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NORMAL BUNDLES FOR AN EMBEDDED R P 2

IN A POSITIVE DEFINITE 4-MANIFOLD

TERRY LAWSON

1. Introduction

In this paper we wish to study which normal bundles can occur for
differentiable embeddings of the real projective plane R P 2 into a positive
definite 4-manifold. The techniques we use were developed by Donaldson [4]
to show that only the standard intersection forms can occur for simply
connected positive definite 4-manifolds and modified by Fintushel and Stern
[5], [6] to reprove part of Donaldson's theorem as well as give results concern-
ing homology 3-spheres and other applications. The starting point for our work
is [6]; in particular, the application of their techniques to reprove Kuga's
theorem was the main motivation for our approach. Kuga's theorem [13] gives
restrictions on which homology classes S2 X S2 can be realized by an em-
bedded 2-sphere.

The Fintushel-Stern proof of Kuga's theorem goes roughly as follows. By
cutting out a neighborhood of an embedded S2 realizing a given homology
class, one gets a positive definite 4-manifold X with H2(X) = Z and boundary
a certain lens space. Moreover, there is an 5Ό(2)-bundle E over X which
restricts to a specified bundle over the lens space so that one can construct a
pseudofree orbifold and apply their general theory. However, the crucial point
of the construction is not the pseudofree orbifold but rather the bundles
involved. Also, their construction utilizes a branched covering which is not
essential—it may be replaced by just forming a F-manifold X U cdX, where
cdX is covered by D4. The key data needed is the manifold X with dX a, lens
space which is covered by S\ H2(X) « Z, Hλ(X) = 0, X U cdX a positive
definite rational homology manifold. Given that data, one can form a V-
manifold using X and D 4, where D4 covers the cone on the lens space, and
form an S0(2)-bundle E over X corresponding to an Euler class e e H2(X).
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Moreover, SΌ(2)-bundles over lens spaces are easily constructed as quotients
of the trivial bundle over S3 via a cyclic action, and this construction may be
extended to give a cyclic action on the trivial bundle over D4 to get a F-bundle
over the F-manifold X U cdX on which we study its moduli space of self-dual
F-connections (after stabilization to an S0(3)-bundle). This study will lead to
a contradiction to the original hypothesis that the given homology class could
be realized.

In the situation of an embedded RP2 in a positive definite 4-manifold M
with HλM = 0, one may again excise a neighborhood of the projective plane to
get a 4-manifold X and (given a hypothesis on the embedding) HXX = 0, H2X
is free of the same rank as M, and X U cdX is a positive definite rational
homology manifold. Moreover dX is (usually) again finitely covered by S3 and
bundles over dX can be expressed as quotients of the trivial bundle S3 X R2

by the action of a finite group of quaternions. This allows one to set up a
F-bundle over the F-manifold x U cdX and study the differential geometry of
self-dual F-connections on it.

In this paper we will restrict our attention to positive definite 4-manifolds
which have the same homology and intersection forms as the connected sum of
k copies of CP2. The assumption on the homology (i.e. HλM = 0) is largely
for the convenience of the argument. The free part of HλM could be surgered
away and odd torsion in HλM could also be dealt with in a manner similar to
that used in [5]. As in [5], the modifications for dealing with odd torsion do not
work with 2-torsion. As for the assumption that the intersection form is
standard, there are at this time no known examples of nonstandard intersec-
tion forms. Donaldson's theorem [4] says that the intersection form must be
standard if M is simply connected, and [5] rules out many nonstandard
intersection forms when HXM contains no 2-torsion. It is conjectured that in
fact only the standard positive definite form can occur. Thus our restriction to
this case may in fact be no restriction at all, and it simplifies (and makes much
more concrete) the exposition.

Main. Theorem. Let M be a positive definite A-manifold with the same

homology and intersection form as the connected sum of k copies of CP2. Write

the second homology H2M as the direct sum of k copies of Z with generators

yv- , yk and Poincare duals xv , xk with xf[M] = 1, xt Xj = 0. Let

pl9- , yk be the mod 2 reductions of these classes. Suppose a: RP2 -» M is a

differentiate embedding so a: H2(RP2\ Z 2 ) -> H2(M; Z 2 ) sends the generator

{after possible reordering) to yx + -\-y{. Let e(v) denote the normal Euler

number of the normal bundle of the embedding. Then

(1) ifl < 8, thene(v)> -2 + /,
(2) e(v)= -2 + /mod4,
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(3) ifk = /, e(y) = 2 + 1 mod 16,
(4) ifl = 0,-2 < e{v)^ 2 + 4k,
(5) for M = #kCP2, the values between -2 + / and 2 + / + 4(k - I) satis-

fying (2) are all realizable.

Conditions (3) and (4) follow directly from work of Guillou & Marin [10]
and Rochlin [16]. We conjecture that the restriction / < 8 can be removed from
(1) and the values given in (5) are the most which could be realized for
arbitrary M. The removal of / < 8 could be achieved if Conjecture 5.7 of
[5] holds. To limit the realizable values to ones between -2 + 1 and 2 4- / +
A(k — I) requires a limitation on negative indices in our proof which we feel
must hold but we have so far been unable to prove. Similar limitations also are
plausible and consistent with known examples in [6].

Since the Fintushel-Stern work was not done in the context F-manifolds
(although it could have been), we want to describe what adaptations would be
necessary to recast it in that framework. In the paper [5] they successfully
adapted to 5Ό(3)-connections the work of Donaldson, Ulhenbeck, and others
that was done for 5ί/(2)-connections. Freed & Uhlenbeck [8] also discuss the
SO(3) case in their book. Then in [6] they adapt these results to an equivariant
setting. The adaptations consist of two types. In some parts (e.g. §8) they take
arguments of Donaldson (or, more accurately, Blaine Lawson's excellent
exposition [14] of these arguments) and basically just show they work equi-
variantly when notational changes are made (e.g. replace Θv ε by Θ^ ε, etc.).
In other parts (e.g. the compactness argument of Theorem 7.5) they recast
arguments in an equivariant setting by choosing coverings which respect the
group action. Both types of arguments are easily adapted to give analogous
results in a F-manifold setting. Thus we will not give proofs for those
reformulations but we just refer to [6]. These are some points in the argument,
however, where there are significant differences in viewpoint from their presen-
tation (e.g. the compactness argument and the index calculation) and so we
will concentrate our efforts on explaining those differences.

The organization of the remainder of the paper is as follows. In §2 we will
give an exposition of the adaptations of the Fintushel-Stern work to V-
manifolds that we will need. In §3 we will show how the embedding of RP2 in
the positive definite 4-manifold M leads to our K-manifold and then apply the
results of §2. In §4 we will then give the index calculation, prove the
compactness theorem and then prove our Main Theorem.

I wish to thank Ron Fintushel for patiently explaining his work to me as
well as for encouraging me to pursue the adaptations of his work to the
problem studied here.



218 TERRY LAWSON

2. Adaptations to F-manifolds

We consider here the adaptatins of the Fintushel-Stern results to the context
of F-manifolds. We review briefly the definitions of a F-manifold and F-
bundle as given in [9]. (See [9], [12], [11], [2], [17] for more details.) One first
defines a local uniformizing system (l.u.s.) for an open set U of a connected
metric space B. An l.u.s. for U is a collection {U,G,φ} ^ :

(a) U is a connected open set in Rn.
(b) G is a finite group of C°° diffeomorphisms of U.
(c) φ is a continuous map from U onto U 3 : φ ° σ = φ for any σ G G and

φ induces a homeomorphism from J7/G onto £/.

If ί/, I/' are open sets in i? and {£/,G, φ}, {£/', G', φ'} are l.u.s., an injection
λ: {U,G,φ} -> {U\ G',φ'} is a diffeomorphism from (/onto an open set in ϋ'
such that φ = φΌ λ. A C00 F-manifold of dimension n is a connected metric
space 5 with a family J / of l.u.s. of dimension n corresponding to an open
covering of B 3 :

(a) If {U,G,φ} and [U\G\φ'} E i and φ(U) = φ'(£/') there is an injec-
tion λ: {U,G,φ} -> {^ΛG^φ'}.

(b) Let Jί? be a. family of open sets U in B for which there exists a l.u.s.
{t/, G, φ} G j / . Jf satisfies the two following conditions:

(i) For any / ) E 5 , there exists U e ^f with /? G ί/.
(ii) For p <E Uλn U2, Ux, U2 G JT, there exists ί73 eJίf:peU3=U1n U2.

Such a family J / is called a defining family.

Example. Although the definition of a F-manifold may seem fairly com-
plicated, the F-manifolds implicit in [6] and used here will be particularly
simple. Basically the space B will consist of a 4-manifold with boundary X,
with dX =UdXj a disjoint union of a finite number of components. Each
component will be a quotient of S3 by a finite group G. For [6] these quotients
are lens spaces and for us they are circle bundles over RP2. The F-manifold B
is just X U (UcdXj). The local uniformizing system consists of a manifold
cover for X union an open exterior collar on dX together with one copy of
int D4 with appropriate group action extending the action of G on S3 radially
for each boundary component.

We next define a F-vector bundle. Let B and E be two F-manifolds and π:
E -> B a C°° map. π: E -> B is a C°° F-vector bundle with fiber Rw if there
are defining families J / and s/* of B and E 3 :

(i) There is a 1-1 correspondence {{/,G,φ) <=> {£/*,G*,φ*} between J /
and J ^ * such that ί7* = £/X Λw and π ° φ* = φ ° π^*, where π^* is the
canonical projection U X Rm -> ίλ
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(ii) To each injection λ: {U,G,φ) -> {£/',G\φ'} there corresponds an

injection λ*: {£/*,£*, φ*} -* {£/'*, G'*,φ'*}: for (/>,#) e £/* = U X Rm,

λ*(/?,<?) = (λ(p), gx(p)q), where gλ(/)) e Gl(/w,R).

Example. The F-bundle over the F-manifold described above used in [6]

and here just consists of an ordinary vector bundle over the manifold with

boundary X (union a small collar) together with the trivial bundle D4 X Rm

over each D4 with an extension of the action of G, on D 4 so that it

orthogonally permutes the fibers.

For the work here the following facts about F-manifolds and F-bundles will

be used. (See [9], [11], [12], [2] for details.) First one can define rational

characteristic classes of the F-bundle using invariant connections on l.u.s. of

the bundle. Moreover, there are versions of de Rham's theorem and the Hodge

decomposition theorem for F-manifolds. There is also a theory of elliptic

(pseudo-) differential operators on F-manifolds and a version of the Atiyah-

Singer Index Theorem. An orientable F-manifold Y possesses a fundamental

class and is a rational homology manifold.

We now give F-manifold versions of results in [6]—all are proved by

straightforward adaptations of the arguments given there. The standing as-

sumption is that we have an orientable F-manifold Y with 50(2) F-bundle E

over it. This bundle has an Euler class e e H2(Y; Q) which characterizes it—e

is the analogue of the pseudofree Euler class in [6]. Y will have the structure of

a F-manifold as in Example 1 and E will be a corresponding F-bundle, as in

Example 2. E is then stabilized to an 5O(3)-bundle E as in [6].

We will assume that E' and Y have Riemannian metrics (in the sense of

F-manifolds) on them and there is a Riemannian connection defined on the

F-bundle E'. We let Qk

y(F) = Tv(AkT* ® F) be the ^-forms on B with

values in F (as defined for F-manifolds and F-bundles). Then we can view the

connection as a linear map Ω^(2s') -> Ωι

v(E'). We form <gy, the space of all

Riemannian connections, and the gauge group ^v—these are the analogues of

Ωα, c€a, ga in [6]. One defines self-duality and forms the moduli space

. Again one works with Sobolev spaces—for example, % =
{ v 0 + A\A e L^Ω 1^©£/))}, Vo

 G ^V a fi χ ed base connection, and J / ^ =

(V o + Λ\A e Z4(ΩV(©£,))> ^-(-4) + [̂ 4, ^4]_= 0}, v 0 ^^v

 a f i χ e d b a s e

connection. The gauge group of ^l is

^ + ι = Ll + ι(K{AutSO(3)(E'))).

One defines reducible and irreducible connections on E' as before and gets

that 7r: ^^* -> ^ 3

K* is a principal bundle projection and @ζ* is a smooth
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Hausdorff Hubert manifold with local charts

K,e = {V + A\A e Ll(Qι(®Ej), SVA = 0, \\A\\L\ < e]

for ε sufficiently small. If V is reducible, then Γ v - SO(2) and m'\ #v,ε/ Γ v

-> 88 is a homeomorphism onto a neighborhood π( V).

One applies Hodge theory for F-manifolds as in the proof of 5.3 in [6] to

get:

Proposition 1. Suppose Y has a positive definite intersection form and

Hι(Y,R) = 0. Then each SO(2) V-bundle E over Y has a unique gauge equiva-

lence class of self-dual connections.

Now suppose E is an SO(2) F-bundle with Euler class e which stabilizes to

an SO(3) F-bundle E'. Let a(e) denote the number of reductions of Ef to

SO(2) bundles (up to orientation). For [6], a(e) is expressed in terms of μ(e)

and \Hλ(DX)\\ a(e) will be 1 in our application. The analogue of 5.4 in [6] is

Proposition 2. Suppose Y has a positive definite intersection form, Hι(Y, R)

= 0, and E' is the stabilization of an SO(2) bundle with Euler class e. Then

there are exactly a(e) gauge equivalence classes of reducible self-dual connections

onE'.

As in [6], one can define the fundamental elliptic complex

This is the analogue of the Zα-invariant complex in [6]. This is an elliptic

complex with cohomology groups H^v, H^v, H^v which may be identified

with spaces of harmonic forms. In §4 we will compute the index of this

complex for our applications. We now denote this index as I(e).

We get analogues of Propositions 6.2 and 6.3 in [6].

Proposition 3. For a reducible V e sίv, dim Hov = 1 and H^v and H%y

are even dimensional vector spaces with Γ£ acting via the standard action of

SO(2) (leaving only 0 fixed). Thus I(e) is an odd integer.

We defer the question of compactness of the moduli space until §4. Let us

suppose we are in a situation where the hypotheses of Proposition 1 hold,

I(e) > 0 and we know the moduli space is compact. Then the argument

leading to Theorem 8.3 of [6] may be modified to give:

Proposition 4. There is a compact perturbation ψ = !£_+ σ of the self-

duality equations on ^ v so the new moduli space J('v= (V ^ (&v\Ψ('V) = 0}

is a compact smooth I(e)-dimensional manifold with a(e) singular points such

that each has a neighborhood which is the cone on the complex projective space
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3. Embeddings of R P 2

In this section we will show how an embedding of R P 2 into a positive

definite 4-manifold may lead to a F-manifold and a F-bundle. For computa-

tional reasons we restrict our attention to the case where the 4-manifold M has

the same homology and intersection form as the connected sum of k copies of

C P 2 . However, many of our arguments are valid in the more general case of M

being a positive definite 4-manifold.

For #kCP2 there are standard generators of H2 and H2 which are both

Poincare dual and Horn dual. Since M has the same homology and intersec-

tion form as #&CP 2 , we can find similar generators for M. Write the second

homology group of M as the direct sum of k copies of Z with generators

.Vi' ' ' » Λ w ^ t n Poincare duals xl9— ,xk so xf[M] = 1, xέXj = 0, i Φj. Let

Pi>" '•> Pk ^ e t n e m ° d 2 reductions of yl9 , yk.

Suppose α: R P 2 -> M is a differentiable embedding; consider α*:

i / 2 ( R P 2 ; Z 2 ) -* H2{M\Z2). Either this is the zero map or its image is the sum

of / of the generators j ^ , - * *> JV By reordering these generators, we can

assume it is of the form α J R P 2 ] =p\+ " ' +J/, where 0 < / < k and / = 0

corresponds to α* being the zero map. We first treat separately the case / = 0.

Here we may apply the results of Rochlin [16]. His result 7.2 can be restated in

our situation as \e(v)/2 — k\ < k + 1 and e(v) is even. Thus we get the

bounds -2 < e{v) < 2 + 4k. From the proof one can deduce that possible

values for e{v) must differ by multiples of 4. Thus we have part (4) of the

Main Theorem.

For the remainder of the paper we will assume / > 0, i.e., α* is injective. We

will also assume / is odd—we are able to reduce to this case by taking

M # C P 2 and modifying a by taking the connected sum of C P 1 = C P 2 .

Since α*: / / 2 ( R P 2 ; Z 2 ) -> H2(M; Z 2 ) maps the generator to yλ + +yl9

the diagram

H2(M) ># 2(RP 2) « Z2

I I -
H2(M;Z2) ^ i / 2 ( R P 2 ; Z 2 ) - Z 2

shows that the map H2(M) -> H2(RP2) is surjective, with xl9—-,xι mapping

to the generator and x / + 1, , xk mapping to 0. Since / is odd, xλ + +xt

will also map to the generator. The long exact sequence of (M, α(RP 2 ))

implies # 3 ( M , α(RP2)) = 0 and

z = 0mod2} Θ(k- /)Z « kZ.
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Let TV be a tubular neighborhood of α(RP2), M = X U N. Then H*(X,dX)
« H*(M9a(RP2)),soH\X,dX)~ 0, ^2(X,3X)« kZ.

In homology we have the exact sequence

0 = H2(RP2) -> H2(M) -> i/ 2 (M,α(RP 2 )) -> #χ(RP 2 ) « Z 2 -> 0.

This implies i/2(M, a(RP2)) ~ kZor kZ® Z2. With Z 2 coefficients we get

0 -+ Z 2 ^ £Z 2 - i / 2 (M,a(RP 2 ) ; Z 2) -> Z 2 -* 0

so H2(M, a(RP 2 ); Z2) « &Z2; thus we must have

H2{X) « ff2(X,ax) * i/ 2 (M,α(RP 2 )) * /cZ.

We are concerned with what the normal bundle of our embedded R P 2 could
be. That normal bundle is classified by its normal Euler number e(v). If the
normal Euler number is p Φ 0, one can give the following explicit description
of 3Λf as a quotient of S3. This arises from the fact that the double cover of the
normal disk bundle is a disk bundle over S2, and nontrivial circle bundles over
S2 are quotients of the Hopf bundle. Thus if e{v) = p, then 3N is the quotient
of S3 (viewed as the unit quaternions) by the subgroup QΛp generated by
ω = cos(π/\p\) + isin(π\p\) and j . Note ωp = j 2 = -1 and jωj~ι = ω"1.
This is a binary dihedral group. For p odd, its abelianization is Z 4, generated
by j with j 2 and ω representing the same element in the abelianization. For
p > 0, the orientation is induced from S4 = 3D4. For p < 0, the opposition
orientation is used.

We next want to see that the hypothesis that / is odd will imply e(v) is odd,
so H2(dN) » Z 4. We consider the following diagram:

0
i

0 -> H2(X)

I
0
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The isomorphisms of the two right columns arises by Lefschetz duality. The
first three terms of the third row are part of the coefficient sequence for Z 2

coefficients. Note H2(X) -> H2(X, Z2) is onto since H3(X) « Hλ(X9dX) «
Hλ(M, N) « 0. Similarly HX(X) « //3(X,3X) « # 3 ( M , JV) « 0. Now con-
sider xλ + + JC, e H2(M). When we map it to H2(M; Z 2); and follow by
the map to H2(X; Z2), it goes to zero since its Poincare dual is yλ + +yt

which is in the image of the map H2(N\ Z2) -> H2(M\ Z2). This means that
r27*( xi + * ' +-*/) = 0. Thus j*(xλ + +JC7) = 2^ for a unique class
e e H2(X). Note r2^ # 0; also ^ is not the image of y* since that would
imply xx + +X/= 2x, JC e H2(M), a contradiction. Thus δe is the gener-
ator of //3(M, X) and r2έ is a generator of H2(X, Z2).

Next notice that H2(N) -> H2(dN) is injective since it is dual to
//2(iV, 3Λ̂ ) ^ H^dN) and //2(iV) = 0. Now consider the diagram:

H2(M) »H2(N)

i ϊ

Since / is odd, xλ + +xt maps to the generator of H2(N), which is then
injected into H2(dX). Thus the element rj*(xι + ••• 4-JC,) is nonzero in
H2(dX), i.e., 2r(e) Φ 0. But this implies H2(dX) « Z 4 and r(e) is a genera-
tor.

Note that dX is a rational homology sphere and X U cθJf is a rational
homology manifold with H2(X U cθΛ"; ()) -> H2(X; Q) an isomoφhism. Now
consider the diagram:

H2(XUcdX;Q)

T
H2(XU cBX,cdX;Q)

I
H2(X,dX;Q)

T
H2(M,N;Q)

I
HHM Q)

XH

XH

XH

XH

XH

2(X

T
2(X

1
2(x;

T
2(M

I
2(M

(JcdX Q) "

U cdX Q) •

n\ >

• n \ >

• n\ >
> si)

H4(X

ΐ
H4(X

I
ττ4( Ύ

i~L \ Λ. i

T
H\M

ϊ
H\M

U cdX; Q)

L)cdX,cdX;Q)

?\Y f)λ

• β )

All vertical maps are isomorphisms via excisions or long exact sequences. The
horizontal maps are cup products. Thus rationally, X U cdX has the same cup
product structure as M. Since j*(xλ + +xι) = 2e, this implies that if we
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let e e H2(X U cdX Q) denote the element which corresponds to e under the
maps

etΞ H2(XU cdX; Q) ^ H2(X; Q)

r
we get e2[XU cdX] = 1/4.

We now specify the F-manifold structure which we wish to put on X U cdX.
We can regard this as being formed from X union an open collar on dX
(which is the complement in M of a disk neighborhood of α(RP2) in M),
together with the quotient of int D4 by the extension of the orthogonal action
of Q4p on S3 by right multiplication. Now the F-manifold structure on
X U cdX comes from the manifold structure on M and the structure on cdX
from (int is4, Q4p). Note that we have made a fixed choice of a diffeomor-
phism /: S3/Q4p -» dN or, more precisely, a fixed covering /: S3 -> dN
which induces /. Here / is chosen to preserve orientation. The two pieces are
identified using an extension of / from S3 X (i, l) to a collar on dN. We
denote this F-manifold by Y.

We next wish to construct an 50(2) F-bundle over Y with fiber R2. This will
come from a regular bundle E over X U collar, a trivial bundle over D4 on
which Q4p acts linearly and a covering map of SΌ(2)-bundles /: (D4\ \D4)
X R2 -> £ |collar extending /. The bundle E will be induced from the universal
bundle using a representative of (the Euler class) e e H2(X) discussed above.
To get F9 we use the fact that e maps to a generator of H2(dX) ~ Z 4. Denote
by / the abelianization map /': Q4p -> Z 4 = {1, α, a2, a3}. Then all homomor-
phisms of Q4p to Z 4 are of the form ik, k = 0, ±1,2. The four isomorphism
classes of SO(2) vector bundles over 5 3/Q4p are just S3 X D2/Q4p -* S3/Q4p,
where Q4p acts on S 3 by right multiplication as before and acts on R2 via Z 4

acting as rotations, using the homomorphisms ik\ Q4p -> Z 4. Since e maps to
a generator H2(dX\ E\dX must be isomoφhic to S3 X R2/Q4p -> S3/QΛp9

where k = ± 1 . Now our F-bundle E will consist of E\X U collar together
with ( D 4 x R 2 , Q4p) as above, where we use the covering F: (D4\ \DΛ) X R2

-> £|collar to piece these together. We next wish to see that the F-isomorphism
class of this F-bundle does not depend on our choice of F. We are assuming F
extends the fixed /, so we suppress / and identify E as a bundle over a collar
on S3/Q4p. We restrict also to F\S3 X R2 as the behavior here will determine
it on the collar up to equivalence. Suppose G: S3 X R2 -> E\S3/Q4p is
another covering which extends the covering S3 -> S3/Q4p. Then we have a
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commutative diagram

S 3 X R 2 ^ S 3 X R2

\A
E\S3/QΛp

where H can be chosen to be the identity on S3 X 0 and is an equivariant

bundle map. Equivariant bundle maps are classified by H1(S3/Q4p) ~ 0, so H

extends to an equivariant bundle map D4 X R2 -> D4 X R2. Thus the V-

bundle E is independent (up to F-bundle isomorphism) of the choice of F.

Since H2(Y;Q) -> H2(X;Q) is an isomorphism, the Euler class of E is

determined by its restriction to X, so is the class e e H2(Y;Q) discussed

earlier. Thus e2[Y] = I/A.

We now add on a trivial bundle to form Er from E. Our convention will be

that on D4 X R3, Q4p acts trivially on the first coordinate and acts as before

on the last two coordinates. Note that pλ{E')[Y] = I/A and w2(E'\X) is the

mod 2 reduction of e, in particular w2(E'\dX) Φ 0. Note also that the actions

on R3 of Q4p corresponding to k = ± 1 are equivalent as SO(3) actions via

(/, z) -» (-ί, J), ( / , z ) e R x C = R3. Thus we may assume k = 1.

We next wish to see that there is a unique reduction of E' to an SO(2)

bundle. For this we use the fact that if we had another reduction with Euler

class ef coming from an integral class er e H2(X\ we would have

e'= e + aJ*(Xι) + ••• +akj*(xk)

= (2aλ + l)e+(a2 - aι)j*(x2) + +(α, - ajj+ix,)

But ey j * ( x 2 ) ' * ' "> 7*( x/) reduce mod2 to give generators of H2(X; Z 2 ) and

so the condition that w2\X must be the same implies aλ = a2= *•• = af

mod 2 and aι+ι = = ak = 0 mod 2. For e\ the corresponding Pontrjagin

class is I/A + (Λ? + ax) + +(α 7

2 4- Λ7) 4- af+1 + + α 2 . For this to

equal //4, we need Λ / + 1 = = ak = 0 and ^ , aι = 0, - 1 . But ax = a2

= = at mod 2 implies all values are 0 or all values are - 1 . If they are all 0,

ef = e and if they are all - 1 , ef = -e. Thus up to orientation, there is a unique

reduction.

We now show that the conditions p^E'^Y] and w2\X characterize E' up to

K-isomorphism among F-bundles over Y. First consider E'\X. Since X has the

homotopy type of a 3-complex, E'\X is determined up to isomorphism by

w2\X (cf. [3], [8]). Next consider the equivariant Q4p bundle over D4. As a

vector bundle, ignoring the Q4p action, this bundle is equivalent to D4 X R3.
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The equivariant equivalence class is determined by the action on 0 X R3, so the

bundle over D4 is determined by a representation Q4p -> SO(3). Up to

equivalence, this representation is determined by knowing the finite subgroup

of 5O(3) which is the image. By [21], the only possibilities are a subgroup of

Z 4 or a subgroup of the dihedral group D2p of order 2p. In the latter case, this

representation would lift to 5 3 = Spin(3) and so the bundle which would be

determined over dX would have w2 = 0. Thus Q4p -> 50(3) must factor

through Z 4 and w2(E'\dX) Φ 0 implies that the equi variant bundle over D4 is

equivalent to E'\D4. Thus if E" is another 50(3) F-bundle over Y with

wx(E'\X) = wx{En\X\ then E'\X « E"\X and the equivariant bundles over

D4 determined by Ef and E" are equivalent.

We next must worry about how these pieces are glued together:

E' = E'\XUFD
4X R3/Q4p, E" = E'\X U G D4 X R3/Q4p,

where F, G are covering bundle maps 5 3 x D 3 - > S3/Q4p which extend the

covering 5 3 -> S3/Q4p. Here we are identifying dX with S3/Q4p and abusing

notation somewhat in glueing along S3/Q4p rather than on a collar. There is a

commutative diagram

5 3 X R3 ^ 5 3 X R3

where H is an equivariant bundle map covering the identity on 5 3 . Equivari-

ance is measured with respect to the same action on both sides, i.e. using /:

Q4p -» Z 4 . H is then determined by a map A: S3 -> 50(3) which satisfies

h(x q) = I(q)~ιh(x)I(q), where x e 53, q ^ Q4p and I(q) is determined
by /: (? 4 , -> Z 4 = { ± 1 , ±/} = S 1 = C and / G Z 4 acts via (t,z)i = (t,zi)

(i.e. rotation by ττ/2 in the last two coordinates). The standard covering

5 3 -* 5O(3) is given by x -> f(x), where /(x) y = jcyjc"1, ^ G R3 C R4 = //,

with R3 the subspace with basis i, 7, A:. Then A: 5 3 -> 50(3) lifts to A:

5 3 -> 5 3 . Now 4|/?|(/71(£'/) - ^ 1 (£ > / / )) is the obstruction to extending H to an

equivariant isomorphism D 4 X R3 -> D 4 X R3 and this obstruction is also

given by -4 times the degree of A (cf. [8]). This is just the Pontrjagin class of

the equivariant bundle (D4 X R3) U H(D4 X R3) over 5 4 . The assumption

Pι(E') = pλ(E") shows that there is such an extension so E' « E" as V-

bundles. Moreover, the argument shows w2(E'\X) = w2(E"\X) implies

Pι(E') - Pι(E") = (-1/bDdegΛ.

We next see what degrees can occur for degA, using the fact that A is

equivariant. First note that since /(ω 2) = 1, the <24/Γequivariant map A factors
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P ^i

as S3 -> X = S 3 /(ω 2 ) -> 5Ό(3) and the latter map can be regarded as a
Z4-equivariant map. Thus h = hιp, where Λx is a lift of Λx. Now Λx satisfies
* i(* [j]) = ±ϊ(jy1hι(x)l(jl where /(y) = l/V? + 1/^7. Thus if we
look at the action of [j2] = [-1] we get that hλ is a Z2-equivariant map. Any
two such equivariant maps have congruent degrees modulo 2 by [7]. Since the
constant map sending X to 1 is equivariant, we get that the degree of hλ is a
multiple of 2. Thus the degree of h is a multiple of 2p.

We now summarize the results of this section in Theorem 5.
Theorem 5. Let M be a positive definite 4-manifold as above. There is a

V-manifold structure on Y = X U c(dX), which is a positive definite rational
homology manifold with the same rational cohomology structure as M. There is a
class e e H2(Y; Q) so that it is the Euler class of an SO(2) V-bundle E over Y,
which stabilizes to an SO(3) V-bundle E' over Y. Ef admits a unique reduction
(up to orientation) to an SO(2) V-bundle. E' is characterized by w2\X and
pλ(E')[Y] = l/4.IfE'is another SO(3) V-bundle over Y with the same w2, then
px(E") = I/A + 2/i, n e Z.

4. The index calculation, compactness of the moduli space,

and the proof of the Main Theorem

We now apply the discussion of §2 to the F-manifold and F-bundle
constructed in §3. We first consider the fundamental elliptic complex corre-
sponding to a reducible F-connection constructed as in Propositions 1 and 2;
note that its gauge equivalence class is unique by Proposition 2. Proposition 3
guarantees that this index is an odd integer. We will apply the version of the
Atiyah-Singer Index Theorem for F-manifolds given in [12] to calculate this
index and see how it depends on the normal Euler class e(v) = p.

To compute the index, we follow the method given in [1] and [6] and reduce
to the equivalent problem of computing the index of the twisted Dirac operator

D: Γ(F+<8> F_® ®E.) -> Γ(F_® F_® ©£,).

This computation is done using the formula

), [τvY])

given in [12, p. 139] with u = σ(D). (See [12] for an explanation of the
notation.) In our situation the first term becomes

ch(©£, Θ C)ch(F_)i(7)[y] = 2e2[Y] + i($Pl(τ) - e
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where the evaluation is interpreted in the F-manifold sense. As in [6] this leads
to the formula

- 4 ^ Σ σ,(y)-χf(r)j

where

og(Y) =

here r(g) and s(g) are the rotation numbers corresponding to the action of
g e Q4p on D4 at 0 (cf. [18], [6]). They are determined as follows: r(ω) = π/p,
r(j) = π/4; if p < 0, s(g) = r(g) and if /? > 0, s(g) = -r(g). The signature
defect and Euler characteristic defect terms occur since we are performing
integrations in the cover D 4 over cQ4p when evaluating on [Y], Using
2e2[Y] = 1/2 and σ(7) - χ(y) = -2, the first term is

For the second term, one can simplify the formula somewhat since Q4p acts
trivially on 0 e D 4 . It then becomes

1 Σ c h g ( F + - V_)chg(V_)(Ns 0 C)chg(®£)[point]

as in [6, p. 24]. Using analogous calculations to those on pp. 24, 25 of [6], this
simplifies to

-1 v̂

where t{g) gives the rotation number on the fiber 0 X R3. t(g) is determined
by t(j) = π/2, t(ω) = 7r. When we add these two contributions, there is
cancellation and the index becomes

The elements of Q4p can be divided into the cyclic group of order 2p
generated by ω and the product of those elements with j . For the first
elements, the terms in Eg^!sin2(/(g)/2) add up to \p\. For the second ones,
these terms add to 2\p\(^) = \p\. Thus Σg^!sin2(/(g)/2) = 2\p\, and so the
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index is

We again look at the two types of terms in the last sum. First consider the
case where p < 0. Then r(g) = s(g). For group elements in the subgroup
generated by ω,

if g = ωr, r even,

Thus

r{2k-1)

For g ί (ω 2), each term gives \y so these terms sum to \p\. Thus the final sum

{ - 2 + 2̂ (1̂ 1(1̂ 1 - 1) + \P\) = { - 2 + ψ.

is

For p > 0, each sign is changed in the sum since s(g) = -Kg), giving
1/2-2- \p\/2. Thus the formula for all p is (/ - /?)/2 - 2, i.e., / =
(/ - p)/2 - 2. Note that since / is an odd integer, we must have e(v) = p =
-2 + / mod 4, proving (2) of the Main Theorem.

For p < -2 + /, the index is positive. We wish to study the moduli space of
all self-dual connections on E' in this case. If we knew that it was compact,
then Proposition 4 would show that it could be perturbed into a compact
smooth manifold of dimension / with one singularity which is a cone on a
complex projective space of dimension (/ — l)/2. This then leads to a con-
tradiction as in [6].

To see when the moduli space is compact we apply the Bubble Theorem and
Removability of Singularities Theorem of Uhlenbeck [19], [20] as in [6, pp.
27-30]. The adaptations for F-manifolds are done by the same equivariant
covering arguments as in [6, p. 30]. The main point of the argument is that a
sequence {V,} of self-dual connections on Ef has a subsequence {V/} and
gauge equivalent connections {vz} which converge to a self-dual connection
V^ on E'\Y0, Yo = Y\{xi>--9xk}> τ h e Removability of Singularities Theo-
rem then allows { V^} to be extended to a self-dual connection on a possibly
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different bundle E". Since E'\Y0 « E"\Y0, we must have the same w2. More-
over, self-duality and integral estimates imply 0 < Pι(E") < pλ{E') = 1/4.
But Theorem 5 implies that pλ(E") = 1/4 + 2/i, « e Z. Thus if / < 8, we
must have Ef « £ " , giving compactness of the moduli space. Thus for / < 8
the moduli space will be compact, yielding our contradiction when p < -2 + I.
We have thus proved parts (1), (2), and (4) of the Main Theorem. For part (3),
the imbedded R P 2 will be characteristic. One then can apply the nonorienta-
ble Rochlin theorem of Guillou & Marin [10] to get (3). When M is #kCP2,
we need to give embeddings of R P 2 into #kCP2 with normal Euler classes
realizing all values between -2 + / and -2 + I + 4(k - I). We start with the
two standard embeddings of R P 2 in S4 with normal Euler numbers -2 and 2.
For the first / copies of CP2, we take S2 = CPι = CP 2 . For the last k - I
copies, we use the decomposition of CP 2 as TV.^RP2) U T4(S2) described in
[15]. The S2 is embedded with normal Euler number 4. Taking the connected
sum of the R P 2 and the CP1?s in the connected sum of S4 with the / copies of
C P 2 yields the base embedding. To get the various normal Euler numbers
claimed in (5), we just take the connected sum of m copies of the S2 's with
normal Euler number 4 in the last (k — I) copies of CP 2, where 0 < m <
(k - /).
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