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ISOSPECTRAL DEFORMATIONS
OF COMPACT SOLVMANIFOLDS

CAROLYN S. GORDON & EDWARD N. WILSON

1. Introduction

Let M and M’ be compact Riemannian manifolds of the same dimension
with Laplace-Beltrami operators A and A’. M and M’ are said to be isospectral
if, for each p = 0, the collection of eigenvalues, with multiplicities, of A acting
on smooth p-forms on M coincides with the corresponding collection for A’.
Milnor in 1961 gave a negative answer to the classical question “Are isospec-
tral manifolds necessarily isometric?”” by constructing two isospectral noniso-
metric flat 16-dimensional tori. Vignéras [12] and Ikeda [5] have constructed
many examples of nonisometric manifolds for which the associated Laplace-
Beltrami operators have the same spectra on functions, and Urakawa [11] has
given counterexamples to the analogous problem for bounded domains in R”
when n = 4. All these examples involve finite families of manifolds. The goal
of our paper is to construct continuous families of isospectral nonisometric
manifolds. Our results contrast with an unpublished result of Kneser indicating
that the number of isometry classes of flat tori isospectral to any given flat
torus is finite and also contrasts with the proof of Guillemin and Kazhdan [3]
that no compact surface of negative curvature admits a nontrivial isospectral
deformation.

The manifolds we consider are of the form (I'\G, g) where G is an
exponential solvable Lie group, I' is a uniform discrete subgroup, and g is a
Riemannian metric on I'\ G induced from a left invariant metric, also denoted
by g, on G. As ® ranges over a subgroup of Aut(G) which we call the group of
“almost inner” automorphisms of G and denote by AIA(G), we show that
(P(T)H\G, g) is isospectral to (I'\G, g). When ® belongs to the group Inn(G)
of inner automorphisms, it is easy to see that the two manifolds are isometric.
However for G nilpotent with AIA(G) # Inn(G), we show that AIA(G) is
topologically the product of Inn(G) and a Euclidean space 4 and that the set E
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of isometry classes of the manifolds (®(I')\G, g), ® € 4, may be naturally
identified with the quotient of A by an equivalence relation in which each
equivalence class is discrete. Similar conclusions hold for certain solvable
groups which are not nilpotent. Since (®(I")\G, g) is isometric to (I'\G, ®*g)
for ®*g the usual pullback of g to another left invariant metric on G, our
results may be also interpreted as providing a continuous family of isospectral
nonisometric Riemannian structures on the fixed manifold I'\G.

The organization of the paper is as follows. §2 defines the group AIA(G),
proves a useful structure theorem for AIA(G) when G is nilpotent, and studies
a variety of examples. We establish the isospectrality of our manifolds for
arbitrary exponential solvable G on functions in §3 and on p-forms (p > 0) in
§4. §5 begins with a necessary and sufficient condition for isometry of the
manifolds in the case when all of the roots of the Lie algebra of G are real and
then restricts further to the case when G is nilpotent to obtain the description
of E noted above. The section concludes by returning to the examples of §2.
We look in particular at nilpotent groups of step 2 where we discover that in
one case C = {® € 4: (I'\G, g) is isometric to (I'\G, ®*g)} reduces to a
point while in another case C is a lattice of full rank in 4. Since E in both cases
consists of the orbits in 4 /C under the action of a finite group, E is essentially
a Euclidean space in one case and a torus in the other. Our last example makes
it clear that similar phenomena arise when G is not nilpotent.

Readers interested in background information on the isospectral problem
may wish to consult [1] or [10]. The authors are grateful to Richard Millman
for suggesting that they try to apply their isometry group structure results to
the isospectral problem on compact solvmanifolds.

2. Almost inner automorphisms

2.1. Notation. Let G be a connected and simply connected Lie group with
Lie algebra g. The centers of G and g will be denoted by Z and 3. Let Aut(G)
(respectively, Aut(g)) be the group of all automorphisms of G (respectively, g)
and Der(g) the collection of all derivations of g. For ® € Aut(G), the
differential ®,: g » g of ® is in Aut(g) and the assumptions above imply that
® - @, is an isomorphism from Aut(G) onto Aut(g). Aut(g) is a Lie
subgroup of the general linear group on g.

Via the above map, we regard Aut(G) as a Lie group whose Lie algebra is
Der(g). For x € G, I, denotes the inner automorphism of G defined by
I(y) = xyx~"' The collection Inn(G) = G/Z of all inner automorphisms of G
is a normal Lie subgroup of Aut(G) whose Lie algebra is ad g = g/3, where
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ad X(Y)=1[X,Y] for X,Y € g. By definition, ad g is the collection of all
inner derivations of g.

We use exp as a generic symbol for the exponential map from Lie algebra to
Lie group. In particular, exp: Der(g) — Aut(g) is the usual matrix exponen-
tial. Recall that for x =exp X € G, (I,), is denoted by Ad(exp X) and
coincides with exp(ad X). We shall be concerned chiefly with exponential
solvable groups, i.e., G is solvable and exp: g — G is a diffeomorphism. We
denote the inverse of exp by log: G — g. Recall that for g solvable, G is
exponential solvable if and only if the imaginary part of each root of g is a
multiple of the real part of the root. In particular, every nilpotent G is
exponential solvable. For G nilpotent, let {g”: j = 1} be the ideals in the lower
central series for g. Thus g = g', g/ = [g, g/ '] forj > 1,[g’, g¥] C ¢/ "%, and
g/ = {0} if and only if j > m where m is the step size of g. For X, Y € g and
Z = log(exp X exp Y), the Campbell-Baker-Hausdorff formula

(1) Z=X+Y+ix Y]+ -

expresses Z as a polynomial of order m in the variables X and Y.

Aut(G) acts on both g and g*, the dual space of g, by ® - X = (®),(X),
®-A=Ao®,' for ® € Auy(G), X € g, A € g*. By differentiation, Der(g)
acts on these spaces as well. Denote by Inn(G) - X, Inn(G) - A, adg- X =
[g, X], and ad g - A = A o ad g the orbits of Inn(G) and ad g under these
actions.

We use Id as a generic symbol for the identity map on a space with the
context of a discussion used to determine the space in question.

2.2. Definitions. (i) AIA(G) = {® € Aut(G): @ - A € Inn(G) - A for every
A € g*}. The elements of AIA(G) are called almost inner automorphisms of G.

(i) AID(g) = {p € Der(g): ¢(X) Ead g - X for every X € g}. The ele-
ments of AID(g) are called almost inner derivations of g.

2.3. Theorem. Let G be nilpotent of step m. Then

(1) AIA(G) is a closed normal Lie subgroup of Aut(G) with Lie algebra
AID(g),

(ii) AIA(G) is a connected, simply connected, nilpotent group of step m — 1,

(iii) AIA(G) = {® € Aut(G): @ - X € Inn(G) - X for every X € g}.

Proof. To avoid repetition in arguments, we temporarily use ¥ to denote
either the vector space g or g* and denote by G = G(V) (respectively,
d = d(V)) the maximal set in Aut(G) (respectively, Der(g)) whose orbits on V'
coincide with those of Inn(G) (respectively, ad g). Thus for V = g*, G=
AIA(G) and for V =g, § = AID(g). Clearly G is a normal subgroup of
Aut(G). Since (ad X)” =0 for every X € g, X - exp(ad X) - v is a poly-
nomial map of order m — 1 from the vector space g to V for every v € V. The
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range of every such map is a closed set in V, i.e. all Inn(G) orbits in V' are
closed. It follows that G is closed in Aut(G) and thus a Lie subgroup. We will
now show that exp(§) = G; given this, § is the Lie algebra of G and G is
connected. First note that the collection T(G) consisting of all automorphisms
¥ of G such that ¥ — Id maps g’ into g’/*! for all j = 1 is a nilpotent Lie
subgroup of Aut(G) whose Lie algebra t(g) consists of all derivations ¥
mapping g’ into g/*! for j = 1. Using the fact that the matrix exponential
maps the lower triangular nilpotent matrices diffeomorphically onto the
lower triangular unipotent matrices, it follows easily that exp(t(g)) = T(G).
It is routine to check that for both choices of ¥, G C T(G) and § C t(g).
Now suppose ® € G. Then ® = exp ¢ for some ¢ € t(g). Given v E V,
there exists X € g such that v = (exp(-ad X)exp @) - v. By (1) in the group .
T(G) and since ad g is an ideal in Der g (indeed [¢p,ad X] = ad ¢(X)),
we obtain v = exp(¢ —adY) - v where Y = X — 1¢(X) + - -+ € g. But then
(p—adY) - ov=0 since we have f(4)4-v=0 where A =¢p —adY is a
nilpotent operator and

_m—l Ak
=2 wem

is invertible. Since v was arbitrary, we conclude ¢ € § and exp § D G.
Conversely, suppose ¢ € §, ® = exp ¢, and v € V. Selecting Y for which
(p—adY)-v=0 and again using (1) in 7(G), we obtain ®-v =
exppexp(adY —¢)-v=exp(ad X) -vfor X =Y + 3¢(Y) + - -- € g. Thus
deGandexpi=_G.

We now change notation and denote §(g*) by g, d(g) = AID(g) by g,.
Suppose ¢ € g, and X € g; if p(X) & [g, X], there exists A € g* vanishing
on [g, X] but with A(p(X))# 0. Since Aep=(—¢)-A=(-adY)-A =
Ao ad?, this is a contradiction. Thus g, C g,. By duality of g and g*, we
similarly obtain g, C g, and conclude g, = g,. This concludes the proof of the
remaining part of (i) and also proves (iii) since our argument above yields

AIA(G) = exp g, = exp g, = right-hand side of (iii).
For (ii), all that remains to be noted is that Inn(G) C AIA(G) C T(G) and
both Inn(G) and 7(G) are of step m — 1.

2.4. Examples. In the following examples, g is defined by giving a basis B
and bracket relations among the basis elements with rational structure con-
stants. In anticipation of §5, we note that in Example (i), AID(g) has a basis &
whose matrices relative to B are rational while in Example (ii), the matrix

relative to B of every non-inner element of AID(g) has at least one irrational
entry.
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@) Let® = (X, Y, Z: 1 <i<2)with[X,, V] = Z, = [X, K], [ X,, ] =
Z,, and all other brackets zero. Then 3 = RZ, + RZ, has dimension 2 so
dim(ad g) =dimg/3=4. If U€ g with U & 3, it is easy to check that
[, Ul=RZ, if U€RX, + RY, + 3 and otherwise [g,U] =[g, g] = 3. It
follows that

AID(g) = {9 € Hom(g, 3): 9|, = 0 and ¢(X,), ¢(Y,) ERZ,}.

Define ¢,, p, € AID(g) by insisting that ¢,(X;) = Z, = ¢,(Y;) with ¢, and
@, zero on the remaining elements of %3. By a trivial computation, J = {ad X,
ad Y, @;: i = 1,2} is a basis of AID(g). Since m is 2, AIA(G) is abelian and
may be viewed as the direct product of Inn(G) = R* with (Id + 7,9, + 1,9,:
t,t, ER} =R~

(i) Let D =(X,Y,Z; 1<i<2, 1<j,k<3} with [X,,Y]]=Z, for
J=123,[X,,Y|]1=2Z;,[X,, Y,] =22Z,,[X,, Y;] = Z,, and all other brackets
zero. Thus g is again two-step nilpotent with [g, g] = 3 = RZ, + RZ, + RZ;
three dimensional so dim(ad g) = 5. Set g, = RX; + RX, and g, = RY; +
RY, + RY;. Note that g, and g, are abelian with [g, g] = [g,, g,]. In order
for a linear map ¢: g — g to be in AID(g), it is necessary and sufficient that

(@) p(g) C3, 9(3) = {0};

(b) for each Y € g,, there exists X € g, such that (Y) = [X, Y];

(c) for each X € g, there exists Y € g, such that (Y) =[X, Y].

An easy calculation shows that ¢ can satisfy (b) only if X may be chosen
independently of Y, i.e., p|,, = ad X|;, for some X € g,. However, (c) allows
richer possibilities. Let ¢|; be defined by

@) (X)) =0,Z, + 0,Z, + 0;Z; = [ X}, Y, + a, Y, + a3 V5],

o(X,) =2B,Z, + B3Z, + B Zy = [ X,, BiY, + BT, + B3T3
For X = x, X, + x, X, with x} + 2x3 # 0, it is easy to check that [X, g,] =3
and thus (c) can be satisfied; however if x} + 2x3 =0 with x; # 0, (c) is
satisfied if and only if

(3) 02(0‘1—:31)'*‘5(0‘3",33)'*'(0‘2“,32):0,

where ¢ = 2773, 1t follows that dim AID(g) = 7 with a typical element ¢
described uniquely by an element X € g, and a solution of (3); ¢ is inner if
and only if «; = B; for i = 1,2, 3. Since 1, ¢, and ¢? are independent over the
rationals, @ has rational matrix entries relative to % if and only if ¢ is inner
(i) Let n=3 and B = {X,, X,,Y: 1<i<n} where [X,,Y,] =Y., for
I<i<n-—-11[X,Y]=0=[X, X,], and ad X, is a polynomial in ad Xl
without constant term and with degree between 2 and n — 1. Here g is
nilpotent of step n. It is easy to check that AID(g) is the direct sum of ad g
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and Re where @(X,) = Y, and ¢ is zero on the remaining elements of .
It is trivial to construct more general examples of this kind where
dim(AID(g)/ad g) is arbitrarily large. One again takes g as the semidirect
product of an abelian algebra a and an abelian ideal b with ad a acting by
commuting nilpotent operators on b but without the stipulation that the action
be cyclic.

(iv) Let n be the Lie algebra in Example (i) and g the vector space direct sum
of m =span{H, X;,Y;} and n with [m, n] = {0}, [H, X5]1=X;, [H, };]=
-Y;, and [X;, ¥;] = Z,. Here g is solvable with roots =1 and thus G is
exponential solvable. Extend the non-inner elements ¢,, ¢, € AID(11) to maps
Y1, ¥, on g by insisting that y;|,, = {0} for i = 1,2. It is trivial to check that
Y, §, belong to AID(g) and that AID(g) is the direct sum of ad g and
RY, + Ry,.

(v) For the (2n + 1)-dimensional Heisenberg algebra g = b, (defined by
B ={X,Y, Z: 1 <i<n} with [X,, Y;] = Z and all other brackets zero), it is
easy to check that AID(g) = ad g. By a tedious calculation, AID(g) = ad g as
well for g the Lie algebra of all lower triangular n X n matrices.

3. Isospectral metrics

3.1. Notation. Let G = exp g be exponential solvable and assume that G
admits a uniform discrete subgroup T, i.e. a discrete subgroup I such that '\ G
is compact. For G nilpotent, this is equivalent to the existence of a basis for g
relative to which the structure constants are rational (see [8, p. 34]). Thus
Examples 2.4(i)—(iii) apply, provided that the polynomial in (iii) has rational
coefficients. We shall see in §5 that Example 2.4(iv) applies as well.

Each left-invariant Riemannian metric g on G induces uniquely a Rieman-
nian metric, again denoted by g, on I'\ G such that the natural projection map
7 (G, g) - (I'\G, g) is a Riemannian covering. The elements of G then
define local isometries of (I'\G, g) via the locally defined left translation
action of G on I'\G. Thus (I'\G, g) is a locally homogeneous, compact,
Riemannian solvmanifold. Note that while I'\G is homogeneous under the
right translation action Ry (I'x) = I'xy (x, y € G), R, is not in general an
isometry on (I'\G, g) since g was chosen to be left invariant. Let @, be the
Riemannian volume element on G or I'\G and L%(I'\G) the space of measur-
able functions on I'\G which are square integrable with respect to 2,. On G,
left invariance of g implies that £, is a left Haar measure. However, the
existence of I' forces G to be unimodular sp £, is also a right Haar measure on
G. On I'\G, &, is invariant under the right translationsRr ,. Let pr(y)f =

fo Ry, for f€ LXT\G), y € G and (pr)(Y)f = (d/dt),—((pr(exp1Y)f)



ISOSPECTRAL DEFORMATIONS 247

for Y € g and f € C*(I'\G). Thus y - p(y) is a unitary representation of G
on LXT\G) and Y - (py),(Y) is a skew-adjoint representation of g on the
dense subspace C*(I'\G) of L% T'\G). Since Haar measure on G is unique up
to scalar multiple, LT\ G) does not depend on the choice of g.

Let A, be the Laplace-Beltrami operator on I'\G. As will be reviewed in 4.1,
A, is an operator on the space of smooth exterior forms on I'\G which
preserves the degree of a form and is self-adjoint with respect to an inner
product on forms arising naturally from g. In this section, it will be enough to
know that A, acts on C*(I'\G) by

1) A= - z [(er) )]

for Y,, Y,,- - -, Y, any basis of g which is orthonormal with respect to the inner
product on g induced by g. Indeed, (1) follows by an easy computation using
only formula 4.2(5) and the interpretation of each Y € g as a smooth vector
field on I'\ G acting on C*(I'\G) by (pr)(Y).

For any ® € Aut(G), ®*g is another left invariant metric on g defined by
(P*g)(X,Y) = g(®,X,®,Y)for X,Y € g.

3.2. Lemma. With the notations of 3.1, for ® € AIA(G), the representations
pr and pp ° ® are unitarily equivalent, i.e. there exists a unitary operator T on
L*(T'\G) such that

2 Tor(y) = pr(®(»))T forally € G.

Proof. We digress for a moment to review the Kirillov or orbit theory of
unitary representations of G. Details for the case G nilpotent may be found in
[7]; see [6] for the exponential solvable case. To each A € g* there is associated
an irreducible unitary representation 7, of G with the following properties:

@) For A, p € g*, m, ~ m, < p € Inn(G) - A where ~ denotes unitary equiv-
alence and Inn(G) - A is defined as in §2.1.

(ii) For every irreducible unitary representation o on G, there exists A € g*
such that o ~ m,.

(iii) m, o ¥ = m, , ¢, whenever A € g*, ¥ € Auy(G).

Let @ be a complete collection of orbit representations for Inn(G) in g*.
Since I'\G is compact, pr decomposes discretely, i.e. pr ~ @, oo M 7\ Where
the multiplicity function A — m, has values in the set of nonnegative integers
and is zero off a countable subset of @. By (iii) pr° @ ~ @, .o M7 . 0,
However, by Definition 2.2, Ao ®, € Inn(G) - A for every A and the lemma
follows.

3.3. Definition. For M a compact Riemannian manifold and 0 <p <
dim M, let spec,(M) be the collection of eigenvalues, with multiplicities, of the
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Laplace-Beltrami operator A on M acting on the space of smooth p-forms on
M. Manifolds M and M’ are said to be isospectral if spec,(M) = spec,(M") for
all p.

3.4. Theorem. With the notations of 3.1, (I'\G, ®*g) and (I'\G, g) are
isospectral for ® € AIA(G).

Proof. The proof for p = 0 will be given here with the proof for p =0
postponed to §4. To simplify notation, replace ® by ®~! in the statement of the
theorem and write g’ for (®~')*g, A for A, A’ for A,..

Let Y}, Y,,- - -, Y, be a basis for g which is orthonormal relative to g. Then A
is given by (1). Since @,Y},- - -,®,Y, is a basis of g orthonormal relative to g’,

() v= =3 [(oro0) )]

For T as in 3.3(2) we have T o (pp), = (pp° ®),Y,oT. By (1) and (3),
ToA=AoTsoon C®(I\G), A’ =ToAo T issimilar to A and therefore
has the same eigenvalues.

3.5. Remarks. For ® = I, an inner automorphism of G, (I'\G, g) and
(I'\G, ®*g) are not only isospectral but isometric. Indeed, I, = L, ° R, for
L, and R - the left and right translates by x on G. Since g is left invariant,
®*g = R}-g and Ry ,: (I'\G, g) - (I'\G, ®*g) is an isometry. We shall see
in §5 that if ® is almost inner but not inner, then (I'\G, g) and (I'\G, ®*g)
are rarely isometric. Thus as ® ranges over appropriate subsets in AIA(G) —
Inn(G), we will obtain a continuous deformation of g by metrics ®*g with
(T'\G, g) and (I'\G, ®*g) isospectral but nonisometric. Alternatively, any
¥ € Aut(G) induces an isometry from (I'\G, ¥*g) to (¥(I')\G, g) so we
obtain similar conclusions by fixing g and continuously deforming I" within the
class of uniform discrete subgroups of G. The latter approach is analogous to
Milnor’s famous example [1] of lattices ', and T, in R'® such that the tori
T\R'® and T,\R' are isospectral but nonisometric when both are equipped
with the standard flat metric; no continuous isospectral deformation of T, to
T, is possible in this example, however.

4. The Laplacian on p-forms

4.1. Remarks. The goal of this section is to complete the proof of Theorem
3.4, i.e. show that spec,(I'\G, g) = spec,(I'\G, g’) for p > 0. Asin the p = 0
case, we shall produce an operator 7, acting on smooth p-forms on I'\G such
that 7, o A = A’ o T,,. Prior to this, we need a workable formula for the action
of A on p-forms. The formula needed applies to any compact oriented
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Riemannian manifold M and is presumably well known to experts. Unfor-
tunately we do not know a reference for this formula and will therefore prove
it in §4.3.

4.2. Notation and review. Let M be an n-dimensional compact oriented
Riemannian manifold with X( M) the smooth vector fields on M and E(M) =

»=0E?(M) the exterior algebra of smooth differential forms on M. For
X € X(M) the Lie derivative operator Ly and the covariant derivative opera-
tor Vv, are derivations of the full tensor algebra on M which commute with
contractions, act by X on functions, and are defined on vector fields (see [4])

by

(1) LX(Y) = [X’Y]’
2vyY,Z)=Xx(Y,Z)+ {[X, Y], Z)- (Y,[X, Z])
(2) +Y(X,Z)-Z(X,Y)— (X,[Y, Z]),

where (-, ): X(M) X X(M) —» C®(M) expresses the Riemannian metric on
M. On E(M) are defined the exterior differential operator d and, for X €
X (M), the interior multiplication operator i(X). The operator i(X) is a
derivation of E(M) of degree —1 which is defined on 1-forms by i( X )a = a( X).
On E(M), one has

(3) Ly=di(X)+i(X)d.

The metric defines an isomorphism #: E'(M) - £(M) by (#X, X)= A(X)
for A\ € E\(M), X € ¥(M). By definition, #(df) = grad f for f € E(M) =
C*®(M). It is easy to check that # commutes with v for every X € X(M).
The metric on X(M) is translated to one on E(M) by insisting that
(#a, #B)= (a, B) for a, B € E'(M), that E”(M) be orthogonal to E4( M)
for p # ¢, and that

(4) <al ARRRAU Y WAREE /\'Bp>: det«“i’ Bj>)l<i,j<p

for a;,- - ~,ﬁp € E'(M). For @ € E"(M) the Riemannian volume element on
M, (a|B) = [ (a, B)Q defines an inner product on E(M). The adjoint of d
relative to (-] -) is denoted by & and the Laplace-Beltrami operator A on M is
defined by

(5) A=4dé+ dd.

Using (4), it is easy to check that for « € E'(M), the adjoint of i(#a) relative
to (+| -) is the exterior multiplication operator €(a) defined by e(a)B = a N B.
By (3), the adjoint L% of L is therefore given by

(6) *=8e(#7'X) + e(#7'X)8.
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4.3. Proposition. With the notation of §4.2,
() A(fA) =(Af)N+f(AN) — 2VgaafN forf€ C*(M),\ € E(M).

Proof. By a routine calculation using only the properties noted in §4.2 (see

5D

(8) 8(fA) = —i(grad f)A + f(SA).
Using (3), (5), (6), and (8), it follows directly that
(9) A(fk):f(AA)-(Lgradf_L;radf)}\‘

From (1), for a, 8 € E'(M), we obtain, with the aid of (a, B)= a(#B) =
B(#a),

<Lgradfa’ B>_ <a’ Lgrade>= <#B,[grad f’ #a]>_ (#a,[grad f9 #B]>

Since (grad f,U )= Uf for U € X(M), the last 3 terms in (2) collapse to zero
when X = grad f. Using this and (V.4 (@, B) = ( Vyq s #a, #B), it follows
that

(Lgraa @ B) = (& Lygaa 1B) — 2( Vigraa 0, B)

(10 — _grad [ (e, B)= —(df, d(a, B)).

Now let A= A=+ Na,, p=B; A+~ N\B, be elemelltary p-forms on M
and define m;; = (a; A --- A& A -+ Nayy BN ABA -+ - B,) where
denotes a deleted term. Since Ly,,q ; and V,,,4 , are derivations of degree 0 on

E(M), (4), (10), and the classical formula for differentiating a determinant
yield

((Lgas = Liraas = 2Vgma s)MB)
= iél (_1)i+ij{<(Lzradf_ 2Vgaa 1) B) = (@5 Lygaa /By ) }m,,Q
= —(dfld (A, p)) = (Bdf| (A, 1)) = ((ASNp).
Thus we obtain
(11) (Lgraa ;= Liaa )N = 2Vgraa /A — (Af)A

for A an elementary p-form in E(M). But then (11) holds for every A € E(M)
and (7) is immediate from (9) and (11).

4.4. Proof of Theorem 3.4, continued. We use the same notations as in §3.4.
As noted in §3.1, elements in ¢ may be viewed as elements of X(I'\G).
Similarly elements of A?(g*) may be viewed first as left invariant p-forms on G
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and then as elements of E?(I'\G). With this interpretation, E?(I'\G) =
C*(I'\G) ® A”(g*) and we may define 7,: E*(I'\G) » E?(T'\G) by I,=T
® (<I> y* where T is the operator found in Lemma 3.2. In other words, for
AL, -+, A, any basis of A?(g*), every A € EP(T'\G) is expressible in the form
A= 2{=,f,-)\,. for f,,---.f. € C*(I'\G) and

(12) A= 3 (7)(@),.

Trivially the spaces A?(g*) C E”(I'\G) are invariant under the operators
A, A’ and under Vy, Vy for X € g, where vV and Vv’ are the Riemannian
connections on M = (I'\G, g) and M’ = (I'\G, (®')*g). From (2) and (3),
for A € A?(g*) and X € g, we have

(13) A((27)*A) = (27')*(an),

(14) Vo, x((271)*A) = (27)*(VxA).

To show A" o T, = T, o A on E?(I'\G), it is enough to show A'((Tf }(@~")*\)
= T,(A(fA)) for every f€ C*(I'\G), A € AP(g*). By (7), (13), and our
previous proof for p = 0, this reduces to showing

(15) Veraarr) (@7 )*A = T;J(Vgradf A),

where grad’ is the gradient operation relative to g’ = (®~')*g.
Let X,,---,X, be any basis of g orthonormal relative to g. Then
® X, --,®,X,is a basis orthonormal relative to g’ and

n
Verad r = 2 XifVxs Venar = 2 (‘I’*Xj)(Tf)Vé,,,\g»
=1
Formula (15) follows directly by using these relations to expand both sides and
subsequently using (12), (14), and the relation (®, X;)(7f) = T(X,f) obtained
by differentiation of 3.2(2). Thus we have A" =T, 0 A 7;," on E?(T'\G) for
1 < p < n and our proof is complete.

5. Isometry classes of the isospectral manifolds
5.1. Notation and remarks. In this section, we shall restrict the level of
generality from that used above. Thus G still denotes an exponential solvable
group with T a fixed uniform discrete subgroup of G but in §§5.2 and 5.3 we
require that all of the roots of the Lie algebra of G be real while in §§5.4-5.6
we insist that G be nilpotent. Define

(1) D= {8 € Aut(G): §(T) =T},
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and, for g a left invariant Riemannian metric on G,
(2) K,= {0 € AutG: o*g = g}.

Note that D is discrete and K, compact.

5.2. Proposition. Suppose G and T are as in §3.1 and that all of the roots of
the Lie algebra of G are real. Let g and g’ be two left-invariant metrics on G.
Then the manifolds (I'\G, g) and (I'\G, g’) are isometric if and only if there
exists ¥ € D Inn(G) such that ¥*g = g’.

Proof. By normality of Inn(G) in Aut(G), DInn(G) = Inn(G)D is a
subgroup of Aut(G). If g’ = ¥*g for ¥ = I.§ € Inn(G)D, then § induces a
diffeomorphism § on T'\G. Since I, = L_R7' where L, and R are left and
right translations by x and g is left-invariant, g’ = (R;'8)*g whence R}fxg:
(I\G, g) - (I'\G, g) is an isometry (see §3.1 for the definition of Ry ). The
converse is proved in [2] with the heart of the proof being the demonstration
that the group of all isometries on (G, g) is the semidirect product of G,
regarded as acting by left translations on itself, and K.

5.3. Corollary. For G, T, and g as in Proposition 5.2 and for ®,, ®, € Aut G,
(I\G, ®7g) is isometric to (T\G, ®3g) if and only if there exists o € K, such
that ®7'6®, € D Inn(G).

Proof. By Proposition 5.2, the manifolds are isometric precisely when there
exists ¥ € DInnG such that ®¥g = ¥*®*g or, equivalently, 6 = ® ¥®;' €
K,.

35.4. Proposition. Let G be a connected, simply-connected nilpotent Lie group
with T a uniform discrete subgroup of G and g a left-invariant metric on G. Let D
and K = K, be as in (1) and (2) and define

C = {® € AIA(G): 0® € DInn(G) for some o € K},
C, = (AIA(G) N D)Inn(G),
(3) K,=KND,
K, = KN DAIA(G),
S = (KAIA(G) N D)Inn(G) = (K,C N D) Inn(G).
Then
() K, is finite and K N AIA(G) = {1d},
(ii) S has a finite (K, C,) double coset decomposition,
(iii) C is a union of finitely many right cosets of C,, C/Inn(G) is a union of
finitely many right cosets of C,/Inn(G), and C,/Inn(G) is a discrete subgroup of

the connected, simply-connected nilpotent group AIA(G)/Inn(G).
(iv) S/Inn(G) is a discrete subgroup of Aut(G)/Inn(G).
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Proof. We shall use several times the fact that if a topological group H
contains a discrete subgroup A and a closed subgroup L for which L/L N A is
compact, then the image of A in H/L is discrete. Thus we obtain the last
statements in (iii) by taking H = AIA(G), L = Inn(G), A = AIA(G) N D, and
noting that L N A contains the uniform discrete subgroup I'/Z of Inn(G) =
G/Z.

Assume (i) for the moment. For K, = U’_, K(g; any left K,-coset decom-
position of K, we may then select elements ®; € AIA(G) for which ¢,®, € D
and obtain the decompositions § = U;zl Ky0,®,C), C= U;zl ®.C,, thereby
proving (ii), the first part of (iii), and (iv). Note that without loss of generality
we may take 0, = @, = identity element in Aut(G).

The discrete set log I' is cocompact in the vector space g and thus spans g.
For X,Y €logl’, Z =log(exp XexpY) and W = log(exp Xexp Yexp —
Xexp — Y)arealsoinlogI'.

From 2.1(1), we have
(4) Z—(X+7Y)=3XxY]+p(XY),

(5) W - [X’Y]Zq(X»Y)’

where p and g are finite sums of iterated brackets of X and Y each term of
which contains at least three factors. For {g/: j = 1} the lower central series
ideals for g (see §2.1), it follows from (5) that [log T, logT N g/]/g/*? is
contained in log ' and by induction £, =log ' N g//¢/*" spans g//g/*' for
all . Moreover, by (4), £, is an additive subgroup of g//g/*". Using the remark
above with A =T N exp g’ and L = exp g/, it follows that £, is discrete and
consequently a lattice, i.e., uniform discrete subgroup, in the vector space
g’/g’"

Any automorphism ® of G preserves each ideal g/ and hence induces maps
7,(®) on the quotient spaces g//g/*'. For ® € AIA(G), Definition 2.2 implies
that ®, — Id maps g/ into g/*' and thus (®) is the identity for all j. In
contrast, for ¢ € K, the family of maps 7(0), 1 <j<m = step size of g,
uniquely determines the orthogonal map ¢, on g. Since o, uniquely determines
o, we have K N AIA(G) = {Id}. Now suppose ¢ € K, ® € AIA(G), and
0® € D. Then m(0®) = m(0) leaves the lattice Ej invariant and is orthogonal
relative to the inner product on g//g’/*! induced by g. Since only finitely
many orthogonal linear transformations can preserve a given lattice in a
Euclidean space, there are only finitely many possibilities for {m(0): 1 <j <
m} and we conclude that K|, is finite.

5.5. Theorem. Let G, I and g be as in Proposition 5.4 and suppose Inn(G)
has codimension d > 0 in AIA(G). Let E be the family of isometry classes of the
isospectral (by Theorem 3.4) manifolds (I'\G, ®*g) as ® ranges over AIA(G).
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Then E has a d-dimensional manifold structure arising as the double coset space
of a d-dimensional Lie group by a pair of discrete subgroups, one of which is
finite. Indeed, using the notation (3), E may be identified with
7(K\)\7(K, AIA(G))/m(S) for m the canonical projection from Auy(G) to
Aut(G)/Inn(G).

Proof. By Corollary 5.3, if ®,, @, are elements of AIA(G), (I'\G, ®}g) is
isometric to (I'\G, ®7g) if and only if #(®,) € n(K,)m(®,)m(S). Thus we
have a natural identification of E with 7(K,)\7(K, AIA(G))/7(S). By Theo-
rem 2.3 and Proposition 5.4, #(S) is discrete and (K, AIA(G)) is the
semidirect product of the finite group m(K,) = K, and the connected, simply-
connected d-dimensional nilpotent Lie group 7(AIA(G)).

5.6. Remarks. (i) Let a be any vector space complement to ad g within
AID(g) and A4 = exp(a). By Theorem 2.3 AIA(G) = AInn(G) with 4 N
Inn(G) = {e} and thus as topological spaces, R? ~ 4 ~ n(AIA(G)). Using 4
as a parameter set for the metrics ®*g, ® € A, isometry of metrics defines an
equivalence relation on A4 in which each equivalence class is discrete. Obviously
E isin 1-1 correspondence with these classes. It is clear that forany® € 4 — C
(for C given by (3)), we can choose a continuous path ¢ — ®,in 4 with &, = @,
such that the continuous isospectral deformation ¢ — g, = ®*g of g to ®*g has
the property that (I'\G, g,,) is nonisometric to (I'\G, g,,) for #, # t,.

(ii) Calculation of E is greatly simplified when, in the notation of Proposi-
tion 5.4, K, coincides with K. This happens in particular when logT is a
lattice in g invariant under the orthogonal projection to g’/ defined by the
metric g for j = 1,2,---,m. In the notation of Proposition 5.4, log I is then
isomorphic to the orthogonal direct sum of the lattices £,,- - -,£,, and K|, = K|,
is the subgroup of K preserving each Ej.

When K| = K, clearly C = C; is a subgroup of AIA(G) normalized by K.
The family of manifolds (I'\G, ®*g), ® € AIA(G), which are nonisometric to
(I'\G, g) may be identified with the nilpotent group AIA(G)/C, and E may
be identified with the orbits in this group under the action of K|, defined by
®C, - (e®07")C,, 0 € K,,.

In the following examples, we shall frequently insist that I" and g satisfy the
above simplifying condition.

5.7. Examples. (i) Let G be the group of Example 2.4(i) and define I' = exp £
for £ the lattice in g ~ R® with lattice basis { X, Y;, $Z;: i = 1,2}. By 2.1(1) and
the defining bracket relations for g, I' is a uniform discrete subgroup of G. The
almost inner derivations ¢, and ¢, map I into I' and AIA(G) N D is the
exponential of the lattice in RS ~ AID(g) spanned by ¢,, ad X,,ad ¥;,i = 1,2.
Thus the group AIA(G)/C, of 5.6(ii) becomes simply the 2-torus spang{¢,, ¢,}
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modulo span,{g,, ¢,}. If we take g so that our basis above for £ is orthonor-
mal, a routine computation shows that the K-orbit of the point (7,, ¢,) = 1,9,
+ 1,9, + Zo, + Lo, consists of the points (€7}, €,2,) for ¢, ¢, € {=1}.

(i) Let G be the group of Example 2.4(ii) with log I' = span,{ X,, X,, Y,,1Z:
i=1,2,3}. We know that all almost inner derivations of g rational with
respect to the chosen basis are inner. Since ® € AIA(G) N D implies that
¢ = ® — Id is a rational almost inner derivation, the group C, of Proposition
5.4 is simply Inn(G) and the group AIA(G)/C, of 5.6(ii) is therefore isomor-
phic to R%. Depending on the choice of g, E either remains R? or consists of
orbits in R? under the action of a finite group. In this example as well as the
one above, similar conclusions hold if log I' is redefined by a basis whose
elements are arbitrary rational combinations of the original basis.

(iii) Let G be the exponential solvable group whose Lie algebra g was
constructed in Example 2.4(iv). We first construct a uniform discrete subgroup
of G. Choose any matrix [ £] € SL(2,Z) with « + 6 > 2 and let

2
o= (9 = () o

Then [3+ 3] is similar to [2£]. It follows that there exist elements U, =
aX; + bY,, V3= cX; + dY; with ad — bc = 1 such that e ¥ leaves £, =
spanz{U;, V3} invariant for ¢, = log A, . Now define I' as the subgroup of G
generated by {exp(ntyH): n € Z}, exp£;, and expf for £ as in 5.7(i).
Since [U;, V3] = Z, € £, it is easy to check that I is a uniform discrete sub-
group of G. Let 4 = {a(z,, 1,) = exp(t,;¥; + t,9,): (1), 1,) € R?}. By an easy
direct calculation (note Theorem 2.3 does not apply) AIA(G) = 4 - Inn(G).
Let g be the left invariant metric on G for which the basis
{H, X, X5, X5,Y,Y,, Y3, Z,, Z,} is orthonormal. Although G is not nilpo-
tent, the group K, is still finite. To see this, note first that for o € K,
o,(H)= *=H since RH is the orthogonal complement of the o,-invariant
subspace nilrad(g). If o ,H = H, then X; and Y; must be eigenvectors of o,
(since 0, X; = 0,[H, X;] = [H, 0,X;], etc.) while if o ,H = -H, then ¢, per-
mutes R X; and RY;. Thus o, leaves invariant m = spang{ H, X;, Y3} and there
are only finitely many possibilities for o, |,. If o is in K, with ¢® € D and
® € AIA(G), then o, and @, leave invariant

mt=spang{ X, X,, Y, Y5, Z,, Z,}.
However, on m* , ®, — Id is nilpotent and maps m* to 3 = spang{Z,, Z,} =
center of g and the arguments given in the proof of Proposition 5.4 apply to
yield only finitely many possibilities for o, |- .
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Clearly a(t,, t,) € D if and only if ¢,, ¢, € Z. By the obvious analogs of our
arguments above in 5.4-5.7(i), it follows that the isometry classes of the
isospectral manifolds (I'\G, ®*g), ® € A4, are parametrized by equivalence
classes in the 2-torus under an equivalence relation in which each equivalence
class has finitely many elements.
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