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GAUSS PARAMETRIZATIONS
AND RIGIDITY ASPECTS OF SUBMANIFOLDS

MARCOS DAJCZER & DETLEF GROMOLL

The normal spherical image, i.e., the Gauss map, plays a crucial role in the
geometry of a euclidean hypersurface. In general, the Gauss map is not
invertible. Our starting point here is the observation that whenever the rank (or
the relative nullity) is constant, then one has a representation by the inverse of
the Gauss map on the normal bundle of its image, which we call Gauss
parametrization. This has many interesting applications. In particular, it is
useful in the study of rigidity problems.

Recall the classical theorem of Beez-Killing: A hypersurface is locally rigid
in R"+1 if the rank of the Gauss map is at least 3. A main result in this paper is
that any complete minimal hypersurface Mn in R"+1 is rigid as a minimal
submanifold of Rn+P for any p > 1, provided n > 4, and M is irreducible; cf.
Theorem 2.1. This result is global in nature and fails to be true locally. In fact,
any simply connected minimal hypersurface of rank 2 has precisely a one-
parameter associated family of minimal deformations, already in codimension
1. Some other rigidity results will be discussed in the last section. Our main
theorem there implies that (locally irreducible) hypersurfaces with nonzero
constant mean curvature are locally rigid; cf. Theorem 3.3. In [4], we will deal
with further applications of the Gauss parametrization, for example, a classifi-
cation of real Kaehler hypersurfaces.

It seems that the idea of Gauss parametrizations has been used systemati-
cally only in a special case by Sbrana. In a beautiful paper [19], he studied
deformable hypersurfaces about five years before E. Cartan considered the
problem.

1. Gauss parametrizations
In this section, after reviewing some basic facts, we will discuss a local

classification of hypersurfaces with constant relative nullity in spaces of
constant curvature.
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Let Q = Q" + ι denote the standard simply connected model space of

dimension n 4- 1 with constant curvature c. Let /: Mn -> Q be an isometric

immersion of a connected riemannian manifold M" as a hypersurface. For a

(local) normal field φ Φ 0, we have the second fundamental form Aψ along /,

acting on the tangent bundle TM pointwise by selfadjoint transformations.

The relative nullity at a point J C E M I S the number v(x) = dimker^4φ(;c). The

minimal relative nullity of / is defined by 0 < v0 = min x ^Mv{x) < n. The set

M o = {x e M | J > ( J C ) = Ϊ>0} is nonempty and open in M. The nullity distribu-

tion Δ = kerΛφ is smooth and involutive on Mo, and each leaf L is totally

geodesic in M and Q. It is a well-known result that all leaves are complete if M

is complete. We refer to [6] as a general reference.

Let us now assume that / has constant nullity, i.e., M = Mo, and set

vo = n — k. For a "saturated" open connected subset U (meaning each leaf in

U is maximal in M), we consider the quotient space Fof leaves in U, and the

projection π: U -> V. Suppose the space V is a /:-dimensional smooth mani-

fold. (Since the leaves are totally geodesic in Q, it always is, but may fail to be

Hausdorff.) This condition is satisfied in two important cases:

(1) Locally, of course, if we choose for U the saturation of some cross

section.

(2) If all leaves through points in U are complete. Then π: U -> V is an

"affine" vector (sphere) bundle, which for c < 0 admits global cross sections

making it into a "linear" vector bundle.

Taking U as above to be orientable, we have the unit normal field φ (unique

up to sign). Note that φ is parallel along each leaf in U.

We first look at the situation Q = Rπ + 1. The Gauss map φ: U -> S" induces

an immersion φ: V -> S" c Rn+ι so that φ ° m = φ:

ψ
U -S"

•I
V

Let us consider the normal bundle Λ along the immersion φ in S"! whose

fibers have dimension n - k. The pullback of Λ under the Gauss map φ is

canonically the nullity distribution on M (by parallel transport in Rn + 1). The

fiber of Λ at φ ( i ) is Δ r Observe that we are using here that φ is parallel

along the leaves. A point in Λ is represented by (3c, υ), where Jc e F, v e Δ x ,

π(x) = x. Here Δ^ is considered to be a linear subspace of RΛ + 1, by parallel

translation as usual. Whenever no confusion is possible, we will identify

f(x) = x as well as ψ(x) = ψ(x) = 3c.
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Any cross section £: V -> U of the submersion TΓ: U -> V allows us to

extend the restriction φ\ζ(υ) canonically to a diffeomorphism φ^ from U onto

an open neighborhood of the zero section in Λ. Such sections exist in the

important cases (1) and (2) above. Simply parallel translate the leaf through x

in U into the fiber of Λ at ψ(x) such that £(3c) is mapped into 0. Explicitly we

have

(1.1) φ({x) = (x,x-ξ(x)),

where x = π(x). The inverse ψξ = φ^ 1 is then given by

(1.2) φt(x,o) = ξ(x) + o.

Note that ψ^ is well defined and smooth on the whole normal bundle over

ψ ° ξ(V), but may be singular outside the image of U under φ .̂

Now fixing a point x0 e [/, there is a natural local cross section η through

JC0, defined as follows: Let η(x) be the unique point on the leaf L = π~ι(x)

closest to x0. Explicitly we have

(1.3) η(x) = x o + γ(x)x + Vγ(x).

Here γ(3c) = (x - x0, x) is the support function (x is any point on L), which

is clearly well defined, since the right-hand side is constant along leaves, and

Vγ is the gradient of γ on V. We will always consider V with the metric

induced by φ from Sn. To verify (1.3), observe first that for y = τj(3c), the

relative position vector y - x0 is perpendicular to Δv. The normal component

of y - x0 is γ(Jc)3c. It remains to show that Vγ(3c) is the component of

y — x0 tangential to V. But for any x e U and any u in the orthogonal

complement Δ^ of Δ x in the tangent space of M at x, we have

(x - xo,φ*u) = u(x - xo,φ(x)) = u(y <> π) = (π*u)y

This completes the argument.

We should mention at this point that the natural sections η just constructed

are global as soon as all leaves are complete. Taking ξ = η, we call the inverse

ψ = \pη of the extended Gauss map Φ = Φη the Gauss parametrization of M

about x0, which by (1.2) and (1.3) has the representation

(1.4) ψ(x, υ) = x0 + y(x)x + v γ ( ϊ ) + υ.

Usually we will normalize /, and assume, after parallel translation in Rπ + 1,

that x0 = 0.

We are now in a position to describe a classification of constant rank

hypersurfaces in Rn + 1, at least locally, essentially by inverting the above

process.
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Theorem 1.5. Let g: Vk -> Sn be any isometric immersion and γ any

function on V. On the normal bundle along g, consider the map ψ: Λ -> R'7 + 1,

(1.6) Ψ{y>w) = yy + v γ + w.

Then, on the open subset of regular points, ψ is an immersed hypersύrface with

constant nullity n — k. Conversely, any such hypersurface can be obtained this

way, at least locally.

Remark 1.7. In Theorem 1.5, the extension of g, constant along the fibers

in Λ, is the Gauss map of (1.6). In particular, we observe that the Gauss map

can be prescribed arbitrarily, and all hypersurfaces with some Gauss map g are

parameterized by an arbitrary ("support") function γ. All this applies to the

special classical case k = n, i.e., nullity zero, where ψ is the inverse of the

Gauss map.

The last theorem is an immediate consequence of the following proposition

and (1.4).

Proposition 1.8. With the notations as in Theorem 1.5:

(i) ψ has maximal rank n at (y,w) if and only if the self adjoint operator

(1-9)

on the tangent space of V at y is nonsingular, where Hy is the hessian in V, Aw

the second fundamental form of g at y relative to w.

(ii) At such points, g is a unit normal field of ψ, the second fundamental form

A = Ag in R" + 1 has rank k, and

(1.10) A = - P ι O Λ Δ 1 ,

where Δ"1 is the orthogonal complement of the relative nullity distribution Δ.

Proof. We compute the Jacobian of ψ. Clearly ψ* is the identity on the

vertical component of the tangent space of Λ at (y, w), which we identify with

the fiber Λy. Any transversal tangent vector can be written as ξ*b, where b is

a tangent vector of V at y, and £ is a local section of Λ through (y, w). We

identify g*b = b. Then,

Ψ*£*6 = ( Ψ ° t)*b = V,ψ o ξ = (γ/ + Hγ - Aξ)yb + a(b, v γ ) + V^ ξ.

Here V is the derivative in R" + 1, v "*" the normal connection in Sn and a the

normal valued second fundamental form of V in Sn. Thus

( I - " ) ψMb=(P+Q)b,

where Q is a linear transformation from the tangent space of V into the

normal space. We conclude for the images that imψ* = i m P θ Λ v , which

proves (i).
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Since g is perpendicular to imψ* for all w e Λy, the extension G of g,

constant along the fibers, is the Gauss map of ψ. In particular, Λ v c ker^, so

vkA < k. For vectors of the form u = ψ*ξ*6, we have Au = -G*u =

— ̂ • Ψ * ^ * ^ = (G ° ψ ° ζ)*b = -b, since G ° ψ °£ i s the identity on F. But by

(1.11), u = ( P 4- β)6 . Therefore, ΛPZ> = Λw = -Z>, so ΛP = - / on Δ x ,

which is parallel to the tangent space of V at y.

We now turn to a discussion of hyper surf aces in euclidean spheres Q = S" + 1,

say c = 1.

Corollary 1.12. Lei g: Vk ^> Sn + ι be any isometric immersion. On the unit

normal bundle along g, consider the map ψ: Λ1 ~> Sn+ι,

(1.13.) = w.

(i) O« ίΛe o/?ew subset of regular points, ψ w α« immersed hypersurface with

constant nullity n - k.

(ii) Conversely, any hypersurface of Sn + ι with constant relative nullity can be

obtained this way, at least locally.

(iii) ψ has maximal rank n at (y, w) if and only if the second fundamental

form of g in direction w is nonsingular. At such a point, the second fundamental

form A = Agof ψ in Sn + ι has rank k, and

(1.14) Λ=A~ι onΔ-L.

Remark 1.15. The extension of g, parallel along the fibers in Λ1, is the

spherical Gauss map. ψ is also known as the "polar" map (cf. [14]), where

parts (i) and (iii) of the corollary appear already. Note that the image g(V) is

just the focal set corresponding to zero principal curvatures.

Proof. Extend ψ to all of Λ by (1.13), thus parameterizing the cone of ψ in

R" + 2 through 0, which has constant nullity n - k + 1, by Theorem 1.5. This

immediately implies (i). To verify (iii), apply Proposition 1.8, where γ = 0. It

remains to prove (ii). Take a local cross section £ and the corresponding

parametrization ψ^ as in (1.2) of the cone over the hypersurface. Since all

leaves contain the origin, ζ is a section in the normal bundle of the Gauss

image. Now we have a new parametrization ψ of the cone with ψ ( j , w) =

Ψξ(y>w ~ £(*)) = w, which we restrict to Λ1.

The case where Qc is the hyperbolic space Hn + ι can be dealt with similarly.

Since we will only be concerned with the case c > 0 in what follows, we just

outline the local classification of hypersurfaces with constant nullity. Let g:

Vk -> L" + ι be an isometric immersion of any riemannian manifold into the

Lorentzian unit sphere in flat Lorentzian space LQ+2. Consider the unit normal
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bundle Λx along g, i.e., the set of pairs (y, w) where y e V and w is

perpendicular to V at >> in Lg+ 2, of length - 1 . Then ψ: Λx -> # ' 7 + 1 c Lg + 2

with ψ(>>, w) = w is the "polar" map, and everything works as in Corollary

1.12.

We conclude this section with a discussion of some examples.

(a) Theorem 1.5 gives a nice description of flat hypersurfaces in R'7 + 1

without totally geodesic points. They have constant relative nullity n - 1, and

thus can be locally parameterized by a regular curve c in Sn and a function γ,

c'
ψ(c,w) = γc + γ' — - + w.

Ik II
(b) There are many nontrivial examples of complete hypersurfaces in R'7 + 1

with relative nullity n - 2, which are ruled by euclidean spaces of dimension

n - 1. The Gauss image V2 in Sn is a ruled surface with constant nullity 1

that can never be complete. The example in [18, p. 623] is of this type.

(c) Examples of compact hypersurfaces with constant positive relative nullity

in euclidean spheres are Cartan's minimal isoparametric hypersurfaces with

three distinct principal curvatures, see [15]. They are precisely the polar images

of the standard imbeddings of the projective planes, as considered in [7] and

[22].

2. Rigidity of minimal submanifolds

The main purpose of this section is to prove

Theorem 2.1. Let M" be a complete riemannian manifold, n > 4, which does

not have euclidean space R"~3 as a factor. Then, any minimal immersion /:

Mn -> R" + 1 (S"7 + 1) is rigid in the following strong sense: Any other minimal

immersion g: Mn -> Rn+P (Sn+P) is congruent to f in Rn+P (S"+p) through a

rigid motion, for any p > 1. (In the spherical case, the assumption on euclidean

factors is not needed.)

Important ingredients in the proof are the following results.

Lemma 2.2. Let f: Mn -> R'ί+1 (Sn + ι) be an immersion with constant

relative nullity 0 < v0 < n. Then f is minimal iff the Gauss parametrization

satisfies

(i)InR" + ι: tr(yl + Hγ-Awy
ι = 0

(ii) InSn + ι: trA~l = 0

for all (y, w). In particular, for v0 = n — 2, f is minimal if and only if the Gauss

image V2 is a minimal surf ace in the sphere and

(2.3) Δγ + 2γ = 0 on V2.

The latter condition is redundant in Sn + ι.
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Proof. This follows from Proposition 1.8 and Corollary 1.12. Observe also

that for a selfadjoint linear transformation A Φ 0 on R2, iτA = 0 iff iτA ~ι = 0.

For example, the restriction of any linear function on R"+ 1 to F 2 satisfies

(2.3). The second part of Lemma 2.2 gives a local classification of minimal

hypersurfaces with constant relative nullity n — 2.

Lemma 2.4. Let f: Mn -> Rn + ι be an immersion with constant relative

nullity P0 = n — 2. If the leaves are complete and the mean curvature H does not

change sign (along leaves), then the Gauss image V2 is minimal.

Proof. Using the global Gauss parametrization, let Pw = yl + Hy — Aw.

Now H = - trP~ι = - tτPw det P~ι. Since det Pw Φ 0, and \xPw is linear in

w, H must change sign along a leaf unless t r ^ = 0.

Theorem 2.5. Let /: M" -> R" + 1 (S" + ι) be an isometric immersion of a

complete manifold with constant relative nullity v0 = n — 2 everywhere. Suppose

the mean curvature H does not change sign (locally). Then f(M) splits as a

euclidean product L3 X R"~3, where L3 c R4 and v0 = 1. In the spherical case,

f(M) is totally geodesic, provided n > 4.

Proof. We use the global Gauss parametrization on the (unit) normal

bundle of the leaf space V2, which is regular at all points (y,w). In the

spherical case, Aw is invertible and H(w) = ivA'1 = —XrAZ1

w= —H( — w),

thus, by assumption, t r ^ = 0. But the space of symmetric 2 X 2-matrices

with trace 0 has dimension 2, and the codimension of the Gauss image is at

least 3, so for dimension reasons, Aw must be singular for some unit normal

vector w at any point y e V.

In the euclidean case, V2 is minimal by Lemma 2.4. Suppose that for some

point y e V the normal space of V at y contains a 2-dimensional linear

subspace E such that Aw Φ 0 for 0 Φ w e E, i.e. w -> Aw is a linear isomor-

phism E -> F, where F is the space of selfadjoint endomorphisms of the

tangent space of V at y with trace 0. The image of w -» y(y)I 4- Hy(v) - Aw

= B — Aw is the affine plane of all symmetric matrices with same trace, tri?,

which always contains singular elements. Therefore we have shown that for all

y e F , the kernel of the transformation w -> Aw has dimension > n - 1, i.e.

the first normal space has dimension < 1. Then by standard results on

submanifolds and using the analyticity of V, we conclude that the minimal

surface V is either totally geodesic, or is contained in a totally geodesic

S3 c S"; cf. [3]. In the first case, the normal bundle Λ of V is parallel in R'? + 1,

and in the second case, Λ = Λ 1 Θ Λ Π _ 3 splits, where Ax is the normal bundle

of V in S3, and the orthogonal complement An_3 is parallel in R'7 + 1. Now the

claim follows easily from (1.4).
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We should mention that for hypersurfaces in Sn + ι the statement of the last

theorem is trivial for n > 5, since any two leaves would necessarily intersect.

The conclusion is in general false for n = 3, and it is sharp in the euclidean

case, at least if we only assume that the leaves are complete, which is sufficient

to prove the theorem. Examples will be discussed after the proof of Theorem

2.1. Note that in view of [9], the euclidean case is only interesting for scalar

curvature s < 0. It is also clear from the proof of Lemma 2.4 that the

assumption on the mean curvature can be weakened to the condition that H/s

is bounded from above (below).

Proof of Theorem 2.1. If there exists a point in M with relative nullity

v > n - 2, the result was proved in [1], and holds in fact already locally. If

v = n everywhere, the conclusion is trivial. Thus it remains to consider the case

when v = n — 2 on a (necessarily) open and dense subset £/, which automati-

cally contains a complete totally geodesic leaf through each of its points. By

Theorem 2.5, each connected component of U splits, and therefore, / splits

globally, by analyticity, which we had excluded.

We make a few remarks in connection with Theorem 2.1. The rigidity as

stated is known to be false for minimal surfaces. But that case can be

completely analyzed (cf. [13]), which stimulated some of this work. If Mn =

L2 X R"~2 splits isometrically, we conclude from the proof of Theorem 2.5

that the immersion f = f2 X In-2 splits, where In_2 is the identity, and the

classification is reduced to [13]. So in particular, if / is substantial, the

codimension p can only be 1 or 4. If Mn = L3 X Rw~3, it follows again that

/ = / 3 X In _ 3 splits, and the classification is reduced to understanding com-

plete minimal hypersurfaces M 3 c R4, with nullity 1. Their Gauss parametri-

zation has singularities precisely at points where the hessian of γ and the

second fundamental tensor of the Gauss image commute. We do not know

whether or not such irreducible examples exist. It follows, for example, that

their Gauss image cannot be any compact immersed minimal surface of genus

Φ 1, or the Clifford torus. We now describe examples of hypersurfaces

M 3 c R4 with complete leaves, which do not split off minimal factors L2,

Consider the Clifford torus in S 3, parameterized on V = R2 by

For any function γ on W c R2, the Gauss parametrization ψ is nonsingular on

the whole fibers of the normal bundle of g(W) iff (Δγ + 2γ) 2 < 4γ,2, which

follows easily from (1.9). Taking a γ with Δγ + 2γ = 0, ψ will be minimal by

(2.3), and nonsingular wherever yts Φ 0.
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In the spherical case, Theorem 2.1 is false for n = 3. Take any minimal

surface V2 c S4 with everywhere nonzero normal curvature. This is equivalent

to detAw Φ 0 for all w. Then the polar map (1.13) is nonsingular everywhere

and provides examples, which are even complete if V2 is complete.

At this point we wish to remark that Lemma 2.2 can be viewed as a

generalization of a classical result for minimal surfaces in R3. The local Gauss

parametrization of any hypersurface Mn c R" + 1 with constant nullity v = 0,

i.e. nonvanishing Gauss-Kronecker curvature, is ψ(^) = γy + Vγ, on the

Gauss image V, which is an open subset of Sn. So M is parameterized by

precisely one function γ, and M is minimal iff tr(γ/ 4- Hy)~ι = 0. For n = 2,

this means Δγ + 2γ = 0 on V, which is equivalent to the result in [2, p. 57], as

pointed out to us by R. Schoen. Incidentally, for n = 3, M3 has constant

scalar curvature iff Δγ + 3γ = 0.

We conclude this section with a discussion of the local rigidity problem for a

minimal hypersurface /: Mn -> Q" + ι. It suffices to analyze the situation when

Mn has constant nullity n — 2. Although Lemma 2.2 gives an explicit descrip-

tion in terms of minimal surfaces, it is not clear whether or not they can be

deformed (as minimal hypersurfaces). We will show that (as in Q3

C) there is a

one-parameter associated family fθ: Mn -> Q" + ι of minimal immersions, θ e

S 1, which describes all possible deformations, if M is simply connected.

Choose a global unit normal N, and let A be the second fundamental form

in direction N. In the orthogonal complement Δ1- of the nullity distribution Δ,

fix an orientation. Take any function θ: M -» S1 and consider the tensor field

Rθ, which is the identity on Δ and the rotation through θ in Δ-1. The tensor

field Aθ = RΘA = RΘ/2AR_Θ/1 is selfadjoint and t r ^ = 0. Clearly, Aθ satis-

fies the Gauss equation.

Lemma 2.6. Aθ satisfies the Codazzi equation if and only if θ is constant.

Proof. This is a straightforward computation.

Now^lfl determines the minimal immersion /#, where / 0 = /, and the fθ are

mutually not congruent (as maps). We have the following extension of Schwarz's

classical result on minimal surfaces.

Theorem 2.7. Let f be a minimal isometric immersion of a simply connected

riemannian manifold Mn into Q" + ι, with constant relative nullity n — 2. Then

any other minimal isometric immersion/: Mn -» Q" + ι is congruent to some fθ in

the associated family off.

Proof. By [1], / must have constant nullity n - 2 and the same nullity

distribution Δ. Let A be the second fundamental tensor of /. Since by the

Gauss equation, d e t ^ | Δ ± = det^lΔ-1 and XτA = tr^4 = 0, it follows that

A = RΘA for some function θ: M -> S1. By Lemma 2.6, θ must be constant.
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Perhaps the simplest nontrivial example of an associated family of minimal

hypersurfaces in R4 are the cones over the associated family of a (simply

connected) minimal surface in S3.

The associated family fθ of the minimal immersion /: Mn -> R'7 + 1 can be

extended to a 2-parameter family of minimal immersions fθ φ: M" -> R2n + 2,

with the same constant relative nullity n — 2, by

fθ,Ψ = cosφ/^ Θ sinφfθ + 7r/2;

cf. [13] in the case n = 2. Finally we mention that the construction of

associated families can be carried out the same way for minimal immersions

M" -> Rn+P with constant relative nullity n - 2, keeping the normal bundle

with its connection fixed.

3. Some other results

We will discuss some further rigidity aspects of hypersurfaces in euclidean

space.

Theorem 3.1. Let f: Mn -> Rn + ι be an isometric immersion, M complete,

without flat points. If the mean curvature H does not change sign (locally), then f

is rigid on an open subset, orf(M) splits isometrically as L3 X R"~3.

Proof. This follows immediately from Theorem 2.5.

Theorem 3.2. Let Mn be complete with scalar curvature s bounded away from

zero, and/: Mn —> Rrt + 1 an isometric immersion such that the mean curvature H

is bounded from above (below), or just bounded if M is nonorientable. Then f is

rigid on an open subset.

Proof. It suffices to consider the case when the relative nullity v0 = n — 2

is constant everywhere. We first show that the Gauss image V2 is totally

geodesic, i.e. the nullity distribution is parallel, and f(M) splits as L2 X R/7~2.

Take the Gauss parametrization on V2, and suppose for some (y, w), \\w\\ = 1,

we have Aw Φ 0. Let Pt = yl + Hy — tAw. Using an orthonormal basis of

principal directions, let \λ Φ 0, λ 2 be the principal curvatures and htj the

components of the hessian Hy. Now

j - i = detP, = (γ + hn - t\x)(y + h22 - tλ2) - h\2

is bounded in t. Thus λ 2 = 0 and γ + h22 = 0. But

H = -trPt

ι = - t r P , - d e t p - 1 = (Δγ + 2γ - tλx) hrf,

which is not bounded. Since L2 c R3 is complete, with Gauss curvature K

bounded away from zero, by Efimov's Theorem [11], K must be positive, and

L2 is compact and rigid in R3 by Minkowski's Theorem [20]. It follows that /

is rigid.
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Theorem 3.3. Any isometric immersion f: Mn -> R" + 1 with constant mean

curvature H Φ 0 is rigid (M connected), unless f(M) c L2 X R"~2 orf(M) c

Sι X R ' ? 1 splits, where L2 c R3 has constant mean curvature H.

In the latter case there exists in general a one-parameter family of deforma-
tions, with the same constant mean curvature; cf. [12]. The above result relates
to [5]; it also answers a question raised in [10].

Proof. As before, assume v0 = n - 2, and the Gauss image is not totally
geodesic. Since H = — tvP'1 = — irPt d e t P , 1 is constant in /, it follows
that

(i)detΛH, = 0,
(ii) H[(y + h22)λλ + (γ + Λu)λ2] = -trAw,

(iii) trP0 = -H - deti>0.
We conclude h\2= -H~2, which is a contradiction. The case v0 = n - 1 is

easier and similar. To complete the argument, it is enough to use that / is
analytic.

We finally present a result that improves a well-known rigidity theorem; cf.
[8].

Theorem 3.4. Let M" have constant scalar curvature s Φ 0, M connected, f:

M" —> R'7 + 1 an isometric immersion with relative nullity n — 2. Then f(M) c

L2 X R"" 2 splits. Furthermore, f(M) = S2 X R"~2 if M is complete.

Proof. Suppose the Gauss image V2 is not totally geodesic. Now det Pt =
s~ι is constant, so

(i)detΛw = 0,
(ϋ)(γ +A 2 2 )λ 1 + (γ + A n ) λ 2 = 0,

(iii) detP0 = s~\
It is an easy consequence of (i) that V2 has constant relative nullity 1 in S", in
a neighborhood of y. Therefore locally, V2 is a ruled surface in S", with
constant curvature 1. Let X, Y be orthonormal fields on V2, where Y is
tangent to the ruling. We have VYY= VγX = 0, and [X,Y]= VXY is
collinear with X, in the connection of V2. We conclude from (ii) that
γ + YYy = 0, SO

-Xy = X( VyVγ,y> = ( V*VyVγ, Y) + ( VyVγ, V^Y)

since (v^Vγ,^) = hn is constant by (iii). Therefore, ( V[A^y]Vγ, Y) = 0,
and it follows that [X,Y] = 0. Observe, h\2= -s~ι Φ 0. Since F 2 is not flat,
this is a contradiction. If M is complete, /(M) = L2 X R""2 splits globally,
and the last claim is obvious.
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An important application of the last theorem is the result of Takahashi that

any homogeneous hypersurface in R" + 1 is isometric to Sm X R"~m

9 0 < m < n\

see [16], [21]. An elementary argument for the case of relative nullity v0 Φ n — 2

was given in [17].
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