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CORRESPONDENCE OF MODULAR FORMS
TO CYCLES ASSOCIATED TO O(p,q)

S. P. WANG

Introduction

In their study of Hilbert modular surfaces, Hirzebruch and Zagier [13] have
discovered a striking connection between geometry and number theory. It was
established that intersection numbers of cycles are Fourier coefficients of
modular forms for Hilbert modular surfaces. Since then, the study of certain
liftings of automorphic forms and their relation to geodesic cycles in quotients
of symmetric spaces has been of great interest. The first subsequent big
advance was made by Kudla and Millson [23] for their work on SO(p,1)
which offers a systematic and fruitful approach to the general case. They took
the reductive pair O(p,1) X Sp(2r,R) as their framework and used Weil
representation to construct a theta function which has a geometric realization.
Besides technical problems, they presented a feasible scheme for the general
case.

In [33], [34], the analogous problems for SU( p, 1) were solved by Y. L. Tong
and the author. In [35], we gave a correspondence, in the form of a geometric
lifting, from Hermitian cusp forms of weight p + 2 to certain harmonic
differential forms of degree (2,2) in compact quotients of SU( p, 2). This is the
first example for symmetric spaces of higher rank. In [36], we returned to
SU(p,1) to discuss the case of noncompact quotients. In these studies, we
witnessed tremendous technical complexity and gradually shifted our reliance
on invariant theory. It should be mentioned here that we were inspired by
Howe’s recent effort [14]-[16] to emphasize the importance of classical in-
variant theory.

Received December 18, 1984. The author is supported in part by National Science Foundation
Grant No. MCS-8301053.
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In this paper, we give a satisfactory presentation of the geometric lifting for
the reductive pairs O( p, q) X Sp(2r,R) (r < p/2). Our approach here, follow-
ing [36], is to pair directly a geometric theta function and a cusp differential
harmonic form to yield a cusp form with period integrals as Fourier coeffi-
cients. this is analogous to Shintani’s original construction [30] which was later
generalized by Oda for SO(2, n — 2) in [26]. Note also that our result is closely
related to those of Siegel [31] that volumes of analogous cycles in arithmetic
quotients of domains associated to indefinite quadratic forms are Fourier
coefficients of FEisenstein series. Our technical tool for computation is the
representation theory of O( p). In the following, we state our main results and
content organization. Let £ be the symmetric space associated to O( p, q),
j(g. Z) the automorphic factor given by (1.3) and G the subgroup of O(p,q)
consisting of those g such that the function det(j(g, Z)) (z € 9) is positive.
Each Z € & can be identified with a maximal negative subspace (Z) of R"
(n=p + q). Let K, be the subgroup of G of elements which fix elements of
(Z). It is easy to see that K, is isomorphic to O(p) and acts on the space
NUD), of differential forms of & of degree rq at Z. Thus representation
theory of O( p) is applicable and we have the notion of a differential form of
degree rq of highest signature (defined in §4.9). The analysis of the pairing
rests on the invariant theorem (Theorem 4.9) of harmonic forms of 2 of degree
rq of highest signature invariant under certain subgroup G,, of G. Technical
matters are discussed in geometric, algebraic and analytical aspects. §1 deals
with geometric preliminaries. Here we apply Flander’s result [7] to construct
dual forms for cycles of quotients of 2. In §3, we study some representation
and invariant theorems of O( p) for algebraic preparation, and §5 handles the
deep involvement of analysis of period integrals. To construct the correct
geometric theta function, we set it up as follows. First we translate the
construction of dual forms of cycles into polynomials f(Z, M) (M € M, (R))
(Definition 2.9) of M with differential forms of 2 as values. With the aid of
Theorem 3.11, we modify f(Z, M) to obtain spherical polynomials F(Z, M)
(Definition 4.6) which yield the desired Schwartz function f, ,(M) ((6.27)) by
coupling with an exponential function e, , ((6.18)). Finally summing f, ,(M)
over certain lattice points M we arrive at the geometric theta functions
0(7, h, Z) ((6.30)). The geometric interpretation of the lifting map is given in
§7 and the main result of this paper is Theorem 7.10.

For g = 1, our result coincides with that of [23] with improved range of r
and additional coverage of noncompact quotients of 2. For Weil representa-
tion, we follow the setup of Shintani [30] and use the results in [23]. It is clear
now that our method is suitable for all reductive pairs. We hope to discuss this
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matter elsewhere. Obviously we are indebted to the papers [19], [20], [23] which
built up some technical background needed for the present approach. The
author would like to thank R. Howe and Y. L. Tong for various valuable
conversations.

1. Geometric preliminaries

In this section, we recall some of the geometric preliminaries, needed for our
discussion, of the symmetric space associated to the group O( p, q) and present
a procedure to construct singular forms for cycles of quotients to O(p,q)
which will yield dual forms of cycles. '

1.1. Let n = p + g and let Q be the symmetric matrix

E 0

P

Q=
0 -E,

k)

where E, and E, are the identity matrices of order p and g respectively. Let
O( p. q) be the group given by

O(p.q) = {g € GL(n,R)|30g = 0}.

Here ‘g denotes the transpose of g. For g € GL(n,R), let g = (£5) be the
block form with 4 € M, (R), B€ M, (R), C€ M, ,(R) and D € M_,(R).
Then the condition ‘gQg = Q = Q is equivalent to

a_[u4 -c
11 | |
(1.1) 8 B D

1.2. Let G = O(p, q) and let 2 be the symmetric space associated to G. We
realize 2 as the bounded domain

92-{zeM,,R)|2Z<E,}.

For g € G, the translation of g on 2 is given by the fractional transformation

(1.2) gZ = (AZ + B)(CZ + D).
With this action, we have an automorphic factor
(g, 2Z) 0
J , Z)= X 5
(8.2) ( 0 Jj(g2)
where

(1.3) (g,Z)=4-(gZ)C, j(g,Z)=CZ + D.
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The action of g on 2 can also be expressed in terms of the automorphic factor
J(g. Z) and the linear action of G,

g(é) = (gEZ)j(g,Z),

(E,.Z)'g=1(g,2) (E, 82).
By (1.4), one checks readily that & has a G-invariant metric given by
(1.5) ds* = tu((E - 2'2) " dZ(E —'2Z)'d'Z).

1.3. Definition. Let V' be a positive subspace of R” with respect to Q.
Denote by G, and 2, the subgroup and submanifold given by

G, = {g€G|gV= vy,
D, ={ze9|(ZE,)ov=0,v€ V}.

(1.4)

(1.6)

14. Lemma. The group G, and the submanifold 2, satisfy the following
conditions:

() Forge G, 82, =9,,.

(i1) The identity component of the subgroup of G, leaving elements of V fixed
acts transitively on 9 .

(iii) 2, is a totally geodesic subsymmetric space of @ of dimension (p — r)q
with r = dimg(V).

Proof. Same as [33, Lemma 1.2].

1.5. Let e,,---, e, be the standard basis of R”. To discuss the geometric
properties of G, and 2, by the Witt theorem and (i) of Lemma 1.4, we may
assume that V' is spanned by e,_, ., -, e,. For simplicity, we write G, and
2, for G, and 2, in this case. For Z € 9, we decompose the matrix Z into

with Z, € M,_, (R)and Z, € M, (R). Then 9, is simply given by
2,={Ze€9Z,=0}.
For g € G|, we express it in the block matrix form

4, 0 B
(1.7) g=10 u O
¢, 0 D
with 4, e M, . (R), D, € M (R) and u € O(r). From (1.2), the action

of G, on 2 is given by
_ [ 4z, + B)(C,Z,+ D)

(1.8) gz
uZZj—l(g’ Z)

(g€ G, Z€2).
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1.6. Lemma. Let H, = (E —'ZZ)™', A(Z)=deW(E —'ZZ), L, = (E —

'Z,Z\)"" and B(Z) = deW(E —'Z,Z,). Then we have the following conditions:
(i) H,, = j(8.Z)H/j(8.Z) (g € G).

(ii) Lo, = /(8. Z)L (8, Z) (8 € G)).

(iii) B/A is G-invariant.

Proof. (i) and (ii) are immediate from (1.4) and (iii) is an easy consequence
of (1) and (ii).

The function B(Z)/A(Z) is closely related to the distance function d(Z, 2,)
from Z to 2,. The same assertion in [33, Proposition 1.7] also holds here. In
particular we have the inequalities

(i) 4m(B/4)

> eZa'(Z.Ql),
(i) e*"4=? > B/A,

(1.9)

where m = min{r, q}. For later estimation, we also need the following in-
equality.
1.7. Lemma. We have the inequality

1+ r'uz,(E-22)"2,> (B/4)"".
Proof. We have that
E-'Z,Z,=E-'ZZ +'Z,Z,
=(E-'22)"*{E+(E -'22)""2,Z,(E —'2Z)"*}(E -'2Z)""*;
as a consequence
B/A = det{ E +(E —'22)""*'2,Z,(E -'22)™""*}
= det{ E, + Z,(E —'22)"'Z,}.

The matrix Z,(E —'ZZ)™''Z, is semipositive definite. It has real nonnegative
eigenvalues A}, - -, A,. Hence

1+ % tr(Z,(E -'22)"'2,)

_Q+A)+ -+ (1)

> {1 +A) - (1A}
yr (B)V’.

A

1.8. Now consider the trivial vector bundle £ = 2 X M, (R). We introduce
an action of G, on E suggested by (1.8). Forg € G, and (Z,Y) € E,

(1.10) g(Z,Y) = (82.'77(8. Z)Y'u),

= det{ E, + Z,(E -'2Z)"'2,} " =
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where u € O(r) is given in the block form of g ((1.7)). On E, H, defines a
fiber metric

(1.11) (YY), =u('YH,Y).
We have a canonical smooth section v: 2 — E defined by
(1.12) WZz)=(2,2,) (Zz€9).

By (1.8) and (i) of Lemma 1.6, both the fiber metric and the section v are
G -invariant; moreover

2,={Ze9p(z)=0},
l.e., D, is the zero set of v.

The existence of such a fiber metric and section enables one to construct the
dual forms of cycles associated to 2, in quotients of 9. For this purpose, in
the following §§1.9-1.13 we sketch a procedure to construct singular forms, a
real analogy of the complex transgression formula of Chern-Bott [4], discussed
by Flander in [7].

1.9. Let X be a real manifold of dimension n and =: E — X a vector
bundle of fiber dimension m. Suppose that E is endowed with a fiber metric
( , ) and a metric connection d. For a local frame field e = (e,,- -, ¢,), let
h,;=<e.e;) (1 <i,j<m), and H = (h;;). Then there exist square matrices
w and § of order m such that

(1.13) de = ew, d% =eQ.

The entries of w and @ are 1-forms and 2-forms of X, respectively. We call w
and @ the connection and curvature matrices, respectively. By (1.13) we have

(1.14) Q=dw+ oA .
From the definition of metric connection, we have that
(1.15) dH = Hw +'wH.

Conversely, (1.15) and a certain transformation law among w define a metric
connection for E.

1.10. Let v: X — E be a smooth section with zero set X,. Let X*= X — X,.
Over X*, decompose dv and d% in the direction of v and the component
orthogonal to v. We obtain

(1.16) dv =60v + B, d = |v|zy,

where

Ulﬂ

1

Uy
1
0 = dlog|v|, y=-—2(e1,--',em)(ﬂij)( : )
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Here v,,- - -, v,, are the components of v with respect to e. Set
(1.17) = —eQH%.
By induction, one derives readily
(dv)* = aB* 9v + B¢,
(1.18) K =K, + 2vy,
K?=K{+2b Kb vy,
Now let /=[%]. In the following, we introduce forms s, and w, whose
constructions depend on the parity of m.
Case m = 21: Set
sy = 0(d)* 'Kk 0<k <,
wy, = (o) K™%, 0<k<l
Casem = 2] + 1: Set

Sok+1 = U(dv)szl*k,

(1.19)

wyq = (o) 'Kk, 0< k<L
In both cases, let
(1.20) sL=s—kk, w,ﬁ=—kk.
lv] |v]
1.11. Lemma. Let x = (det H)™'/%e; A --- Ae,,. We have the conditions
(i) dK = 0.
(i) dx = 0.

Proof. dK = 0 is the Bianchii identity. Observe that x is independent of
frame field. For orthonormal frame, H = E and w;; = 0, 1 < i < m, which
imply easily the condition dx = 0.

1.2. From (1.18) and (i) of Lemma 1.11, the following lemma is immediate.

Lemma 1.12.  We have the following conditions:

dsy — Wy _ 2k —1)

(i) | |2 = 20—k +1) {WZ(k-l) +(2k - 2)S2(k—1)0}’
v
m=2l.
. ds,, .1 — W k
(ii) ZAHI |2 2L = I —k+1 {WZk—l - (2k - 1)S2k~18}’
v

m=2l+1.

Now set

u, = w +(-1)"ks/8.
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The above lemma yields
2k -1
m Urk-2>
2k
m Urk-1>
We also obtain from (1.18) the conditions:
(1.22) u, =0.

1.13. Let ¢, be the forms given by s; = cy,x, where I'(m/2)c =
—(m — 1)!12 - #™/2, Now we define the form ¢ by

dsy = uy +
(1.21)

—

N
=
N
~

’ -
dsypsq = Ugpsq +

2/ -1 21-1)(2/ -3
‘I’=‘l’21_( D) )“1’2(1—1)"'( 2).(4 )‘P2(1—2)
- 2l-1)---3
(1.23) —--'+(—1)'12§4__.()21_2)~P2, m =2l

] N7
\P = Az=:0(_1) (A)\PZI'FI"Z}\’ m=2+1.

From (1.21), one concludes the following proposition.
Proposition 1.13.  We have the conditions:
. -11-3---(21-1) ,, _
(l) (_1) 6/82.4_‘.21 K —Cdl\bx’ M—Zl,
(ii) dy =0, m=2l+1.

1.14. Now we return to our vector bundle E = 2 X M, (R) discussed in
§1.8. Line up the columns in order in a ¢ X r matrix into a single column. We
shall view M_,(R) as R?". For a square matrix 4, let 4!") be the square matrix
with a diagonal block form such that all the diagonal matrices are 4. By
(1.11), the fiber metric is given by the positive definite matrix H = HY!
with respect to the standard frame fields e = (e,,- - -, e,). Here e, stands for
(€q:> €2;5" * *» €4;)- By a simple computation,

(124)  dH,=H,w, +'0,H,, w,=(d'Z)Z(E-'2Z)".

Let @ = w{"\. One can introduce a metric connection de = ew. For any g € G,
we have the transformation relation

(1.25) g*w; =578, Z)w,j(8, Z2) +57'(8, 2)d'(8. Z).
It yields that the connection is G,-invariant. By (1.14), the curvature matrix is
given by

Q=0 @ =-d'Z(E-2'Z)'dZ(E -'zZ)™".
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The transformation relation of £, takes the form

(1.26) g*h =578, 2)0(8,2) (g€ G).
1.15. For simplicity of notation, let

In terms of the standard frame fields, we have

v= tr(*r‘Zz),

dv = u(rd'Z(E - 2'2)'2'Z, + d'Z,),
K = t(rd'Z(E - 2'2)'dz"r),

lof* = tr( Z,(E —'22)"2,).

Now we construct s;, {, and ¢ by formulas (1.19), (1.20) and (1.23).
For a fixed g € G, the function det(j(g, Z)) is of constant sign on 2.
Denote this sign by

(1.28) sgn(g) = sign(det(j(g, Z))).
It is easy to see that sgn(g) = +1 and is a character of G. For g € G,, let
a( g) be the function

(1.27)

a(g) = det(u) (g€ Gy,

where u is given in (1.7) of the block form of g.
Proposition 1.15.  The forms v, and  satisfy the invariant conditions

g%y, = sgn(g) a(g) ¥y,
gy =sgn(g)a(g)’y, g€6,.
Proof. Let v(7,Z), dv(r,Z), K(7,Z) and x(7, Z) be the functions v, dv,
K and x with dependence on 7 and Z. Clearly we have that
v(7,8Z) = v(ur'i"\(g, Z), Z),
x(7,82) =|det j(g,2)| x(7,2).
By (1.25) and (1.26)
dv(7,8Z) = dv(‘ur'i"\(g, Z), Z),
K(,8Z) = K('urj™\(8,2), Z).
Since |v|is G;-invariant, by our formula of s; and the above relations
s;(r,82) = s;(fur'i (g, Z), Z)
= det(u)?det(j(g, Z)) "si(7, Z);
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consequently

(1.29) g%y, = sgn(g) a(g) 'y, (g € Gy).
From the definition of ¢ ((1.23)), ¥ is a linear combination of y,. Thus the
assertion on ¢ is immediate from (1.29).

1.16. Let ¢ be a k-form on 2 and ||¢|| (resp. ||¢]l,) its pointwise norm
induced by the metric (1.5) (resp. the Euclidean metric). It is easy to see that
ds? > tr(dZd'Z); consequently

(1.30) l¢llo =l
We know that

-1
A/B=det{E + Z,(E-'22)"'Z,}

and the matrix Z,(E —'ZZ)"''Z, has real nonnegative eigenvalues A,- - -, X,.
It yields that

A/B=TIQ+2)">TIA-A)>1-TA=1-]of,

1

thus

(1.31) c/B<|v, C=B-A.

Moreover the function (C/B)/|v|? tends to 1 as |v| tends to 0. From (1.30) and
(1.31), we have the estimations

lvll< (B/C) D72 (Byq) 72+ Uk 2+ ra/2)
which yields easily that
(1.32) o]l < (B/C)" /(B /a) /27,

Here < denotes the inequality < up to a positive constant factor.
1.17. For a complex number s, let & (¢) be the function given by

(1.33) h(t)= —j’m x5(x—r)"* ax (Re(s) > igr).

Obviously 4 (t) satisfies the conditions:

0 H()= (=),
1.34 _
(134 i) h(r) = —rerrr-sLEs 4;/(23))F(qr/2) _
Definition 1.17. Let w, be the differential form defined by

w, = h:(—lr)d(hs(r +|v|2)¢).
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By (i) of (1.34)

w

-1 2\-s, rg—1 2
XD {2(r +107) o[ dlol A + b (r +]0]) dy ).
Clearly [v]"" ', A d|v|(k < rq — 1) are smooth and by (1.22), |v|" " 'd|v| A ¢
is also smooth. By Proposition 1.13, dy is G-invariant. It follows that w, is
smooth. By Lemma 1.7 and (1.32),

(1 35) ” w, ” < (B/A)r/2+rq—(Rc(s)—qr/2)-

By Proposition 1.15, the form w, is invariant under the identity component
G) of G,. Let T, be a tension free discrete subsgroup of G? such that
vol(T'; \ 2,) < oo. The form w, for Re(s) > 0 can be viewed as a dual form of
[\ 2, in the quotient I'; \ 2. In the sequel, we shall clarify its geometric
implication. First, we present a decomposition of the volume form on 2 and
some integral formulas.

1.18. Forge G and Z € 9,

(1.36) d(gz) = 7(g.2)dzj(g. Z2)™".
We know that

(1.37) det(7(g, Z)) = det(j(g, 2))".
Now let

P 4
{dz} = r[1 1’[1 dzZ,,.
i=1 j=
It follows that (1.36) and (1.37) yield
(dgZ} = dex(j(g,2)) """ "{dz}.
Recall A(Z) = det(E —'ZZ). By Lemma 1.6,
A(gZ) = det( (g, 2)) " A(Z).
Hence the invariant volume element dv, on 2 is given by
(1.38) dvg = A~P+9/2(dZ}.
1.19. For (§') € 9,, let F, be its fiber
F, = (Z € 9|Z, fixed}.
Let g € G, be the element
(E-2z/z)"” o -(E-2z2)"z
g= 0 E, 0

(E-22z)"'z, 0o (E-'zz)""
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Then g carries F, isometrically onto F;,, and

zZ 0
8\z,) T\ z(E-22)")

On F,, the volume element is det(E —'Z,Z,)"*9/*{dZ,}, so F, has the
volume element

dvp = A~"*(B/A)"*(dZ,).
It follows that
(1.39) dvg = (B/A)? " dvg, dvg,
where dv, = B~7*97"/2{dZ,} is the invariant volume element of ,.

1.20. Lemma. We have the integration formulas:

(i)
. O T+ 1 +40) /2T (s + 1+ )/2) a2
J, 4 dz) = 0T (s + 1+ 1),/2) !
(Re(s) > -2).
(ii)

| (a/B)dog
rA\%

Wl —p— g+ 1+ D)/ (s —p-g+1+))/2)
T =p—g+1+1)/2)

-vol(T}\ 2,) (Re(s)>p+q—2).

Proof. (i) Introduce f(s, p,q) = [o A*/*{dZ}. By (1.39) with r =1, one
deduces the recursion relation

f(s,p.q)=f(s+1,p-1,9)f(s,1,9).
Now we have that

f(s.1.q) =/;: i (1 —(xlz + o +x§))s/2dx1dx2 eedx,
- [0
0

_ I'(s/2+1)
CT(s/24q/2+1)

Then (i) follows by simple induction.
(11) By (1.39), the integral has the value

fr\g (A4/B)°"" " o dv, .
1

792 (Re(s) > -2).
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As A/B, dv are G{-invariant, the integral

[ (a/B) T
E

Z,
is independent of Z,. At Z; = 0, its value is
f det(E —'Z,2, )(S_p_q)/z{ dz,},
2

2
where 9, = {Z,|'Z,Z, < E,}. Hence by (i), we obtain the desired formula.
1.21. Now we are ready to present the geometric meaning of the form w,. Let
¢ be any smooth (( p — r)gq)-form of T’} \ 2. Assume that

(1.40) loll< (B/4)"

for a certain integer N. By (1.35) and (ii) of Lemma 1.20, the integral
Jr\2® A w, is absolutely convergent for Re(s) > 0.

Theorem 1.21. Let ¢ be a smooth closed ((p — r)q)-form of T\ D satisfy-
ing condition (1.40). Then

f ws/\¢=f 6 (Re(s)> 0).
\2 N\,

Proof. Let M =T\ 2,. Then M is a complete Riemannian manifold. Let
X, be a fixed point of M. For ¢ > 0, let B, be the closed ball with center x,,
and radius 7. Let B, be the boundary and vol(dB,) its volume with respect to
the induced metric. Clearly we have that

f°° vol(3B,) d = vol(M) < oo.
0

This readily implies that
(1.41) lim vol(dB,) = 0.
t— o0
For ¢, ¢ > 0 and / > 0, let N(¢, ¢, 1) be the subset of I'; \ £ consisting of all
Z = (%) such that
i (§) € B,

(i) |v(Z)] = ¢,

(iii) the distance, d(Z, 2,) from Z to 2, is less than or equal to /.

The absolute convergence condition yields that
(1.42) [ e A¢=lim lim [ ene

T\2 t— o0 le:o% N(t,8,1)
It is obvious that
IN(t,e,l) =F UF,UZF,,
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where
Z={zeN(el)||v(Z)|=¢},
F=(ZeN(t,e,0)d(2.2,) =1},
Fy = {Ze N(t,e,l)|(%l) e aB,}.
Now observe that
ANo=d _hs(r+|v|2) A
Wy ¢_ hs(r) \P 4) '

By Stoke’s theorem

2 2
f ws/\¢=—/ hs(r+|v|)¢/\¢_f hs(r+|v|)4”\¢
N(t,e,0) % r ¢, r

. hy(r) . hy(r)
hy(rlo])
LTy e

Let I,, I, and I, be the integrals on the right-hand side of the above equality
over %, %, %, with proper orientations respectively. By (1.32), we may
assume that

with @ > (0. By an argument similar to [33, Proposition 1.10], there exists a
constant b > 0 such that vol(%#) < e® vol(B,). By (i) of (1.9), 4/B <
e~ 24(Z.2)_ Hence we obtain that

I, < vol(B,)e® 22!,

hy(r+10F)¥ A 6| < (B/C) 7V 4/B)"

As a > 0, it yields that
(1.43) lim I, = 0.

1> 0
The same reasoning as in [33, Proposition 2.5] implies

(1.44) lim I, = —f é.
B!

e—0

To estimate ||, we first integrate over the fiber. Let 7 be the volume form of
9B,. By (1.39), ||n A dvg| > (A/B)* for a certain constant c. Since Re(s) > 0,
by (1.32) and (i) of Lemma 1.20 over the fiber,

(1.45) |I,| < vol(dB,).
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Now (1.41)-(1.45) easily yield

-/rl\g G A= tl—lvr?o fB, ¢ '/1‘1\91 ¢

Remark. Proposition 1.13 is the main result in [7]. If X is compact and m
is even, one can construct a dual form of the zero set X, of the section v from
K™/2. For our case, X is noncompact and m is not necessarily even. To
overcome such difficulties, we replace { by A, where A _ is a certain function
on 2 parametrized by a complex number s. The differential w, = d(hy) by
Theorem 1.21 clearly exhibits the property of a dual form.

2. Polynomials constructed from dual forms

In this section, we define now polynomials with differential forms on & as
values which will be used in a later section to construct geometric theta
functions. For simplicity of formulas, we pull back the construction to a proper
vector space with a linear action of G.

21. Let n=p+¢q, V=M,R) and W= M, (R). For X,Y€ W or V,
define
(2.1) (X,Y)="XQY,

where Q is the matrix

E, 0
2=lo -g|
q

Definition 2.1. Let W_ be the subset of W consisting of X such that
(X, X) <O.

For X € W, denote

X+

(2.2) X= ( X )

with X. € M, (R) and X_ € M_ (R). If X € W_, the condition (X, X)<0
implies readily that X_ is invertible. Hence we can define a map 7: W_.—> 9
given by
(2.3) 7(X)=X, X1 (Xew).

2.2. Let G = O(p,q). Since G € GL(n,R), G acts on W from the left by

matrix multiplication. It is easy to see that W_ is G-invariant and the map 7 is
G-equivariant. For X € W, let X* be the set

X+={Yew(x,Y)=0}.
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Lemma 2.2. For X € W, X* is a subspace of the tangent space Ty(W.) at
X satisfying the following conditions:

(i) g« X+ =(gX)*,8€G.

(ii) 7y identifies X with the tangent space T, x\(2) of 2 at m(X).

Proof. Since ( , ) is G-invariant, (i) is obvious. Observe that 7 is G-
equivariant and G acts transitively on 9. It suffices to verify (ii) with
a(X) = 0. In this case X, = 0 and as a consequence

- (1 :

Ye Mpq(R)}, 77*(0) =YX

One concludes easily that «,| X * is an isomorphism onto T (2).

2.3. Let r be a positive integer with r < p/2. For M € M, ,(R), denote by
(M) the subspace of V spanned by the columns of M and by G, the
subgroup of G leaving the subspace (M) invariant. Now we assume that
(M, M) > 0.

Here we consider the trivial bundle

2% My(R) ® (M)
with a group action of Gy. For g € G\, Y € M, ;(R) and X € (M), let
(2.4) g(Z,Y® X)= (82,5 (g, Z)Y ® gX).
Let e,,---,e, be the standard basis of V and G, = Gle, yvrimmeyy Identify
M, R)® (e, ,.1," *,e,) with M_(R) in the obvious manner. Then (2.4)
coincides with (1.10). More generally for 4 € G, (2.4) yields a map
h: D x(Mpy(R) ® (M)) > 9 X (M, (R) & (hM)).
By a simple diagram chasing, we have the following lemma.
Lemma 2.3.  The following diagram is commutative for g € Gy

P % (My(R) ®(M)) —— 2 x(My(R) ®(hM))
lg | hgh™!

2 x(Mu(R) (M) —— 9 x (M, (R) x (hM))

2.4. As (M, M) > 0, by Definition 1.3 there is a totally geodesic subdomain
Dy corresponding to the positive space (M). Let 2, =2,
Choose an element g € G such that

p—r+1" ep>'

(25) g<ep—r+1’.”’ep>=<M>'
We would like to identify M;(R)® (M) with M, (R) and transfer the
discussion in §1 for 2, to the general case. Let M,,- - -, M, be the columns of

M and M¥*,---, M* in (M) given by
(M, MpY=8, (i,j=1,-,r).
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Here we introduce the identification

(2.6) i Y@ M*=(Y, -+ Y,).

i=1
Let N be the matrix N = M(M, M)'/2. Here (M, M)/? is the unique
positive definite matrix whose square is (M, M). Clearly N satisfies the
condition (N, N) = E,. It follows that by using a product of g and some
element in G,,,, we may assume that
g‘lN = (ep—r+l o ep)'
Let M* = (M --- M*). Then M* = N(M, M)"'/2, and
g2z, Y)=gZY'M¥)
=(872.5(s7, 2) 'Y (g7'M*))

(2.7 )
) = (£72.5(s™, 2) " ¥(M, M) (571N)

= (872,587, 2)" ¥( M, M)™7?).

Recall the fiber metric introduced in (1.11) is given by (Y, Y ), = tr(‘YH,Y).
The following lemma is immediate from (2.7) and the above metric formula.
Lemma 2.4. Let g € G be an element satisfying the condition

g ' M(M, M>—1/2 = (ep—r+1 T ep)-
Then the pull back (g7)*(, ), of { , ) is given by the symmetric matrix
(E-2Z) ' (M, M),
25.For X € W_and M € M, (R), let M,. be the component of M which
is orthogonal to X with respect to ( , ) given in (2.1). In terms of matrix
product, we have
(2.8) M=X{X,X)"(X,M)+ My..
In the sequel, we pull back data on 9 to W_ through the projection map .
Lemma25. 7*(E-'ZZ)!'=-X (X, X)""X.
Proof. We have that
X)) o[ m(X)
E—m(x)n(x)= "¢ )( )
w(x)a(0) = ("X o[V
_lx_—ltxgxx_—l;

thus
7*(E-'2Z)"' = -Xx (X, X)"'Xx_.
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2.6. For M € M, (R) with (M, M) > 0, let g € G with
g’1M<M, M>_l/2 = (ep-r+1 T ep)-
Denote by (B/A) y, the function given by
(2.9) (B/A)my = (g7')"B/A,
where B/A is given in Lemma 1.6.
Lemma 2.6. For X € W_, we have

7*((B/A) (wy )(X) = det( M., My.) /det(M, M).
Proof. As in the proof of Lemma 1.7, we have
B/A = det{E, + Z,(E —'22)"'Z,}.

Let ¢’ = (e - e,). We see that

p—r+l o

E, + Z,(E-'2Z) "7,

—E + <e’,(§)>(E —’ZZ)_“<e’,(§)>,
<e', g-l(§)> = (ge’. X)X = (M(M, M)/, X)X

=(M,M)""* M, X)X,
It follows that
7*((B/A4y))(X)
= det{ E, — (M, M)""/*(M, X)( X, X)" (X, M)(M, M)~'/?}
= det(M, M) 'det{( M, M) — (M, X){ X, X)"( X, M)}
=det(My., X,.)/det{( M, M).
2.7. For simplicity of notation, in the following discussion, we shall often

omit the notation #* in the pull back formulas. For M € M, (R) with
(M. M) > 0and g € G with

g MM MY = e = (e, ey,
(g h*(.), yields the fiber metric
(2.10) Hy=-X{X, X)X ® (M, M)™".

Lemma 2.7. Let v be the smooth section given in §1,8 and v,, = (g~*)*.
Then v,, hus the expression

op (X) = (X, XX, M))
in WXxM

yr

(R).
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Proof. For Z € 9, we have that

e ((27)))
fen (g

= (250 20 ((Z). ) oa, 007

and by the identification (2.7)

0, (Z) = (z, <(§)M>)

Pulling back the result to W_, the desired assertion follows.
2.8. From the fiber metric (2.10), one can introduce a metric connection.
Note that dH, = Hyw + ‘wH,, where o is given by

(2.11) w={XdX —X(dX, X){X, X)""X_} ® I
By (1.14), the curvature matrix is given by
(2.12) Q@ ='X'[(dX, dX) - (ax, X){(X, X)"(X,dX)]( X, X) "' X.® I.
In the following, let us adopt the notation
(2.13) (a,b) , ={ays,by:).
Then € has the simpler expression
w="X"YdX,dX) (X, X)X ®I.
Now let e = (e, - -, e,) be the standard frame fields where

o(572) =

ei=(eli"”’eqi (i=1’...’r)_
With respect to the standard frame fields, we have
v=3 X YX, M), = —eQH e.
1<igr

Here M, is the ith column of the n X r matrix M.

Lemma 2.8. We have the following conditions:

(i) dv =T, ;< e/X7dX, M), .

(i) K = Ty, e/ XM, M,Y(dX, dX), X Ve,

Proof. The assertions follow by a straightforward computation using our
expressions for  ((2.11)) and £ ((2.12)).

2.9. Let ¢, hy and x be given by

[(rq/2)c = —(rg — 1)12 - w972,
(2.14)  h, = det Hy = (det — (X, X)) (det X_)* det(M, M7,

= h-1/2
X= hx/ n en €1 €ar
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Here we consider the expansion of the rg-form

det{ M, M)¥*(dv) " /cx.
From (i) of Lemma 2.8 and (2.14), it follows that
det{( M, MY"*(dv)? /cx
r q
- —%I‘(%’-)vr“”/zs(X_)'(det — (X, X))"*T1 T1(dx, M),
i=1t=1
- L+gr(r=1)(q-1)/4( T 9\ o r _r
(2.15) = (-1)'*e / /(Tq)r(iq)ﬂ /%X )" (det — { X, X))™""?

r

q
T Tax M) .

where s( X_) = sign(det(X.)).
Definition. Let f( X, M) be the polynomial of M given by

F(X, M) = (1) oA gear(det — (X, X))

q r
.S(X—)’tl_ll ’l_ll <an Mi> 10
and denote by f(Z, M) the differential form on 2 whose pull back to W_ is
(X, M).

Remark. The polynomial f(Z, M), except g = 1, in general is not suitable
yet to combine with an exponential function to form a theta function. To
obtain the right polynomial, we will notify f(Z, M) by representation theory
of O(p).

2.10. We can define w (M) for D, as in §1.17. It is clear from our
construction that

g*w,(M) = o,(g7'M).

By translation, Theorem 1.21 is also applicable for w, (M) with a proper
orientation s,, on 9. Let

Y0=

0
Er
0

with the g X g zero matrix at the bottom. The orientations s of & and sy, of
2, used in Theorem 1.21 are determined by

P q ripna’x
A dz;;, D" A A dz,;,

1j=1 i=1 j=1

1
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respectively. Choose g € G such that
eM(M,M)?* =Y,  det(j(g,z))>0 (ze€9).
Since w,(Ma) = sign(det a)?w (M) and g*s = sign(det(g))%s,
= sign(det(g)) ‘g Sy,
In the sequel, we use 9,, for Z,,, with the orientation s,,.

3. Some invariant theorems
In this section, we discuss some representation and invariant theorems for
O( p) needed for our later investigation on geometric theta functions.
3.1. The Casimir operator of O(p,q). Let G = O(p, q) and let L(G) be its
Lie algebra. For X € M, (R), n = p + ¢, set

X = ( Xn X )
Xn Xpn
with X;, € M,,(R), X;, € M, ,(R), X;; € M ,(R) and X,, € M_ (R). Then
L(G) is given by
L(G) = {XG M,(R)|' Xy, + Xy =0, Xy + Xy =0, X, = XIZ}
Denote by E,,, the n X n matrix with entry 1 at the (qa, b)th position and zero
elsewhere. One checks easily that L(G) has a basis consisting of the following
elements:
A,=E;+E; (i<j),
B,=E,-E, (s < t)’
=E +E,,.
Here we adopt the convention on indexes
1<i,j<p, p<s,t<n
With respect to the invariant form B(X,Y) = tr( X, Y'), the Casimir operator
C = C(p, q) is presented by

(31) { ZAU ij Z B:lBst + ZCiSCiX}'
i,s

i<j s<t

3.2. Let ¥ =R" and let V" be identified with M, (R). Denote by r the
representation of G on the smooth functions of V" given by

r(g)f(X)=f(g7'X) (g€G, XxeV).
Now introduce the differential operators

1,= Z an Ly, = Z an

1<Asr l1<a<n
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Then we have
r(Aij) = Iij - Iji’ r(Bst) =I,- 1, r(Cis) = _(Iis + Isi)'
It follows that

92 92
Lr(4,)r(4;)= ZE( waxxa X'*Xf"aX,an.»y)

i<j Awvi,j

_(P 1)2 )\aX ’

92 Ch
Z (B !)r( r) = Z z( Xo 3X)\6X XS"X’”BX,@XS,)

s<t A st

"(q 1)2 AaX

0?2 092
Zr(cis)r( )_EZ()(:A "'aX,\a +X stax)\a )

i,s A i,s

02 0?2
+EZ( ”BX,@ Xsk‘xfivm)‘

A i,s

A straightforward computation yields the following expression for r(C( p, q)).
Lemma 3.2. The image of C(p, q) under r is given by

(=3 T Lulat(i=r=1 ¥ L

1<Av<r 1<A<r
- Y (%X :
1<A,v<r » aX aX
where X, is the Xth column of X and
d 9?2
<8X > E X 0X., )y E)X)\a
1<igp p<s<n

3.3. Let O(n) be the real orthogonal group. To discuss the representation
theory of O(n), we consider the quadratic form

(3.2) O(x) =xx, + x,%,_1 + ++ +x,x;.

Set / = [n/2] and J the / X I matrix

1
J=
1
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Let A be the matrix

1 i
EE 0 fJ
0 1 0 (n=20+1),
1 i
—E 0 —LJ
(3.3) A={1V2 V2
1 i
—E —~—J
‘/15 ﬁ (n=21).
—E Ly
V2 V2

One sees easily that

(3.4) A0(n)A' c 0(Q,0).

The diagonal subgroup T of AO(n)A™" contains a maximal torus consisting of
elements of the form

diag(ty,-- -, ¢, 1,67 - 7Y), n=20+1,

(3.5) alt) = . g( 1 l / 1 )

diag(ty, -+, 1,87 - 1Y), n=2l,

where 7, € C with |t]=1 (i =1,---,1). It follows that S = A"'TA4 is a
maximal torus of O(n) consisting of elements

s(t) =Ala(t) A.
Each character x of S is determined by an /-tuple of integers (m,,- -, m,)
with
x(s(r)) = -,

Let V' be an irreducible complex SO(n)-module. It is known that the highest
weight of V' with respect to S is given by (m,,- - -, m,) satisfying

myz - =2m 20, n=2+1,
(3.6)

m = - =2m_ =>|m, n=2I

3.4. Now let V' be an irredicible real O(n)-module. We know [39, volume 7]

that V. = V ® g Cis still irreducible as a complex O(n)-module. Note that the
index of SO(n) in O(n) is 2. It follows from the Clifford’s theorem that
Vc|SO(n) remains irreducible or breaks up into two irreducible parts. From
[39, volume 9], the latter occurs if and only if n = 2/ and V. has a dominant
weight (m,,---, m;) with m, # 0. In this case, the other dominant weight is
(my,---,m,,_,,—m,). It follows that in all cases, V. has a unique dominant

weight (my,- - -, m;) with m, > 0.
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Definition 3.4. An irreducible real O(n)-module V is said to have signature
(my,---,m)if my> --- >m;>0and (my,---,m,)is a dominant weight of
Ve.

3.5. Let Q be given as in (3.2). Let 7 be a finite dimensional irreducible
complex representation of SO(Q, C). Here we compute the value 7(C) of the
Casimir operator C of SO(Q, C). In the following, we discuss in detail the case
n = 2] + 1. The Lie algebra of SO(Q, C) has a basis given by

E, 0 0
4;,=10 0 0 (1<i,j<l),
0 0 -JE.J
0 e 0
X;=10 0 -eJ|
00 0
0 0 0
Xx-=('e‘ 0 O 1<ixgl),
0 -Je, O
(0 0 J(E,-E;)
Y;=10 o 0 ;
0 0 0
0 00
Y; = 0 0 0] (1<i<j<i).

(E;,—E;)J 0 0
With respect to tr( XY'), the Casimir operator C has the form

c=3{ T A+ T (XX +xX)- T (47,475l

1<i,j<! 1<i<!/ I<igj<!

By the Lie algebra structure

C= % Z (A4, +4,;)+2 Z (1= )4,

(3.7) 1<is/ l<is/-1
+22AjiAij+2 Z Xi_Xi_2 Z YJYU}
i<j 1<i<! I<i<js<!
Lemma 3.5. If m has dominant weight (m,- - -, m,), then
(3.8) 20C= Y m?+2 Y (I-i)m+e Y m,
1<ixg! 1<igi-1 1<ig!/

where e = 1ifn =214+ lande=0ifn =21
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Proof. Immediate from formula (3.7) and a similar expression for n = 21.

3.6. Corollary Let V be an irreducible real O(n)-module with signature
(my,---,m,). Then the Casimir operator C, of C on V is a scalar multiple with
value given by (3.8).

Proof. 1If V¢ is irreducible as an SO(n)-module and the dominant weight
is (my,- -+, m;), then C,, has the value given by (3.8). If ¥ decomposes into
two irreducible SO(n)-modules, V. has dominant weights (m,,- - -, m;) and
(my,- -+, m;_;,-m,). In this case, n = 2/ and it is clear that both irreducible
spaces yield the same eigenvalue for C determined by (3.8).

3.7. Let G = SO(n) and let H = SO(n — 1) be the subgroup of G given by

H= {(g ‘;)lh = SO(n—l)}.

Let / = [n/2] and 7(n; m,,- - -, m,) be the irreducible representation of SO(n)
with dominant weight (m,,- -+, m,). The spectral decomposition of «|H is
given by the following theorem.

Theorem 3.7 [40, Theorems 2 and 3, pp. 378-379). (i) If n = 21 + 1, then

a(n;my, - -,m,)|H =Ya(n-1;5,--,s),

where the summation runs over my > S| = My, -, m;_; = §;_; = m; and
m;= s> -m;.

(i) If n = 21, then

a(n;my,- -,m,)]H =Ya(n—1;8,"",5_1),

where the summation runs over m; = $; = My, ++,M;_, > $;_, > m,;_; and
m_y =8 > |my

3.8. Let r be a nonnegative integer with r </ and =, , the irreducible
representation of SO(n) with dominant weight

(a’...,a,o)...’o)’ a>0‘
e
r [—r

Lemma 3.8. The restriction 77,,,,|S0(n —r) of w to SO(n — r) contains the
trivial representation exactly once.

Proof. For a nontrivial irreducible representation « = @ (n: my,- - -, m,), let
h(w) be the largest index i such that m; # 0. From Theorem 3.7, it yields that
(3.9) h(7) > h(m) -1

for any irreducible representation 7 of SO(n — 1) with 7 < 7| SO(n — 1). Let
m,, , be the multiplicity of the trivial representation in , ,|SO(n — r). From
(3.9), we have the recursion relation m,,=m,_,,_ ;; hence, by a simple
induction m, , =m,_,,=1.
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3.9. Proposition. Let V be a real irreducible O( n)-module with signature

(a,---,a,O,--~,0), a>0,1=[n/2].
r l—=r
Then the multiplicity of the trivial representation of O(n — r) in V|O(n —r) is
at most 1.
Proof. Let H= O(n — r)and V" be the subspace of elements of V fixed
by H. It is easy to see

(3.10) (VH)@,C=(V®,C)".

Consider then the space Ve = V ® 5 C.

Case 1: V|SO(n) is irreducible. Then it is the representation =, , and our
result is immediate from Lemma 3.8.

Case 2: V|SO(n) breaks into two irreducible subspaces. It follows that V.
has an irreducible SO(n)-module W of dominant weight

(a,-~-,a, 0,...’0).
> 2D 02
r l—r
Choose an element 7 in O(n — r) with det(7) = —1. Then we have V. = W &
TW; as a consequence

SO(n—r) —
ySoUn-n = W, & W,

where W, = WS°("=n_ By Lemma 3.8, dim(W,;) = 1. Since the matrix of
| W, ® W, is (} }), one concludes readily that the eigensubspace of 7| W, &
W, of eigenvalue 1 is one dimensional. Hence we have that V' is of
dimension 1 and by (3.10), dimg(V' ") = 1.

3.10. Let M be the n X r matrix of indeterminates M = (M;;) and let
W = R[M] be the ring of polynomials. For a nonnegative integer s, let W, be
the subspace of R[M] given by

(3.11) W, = {f(M) € R[M]|f(Mk) = det(k)'f(M), k € GL(r,R)}.

The space W, is trivial if r > n. We assume that r < n. Let I be any subset of
I, = {1,---, n} with cardinality r. Let i1,-- -, i, be elements of / in increasing
order and denote by ¢, the polynomial

¢, (M) = det(M,),

where M, is the r X r matrix such that the »th row of (M,) equals the i th row
of M (v =1,---,r). The fundamental theorem of invariant theory for GL(r)
[10, Theorem 7.2] yields the structure of W,.

~ Lemma 3.10. The space W, is the linear span of ¢y - by, where Iy, -, I
run over subsets of {1,---,n} of cardinality r. \
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3.11. By the preceding lemma, the space W, is contained in the space of
homogeneous polynomials of degree rs. Let A,, be the differential operators
given by

n 82
AM_,-;W (1<A,V<r).
Recall that a function f is pluriharmonic if it satisfies
(3.12) ALf=0 (<A p<r).

By [18, Remark, p. 18], W = H ® R['MM], where H is the space of pluri-
harmonic polynomials. By [10, Theorems 6.9 and 6.13], the space H, = H N W,
is irreducible with signature

wo=(s:7,5,0,---,0),  I=[n2].
r I—r
Moreover the occurrence of w, in H is 1. Let W° (resp. H° W) be the
isotypic component of the representation of O(n) with signature w, in W
(resp. H, W,). It follows that
W°=H°® R['MM] = H, ® R['MM],

and so all polynomials in W° have degree at least rs. As a consequence,
Wo=H.,

Theorem 3.11. Let f € W, and r < n/s. The following statements are equiv-
alent:

(i) fis pluriharmonic.

(i1) fis harmonic,

(i) f € W2

wv)Tf=0,T= El<)\,v<r<M)\’ M,)A,,.

3.12. Lemma. Let f(M) be a polynomial such that

(@) f(Mh) = x(h){(M), h € GL(r),

(i) f(gM) = p(8)f(M), g € O(n).

If r < n, there exist a constant ¢ and a nonnegative integer s such that

f(M) = cdet('MM)".
Proof. Immediate from [18, Theorems 6.9 and 6.13].

4. Harmonic forms with highest signature
4.1. Let 2 be the symmetric space associated to the group O(p,q). For
fixed g € G, the function det( j(g, Z)) has constant sign s(g) over 9. Denote
by G the subgroup O*(p, q) of O(p, q), where

0*(p,q) = {g€ 0(p,q)|s(g) = 1}.
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For Z € 9, let O, be the isotropic subgroup of G at Z. It is easy to see that
O, is isomorphic to O( p) X SO(q). For convenience, we also realize & as the
space of all maximal negative subspaces of R”, n = p + g. The element Z is
then identified with the subspace (Z) spanned by the columns of the matrix
(£,)- Let K, be the subgroup of G defined by

K,={geglgp=0v for ve(Z)}.
Clearly K , is isomorphic to O( p).

4.2. Let A"(2D), be the space of differential forms of degree rg at Z. By
choosing a proper orthonormal basis of the cotangent space of 2 at Z,
AN"(2), is isomorphic to A"(V) with V' = M, (R); moreover the action of
K, on A™(V') becomes the representation of O( p) in the tensored space.

4.3.Let / = [p/2] and r < I. For a quadratic form Q of R?, we consider the
representation of O(Q,C) on A"(V') ® g C. It is easy to see that A"(V') has a
unique irreducible O( p)-submodule with signature

)
r [—r

Let 7, be the projection of A™(V’) onto this irreducible subspace with respect
to the decomposition of A"¥(V') into isotypic subspaces of O( p).

44. Let e;;, 1 <i<p,1<j<gq,be the standard basis of V. Let ¢ be the
element
(4.1) ¢ = I1 e

p—r+l<i<p 1<j<gq
Here product means exterior product. Now let 4 and J be the matrices given
in §3.3. We have that ((3.4))
A0(p)A~ c 0(Q,0),

with Q(x) = XX, + XX, 5 + -+ +x,X;.
Consider the element A¢. Let T be the maximal torus of 40(p)A~! in
(3.3). We have the expression

. rq
4.2 Ao = (-1 '('_1)"/2(#) e, + terms
( ) ( ) ﬁ lg‘sr 1£I'<q !
(of lower weight with respect to T').

Since AO(p)A~" is compact, A(V) ® g C has an invariant inner product
{, ). Let ¢ be the element

(4-3) Y= 1_[ 1_[ €ij-

l<isr 1<j<q
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From (4.2), (A¢,¢) # 0. Note that Cy is the weight space of A"%(V') ® g C of
weight w,. As a consequence ,(¢) # 0.

Proposition 4.4. Let W° be the irreducible O(p)-module of N"4(V) of
signature w,. Then the multiplicity of the trivial representation of O(p — r) in
W is 1; moreover every O(p — r) invariant element of W° is a multiple of
To(P).

Proof. We know that ¢ is O(p — r)-invariant. By the above discussion,
7o(¢) is a nonzero O( p — r)-invariant element of W°. By Proposition 3.9, the
multiplicity of the trivial representation in W |O(p — r) is at most 1, thus our
assertion follows.

4.5. Let v, be a nonzero O( p — r)-invariant element of W°. Since

(9.m0(9)) =(mo(¢),m($)) 0,
it yields that the coefficient of ¢ in v, with respect to the basis e,; is nonzero.
Let
*: A"’(V) - /\(p—r)q(V)
be the ordinary * operation. Let § be the element
§= I_[ 1_[ €;j-
1<igp—r 1gj<gq

Lemma 4.5. We have the following conditions:

(i) The coefficient of ¢ in v, is nonzero.

(1) The coefficient of § in * v, is nonzero.

Proof. (i) is established above.

(i1) follows by a variant argument of (i).

4.6. Let M € M, (R). Recall that in §2.9 we have defined a polynomial
f(Z, M) such that its pull back to W_ has the expression

(X, M) =a,s(X)"(det - (X, X>)"/2lil ., (dX,, M), ,
(4'4) =1 i=1

a, = (_1)1""4’("1)(4_1)/4(%)F(%)W—qr/Z‘

By §4.3, we know that A"%(2), has a unique K ,irreducible submodule
AY(2D) , of signature
w0=(q""’q90’”"0)’ l=[P/2]
r [—r
Definition 4.6. Let F(Z, M) be the projection of f(Z, M) in A"(2D) , with
respect to the decomposition of A"(2), into isotypic subspaces of K ,.
4.7. Lemma The form F(Z, M) satisfies the following conditions:
(i) Forg € G, (g )*F(Z,M) = F(Z, gM).
(ii) Let M. be the component of M orthogonal to Z (Z as a subspace of R").
Then F(Z, M) is just a polynomial in M. .
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(iii) For h € GL(r),
(4.5) F(Z, Mh) = det(h)'F(Z, M).
(iv) F(Z, M) # 0.
Proof. (i) is immediate from formula (4.4). By our construction,
(ax,, M)y  ={dX,,(M,),.),
hence F(Z, M) is a polynomial in M,.. Let f,(X, M) be the form
f(x.M) =TI (dx,M;), .

I<igr
One sees easily that
f.(X, Mh) = det(h)f,(X,M)
and as a consequence, (iii) follows by formula (4.4). Let
0
M= |E,
0
with upper and lower zero matrices of the size (p —r) X g and ¢ X ¢
respectively. At Z =0, f(Z, M) is a nonzero multiple of ¢ given in (4.1).
Then by Proposition 4.4, F(Z, M) # 0.
4.8. In the sequel, we consider forms of the type
(4.6) 7(a)=det{M,. ,M,.)'F(Z, M) =(p+2q-r-1)/2.
Let C(K,) be the Casimir operator of K, on polynomials of M,.. Since
det(M,.,M,.) is K invariant and by our definition F(Z, M,.) belongs to
the isotypic component of R[M.] of signature

(¢--0.0.-0)  1=Tp/2,

r [—r

thus

(4.7) C(K.)1(a) = 3qr(p +q—r—1)7(a)

by a simple computation using Corollary 3.6. Let C(G) be the Casimir
operator of G on R[M]. Note that 7(a) depends only on M,.. By a
straightforward computation, 7(a)(M,.) is again pluriharmonic. By Lemma
3.2, it is easy to see that

(4.8) C(6)r(a) = C(k)r(a) + 1 ¥ L,r(a),
where N
3

L,= Y M“aMX‘

1<A<gn
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Clearly
L,m(a)=(2a+ q)7(a) (I<i<r);
hence we obtain the relation
r
@9)  c(6)r(a)=L{(p+q-r-1)+@2a+q)}r(a) = 0.
4.9. We say a differential form w(z) of 2 of degree rq is of highest signature
if
(4.10) w(Z)e N(2D),,
i.e., at every Z, w(Z) belongs to the isotypic subspace of signature

(q,-~,q,0,~-,0), I1=1p/2].

r [—r

By a harmonic form w(Z) of 2, following Hodge we mean a differential form
w(Z) of @ satisfying dw = 0 and d(* w) = 0. The condition is stronger than
Aw = 0 in general. We have the following theorem on harmonic forms of
highest signature.

Theorem 4.9. We have the following conditions:

(i) The form (det{M ., M,.))~?*24=7=V/2F(Z M) is a harmonic form of
highest signature invariant under G ;.

(i) Conversely every G, invariant harmonic form of degree rq of highest
signature is a constant multiple of the form in (i).

Proof. Let 7 be the differential form given by

(4.11) (Z, M) = det{ M,. ,M,.)"?*2~""V2F(Z M).
We prove the theorem in several steps.
Step 1. By (i) of Lemma 4.7, it yields that
(4.12) (gH)*'1(Zz,M)=1(Z,gM).
Let C and C(G) be the Casimir operators of G on A™(Z) and R(M)
respectively. From (4.12), Ct = C(G)7. Then by formula (4.9), we have the

condition Ct = 0.
Step 2. Consider the product 7 A (* 7). We have

(413) rA(*x7)=det(M,. ,M,.) P2 ""VF(M,Z) A(* F(Z, M)).
Set

F(Z, M)A *F(Z,M)=h(Z,M) dv,,
where h(Z, M) is a polynomial in M,. and dv, is the invariant volume
element of 2. Since dv, is G-invariant, by Lemma 4.7,
h(Z, Ma) = det(a)**h(Z, M),  a«< GL(r),

(4.14) h(Z,gM)=h(Z,M), g€k,
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Appealing to Lemma 3.12, we have
h(Z, M) = (det{ My. , M,.)")a(Z).
As a consequence of the condition
(87)*F(Z,M) = F(Z,gM),
a(Z) must be G-invariant. It follows that a(Z) is a constant ¢ such that
(4.15) TA(*7)=cdet( My, ,M,.) P+ Dy,
Step 3. Assume that (M, M) > 0. Let T, be a uniform discrete subgroup of
G,, where
G = {8 € G|g leaves M pointedwisely fixed}.
Then by formula (1.39) for dvg, and Lemmas 1.20, 2.6
(4.16) f T A *7=bvol(Ty\ Gy),
T,\2
where b is given by
al(p+tq—2r=1+4+0)2I1_ T(p+q—-2r—1+j)/2
[ T(p+g—2r—14+1)/2

-/ %det( M, M) P+a7rD,

Step 4. Let qu' u be the space of G, invariant forms ¢ of G of degree rq
such that

[ (¢.9)dg <o,
Guy\G

M
where dg is a fixed Haar measure on G,,\ G. By (4.16), the pull back of 7 lies
in qu‘ - Hence Kuga’s lemma on harmonic forms [3, p. 49, Theorem 2.5] is
applicable. It follows that r is a harmonic form for (M, M) > 0. Since
7(Z, M) depends on M and Z as a rational function, it is a harmonic form
wherever it is defined. This proves (i).

Now let w(Z) be a differential form satisfying condition (ii). Note that
Gy N K is isomorphic to O(m) with m > p — r. If p — r < m, by Theorem
3.7, w(Z) has to be trivial. Hence we may assume that m = p — r. By
Proposition 4.4, there exists a function b(Z) with

w(Z)=1(Z,M)b(2Z).
Then the conditions dw = 0 and d(* w) = 0 yield
(4.17) db(Z)AT=0, db(Z) A(x7)=0.
With the aid of Lemma 4.5, condition (4.17) implies that db(Z) = 0, i.e., b(Z)
is a constant. Thus we have established assertion (ii).
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5. Some integral formulas

In this section, we consider various realizations and parametrizations of 2
and present various expressions of the invariant volume element of 2. The
purpose is to evaluate some integrals which will be encountered in our study of
the Fourier coefficients of the lifting map.

51.Let p > q>0,n=p+ qandlet Q, be the matrix

0 0 Eq
0, = 0 Ep—q 0
E 0 0

Denote by G the orthogonal group leaving Q, invariant,
G = {g € GL,(R)|20:18 = 01}

Given an n X n matrix X, we use the black form which is suitable for Q,,

Xn X X
X=Xy Xp Xyl
Xy Xy Xy
where X;, X;; € M, (R) and X, € M,_, ,_.(R). The Lie algebra L(G)

consists of those X satisfying the conditions:

X, +'X55 =0, X +'X,, =0,
(5.1) X, +' X3 =0, X, +'X;, =0,
X; +'X;5, =0, X3 +X;, = 0.

For t = (¢,-- 1) with ¢,> 0 (i =1,---,q), let us set

(5.2) d(1) = diag(t,, -+, 1,1, -+, 1,574+, 171)

q° q

and denote by T the group consisting of all these d(¢). We know that T is a
maximal connected R-diagonalizable subgroup of G. Let «; be the character of
T given by

dt) =t, (i=1,---,9).

Let A" be the subalgebra of L(G) consisting of X such that X,;, = 0, X5, =0,
X;, =0, X,, =0 and X;; is upper triangular. Then 4" is a maximal 7-
invariant nilpotent subalgebra of L(G) and it defines an order of the roots of
G with respect to 7. From (5.1) one easily sees that the set =, of positive roots
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consists of
a,a;'(1),

(5.3) a;a,(1), 1<i<j<y,
a(p—q), 1<i<y,

where the number in the parenthesis indicates the multiplicity of the root.
5.2. Let S be the matrix given by

1 1
;ETEq 0 ;ETEq
S = 0 E,, 0
1 -1
EE , 0 EE p
Clearly S satisfies the conditions
S2=E, 'S=85, S0,S o0
" ’ 0 -E,

and consequently O( p, q¢) = SGS. Let a(¢) be the element of O( p, ¢) given by
a(t) = Sd(t)S. A straightforward computation shows that a(¢) is of the form

a)= (& 2),

A=(€ qu)» 5= (M), c- o,

where
S A TR
D = diag R 3 ,
-1
(= I, = 1
H= dlag( L 3 .
Consider the group action of O( p, ¢) on 2. We have that
t—t t,—1
(5.4) a(t)O:(M(t))’ M(1) = diag PP L |
0 th+ 1 t,+1,
53.Let K = O(p) X O(q) and A = STS. By a theorem of Cartan,
(5.5) O(p,q) = KAK.

By [12, Proposition 1.17, p. 381] the invariant measure of O( p, q) with respect
to the Cartan decomposition (5.5) has a form

(5.6) dg=c |] sinha%dk, dadk,,

a€l,
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where ¢ is a nonzero constant. From the data of positive roots (5.3), it yields

4 (4 L\ pa
dg=cl—[( : )
i=1

l

5.7
(5.7) N e P
1 IT ( 2 dk da(t) dk,.
<i<j<q
Now set
t,—tt
i=t+t_1 (l=1,' ,Q)

In terms of A, (5.7) becomes

dg = cTT(1- )7 xp
(5.8) =1
[T (B =N)dkdA, - dA,dk,.

1<i<j<gq

5.4. Recall that 2 = O(p, q)/K and the identification is given by g — gO.
For any real p X ¢ matrix Z € 2, there exist 1 € O(p) and o € O( p) such
that

(5.9) Z=T(Dm)o,
0
where
D(X) = diag(A;,---,A,),  O0<A <A< <A, <L
From (5.8), the invariant measure dv, on 2 in terms of the decomposition
(5.9) can be presented by

g ~(p+a))2
dU@=C1n(1 _}‘2:') e APTA
i=1
5.10
(5.10) IT (R=X)dr, - dx drdo,

I<i<j<gq

where ¢, is a nonzero constant.
5.5. For Z € 9, let {dZ} be the Euclidean measure. The invariant measure
dvg, 1s also given by (1.38)

dvgy = det(E —'Z2Z) " *(dz).

Comparing it with (5.10), we see easily that

q
(5.11) {dZ}=c1_]:[1M"‘7 IT (X-X)dA, - d\, drdo.

1<i<./<q
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5.6. Let a: 2 » M, (R) be the map
(5.12) a(Z)=2z(E-'22)"* (Ze€9).

For any W € M, (R), W(E +'WW)'/? lies in 9. Thus we have a map B:
M, (R) —» 2 given by

(5.13) B(W)=W(E+ww)"? (WeM,,(R).

One checks readily that a, 8 are inverse to each other.
For Z € 2, the decomposition (5.9) yields

Z = 1'( D(A) ) c.
0
By a direct and simple computation,

W=a(Z) = T(D("))o,

0
where v, = X,/ /1 — A2 (i = 1,- - -, q). Then it follows that (5.11) implies
(5.14) a*(det(E + WW) " (aw }) = dv,.

Theorem 5.6. Let dvg, be the invariant volume element
dvy = det(E —'2Z) 7+ (dz )}
of 9 and W = Z(E —'ZZ) /2. Then we have the integral formula
f £(Z) dvy(2) =/ FOW(E +Www ) )det(E + Ww) /> (aw )
2 M,, (R

P4
for integrable functions f(Z) of 2.
For convenience, formula (5.14) can also be written as
(5.15) (dW) = det(E —'2Z) P+ "V az).

5.7. In the sequel, we discuss various realizations of & with the intention of
easier comprehension of the boundary of 2. Let p, g, s be integers such that
p=q>0,q>s>0.Denote by Q, the symmetric matrix

0 0 E
(516) Q2 = 0 Ep—s,q—s 0
E 0 0

)

and by G the orthogonal group leaving Q, invariant. The symmetric space 2
associated to G is realized as the space of all real p X g matrices Z such that

(5.17) 'N(Z)Q,N(Z) <0,
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where N(Z) stands for the matrix N(Z) = (%ﬁ). For g € G, we use the block
matrix form g = (¢ 3) with 4 € M, ,(R) and D € M, (R). The action of g on
2 is the usual fractional transformation

gZ = (AZ + B)(CZ + D).

5.8. For Z € 2, we decompose it into the block form

Z, 7,
510 2 (2 %)

Z,eM and Z,€ M,_; ;. Then the

p—=s.q—s

with Z, e M Z,eM

s,q—s° 58?2
inequality (5.17) reads
E -'Z,

s

Z, _
5.19 Nz, Z <[ .
(5.19) @z)7)<|" 7,

Note also that (5.19) is equivalent to
(5.20) 5% < Eoo .
2,2, < (2, + 2,) = (2, +'2,Z,)(E —'2,25) ("2, +'Z,2,).
Let A(Z) be the function given by
(5.21) A(Z) = det(~'N(Z)Q,N(Z)).
In terms of Z,, Z,, Z,, Z,, we have the expression
A = det(E —'Z,Z,)det(M),
M= {Z,Z,+Z,+ 2, +(Z, +'2,2,)(E -'2,2,) (2, +'2,2,)}.

The invariant volume element of Z is given by
(5.22) dvg = A=P*9/2( 47},
where {dZ} as usual stands for 12, I14_, dZ, .

5.9. Let F, be the n X s matrix given by

and G, the subgroup
G, = {g € G|gF, = Fy}.

For any g € G, write

txy

s

X C
D Y|
0 E,

o
[
oo
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The condition g € O(Q,) yields equivalently the conditions
(523) DeO(p-s,q—s), X=-YQ,D, C+'C=-Y0,Y,
where Q; =E, .. For any Ye M, , (R) and skew symmetric s X s
matrix S, denote by n(Y, S) the element of G, given by

E, -'YQ, C(Y,S)
(5.24) n(Y,S)=10 E, _,, Y )

0o 0 E,

where C(Y,S)= -3'YQ,Y + S. Let N be the set consisting of all n(Y,S).
One sees readily that G, is the semi-direct product, i.e., that

(5.25) Gy=0(p—s5,9—s)XN.
5.10. Given any (n — 2s) X s matrix Y, let
Yl
529 - (1)
with Y, € M, ~and Y, € M,_ .. A simple computation yields the transfor-

mation formula of n(Y, S)on &

Z,—-"NZ;+"Y, Z,-Z)Y,-"Y\Z,+'Y\Z,)Y,+ A
Z, Z,+Y, - 27, ’

(5.27) A=-1YY+S.

n(Y,S)Z =

Forme O(p — 5,9 — s), let

4, B
"=[c 5l
with Ay € M, .  and D, € M, . Identify m with the element of G,
defined by
E, 0 0
0 m O
0 0 E

Then the transformation formula of m on 2 is given by

Zl(ClZ3 + Dl)_l Z, - Zl(ClZ3 + Dl)_lclzél
mZ, (4, —(mZ;)C,))Z,

5.11. Now let X be the n X r matrix (r > s) given by X = (&), and G the

subgroup of G leaving X fixed. Clearly G, C G,. Denote by N, the subgroup
of N consisting of all n(Y, S) such that Y; in (5.26) is of the form

0
Y] = Yll £

(5.28) mZ=




CORRESPONDENCE OF MODULAR FORMS 189

where Y/ is a (p — r) X s matrix. Then one readily shows that

(5.29) Gy=0(p—r,g—s)XN,.
5.12. For Z, and Z,, we decompose further
ZII Zl/
(5.30) z,=2 | z,=|"
Z z,
withZ;e M, , _ and Z; €M, , .

By condition (5.20), we have that ‘Z;Z; < E,_.. As a consequence, there
exists m € O(p — r,q — s) such that mZ; = 0. Then choosing Y, S properly
with n(Y,S) € N, one can bring Z into W = n(Y,S)mZ satisfying the
conditions:

(5.31) W,=0, W,=W, W/ =0, W/=0.

Now denote by F the subset of 2 consisting of all Z satisfying (5.31). By the
above discussion, we have that

(5.32) 2= GF.
From (5.27) and (5.28), one sees easily that an element g € G, satisfies

gFNF+ @ifandonlyif g € O(p — r) X O(q — s); moreover O(p — r) X
O(q — s) leaves F invariant. Set

0 -E
Z,= *,
0 (0 0)
(5.33) 2, = G,Z,.

Here we view & as a fibered space over 2,. For each Z € &,, there exists
g € G, with gZ, = Z. Then the fiber F, over Z is determined by F, = gF.

The above discussion indicates that it is independent of our choice of g.
Now let

(5.34) B = det( E —'Z;Z;)

and a be the form

(5.35)  a= B-<P+q+s—')/2{dzg}{dz;}{dzl}{d(é#)}.

Examining the transformation formulas (5.27) and (5.28), one concludes easily
that a is G y-invariant. Thus we can view a as a G y-invariant measure dv, on
9,.For Z € 9,, let dv; be the form over the fiber F, given by
Z,+'Z, )}

(636 = mr(azy) (azi) | a B
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By our construction, it is also G y-invariant. From (5.22), (5.35) and (5.36), we
have the following decomposition of dv,, with respect to the fibered structure
mentioned above,
(5.37) dvg = (B/A) """ dv dvg,.

5.13. Let ;" be the space of all positive definite real / X / matrices. The
group GL(/,R) acts on & by

T[g] ='gTg, T € ¥, g € GL(/,R).

Let du(T) be the measure on #;" defined by
(5.38) dp(T) = dey(T) " P7%(aT},
where {dT } is the Euclidean measure on &#;". It is easy to see that du(T) is
GL(/, R)-invariant and moreover it satisfies the condition

(5.39) du(T) = dpu(T™1).
For T € &;*, we can express

(5.40) T = D[B],
where

D = diag(A,,- -+, 7)) (A, >0),

1 by - by
1 .. b
B= N 2 (b; €R).
1
With respect to this parametrization,
(5.41) {dT} = N1 - A ydN, ---dX, [T ab,,.
i<j<l

Lemma 5.13. For n € %", we have the integral
[, e ae(T)* (4T} = T(a)det(n) 127,
.9514-

where

/ .
T,(a) = 7'V F(EEL;_J’_’)
i=1
Proof. Changing the variable W = 5'/2Tx!/? in the integral, we obtain that
the integral has the value

det(n) 122 [ euWdey(w)* (aW )
y,l+

!
- det(1‘,)-1(1+1+za)/2771(l_1)/4 1—[ T
i=1

(2(1+1+i)
— |
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5.14. For X = (&) € M, (R), clearly we have

(X, %)= (g E?_s)’

0 E

s

144 r”
z]  Z

(5.42)
(X,N(2)) =

For Z € F, recall that Z satisfies condition (5.31)
Z, =0,
Z,=3S, =385,
Z;=0, Z,=0.
Let Z; = Wand Z;' = V. A straightforward computation shows that

_<N(z),N(Z)>=(E__z%/W _z;vi/E/VV)

_ (E—(’)WW g)[(ﬁ —(E—’WEW)'“WV)]’

(5.43)

where
= {25+ vV +VW(E-'ww) " 'wr }.
Thus (5.21) and (5.43) yield
(5.44) A = det(E —'WW)det(T).
5.15. Set

(Xz, Xz) ={X,N(Z)){N(Z), N(2))"(N(Z), X),
<Xzl ’ Xz*> = <X’ X) - <Xz’ Xz>-

From (5.42) and (5.43),

Now make the change of variable

(5.47) U=(E-ww)V.
Note that B = 1 on F. By the formula (5.36),

(5.48) A“P“’)/zdv,.-
= A=+ Get( E — WW)*275C+ V2 (aw ) (dU } {dT }

(5.45)

(E-ww)™? 0

(5.46) —( X5, X,) =
T—l

0 ‘W
E V(E-ww)')|

on F.
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In terms of W, U, T,

T T-1U
(X, X,) = P
(X7 X2) UT' UTYU+ W(E —'WW) “W)
T T-1U
5.49 Xyo, Xy )= _
( ) < z z > UT-] UT-11U+(E_ WtW) 1)
o R (]
0o (E-ww)'|l\o E

by (5.42). This implies in particular,
(5.50) det(X,., X,.) = detT "det(E — WW) " =4\
Finally we set L = W(E —'WW)~'/2, From Theorem 5.6,
(dL)} = det(E - ww ) "V 2 aw )
and consequently by (5.48) we have the expression
A—(P+q)/2dUF

(5.51) 1,2

= 27560/ 2Y=(* 23t E — WW )"V dL) (dU Y {dT )

on F.
5.15. Now we are ready to consider integrals of the form

(5.52) I(n,a)=fr @det<X2l,le>“'(”""1)/2e[—2itrn<Xz,XZ>]dv_@,

X
where n € %" and Ty is a lattice of G . To evaluate the integral, we appeal to
the decomposition of dv, ((5.37)). Clearly the function involved in the integra-
tion is G y-invariant. It follows that

I(n,a) =J(n,a)vol(Ty\ 2,),
(5.53) J(n,a)=f det( X, , Xy )~ D2e[ 2itrq{ Xy, X,)]
F

AP D 2y
By (5.50) and (5.51),

J(n,a) = 27602 [ (det )™~ 4*"* O/ 2det( E +'LL)"
(5.54) F
ce[-2itrn( X, X;)] - {dL}{dU }{dT},
with Te¥", UeM,_  (R)and Le M,_

ss (R). Decompose 7 into the
block form

$,q—s

( U 1712)
n = ,
M2 M
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where 7, € M (R) and 7,, € M,__ ,_ (R). Then we have that
—tr(n{ X5, X)) = tr('th_l + "712UT—‘)
+tr("n, T U + my L'L + 9,UT ' U ).
Set Y = n%,*UT ~'/2. We have
tr(m UT 1) + tr(", 71U + 9,,UT 1 U)
(5.56) = (Y + 20, T2) (Y + T 2y ?)
- tr(mz"’ﬁ%tﬂuT_l)-

We integrate (5.54) first over U. By (5.55) and (5.56),

J(n,a) = 2_(rﬂ)hs(ﬁ1)/2det(7122)_S/2J1 -,

(5.55)

where

Ji = _/;,+ (detT)_a_(qHH)/zelzitr((’?u - '722”15%17712)7"_1)] {dT},

(5.57)

Jy = det(E +'LL)“e[2i tr(ny, L'L)|{dL}.
M, (R)

res.g-s

Assume that a = 0. By Lemma 5.13,

Jy = ,/—9:0» e[2i tr((n“ - 7111"5:}_’7112)T_1)](detT)_q/z(detT)_(S“)/z{dT}

1r. \-4/2 _ L
(5.58) ~ det('hl — M 7112) * fy*— e[2itr T](detT)“’ 1)/2{dT}

s

5 .
-4s/2 - -4/2 —8s+i\ -
= (4'”) “ det(’hl - ")12"12;_"'112) ! Hf(q 2__)77 (s=hr4,
i=1

The value of J, in this case is easily seen to be
(5.59) J, = det(ny,) 1722 msKam),
Observe that

detn = det ny, det(my; — mm33M12)
and by (5.57)-(5.59)

) .
J(ﬂ,O) _ 2—rq-s(s+1)/2ﬂs(s—2q7l)/4det(n)_‘7/2I_I F( q _; + 1).
i=1

Theorem 5.15.  We have the integrals

f det{ Xyu , Xy ) 77"V 2e[2itrq( X, X,)] dv,
W2

— 2—rq7x(s+1)/2,”s(s~24—1)/4I—[ F( q —zs + l)det(n)—q/zvol(rx\gl).
i=1
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5.16. Let M € M, (R) such that dim{(M) = r and (M, M) > 0. Let s be
the dimension of maximal isotropic subspaces of (M ). With respect to proper
basis, we may assume that Q = Q, and there exists g € G with g{(M) = (X),
where X = (§). Let I(n, M) be the integral

(5.60)
I(n, M) = [ det( Mg, My ) ?" 7"V e[ -2t ni{ Mz, My)] dog.
T,\2
As g{ M) = { X), there exists 8 € GL(r, R) satisfying the condition
(5.61) gM = XB.

By the property of invariance of dv, and functions in the integral I(n, M), it
follows that

I(n, M) = fr o det(gMy. , gM,. ) P~V
8img

(5.62) -e[-2trni(gM,, gM)] dvg

—|det 8] """ "1(BnB, X) (by substitution (5.61)).
By Theorem 5.15 (on I(BnB, X)), (5.62) yields that

5.63 I(n, M) = c|detB “pramr=h detn 7 20l(T,,\ @ ,
M \Zpm
where c is given by

s .
¢ = 2—rq—s(:+1)/2ﬂ,s(5—24—1)/4l_[I\( q —5 + l).
i=1

6. Theta functions and the geometric lifting

In this section, we recall some of the basic results on Weil representations
and theta functions for the reductive pair O(p,q) X Sp(2r,R) in a form
convenient for our presentation of the geometric lifting.

First we briefly discuss spherical polynomials with respect to a quadratic
form. The result will be used to derive the desired transformation formulas for
our theta functions.

6.1. Let 4 be a nondegenerate symmetric » X n matrix and let Q be the
quadratic form Q(x) =‘xAx. Denote by A, the Laplacian

32
(6.1) Ap= X b‘f—axiaxj’

1<i,j<n
where 47! = (b,)).
Definition 6.1. A polynomial f(x) is called a spherical polynomial with
respectto Q if A, f = 0.
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6.2. Since A is nondegenerate symmetric, there is a matrix B with 4 ='BB.
By changing variables y = Bx, one can translate the assertions for spherical
polynomials with respect to ‘yy to the general case.

Theorem 6.2 {28, Theorem 18]. Let f(x) be a homogeneous polynomial of
degree lin x|, - -, x,, with complex coefficients. Then the following statements are
equivalent:

(1) f(x) is a spherical polynomial with respect to ‘xAx.

(ii) fis a linear sum of functions of the form (‘CAx)' with 't A = 0.

6.3. Let f(x) be a polynomial in x;,- -+, x, and 4 € GL(n, C). Set

(62)  (Af)(x) = f(4%). f(a%)=f(i£—)

0x,

Lemma 6.3. Let f(x) be a homogeneous spherical polynomial of degree | with
respect to 'xAx. Then we have the condition

(A1) 5 )X = @) Tt (he ),

Proof. By (ii) of Theorem 6.2, we may assume that f is a linear sum of
polynomials of the form (‘¢Ax)’ with ‘tA¢{ = 0, { € C". The assertion is easily
verified in this case by straightforward differentiation.

6.4. Let N be the p X r matrix of indeterminates and f(N) a polynomial
satisfying

(6.3) f(NR) = det(h)‘f(N)  (h € GL(r,C)).

Proposition 6.4. Let f(N) be a spherical polynomial with respect to tr('NN),
and'A = A € M, (C). Then we have the condition

7337 )N = @A) () (et A) N,

Proof. From (6.3), f is homogeneous of degree rq. By continuity, we may
assume that A is nondegenerate. Choose B such that A = B'B. Let M = NB.
Then f(M) is a spherical polynomial with respect to tr ‘M M. It follows that

(6.4) / (%M)e“"’””) = (20)f (M) MMM,
However we have that
f(M) =f(NB) = (det B) /(N ),
(6:5) a = )
) =l o
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By (6.4) and (6.5),
f( aiN) eMr(‘NNA) — (2A)rqf(N)(det A) qextr(’NNA)'

Now we return to the discussion on Weil representations. For convenience, we
explain briefly the pertinent results in [23] and notations used here.

6.5. Let R be a finite dimensional commutative algebra over R. Assume that
R is isomorphic to R & --- @R (m copies). Let V' be a finite R-module and
{( , ) VXV —=R a nondegenerate bilinear form. Denote by O(V) the
orthogonal group

O(V) = {g € GLg(V)|g preserves ( , ) }.

Let e, be the irreducible idempotents of R and let V) =eV (i =1,---, m).
Clearly we have the conditions:

V=@ vy, oW)=Ilor®).
i=1 i=1
Now let

Vi=Ve®---eV (rcopies).

For X=(X,,---,X,) and Y = (Y},---,Y,), define an r X r matrix with
entries in R by

(6.6) (X,Y)=((X,,Y,)) € M,(R).
We have a bilinear formo: V" X V" —> R,
(6.7) o(X,Y) = trg p(ur( X, Y)),

and by which V" is identified with its dual. We introduce an alternating form
Aon V"X V" by

(6.8) A(Z,Z)=0(X,Y') - a(Y, X),

where Z = (X,Y)and Z' = (X, Y')e V' X V",
Let J be the skew symmetric matrix

J 0 E
" \-E, 0
and Sp(2r, R) the symplectic group

Sp(2r,R) = {g € GL(2r, R)|'gJg = J}.

The symmetric space associated to Sp(2r, R) is realized as the Siegel upper half
space J%,( R) of genus r given by

(6.9) H(H)={'r=1€ M(R®xC)|(r~"7)/i >0},
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Here an element v € M,(R) is positive if e, > 0(j = 1,- - -, m). Clearly
H,(R) = #,(R)".
For g € Sp(2r, R), set g = (¢ %) with a, b,c,d € M,(R).
On S(R), Sp(2r, R) acts by fractional linear transformation

(6.10) gr=(ar+ b)(cr +d)".
We have an automorphic factor

(6.11) j(g,7) =det(ct +d) €R.
For x € R,

m
x= 3 xpe,

i=1
with x, € R(i = 1,---, m).

Given an invertible x € R and m-tuple t = (¢,,- - -, ¢,,) of integers (or half
integers), let
(6.12) x'=xi oo xm,
Then we write
(6.13) j(g,7)' = (det(cr + d))'

by the above convention.
6.6. We have a homomorphism p of O(V') X Sp(2r, R) into Sp(V" X V', A)
defined by

(X.Y)p(g)=(g7'X,g7'Y), g€ O0(V),

(6.14) a
(X,Y)p(g) = (Xa+ Y, Xb + Ya), g = (C

b
d
Then the Weil representation of Sp(V" X V', A) on L*(V") gives rise to a
representation (projective unitary representation) of O(V') X Sp(2r, R) via p.
This representation r will be normalized as in [30].
Now introduce subsets 2, 2° and Q' of Sp(2r, R) defined by (g = (¢ ¢)):
© = {g € Sp(r, R)|c is nonsingular },
(6.15) °= {g<Sp(r,R)|c =0},

Q = {g € Sp(r,R)|c # 0, c is singular and d is nonsingular} .

) e Sp(2r, R).

Let ( p,. q,) be the signature of { , )|V and 2 the space of maximal negative
definite subspaces of V. For Z € @, Z* is the orthogonal complement of Z
in V. Now we define the majorant {, ), of {, ) on V" by

(X, X) ifXxez*

(6.16) <X,X>Z={_<X’X> it X (2) 1<i<r).
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For 1 € #(R), write

(6.17) T=u+iv
with ‘u = u, 'v = v € M,(R) and v > 0. Define a Schwartz function
(6.18) e, 7(X) = e[+ trg p(tr(u(X, X) + (X, X),))].

Here e[x] = exp2mV-1x) (x € R).
Let p and ¢ be the tuples

(6.19) p=(prpw)  a=(q1".4,)
6.7. Lemma [23, Lemma 8.1]. For g = (} §) € Sp(2r, R),

r(g)e, 2(X) =e(g)j(g, 7)) j(g,7) "eg.2(X),

where
(i*sgndet(c))”" ", ifgeq,
e(g) = (sgndet(a))?~ "7, ifg € Q°,
B} . -2 -p)/2 -
e(go)e(w) j(g. 1) j(gu wr) T (0, 1),
ifge Q.
Here
[0 -E,
“T\E o

and we use the convention (6.12) and (6.13) for the exponential notations.

6.8. Let k be a totally real number field with [k: Q] = m. Let W be an
n-dimensional vector space over k and ( , ): W X W — k a nondegenerate
bilinear form. Let R=k ®yR and V=W ®,R. Cleary R=R & --- &R
(m copies) and (, ) extends to a nondegenerate bilinear form ¥ X ¥V — R. Let
O be the ring of integers of k and L, an C(-lattice of W. Assume that
(Ly, Ly € @. Then L, is contained in its dual lattices

Ly = {w e Wit o{w, L,) C Z}.
Now set
6.19 L=LycVv,
(6.19) L*={ve V’|trR/Rtr(v,L) cz}.

Let f.(X), 7 € S#,(R), be Schwartz functions satisfying the condition
(6.20) r(8)f, = ¢(8) (8. 7) (g m) " |fors
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where £(g) is given in Lemma 6.7, and
I=(h,--1,)e(32)",  t=(1,,1,)€(D)"

Define f,* = (detv)/?f,, where v is the imaginary part of 7 ((6.17)). Then f,*
satisfies the condition

(6.21) r(g)fx = ¢(8) j(g: 7)1

For h € L*/L, define a theta function

(6.22) 8(r.f,h)= X fX(X).
X=h(L)

Let N be a positive integer such that
NL¥ C L,

(6.23) _ .

Ntr, o((X,Y)) =0(mod2) for X,Y € L}.

Denote by I,(N) the subgroup of Sp(2r, @) consisting of g = (¢ %) such that
c=0(N),

(6.24) o(tr( Xa, Xb)) = 0(2)
o(tr{ Xc, Xd))=0(2) (XelL).

Here o(x) = trg p(tr(x)).

Now let T'(N) be the subgroup of Ty(N) consisting of y = (¢ 5) with
a=E,b=0(N).Fory=(%5%el(N),let

x(y) = e(y)'lc(yw'l, w)(NR/R(det d))_l/2

(6:25) T e[s((rwa))].

leL/L'd

Then we have the following transformation formula [23, Proposition 8.4].
Proposition 6.8. Let y € T'(N), f, € L (V") satisfying (6.20) and 0(r, f, h)
defined as in (6.22). Then we have

0(yr. f,h) = x(¥)j(v,7)'0(7,f, h).

6.9. Now we assume that
sen((, )|[V®) = (p.q)  (p+q=n),
Sgn((’)lV(j))=(n’0) (.]=2”m)
Let G = 0, (V) X IT,0(VY), where O (V™) is the subgroup of O(V®)
consisting of g satisfying

det(j(g,Z2))>0 (Z€9).
Here j(g, Z) is the automorphic factor defined in (1.3).

(6.26)
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In this section, up to now, we have used X for a variable in V. Now we
switch back in notation from X to M. For any M € V', let MV = ¢, M. By
choosing an orthonormal basis in ¥V, we may assume that O(V") = O(p, q)
and our discussions in previous sections are applicable to O(V?). Now let
MY — F(Z, MM) be the polynomial defined in §4.6. Here we introduce

(6.27) frz(M) = F(Z,MP)e, ,(M),

where e, ,( M) is the exponential function given by (6.18). In the following, we
assume that r < [ p/2].
Lemma6.9. Forge Q°U Q' U Q c Sp(2r, R),

r(g)f. (M) =¢e(g)j(g.7)"|j(g,7)°

where P = (n/2,n/2,---,n/2), and Q = (q,0,---,0).
Proof. By our construction, F(Z, M™M) is a differential form of degree rg
of highest signature

fer.z(M),

wo = (q’. . .’q’ 0’. . .’Os)’
r [p/2]=r
and F(Z, MV) is actually a polynomial in M. For g € O, (V®), by (i) of
Lemma 4.7,
g*F(Z,M"V) = F(Z,g7'MD).

This implies that F(Z, M")) as a polynomial in M also lies in the isotypic
component of signature w,.

It yields by Theorem 3.11, that F(Z, M) is a spherical polynomial in M
with respect to the bilinear form tr({ , ))|(Z*)". Moreover by (iii) of Lemma
4.7, F(Z, M) satisfies the condition

F(Z,M"Yh) = det(h)'F(Z, MV),

h € GL(r). Now let x stand for M. Consider coordinates of x with respect
to an orthonormal basis. By Proposition 6.4,

F(Z,9/0x){e[o(tr(M + x, M + x)S)]e, (M + x)} _,
(6.28) = (2i)""F(Z, M§2)det(S + 1) e[ o (r( M, M)S)]e, ,(M)
(s =S € M(R)).
Clearly we also have the condition
F(Z,3/3x)e[otr((M, X)T)]

(6.29)
= (27i)"F(z, M2 )(detT)%e[o t({ M, X)T)]. T € M,(R).
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Now as a consequence of Lemma 6.7, (6.28), (6.29) and a standard argument
as in [20, Proposition 4.2], our assertion follows.
6.10. For h € L* /L, we define a theta function

(6.30) 0(r,h,Z) = det(v) >0 ¥ 1 (M).
M=h(L)
Proposition 6.10. The theta function satisfies the conditions:
() 0(y7, h, Z) = x(¥)j(x,7)"8(r, h, Z), y € T(N).
(i) If g € G satisfies the conditions (a) gL = L, and (b) g acts trivially on
L*/L, then
g*0(7,h,Z)=0(7,h,2Z).
Proof. Immediate from Proposition 6.8 and Lemma 6.9.

7. The geometric interpretation of the lifting map
7.1. Recall that G = 0, (V®) XTT/L,0(V)). Let T be the subgroup of G
given by
I'= {y € G|yL = L and y acts trivially on L*/L}.
Replacing I' by a subgroup of finite index if necessary, we assume that I' is
neat; in particular I is torsion free. For M € V', let
= {yeTlyM = M}.
By our assumption, V" (i = 2,-- -, m) are positive definite, [17_, O(V') is
compact; hence we identify T’ with its image in O, (V). By [2, Corollary
13.2],

vol(T'\ 2) < 0.
Let HiY(I'\ @) be the space of harmonic differential forms ¢ of I'\ 2 of
degree rq satisfying the conditions:

(i) ¢ is of highest signature (defined in §4.9),
71 il A(*¢) < o0,
(7.1) (@) [ en(e)

(iii) ¢ is a cusp form.
We define a lifting map £ * of H{%(T' \ 2) by

(7.2) s’*(¢)=/r\g<¢,0>=fr\9w(*0),

where @ is given in (6.30). By Proposition (6.10),
(13)  2*e)(yr) = x()i(v, 1)’ 2*()(r), yeT(N).
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Here n/2 stands for (n/2,- - -, n/2). The Fourier expansion of the lifting and
its geometric interpretation are the main task of this section.

7.2. Let G = 0,(p,q) be as defined in §4.1, V=R", (n=p + q) and
M e M, (R)= V" In §4.6, we have constructed a differential form F(Z, M).

nr

For differential forms a« and B of 2 of the same degree, let
(7.4) <a,B>=a/\(*,3).

The following lemma of F(Z, M) has been established in Step 2 of the proof
of Theorem 4.9.
Lemma 7.2. There exists a nonzero constant ¢, such that

(F(Z,M),F(Z,M))=F(Z,M) A + F(Z, M)
= det<MZ; s MZ_L>qu@,

where dvg, is the invariant measure on 9.
7.3. Let A () be the function defined in (1.33)

h(t)= —/w xS(x—r)"?ax  (Re(s) > gqr/2).
t
Recall that w, (Definition 1.17) is the differential form
-1 2
W, = md(hs(r + |U| )\P),

where ¢ is given in (1.23). For M € M, (R) with (M, M) > 0, one can define
w, as in §2 for D, .

Lemma 7.3. Let (w,), be the component of w, in the K ,-irreducible space of
the highest signature. Then

(), = ~2det(M, MY (r +|o’)”
BT rghy(r)

Proof. By Lemma 2.8, K yields contribution of K invariant form. From
Proposition 1.13, it follows that

-2
w. =

Y ohy(r)
The condition u,, = 0((1.22)) and the definition of u, readily imply

F(Z, M).

(r + {vlz)_slvqu_ldlvl A ¢, + terms involving K.

[0 dlo] A 4,y = 7 der(M. M) 2F(Z,M);
as a consequence, we have the desired form

=2
(ws)() = rqhs(r)

(r +1v]’)"det{ M, M)~ F(Z, M).
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7.4. Let M € M, (R) with (M, M) > 0. Here we consider the integral

(7.5) I=fr\@<ws,det<MZ¢,MZL>“”’+2"_’_”/2F(Z,M)>.
e

Since by (1.35) and Lemma 2.6, we have
[det( M., M.y~ #2407 D2F(Z M) | < (B/A){uy

for a certain positive integer ¢ (¢ = p + g — r — 1), the integral is absolutely
convergent for Re(s) > 0. Let b= - $(p + 2¢g — r — 1). By Lemmas 7.2 and
7.3,

I=_/;M\9<ws,det<MZl,le>bF(Z,M)>

(7.6) =ﬁvAwmﬁMMpJQyHZM»

= Cydet( M, M>-"/2/ (r +10") " det( My, , M. )" %db,,
W \2

M
where
-2
C,=——¢.
> rqh,(r) !
Let Y = M{M, M) /2. We have that by a straightforward computation
(7.7) (Y, Yy ) =r+|o|"
Hence I is given by
(7.8) I= C,det(M, M)”*"/zf tr(Y,.,Y,.) "det(Y,. , Y, )" 9dv,,.
T\
7.5. Choose an element g € G such that

0
E
0
where the zero matrix at the bottom is of size ¢ X r. By translation, replacing
T, by I, = gT,,g~", we may assume that Y = ¥ and Iy, = I',. In this case,

gY:YO= r|o

I, =f (Y L Y,0) " det( Yy, Y,. Y db,

M\

(7.9) 3 (B/A)h+q
nae [u(E, + Z,(E -'22) "'z,

)]x dvg.
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In the following, we adopt the decomposition Z = (%12 ) with Z, e M, _, (R)
and Z, € M, ,(R).
By formula (1.39), we have
dvgy = (B/A)? ™72 dvg dvp,

where dv, and dvp are the volume element of %, and fiber over Z,,
respectively. As everything involved in (7.9) is G,-invariant, it follows that

(B/4)" 0
E+Z(E-22)"z)|" "

(7.10) 11=vol(1“1/91)fF o

The integral in (7.10) is

L= det(E — 2,'2,)""*
*Jr [t(E - 272,)’

dog

1
I'(s)
1 b -ttt W'w —trys—1

e'tr dw e "t*~ ' dt,
fod Sy

by Theorem 5.6 and consequently

[>¢] -1/2 t =1t
f f det(E _ Zzlzz) /2 o=t (E,+ Zy(E=2,Z5)7! 20451 dt dv
FJo

1 . 0
I, = —— e‘"(w w) dw e—trts—rq/Z—ldt
2 T(s) fM,q<R) { }/o

(7.11)
_ r—s+rq/2qu/2 ( rq)

T'(s) 2

Lemma 7.5. We have the integral value
f (0, det( My, My.)P*27 "V F(Z, M))
TW\2

T vol(Ty,\ 2,,)det( M, M)~ (P+a=7=D/2
rqT(rg/2) 1 M A TM ’
for (M, M) > 0 and Re(s) > 0.
Proof. By substitutions (7.8) to (7.11), the assertion is immediate.
7.6. In the sequel, we assume that vol(T,,\ G,,) < co. Let f be a continuous
function of T'),\ 2 such that

fr (2 dog(2) < 0

M\

is absolutely convergent.
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Lemma 7.6. Let I\,(fXZ) = [r,\c, f(8Z)dg. Then

1
J S @D as(2) = G [ u(1)(2) dos(2).

M\

Proof. Consider the projection map #: G = G/K = 2 and the pull back
of f on G. The assertion is immediate from the corresponding obvious
assertion in G.

In the sequel, we give the Haar measure on G,, such that
(7.12) vol(Ty,\ Gy,) = vol(T,,\ 2,,).

7.7. Now let ¢ € H[%T \ 2). We consider the orbit integral

1
7.13 1 =— * dg.
( ) M(¢) VOI(GM/FM) ‘/]."M\GM g ¢ g

It is G, invariant. Since ¢ satisfies d¢ = 0 and d(* ¢) = 0, so does I,,(¢). By
Theorem 4.9, there is a constant ¢, such that
(7.14)  1,,(6)(Z) = c,det( My, M,.)"P+247 " V2 F(Z M).

In the following, we determine c, first in the cases (M, M) > 0 or (M, M)
# 0. For the latter case, det(M,., M,. ) ?*24=r="1D/2F(Z M) has singular-
ity, hence ¢, = 0. Then we discuss the case (M, M) > 0. We have that by
Lemma 7.6,

= f \? (o ¢) = er\g (o 1 (4))

rM

rq/2
- cqbcl(;%)mdet(M, M)~ (Prar=D/20|(T,,\ D,,) (Lemma7.5).

While by Theorem 1.21,

T SV

M
Therefore
o= c{l(%)r(%)w""ﬂdeKM, M)pra=r=h/2
(7.15)
-vol(FM\QM)_I/ * .
T \Pm
Here the orientation of 2,, is given in §2.10.
7.8. Let 7 be an element in the Siegel upper half space of genus r. Set
T=u+iv,with'u=wuand v =v € M,(R).
Recall that f, (M) is given by

(1.16)  f, (M) = F(Z M)e[tu(u(M, M) + iv( M, M) ,)].
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Here we study the integral
(¢, M) = o z(M)).
(¢, M) /FM\@<¢ f.2(M))
Since f, ,(M)is a G, invariant differential form, by Lemma 7.6,

o (et = [ (). 30)

— o (det(My., My ) P20 VRR(Z, M), f, (M)
Ty \2

(7.17) (from (7.14))

= c¢c1f det{ M. , M) P77V 2e[—triv{ M, M,)] dv,
\2

-e[4tr(7( M, M))].
Now let dimg(M) = d be the dimension of the column space of M. If
d <r, I,(¢) is invariant under K, ,, = O(p — d). By Theorem 3.7, the
irreducible representation 7 of O( p) with signature

(a,---,a, 0,...,0)
N et e

r (p/2]-r
satisfies the condition I £ 7 |O(p — d). Hence
(7.18) c, =0 ifdimg(M)<r.
In 7.6, we know also
(7.19) ¢, =0 if (M, M) 2 0.

Thus to compute I(¢, M), it suffices to study the case (M, M) > 0 and
dim (M) =r.
Lemma 7.8. Let I(¢, M) be the integral
(¢, M) = . (M)).
(6. = [ (o fz(M))

(i) If dimg((M)) < ror (M, M) 3 0, then I($, M) = 0.
(ii) If (M, M) > 0, then

(¢, M) = %r(%)(zw)""ﬂ(det 0) e [1tr(r( M, M))] jr e
(iii) In general, there exists a constant c($, M) such that
(¢, M) = c(¢, M)(detv) e[ Ltr(r{ M, M))],
c(¢, Ma) = c(¢, M)sign(deta) .
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Proof. (i) follows from (7.18) and (7.19).

(i) follows from (7.17) and (5.63). Note that in this case s =0 and
|det B| = det(M, M )'/2.

(iii) We have that by (7.14)

IM((P) = C¢‘Mdet<MZJ' s MZ‘L>—b/2F(Z, M)a
Lnya(9) = ¢4 paldeta| ” (det @) *det{ M. , M,.)"*F(Z, M),

withb=p+2¢g—r—-1
Since I, (¢) = I,,,(9), it follows that

ptq—r-

(7.20) Co.ma = |det al 1sign(det(a))chw.
Then by (7.17),
(¢, M) = cicy e[ 3tr(r( M, M))]|J(M),

where J( M) is the integral

J(M) = fr - det{ M., M,.) P~ 7"V 2¢[_tr(iv{ M,, M,))] dvg.

M

By (5.63),
(7.21) J(Ma) =|dete| "7V y(M).
Clearly if we set

(7.22) (¢, M) = ¢y 4 J(M)(detv) 2,

I(¢, M) has the desired form and (7.20), (7.21) yield the condition for
c(¢, M).

7.9. Now we return to the general case that G = 0, (V) X 172, 0(V'))
as in §6. By our assumption (6.26), if m > 1, then

(7.23) (X®, x®) £ 0
for0+ X € L,.

Consider the case k = Q (m = 1). For M € V' with the conditions
(7.24) dimg(M)=r, (M, M)>0, (M, M) %0,

the subspace (M )* N(M) # 0. Choose a basis M,,- - -, M, of { M ) such that
(725) M, e{M)*n{(M)nL,, My€L, A=2,--,r.

Denote by M(j) the sequence of elements in L such that the Ath component
M(j), of M(j) satisfies

(726) M(.])l =le, M(j)/\=M}\a A=2,---,r.
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It follows that
(M(j). M(j))=(M(1).M(1))

for all j and the M(j)’s are not I'-related.

Lemma 79. Let M € L* satisfying condition (7.24). Then I,,(¢) =0 for
¢ € Hi(T'\ 9).

Proof. We consider the theta function
(7.27) 6=det(v)”” L f,(M),

M=0(L)

and the lifting #* defined by (7.2). Since ¢ is a cusp form, by the unfolding
argument

2*(9)=det(0)”? T [ (8,1, (M),
NL “T\2

where the summation runs over I'-orbits in L; moreover the summation is
absolutely convergent. The sequence M( j) constructed in (7.26) is in L and

(7.28) 'M(j) #TM(i)
for i # j. It follows that
(7.29) El er\@<¢’ff»Z(M(j))> < o0.

By (iii) of Lemma 7.8, all the absolute values coincide with one another. Hence
(7.28) implies that

I(¢,M(j))=0 forall j.

By (iii) of Lemma 7.8, it follows that I(¢, M) = 0; as a consequence c(¢, M)
= 0. Since by (7.22), ¢(¢, M) is a product of c, ,, and a positive number, thus
cy.m = 0. We know that

Ly (¢) = ¢, pdet( My, M, ) P27 V2 p(Z M),

Thus I,,(¢) = 0.
7.10. Let S,(NO) be the set

S,(NO) = {X € M,(k)|X = X, X=0(NO))
and S *(NO) the set given by
S*(NO) = {X € M,(k)|'X = X, tr, ,otr( XS,(NO)) € Z}.
For h € L* and n € S*(NO), let
(7.30) L,,={MeL*M=h(L), (M, M)=2n}.
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It is known that for n > 0, L, , has only finitely many I-orbits

{(m)
(7.31) L,,=UTXx,.
i=1

Theorem 7.10. Let £* be the lifting map given in (1.2). Assume that
k # Qor(p,q)# (2.1). For ¢ € HJ%(T'\ 2), we have the conditions
(i) L *(¢) is a cusp form of T'(N) satisfying the condition
L4(9)(yr) = x(V) iy, )22 (9)(r),  yeT(N).
(i) £ *(¢) has the Fourier expansion

2H¢)(r)= ¥ agelo(t(nr))],

nESHNO)
n>0
where ¢ = tr, ®oR/R" and
rq [ 7q /21(")
~"r(4 -rq
a, =% r( . )(27) y ..

i=1 FX,\QX,
Proof. The theta function 8(r, h, Z) is given by

0(7,H,Z) =det(v)*"" ¥ f (M)
M=h(L)

and £ *(¢) is the integral
0*(¢)= [ (4,0).
2
Since ¢ is a cusp form, by the unfolding argument,

(7.32)  2*(9) =det(v) """ T [ (4,£,.(M)).

T\(L+h) " Tu\2

By Lemmas 7.8 and 7.9, we sum over only those orbits I'M with (M, M) > 0.
The integral

L (8 z(00))

M\2
= _,gthrT(j)(M(j)’ M(j)>]fr,,\9 <¢,f,m,z(M“))>
m
= ajljle[%t”(“(Mm’ M‘”)](detv)""/z‘o"“’o)er\gM ‘o

((i1) of (Lemma 7.8)) with
a= %r(%)(zw)‘"’ﬂ.
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It follows that

(733) L*(¢)=a X (f
T\L+h Tv\Du
(M, MY>0

*¢)e[%o(tr(<M, Myr))].

By (i) of Proposition 6.10, we have that
(7.34) 2*(¢)(vr) = x(v)j(v, )" P22 (9)(r) (v € L(N)).
Thus by (7.34), in (7.33) we sum only over those M with
(M, M) € 25*(NO).
Hence
2@)=a T T ([ esfelate]
$ESHNO) T\L;, \"Tr\Pu
>0

By a usual argument [27, p. 114] one shows that the constant terms of £ *(¢)
at other cusps are zero. Then (i) and (ii) have been established.
7.11. Let %, /z(f‘(N ), x) be the space of cusp form ¢(7) satisfying

$(v7) = x(¥)i(y.7)"* " Pe(r) (v € T(N)).
Theorem 7.10 shows that the lifting map £ * is a map
(7.35) Z*: Hi(T\2) = &, ,(T(N), x).

Let & KS’j,/z(f(N), x) = HJ4(T'\2) be the adjoint map of £* Now
assume that n = p + ¢ > 4r. In this case, one can present a concrete descrip-
tion of the map %. Let T, be the subgroup of I'(N) given by

B

tE,

- T(N)m{(iE’

For B € S*(NO), let
(7.36) ¢p(1) = ;N Xx(v) (v, )" Pe[a(ir(B - y7))],

where the summation runs over I \ T'(~) and

&7} = vol(S,(R) /S,(NO)).
The function ¢p(7) is the Bth Poincaré series. In the range n > 4r, it is
absolutely convergent and the function ¢, (8 € S*(N0)) span ¥, »( L'(N), x).
Let (. ) be the Petersson inner product of ¥, ,,. For

¢= XL a(B)e[o(tr(B))],

BESHNO)
B>0

Be Sr(k)}-
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by [23, (10.2)] we then have
(7.37) (6.95) = b(det ) “"a(P),
where t = Y(p + ¢ — r — 1), and

b= 2—/'»1(ﬁ+q*r—1)/2(I‘(I)F(t _ %) e F([ — r; 1)

-t r(r—1)/4 "
(277) aT ( )/ .

Observe that

(7.38) (£L*($).¢5) = abdet =0 3 o
M\Lg, “Ts\Pn

For B € S*(NO), let

(7.39) G= X Gy
M=h (L)
(M. MYy=2p
mod T

where C,, is the cycle of the image 2,, in I' \ 2. Let ‘i’ﬁ € Hj%(I'\ 2) such
that

(7.40) (o.8)= L [ »s.
\Lg T \Zy
Note that c])/, is the component of the highest signature of the finite part of the
dual form of Cg.
Theorem. Let #: yj,/z(f“(N), x) = HJU(I'\ 2) be the adjoint map of ¥ *

and ¢y, (f)ﬁ given by (7.36) and (7.40) respectively. Then

Z(dy) = ab(det B)" " g,

wheret = S(p + q—r— 1)

7.12 Remarks. (i) The lifting map £* ((7.2)) is meaningful for any cusp
harmonic differential forms ¢ of I'\ &2 of degree rq. However K invariant
bilinear forms between nonisomorphic irreducible modules are trivial. It fol-
lows that £ * always factors through HJ/(T' \ 2).

(ii) For ¢ =1 and I'\ 2 compact, geometric lifting has been studied by
Kudla and Millson [23]. For our presentation, in this case K = 0 which is
immediate from (1.27), and condition (i) of Theorem 3.15 is easily checked to
be true for f(Z, M). Hence F(Z, M) = f(Z, M). Our result then coincides
with that given in [23] except a constant factor and our additional information
that #* factors through Hj%T \ 2) of the space of cusp harmonic differen-
tial forms of '\ 2 of degree rq of highest signature.
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