tangent
space. By d and d; we denote the distance defined by using the metrics
8., and g, respectively.

The space X, has “nonpositive curvature” in the following sense.

Lemma 1.1. Let o, t:[0, 1] — X, be geodesic segments in X, with
length a, b respectively such that o(0) = 17(0), and let o be the angle
between them. Then, we have

d(o(1), (1)) > a’ + b* — 2abcosa.

Proof. Let o, and 7, be g-geodesics such that a;(O) = ¢'(0) and
1,(0) = #(0) for large i. Let @, and 7; be geodesics on the sphere
of constant curvature i > such that 7,(0) = 7,(0), |al{(0)| = |E'l.(0)|,
|73(0)] = |7;(0)|, and that the angle between them is equal to «. Then
the Rauch comparison theorem implies d,(g,(1), 7,(1)) > d(7,(1), T,(1)).
Taking the limit, we have the required inequality.

As immediate consequences of Lemma 1.1, we have the following lem-
mas.

Lemma 1.2. For any two points in X, there is a unique geodesic of X,
Jjoining them.

Lemma 1.3. The distance function d: X, x X, — R is convex.

Proof. We have only to show that for geodesics o and 7 of X, defined
on a bounded interval I, the function ¢t — d(a(¢), 7(¢)) is convex on I.



ALMOST NONPOSITIVELY CURVED MANIFOLDS 71

Let o, and 7, be g-geodesics with o; — 0 and 7, — 7. We set

f)=d(a(t), (1)),  fi(t) =d(0,(1), 7,(1)).

For every fixed ¢, in I, set [, = d,(0,(t,), t,(¢;)). Let a,(s,t) be a
variation such that for each ¢, the curve s — a,(s,7) (0<s</) isa
&,-geodesic from o,(¢) to 7,(¢). By the second variation formula, we have

Ii
1) = [ &V V) = KV ATV AT =20/ T)ds

/
i ’ 2 2
=/unAnn—KmAnmnAnuw,

where V, = 0a,/0t, T, = 0a,;/ds, and K(V; A T;) denotes the sectional
curvature of the plane sect1on V. AT, with respect to &;. The curvature
assumption and a standard estimate on Jacobi fields imply f'(¢,) > —C/i’
for some constant C. This yields the inequality

F(1) 2 fi(ty) + £1(t) (¢ = 1) = C(t — 15)* /20"

for all ¢ in /. Taking the limit, we obtain that f(z) > f(¢)) + B(t - ¢t,),
where f is the limit of f,.’(to) which exists certainly by the first variation
formula. This shows the convexity of f.

Lemma 14. Let A be a closed convex set of X,. Then we have the
following :
(1.5.1) Foreach x in X, there exists a unique point p(x) in A satisfying

d(x, p(x))=d(x, 4).
(1.5.2) The mapping p: X, — A Iis distance-nonincreasing.

Proof. (1.5.1) Suppose that for a point x there exist distinct points y,
and y, of A4 such that d(x,y,)=d(x,4), i=1,2. Let g, and 7 be
geodesics joining x to y; and y, to y, respectively. We note that, by
Lemma 1.1, the sum of interior angles of a geodesic triangle in X, is less
than or equal to 7. Since A4 is convex, o; and 7 make obtuse angles.
This is a contradiction.

(1.5.2) For x; and x, in X,, let 0,: [0, 1] — X, i =1, 2, be the
geodesics from p(x) to x;. Since o, and the geodesic joining p(x,) and

p(x,) make obtuse angles the argument in the proof of Lemma 1.3 applied
to the function f(t) = d(0,(t), 0,(1)) yields d(x,, x,) > d(p(x,), p(x,)) .

Definition 1.6. We say that a complete Riemannian manifold of C o,
class has nonpositive curvature, if its universal covering space satisfies the
conclusions of Lemmas 1.1-1.4.
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2. The construction of the group G

We consider the sequence of Riemannian manifolds (B(i), §;), con-
structed in §1. Put D; = d,(0, 9 B(i)), remark that lim,_ _ D, = oo, and

1—00

set B,(R) ={p € B(i)|d,(0, p) < R}. When D, > 2R, we define
G;(R) = {y: B,(R) — B,(2R)|y is continuous and fp,¥ = f¢,},

where f;: R" — M; and ¢;: B(i) — B(2i) are the maps defined in §1.
Remark that q/*gi = g for y € GZ(R). Since B;(2R) converges to
B,r(xy, X,), we can regard B,(2R) as a subset of X|,. For each R, there
exists i, such that B;(2R) D Bg(x,, X) for i > i,. By G,(R), we denote
the set of the restrictions of the elements of G;(ZR) to Bg(x,, R). We
have

1 dy), v@)

2 dp,q)
for p, g € Bp(x,, X;),and i > i(R), since (Bg(x,, X), d;) converges to
(Bg(x,, X), d) with respect to the Lipschitz distance, and the elements
of G,(R) are isometries for d;. In other words G,(R) is contained in the
set

<2

L(R) = {w: Bp(xy, X) = Byg(xy, X) %5 d—(%’;ﬂ 52}.

We define a metric on L(R) by

d(y, v') = sup{d(w(p), ¥'(0))Ip € Br(x,, X)}.

Ascoli-Arzela’s Theorem implies the compactness of (L(R), d). There-
fore, we may assume, by taking a subsequence if necessary, that G,(R)
converges to a subset G(R) with respect to the Hausdorff distance in
L(R). Set R < R'. Since f;9, is of maximal rank on the ball of radius
D,, it follows that every element of G,(R) is a restriction of an element
of Gi(R') if i is sufficiently large. Hence we have an injective homomor-
phism I : G,(R) — G,(R') such that I} (y) =y on Bg(x,, X). These
maps induce an inclusion I: G(R) — G(R'). We put UrG(R)=G. Itis
easy to see that G is a group of isometries of (X, d). We put a compact
open topology on G.

Lemma 2.1. X/G is isometric to Y, the limit of M, .

The proof is a pseudogroup version of [6, Theorem 2-1] and is left to
the reader.
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Lemma 2.2. The connected component G, of G is a Lie group. The
quotient group G/G, equipped with the quotient topology is discrete.

Proof. Remark that G is a closed subgroup of the group of all isome-
tries of X . Hence, in the case when the metric & on X is of C®-class,
the conclusion follows immediately from [18, Theorem 3.4]. In the gen-
eral case, we can use [2] in a way similar to [8, §1] to obtain a smooth
Riemannian G-manifold (X, &) such that (X,, G) and (X, &. ) are
equivariantly diffeomorphic. Therefore the lemma follows immediately
from the case where g_ is smooth.

Lemma 2.3. G, is nilpotent.

This is a consequence of Margulis’ lemma. The proof is similar to [8,
§4], and hence is omitted.

3. Splitting X, to a direct product

In this section, we shall prove that X,/G is a Riemannian orbifold of
nonpositive curvature. We shall work under the following conditions.
(3.1.1) X, is a complete and simply connected C !'® Riemannian mani-
fold satisfying Lemmas 1.1-1.4.

(3.1.2) G 1s a group of isometries of X, and X;/G is compact.
(3.1.3) G/G, is discrete, where G, is the connected component of G.
(3.1.4) G, is a nilpotent Lie group.

For g € G and p € X we put J,(p) = dp, g(p)). For A C G, we

define

C,Xo={peX|d,(p)= }g}f(dg(x) for every g € A}.

We take a sequence of subgroups G of G, such that
(3.1.5.1) G is trivial and GV = G,,
(3.1.5.2) G is normal in G, and G"*"/G" is the center of G,/G" .
Lemma 3.2. Assume (3.1.1)-(3.1.5). Then :
(3.2.1) Cg Xy =X,
(3.2.2) G, is isomorphic to R"™",
(3.2.3) X, is isometric to a direct product X xR"™", where X isa C"“
Riemannian manifold,
(3.2.4) for (x,a) e X xR"™" = X, and b € R"™™, we have b(x, a) =
(x,a+b).
Proof. The proof is by induction on dim X .
Sublemma 3.3. For each g € GV, the set C { g}XO is nonempty.
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Proof. Put A = {h_lghlh € G}. Since G" is the center of G,, and
G/G, is discrete, it follows that A is discrete. Put

o(p) =inf{d(p, f(p))|f € 4}.
In view of the compactness of X,/G and the G-invariance of 4, the
function J assumes its minimum at some point p. Then the discreteness
of A implies that there exists # € G such that p € C{ p-! gh}XO . Therefore
h(p) is contained in C{g}XO.

Let G' C G, denote the set of all semisimple elements of G, . (Here we
recall that the isometry y is said to be semisimple if C,, X, is nonempty.)
Sublemma 3.3 implies that G’ # {1}. On the other hand, [1, p. 88,
Lemma] implies that
(3.4.1) G’ is a normal subgroup of G,,

(3.4.2) C; X, is nonempty,

(3.43) Cz X, splitsas X' xR’

(3.4.4) G' is isomorphic to R’ and it acts on C, X, as the translation of
the second factor.

Remark that the proof in [1] uses only the properties which we proved
in §1, and hence it can be applied to our case, where the metric is not
smooth.

It is easy to see that G’ is also a normal subgroup of G, so that C X
is a G-invariant subset. Since C, X, is convex and X,/G 1s compact, it
follows that X, = C, X,. Hence X, = X "% R’. Since G’ is a normal
subgroup of G and the R’ factor is generated by G'-action, the splitting
of X, is preserved by G-action. Therefore G/G’ actson X' by isometry,
and this action satisfies (3.1.1)—(3.1.5). We apply the induction hypothesis
to this action and conclude:

(3.5.1) Gy/G' ~R',

(3.5.2) X'=X xR,

(3.5.3) G,/ G’ actson X' as translation of the second factor.
Therefore we have:

(3.6.1) X,=X xR,

(3.6.2) G preserves the splitting,

(3.6.3) the action of G, on the first factor, X, is trivial,
(3.6.4) the action of G, on the second factor is free.

(3.2.1)-(3.2.4) follow immediately.

Lemma 3.7. X is diffeomorphic to the Euclidean space.

Proof. Fix a point p, on X. Take a neighborhood U of p,, which
is diffefomorphic to the Euclidean space. Take a smooth function on X,
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which is equal to 1 outside U and vanishes in a neighborhood of p, .
For each p € X, let V(p) € T,(X) be the unit vector tangent to the
unique minimal geodesic connecting p and p,. fV is a vector field of
CP-class. We take a smooth approximation of SV, and let ®, be the one-
parameter group of transformations associated to the vector field. Then,
for each compact subset K of X, there exists ¢ such that ®_ (U) D K.
The lemma follows immediately.

Finally we remark that the following lemma is proved in a way similar
to the C*-case proved in [12], [19].

Lemma 3.8. Let X be a complete and simply connected C Lo manifold
with nonpositive curvature, and let T be a properly discontinuous group of
isometries of X . Assume that T" is solvable and that, for each y € T", the
set C {y}X is nonempty. Then we have a subgroup T' of T such that
(3.8.1) [l:T'] < o0,

(3.8.2) T is a free abelian,
(3.8.3) there exists a totally geodesic flat T'-invariant subspace Z of X
such that ZJT' is compact.

4. Proof of Theorem 0.1
In §§1-3, we proved that (M, g;) converges to (R™,g)/T for the
Hausdorff distance, where g isa C 1% metricand T isa properly discon-
tinuous group of isometries. We recall the results of [8] here. Let F M, be
the set of all orthonormal frames of M, . In an obvious way, g; induces a
metric A, on FM,. By taking a subsequence if necessary, we may assume
that (FM,, h;) converges with respect to the Hausdorff distance. It is easy
to see that the limit is isometric to (FX, h_)/G, where h_ is a metric
induced from the metric & on X . Since FX ~ R" x O(n), G/G,~T,
and G, ~ R"™", it follows that FX/G is isometric to (R" x O(n))/T.
By [8, §6], we see that the action of I on R” x O(n) is free. By [8, §10],

there exists the following commutative diagram:

FM, — (R™ x O(n))/T

l/O(n) l/O(n)

M, —— R

i

Here the map #; is a fibration (in the usual sense). Moreover, 7; is an
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O(n)-map. Now we put
FE;={(4,y) € FM,; x (R" x O(n))|#;(¢g) = y mod I'},
E, = FE;/O(n).

Remark that O(n) acts freely on FE;. Then there exists the following
commutative diagram:

FM, il > (R™ x O(n))/T
FE/I m g /
i 1 R ><I O(n) l
l/Mi 7 +» R7/T
E. —» R"

Since # is a fibration, so is the map FE, — R"xO(n). Hence FE;, » R"
is a submersion, and E; — R" is a fibration. Since F E, — R" x O(n)
is also an O(n)-map, the fiber of E; — R™ is equal to that of F M; —
(R™ x O(n))/T", and is therefore diffeomorphic to an infranilmanifold.
Thus that E,; is diffeomorphic to the product of the Euclidean space and
an infranilmanifold.

Since R” x O(n) — (R™ x O(n))/T is a covering map, so is the map
FE, — FM;. Hence FE, — M; is a submersion, and E;, — M, is a
covering map. Thus, we conclude that the universal covering space of M,
is diffeomorphic to one of E;, which is the Euclidean space. The proof of
Theorem 0.1 is complete.

5. Preliminary discussion on fundamental groups
and structure groups

To prove Theorem 0.2, we rewrite condition (0.3.4) in terms of the ho-
motopy exact sequence of the fibration. For this purpose, we recall several
facts concerning reductions of the structure groups of fibrations. Let F
be a topological space and let H(F) be the group of homeomorphisms
equipped with compact open topology. We shall define a homomorphism
®: H(F)/Hy(F) — Aut(n,(F))/Int(z,(F)), where H(F) stands for the
connected component of H(F), and Aut(zn,(F)) and Int(m,(F)) are the
groups of all automorphisms and all inner automorphisms of the funda-
mental group of F, respectively. Fix p, € F and ¢ € H(F ). Then
we have ¢,: 7, (F,py) — 7, (F, ¢(py))- Using a path connecting p,
and ¢(p,), we have an 1somorphlsm n,(F, 0(py) — m(F, py) . If
we change the choice of the path, the 1somorph1sm changes by an ele-
ment of Int(z,(F, p,)). Thus we have a homomorphism &: H(F) —
Aut(n, (F))/Int(r,(F)) . Clearly & induces a map ®.
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Next, let F — M 5 Y be a smooth fiber bundle with structure group
G, a Lie group. Then, using the holonomy of a G-connection, we ob-
tain a homomorphism ¥: #,(Y) — G/G,, where G, is the connected
component of G. Let I: G/G, — H(F)/H,(F) be the homomorphism
induced by the action of G on F. Thus, we obtain a homomorphism
OIY: n (Y) — Aut(n,(F))/Int(z,(F)). We shall describe this homomor-
phism in terms of the homotopy exact sequence of the fibration. For
simplicity, we assume #,(F) = n,(Y) = {1}. Then we have a short exact
sequence

1 =7 (F) = 7, (M) 25 n,(Y) = 1.

Let y € m,(Y). Choose j € n, (M) satisfying = (§) = y. We can define
an element conj(7) € Aut(n,(F)) by conj(y)(u) = )7_‘;1)7. The equiv-
alence class in Aut(m,(F))/Int(n,(F)) of the element conj(y) is inde-
pendent of the choice of $ and depends only on y. Thus, we obtain a
homomorphism conj: #n,(Y) — Aut(x,(F))/Int(z,(F)), and also have

Lemma 5.1. conj = ®IY.

We omit the proof.

Thirdly, we recall the following result (see [18, pp. 83-91]).

Lemma 5.2. Let G' be a subgroup of G such that ¥(n,(Y)) = G/ G,.
szen the structure group of the fibration F — M — Y can be reduced to
G.

Fourthly we remark that the preceding arguments can be applied also
to the singular fibration F — M — X/I" which we study in the preceding
sections. (We replace n,(Y) by I'.) For example, the homotopy exact
sequence is obtained by applying the nine-lemma to the following com-
mutative diagram:

1 1

l !

I - m(0(n) = 7,(O(n)) - 1
! ! |

1l - #n(F) - mn(FM) — n((XxO(n)/I) — 1
| ! l

Il - n(F) - =n(M) - r - 1
! ! !
1 1 1

Now, we can rewrite (0.3.4) in terms of the fundamental groups. (Re-
mark that the result of §4 and [10] imply (0.3.1)-(3.3.3).) Let H/A —
M — XTI satisfy conditions (0.3.1), (0.3.2), and (0.3.3). Then, A is
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a normal subgroup of 7,(M). We define a homomorphism =z (M ) —
Aut(A) by y - (4 — y—',uy). In the case when subgroups A" m =
1,2,..., are normal in # (M), we can compose this map and J: L —
[ISL(k,,; Z), to obtain a homomorphism x,(M) — [] SL(k;; Z). We
denote this map also by J. Then, Lemmas 5.1 and 5.2 imply the follow-
ing.

Lemma 5.3. (0.3.4) is equivalent to the following:

(5.4) We can choose A" so that J(n,(M))  finite.

6. Limit of universal covering spaces

Let M;, i=1,2, -, beasequence in #(n, D) with K(M,) < i,
We study the limit space of the universal covering space Mi of M,. Fixa
point x; and M,. By taking a subsequence if necessary, we may assume
that (M ;» X;) converges to a pointed metric space (X, %) for the pointed
Hausdorff distance. In this section, we shall prove the following lemma
which is needed in the next section.

Lemma 6.1. X is isometric to the space X, constructed in §1.

Since M, is a K(n, 1)-space by our Theorem 0.1, Lemma 3.2 in [9]
shows that X has dimension n. By [15, 8.39], the injectivity radius at
x; is uniformly bounded away from zero. Thus Lemma 4.2 of [9] implies
that X is contractible.

For the proof of Lemma 6.1, we need the following.

Lemma 6.2. For each point x in X, the exponential map exp;’(O of X
is bijective.

When the metric of X is of class C* , Lemma 6.2 is nothing but the
Cartan-Hadamard Theorem. But, since the metric of X is only of class
che , it is a priori nontrivial that the exponential map is even a local
homeomorphism.

For the point x € X, take y, € M, so that (M,,y,) converges to
(X, x) for the pointed Hausdorff distance. To prove Lemma 6.2, we
use a center of mass technique to obtain an imbedding ¢,: B;,(x, X) -
B,(y;, M,) _such that the induced metric &, = ¢’ g, where g, is the
metric on M, , converges to the metric g of X on compact subsets.

For simplicity, we identify R" with the vector space (TXX’ » &) - We
fix a positive number R and a large i, with i, > R. Let exp;: B(2i,) —
BSio(x , X) be the g-exponential map. Passing to a subsequence if nec-

essary, we may assume that the sequence (B(2i;), h;), h; = expi*(gi) ,
converges toa C !® Riemannian n-manifold for the Hausdorff distance.
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It should be remarked that 4, does not converge in general. Hence we use
the center of mass technique again to obtain an imbedding t//i*: B(iy) —
B(2i,), so that the induced metric Ii,. =y, h, convergestoa C b metric
izoo on B(iy). From the center of mass construction, y; can be chosen
so as to satisfy the following conditions

(6.3.1) W) |V|h <ldy,(v)l, <e o) Ivlh for every tangent vector v,
where hmlo—»ooé(lo) 0.

(6.3.2) w(B(iy)) includes B(R).

If we set F, = exp; ¥, , we have the following diagram:
(B(ig), h,)

| N

B(2i0) __exp—" (B3,0( X) g)

Sublemma 6.4. The map y,; uniformly converges to a homeomorphism
« 9of B(iy) into B(2iy) satisfying y_ (B(i;)) D B(R).
Proof. By Rauch’s comparison theorem and the convergence §;, — §_,
we have

Clig) ™ wl, < lwl, < Cligwl,

for every tangent vector w to B(2i,), where ||, is the norm induced by
the inner product g on R". Hence (6.3.1) yields

-1
™'l < ldy,(v)l, < Clol,

for a uniform constant C = C(i,). It follows from Ascoli-Alzera’s Theo-
rem that y; uniformly converges to a bi-Lipschitz homeomorphism y_
Property (6.3.2) of y; passes to the limit.

If we set F_ = cxp)‘:o ¥, » we have the following diagram:

(B(iy), )

M

B(2iy) ——— (By, (x, X), &)

3
expy’ 0

Sublemma 6.5. The map F_ carries iloo-geodesics to g -geodesics in
the length-preserving way.

Proof. Foran h oo -geodesic 4 in B(i,), take an h, ;-geodesic o; so that
limog, = o. Since F;: (B(iy), h;) — (By,(x, X), g,;) 1s a local isometry,
Fo, is a g-geodesic. By taking a subsequence if necessary, we may assume
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that F;o; convergestoa &_-geodesic 7. Thus by the uniform convergence
of F, to F_, wehave 1=F_(0), and

length 7 = lim length F;g, = limlength g, = length o,
length 7 = limlength F;g, = limlength o, = length o.
Proof of Lemma 6.2. For any u in B(i,), put z = F_(u). Take a

[e o]

small 6 > 0 so that the ball Bs(z, X)) is convex. Then Sublemma 6.5
implies that F_ maps B;(u, iloo) onto Bg(z, X;,) homeomorphically.
Together with Sublemma 6.4, this implies that expj;o is a local homeo-
morphism, because R is arbitrary. Since expj’co is surjective and X is
simply connected, this yields the injectivity of exp§° by a standard cov-
ering argument.

Sublemma 6.6. The injectivity radius of M, goes to infinity as i — oc.

Proof. Suppose the contrary. Then, by the curvature assumption, for
large i, there is a geodesic loop y; in M,. with uniformly bounded length.
Since d(M;) < D, we may assume that the distance between y, and the
base point of the geodesic loop is less than a constant independent of i.
Hence, the g;-geodesic (pi_l(yi) converges to a g -geodesic loop. This
contradicts Lemma 6.2.

Lemma 6.1 is an immediate consequence of Sublemma 6.6.

7. Covering spaces along fibers

In this and the next sections, we shall prove Theorem 0.2. Let M, be a
sequence of Riemannian manifolds such that M, € #(n, 1), K,, < 1/i,
and let X/T" be the limit of M. It suffices to show that, for each suffi-
ciently large i, there exists z,: M; — X/I' satisfying (0.3.1)-(0.3.4). In
§§1-4, we have constructed =, satisfying (0.3.1) and (0.3.2). [10] im-
plies that this map satisfies (0.3.3). Let H,/A; denote the fibers. We take
the upper central series AEO) c---C Af-N’) of A;NH;. In other words,
AVY/AY s the center of A/AY) = (A, N H,)/AY). We shall refine
this series so that (0.3.4) is satisfied. Fix m, and consider m th com-
ponent J; .2 m (M,) — Aut(A" /A" V) = SL(k{™, Z). Hereafter we
shall omit the symbol m and write J,, [\,. ,and K,‘ in place of J; ., A

1
and AE'"“” . By taking a subsequence if necessary, we may assume that
kf'") does not depend on i. We put k = k,.('") . Let k denote the rank of

the nilpotent group (A;NH,) /AE’”) , which, we assume, is also independent
of i. In this section, we shall prove the following.
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Lemma 7.1. There exist subgroups A Iz A. ,j=0,---, N, of ]\[,
Riemannian manifolds Y] , and positive tntegers s , such that the following
holds (by M, j and M; ' ., we denote the covering spaces of M, correspond-
ing to A; j and A respecttvely)

(7.2.1) A, —Al, A,, —A A CA JCA

e

(7.2.2) Y. is isometric to the direct product of X xR i~ and an
j-dimensional flat torus.

(1.23) A, ; isa normal subgroup of n,(M,).

(7.2.4) A /AlleZ'

(725) A, ,’j] < oo. Furthermore A, A =120 C 7 =

A /A for some number | depending on i and J.
(7.2.6) We can find p,;EM, ;. such that (M, ;,p; ;) converges to the

universal covering space X x R¥Yot +i-1 of Y,_,, with respect to the

pointed Hausdorff distance.
(7.2.7) We can find p; ; so that M ; converges to Y; with respect to the
pointed Hausdorff distance.

Proof. Let M; , be the covering space of M, corresponding to f\i.
Then, in view of Lemma 6.1, we can prove the following.

Sublemma 7.3. We can take PioEM, , such that (M i.92 Pig) con-

verges to (X x R s Do o) With respect to the pointed Hausdorff distance.
Therefore, by [7], therc exists a submersion 7‘1 0 Bz(pl 0 Mtv ) — XX

R for each sufficiently large i. Set M, o =(7; 0)_I(Bl( P 05 X><R ))
By restricting #; , we obtain a fibration 7; : M,',o = B (Py > X xR ).
We put ¥, = X xR* and Yy . =B\(Py o, X X R¥). Then, we can prove
Sublemma 7.4. 7 (M, ;)= A,.
Let Ai,O(l) be the subgroup satisfying A,.‘O(l)/X,. =1.7Z"cz =
A,/A,;, and denote by M ,.30(1 ) the covering space of M, , corresponding
to A, (/). Then we have a fibration T o) M, (1) — Y, .. Put

o, , = diam((@, o(1))""

i,

(Poo 0))-
Then

(7.5.1) @; .1/e; ;< C for some constant C independent of i,

(7.5.2) lim a; , = oo.

[—o00
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Hence, we can choose /; so that 1 < a,, < C. Put A} j = A, (),

and let M;,O and 7\7;’0 denote the covering spaces of M; and M 00

corresponding to A;,o , respectively. In other words Hli’o =M, (). Let

) —_ ~ .
M o=m; ol): M; g— Y, .. Since

(7.6) 1 < diam((T, ;) (P, o)) < C,

and T, .o is an almost Riemannian submersion, we have diam(M ;. 0) <
2(4+ C ) Therefore, by taking a subsequence if necessary, we may assume
that M ; o converges to a metric space Y1 with respect to the Hausdorff

distance. We fix a point 1’:,0 on (ﬁ;,o)—l(Poo,o)- We may assume that
(M, ,, b, ,) converges to a metric space (Y,,p'") with respect to the

pointed Hausdorff distance. Remark Y, D 71 . Let G be as in §2. Then,

by construction, there exists a closed subgroup G, of G such that Y, is

isometric to X/G,. By §§3 and 4, Y, is therefore a nonpositively curved
orbifold of C'**-class. Using [7], we thus have the following.
Sublemma 7.7.  After perturbing Y, C Y, and Hli’o C M; , inasmall
/

neighborhood of their boundaries, we can construct fibrations iz; 0 ﬁi 0

— — ~ N
Y and P:Y, — Yl,c’ such that @, T o= Pln, 0

Sublemma 7.8. The inclusion 71 — Y, induces isomorphisms on fun-
damental groups.

Sublemma 7.7 implies that #,(Y,) is nilpotent, so that so is m, (Y)).
Since Y, is a nonpositively curved Riemannian orbifold and every element
of m,(Y,) is represented by a closed geodesic, Lemma 3.8 implies

Sublemma 7.9. 7,(Y,) ~ Z% . Furthermore Y, is isometric to the direct

product of X x R* and an sy-dimensional flat torus.

Let A, |, = nl((it:,o)_l(p(”)) . Then we have an exact sequence
, / S,
(7.10) I1=A = A 2 Z° - L

(Recall that A} o = 7,(M, ;) and Z* = = (Y,), and that (7.10) is the
homotopy exact sequence associated to the fibration #; ,.) Remark that
A, DA, If A, =A, (or equivalently s, = k), we finish the con-
struction. If not, we will continue by proving the following sublemma. By
M; |, we denote the covering space of M; corresponding to A, ,
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Sublemma 7.11. We can find p, LEM, such that (M 10 D;y) con-

verges to (X x RK*% s Do 1) with respect to the pointed Hausdorff distance.
Using Sublemma 7.11 in place of Sublemma 7.3, we obtain H, , C
M; | and a fibration ﬁi’l:i\li,l — Y, .. Define A, (/) by A; |(/ )/A =
-2 ¢ """ = A, |/A,, and denote by M, (/) and M,.,l(l) the
covering spaces of M, , and HM corresponding to Ai’l(l). We take
[; | satisfying a condition similar to (7.6). Let A:‘,l =A; (), M,.',1 =
M, (I, ,),and H;,I =M, (I, ), and define the ﬁ/bration ﬁ;',ﬁ H;,l —
Y, . similarly. Choose p; , € (; |)”'(po.,) C M, ; C M; . Then, by
taking a subsequence if necessary, we may assume that M—/ 0 converges to
a space Y with respect to the Hausdorff distance and that (M i 1’; )
converges to (Y,, p ) with respect to the pointed Hausdorff dlstance.
Therefore, by 'proving sublemmas similar to 7.7-7.9, we can find Al )
and s,. Repeating this, we obtain A; NT AI S and Y Remark that
1 < q v implies s, > 0. Similarly s > 0. Hence our construction
stops after finitely many repetitions. We omlt the verification of properties
(7.2.1)-(7.2.7). The proof of Lemma 7.1 is now complete.

8. Finiteness of J(m (M,))

l

Property (7.2.3) 1mp11es that the map J;: n,(M,) — SL(k; Z) induces
a homomorphism J n, (M) — Tl SL(s ). (Remark that }°s, =
k.) Let Ji it 7, ( i) — SL( Z) be the j th component, and y be
an arbitrary element of T. Choose elements y, € n,(M;) such that
(7,).(7;) = v. It suffices to show that J; ;(y;) is of finite order for suffi-
ciently large i. Let A, j(y) and A;, j(y) denote the subgroups generated
by 7, and A, o A;'j, respectively. The covering spaces of M, corre-
sponding to A, ;(y) and A; ,(y) are denoted by M, ,(y) and M ;(7),
respectively. By definition, Z acts on Mi‘. and M by 1sometry such
that the quotient spaces M, ;/Z and M;, ;/Z are 1sometrlc to M, ;(v)
and Mi/, ;(7), respectively. We can find a Z-action on Y, such that
(M; E Z, p,',, j) converges to (Yj , Z) with respect to the Z-pointed Haus-
dorff distance (see [8, 1.12]). We put Y,(y) = Y;/Z. We can replace Y,(y)
by its homotopy equivalent compact subset, and construct a homomor-
phism Ai.’j(y) = nl(M;’j) — 7, (Y;(y)) such that the following diagram is
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commutative and exact:

1 1 1
. } a

1 — Ai,j+1 — A’.’j — YA — 1
/l !

L = Ay = A0 - 1Y) - 1
! |

1 — Z o~ Z - 1
l |
1 1

Now, we consider the following commutative diagram:
I = 20 = m¥e) - Z - |

,T /T I

1 — Ai,j — Ai,j(Y) - 7 - 1
| ! I

I = A, = A0 = Z - 1
! ! !

1 - A, - (M) - T - 1

It follows from the commutativity of the diagram that J, j(yi) coincides
with the action of 1 € Z on Z% induced from the exact sequence

1 =Z > n(Y,(7) = Z— L

On the other hand, since Yj(y) is complete and of nonpositive curva-
ture, and every element of n,(Y;(y)) is represented by a closed geodesic,
it follows from Lemma 3.8 that Yj(y) has a finite covering Yj(y) such

that nl(f’j(y)) ~ Z% x Z. Consequently J; j(7) is of finite order. This
completes the proof of Theorem 0.2.

9. Construction of almost nonpositively curved metrics

In this section, we shall prove Theorem 0.4. First we assume that
X/T" = N is a smooth Riemannian manifold. Our construction is a mod-
ification of one in [10, §6], but is not exactly the same because we need
a metric satsifying more restrictive curvature assumptions than those in
[10, §6]. We have a fibration H/A — M — N whose structure group
is contained in 7 = C(H)/(C(H)N A)xL, where L is a group satisfy-
ing (0.3.4). We have a T-connection of 7, which gives a decomposition
of T,(M) to its horizontal subspace H, (M) and its vertical subspace
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V.(M)=T,(n"'n(x)). Put
9.L.1) gV, W)=gy(n V), n,(W)) ifV,WeH(M),
(9.1.2) gV, W)=0 if Ve H (M)and W eV (M).

We shall define g,(V, W) for V, W €V (M). Let n;: P, —» N be the
principal T-bundle associated to 7, and let n,: P, — N be the principal
L-bundle induced from P, . (In other words, P, = P, /(C(H)/C(H)NA)).
Let A”™ be as in (0.3.4), and denote by H, the Zariski closure of
A" in H. Let b and b, be the Lie algebras of H and H,, re-
spectively. Since A™ s L-invariant, so is h, . Hence, we can define
vector bundles # and #, by # = P, x, h and 7 = P, x. b,
We put 2" = #"™ 7™V Since L is discrete, our vector bundles
Va4 (m) , and & are flat. Furthermore, (0.3.4) implies that the holon-
omy group of the flat bundle & ™) is finite. Hence there exists a metric
h, on & (m) compatible with its flat structure. In other words, for each
small open set U of N, there exist sections a,, --- ,a, of & ) such
that A, (a;, a ;) =9, ; and Va, =0, where V is the covariant derivative
associated to the flat structure of #™ , the symbol ‘51, j is Kroneker’s
delta, and k,, = rank.? (™) " We define a metric & on # so that the
metric induced on #'™ from & is equal to 4, . Then, we can easily
prove the following lemma. We set o'(i) = m if k,_, <i<k,. Put
k = rank #Z .

Lemma 9.2. Let pe N, and let U be a neighborhood of p. Then we
can find C™-sections v, vy, -+ , v, ,v;, -, v, of & such that
(9.3.1) va =0, where V is the connection associated to the flat structure
of 7,

(9.3.2) (v, --- , v,) is an orthonormal base of # at each point of U,
(9.3.3) v, v/ e #D),
(9.3.4) v, - v e #DY,

Now, we fix p and U. Let ¢: n_l(U) — U x H/A be a local triv-
ialization of z. Since P, is a fiber bundle induced from the associate
principal bundle P, of r, it follows that ¢ determines a local trivializa-
tion ¢': #|, — U x b of #Z. The trivialization ¢’ and the metric &
determine a quadratic form 4, on b for each x € U. Formula (9.3.1)
implies that the second component of ¢’(v;(x)) (which is contained in b )
does not depend on x. We put go'(v,.(x)) = (x, 9,(x)). Then by Lemma
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9.2 we have
(9.4.1) 9'(v) = (x, 0,(x)),
(9.4.2) v'(v) = (x,9)),
(9.4.3) 0; = 0;(X) € by
Putting o(i) = o'(k) — 0'(i), we define a quadratic form hx’s on h by
i o(i)
(9.5) h, (W/(x),v/(x) =6, ;& .
Since A/(HNA) is finite, we may assume that 4, is A/(HNA) (C Aut(A))
invariant, so that so is & .. Therefore, A, Py induces a Riemannian

metric on H/A. Using thls metric on the vemcal direction and using
(9.1.1) and (9.1.2) on other directions, we obtain a Riemannian metric
on Ux H/A ~ n~'(U). It is straightforward to show that these metrics
can be patched together to give a metric g, on M. Clearly g, satisfies
(0.5.2) and (0.5.3). Thus we need only to show (0.5.1). To see this, since
the problem is local, it suffices to estimate the curvature on U x H. By
e; s, e,' , we denote the orthonormal frame of the tangent bundle on U,
and by e,, --- , ¢, we denote their horizontal lifts to Ux H . The elements
v,(x) define vector fields on {x} x H. Hence we get vector fields f;, on
UxH . The element @; of b induces a vector field /] on UxH . By defi-

nition, (e, --- , e, f;, -+, f,) is an orthonormal frame of the Rieman-
_3a(k)

o(l)
nian manifold (U x H, g,), and (e, --- ,e,,£_3 “Sra 8 fi)
isone of (U x H, g,). We shall calculate the commutators of e, and f;.
Since m is a T-connection, it follows that

Ii k
(9.6.1) [e,' > €j] = Za?,j Z
g=1 g=1
(

where a ;; and b" _j are functions on U. (In other words, they do not
depend on H factors) Since [h, b, ] Cbh,_,, we have

(9.6.2) 1= Y, o/,

o(q)>o(i)
o(q)>0(j)

where ¢! ; is a function on U. We shall calulate [e;, fj]. First remark

that j; is a vector field generated by an element of h. On the other hand,
since our connection of 7 is a T-connection, it follows that the horizontal
lifts e, are H-invariant. Therefore

(9.7.1) e, f;1=0
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Second, (9.4.3) implies that there exists a function o ; on U such that

(9.7.2) f=R+ Y o f

o(j)>o(i)

We can regard U as an open subset of R". We put

Zﬂ ) J ax.l

Hence, by (9.7.1) and (9.7.2) we have

[ei > fj] = Z ﬂl !
l(tll»‘>0(/)

.fq,

Consequently, we have
(9.7.3) le,, f[1= Y df ;- f,,
o(q)>o(J)

where a’f’ j is a function on U . (Compare [10, formula (6.4.3)], where the

__q0(i)
right-hand Slde was dq -f,-) Now, weput f; ,=¢ U Let
O(q)>0(1 i,e i

(', e, - fE ,fe ,f be the dual base to (e, , -+ s fi o
’fk,s) Formu]as (9.6.1), (9.6.2), and (9.7.3) imply

.0. €.= a.. '6’. e ,
9.8.1 de' g€ ne'
30(:‘1__30(1)_30(4) J
E Cj q’ e Af:l
o(i)y>o(j
0(1)>0(<1)
o(i) 30(4) j
(9.8.2) + > d enfe
o(i)>o q)

j=1,

+> b}1k e nel.

We remark that all the coefficients in formula (9.8.2) tend to 0 when ¢ goes
to 0. On the other hand, we can calculate the curvatures of (U x H, g,)
by symmetrizing the coefficients of (9.8.1) and (9.8.2). Hence, when ¢
goes to 0, the sectional curvatures of g, tend to 0 except those coming
from the symmetrlzatlon of af T Since [e Zal j e and e
i=1,2,---, isan orthonormal frame of the R1emanman mamfold U
the symmetrizatlon of ai’ i gives the curvature of U . Inequality (0.5.3)
follows immediately.
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Thus, we have verified Theorem 0.4 in the case when X/I' is nonsin-
gular. We shall deal with the general case. Let S C X/I" be the set of the
singular points. Vector bundles #, #"™  and "™ on X/T - S can
be constructed in a similar way. Let p € S, and let U be a neighborhood
of p in X/I". There exist a finite group © and a Riemannian manifold
V' on which © acts by isometry such that '/ = U. Let P: V — U
be the natural projection. Vector bundles # , # (m) ,and & ) and the
metric 4 can be lifted to #Z, #"™ , 2™ and h on V — P7!(S) re-
spectively. By construction, they can be uniquely extended to V', which
are denoted by the same symbols. We have a fibration #: W — V' such
that the following diagram commutes:

H/A - w -V
I Lp Lp
HA - n7'(U) - U
Here © actson W suchthat W/© ~ V  and P isa covering map. Using
Z, 7™ 2™ and h in a similar way, we can construct Riemannian
metrics on W . By construction, these metrics are ©-invariant. Hence
they induce Riemannian metrics on n_l(U ). It is straightforward to see
that these metrics can be patched together to give Riemannian metrics
satisfying (0.5.1), (0.5.2), and (0.5.3). The proof of Theorem 0.4 is now
complete:

Finally, we shall prove Corollary 0.7. By assumption and Theorem 0.2,
the C'** metric on X can be approximated by I'-invariant C*° metrics
g, such that -1 < K(g,) < ¢. This fact combined with Theorem 0.4
implies the conclusion.

10. Aspherical manifolds with almost nonnegative curvature

In this section, we shall prove Corollary 0.9. Let M;, i=1,2,--,
be K(m, 1)-spaces in .#(n, D) satisfying —1/i < K(M,) < 1. By taking
a subsequence if necessary, we may assume that M, converges to a metric
space with respect to the Hausdorff distance. As was discussed in §6, the
universal covering Mi of M, converges to a contractible C @ Rieman-
nian n-manifold X with respect to the pointed Hausdorff distance.

Lemma 10.1. X is isometric to the flat Euclidean space R" .

We assume the lemma for the moment. Let G, be the deck transforma-
tion group of the covering Mi — M, and let G be the limit of G,, which
is a subgroup of isometries of X . The argument in §§2 and 3 shows that
the identity component G, of G is nilpotent and acts freely on X (see
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also [9, §4]). Lemma 10.1 implies that G, consists of translations, and
that the quotient X /G, the limit of M, is a flat orbifold. Lemma 10.1
also enables us to use the technique developed in §§7 and 8 to construct
a fibration n;: M, — X/G satisfying (0.3.1)-(0.3.4). Therefore, Theo-
rem 0.4 shows that M; admits almost flat metrics. By [13], [21], M, is
diffeomorphic to an infranilmanifold H/A.

To prove Lemma 10.1, let ¢: [0, c0) — X be a geodesic ray, and
let 6 be the Busemann function associated with ¢: d6(x) = lim,_, ¢ -

d(c(t), x) . Although the metric of X is only of class che, using the cur-
vature assumption K(M;) > —1/i, we can develop the basic construction
of [4] on X (see [4, Theorems 1.2 and 1.10]) to prove the following.
Sublemma 10.2. J is convex.
Since X /G is compact, there is a line ¢ in X.Leto N and J_ be the

Busemann functions associated with rays c|, ., and C_l|[o,°°) respec-
tively. By the triangle inequality, J, +J_ < 0. It follows from Sublemma
10.2 that 6, = —&_ islinear. Thus X splits isometrically as X = X, xR.
Using the action of G, we can easily show that X, has a line. Repeating
this process finitely many times completes the proof of Lemma 10.1.

Remark 10.3. The authors are certain that Corollary 0.9 is still valid
for manifolds of almost nonnegative Ricci curvature. The proof is not yet
complete.
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