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EQUIVARIANT MORSE THEORY
AND CLOSED GEODESICS

N. HINGSTON

In this paper we use the equivariant Morse theory to investigate the
existence of closed geodesies on simply connected compact Riemannian mani-
folds, particularly the simply connected compact rank 1 symmetric spaces
(CROSS'S) S\ CP\ YίP\ CaP2.

In §5 we show the existence of at least g(λ, n) "short" closed geodesies
without self-intersection on a homotopy CROSS sufficiently close to the
standard metric, where g(λ, n) is the cuplength of the space of unpara-
meterized geodesies on the standard CROSS. In the nondegenerate case there
will be λ(λ + \)n(n + l)/4 (λ = 1,2,4,8).

In §6 we prove that if M is a simply connected compact Riemannian
manifold with the rational homotopy type of a CROSS and if all closed
geodesies on M are hyperbolic, then the number of distinct closed geodesies of
length ^ / on M grows at least like the prime numbers.

Birkhoff gave a proof of the existence of at least one closed geodesic on an
^-sphere in 1927. In 1929 Lusternik and Schnirelmann claimed the existence of
three closed geodesies without self-intersection for any metric on a 2-sphere.
The proof however was only completed recently by Ballmann. The geodesies of
these theorems are obtained by shortening deformations of the great and small
"circles" on a sphere; such geodesies can be considered "short". The generali-
zation to higher dimensional spheres was attempted by Alber, who gave a
proof of the existence of g(n) closed geodesies on an ^-sphere, where g(n) is
the cuplength of the Grassmannian G(2, n + 1). But Ballmann found a mis-
take in Alber's proof. Ballmann, Thorbergsson and Ziller ([11], [12]), Anosov
[2] and the author [28] independently gave complete proofs of versions of
Alber's theorem. In the nondegenerate case one obtains n((n + l)/2) closed
geodesies on a sphere. Morse [37] showed that the latter number is optimal
with the example of an ellipsoid with unequal axes. While such an ellipsoid will
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always have an infinite number of closed geodesies, for axes sufficiently close
to 1 only n(n + l)/2 will have length less than any given number greater than
2ττ.

One of the most important methods in the theory of closed geodesies has
been the Morse theory on some version of the space Λ of closed curves on a
manifold M. The critical points of the energy function on Λ are the closed
geodesies. However the "iterates" of a closed geodesic, which should be
considered as geometrically the same, appear as separate critical points of the
fenergy function. The theorem of Bott [12] on the index of these iterates paved
the way for the theorem of Gromoll and Meyer [26]: If M is a simply
connected compact Riemannian manifold and if the rational Betti numbers of
Λ are unbounded, then M has infinitely many (geometrically distinct) closed
geodesies. Klingenberg showed that the same is true if the Betti numbers for
any prime field are unbounded. The question of which manifolds satisfy the
conditions of the theory of Gromoll and Meyer was settled by Sullivan and
Vigue-Poirrier: They showed that if M is compact simply connected the
rational Betti numbers of Λ are unbounded if and only if H*(M\ Q) is not a
truncated polynomial ring in one generator. Among the manifolds not covered
by the theorem are the CROSS'S and certain symmetric spaces of rank > 1.
Ziller [48] has proved that for rank > 1 the Z 2 Betti numbers of Λ are
unbounded.

On the other hand a form of the "Birkhoff-Lewis fixed point theorem",
proved by Moser [38], implies the existence of infinitely many closed geodesies
near a generic nonhyperbolic geodesic. While we know of no example of a
metric on any compact simply connected Riemannian manifold with all
geodesies hyperbolic, the theorem of §6 does complete the proof of the generic
existence of infinitely many closed geodesies on manifolds with these homo-
topy types. (See also [24] which shows that hyperbolic geodesies are more
prevalent than had previously been suspected.) Note that a version of the
theorem of Sullivan and Vigue-Poirrier for prime fields would complete the
proof of the generic existence of infinitely many closed geodesies for simply
connected compact Riemannian manifolds.

Klingenberg has given proofs of the generic existence of infinitely many
closed geodesies and of the existence of infinitely many closed geodesies on a
compact Riemannian manifold. However these proofs depend upon the "di-
visibility lemma" which is controversial.

Many of the mistakes in the history of closed geodesies stem from the fact
that at some point it seems impossible to gain more information from the
Morse theory on Λ without dividing out by the natural 6>(2)-action: one would
like to deal with the " unparameterized" closed curves. But the group action is
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not free and the quotient space of Λ by the group action has singularities.
In his attempt to calculate the "circular connectivities" of a sphere, i.e. the

Z 2 Betti numbers of the quotient of AS" by the O(2)-action, Morse made a
mistake which was later repeated by Bott and others and finally caught by A.
S. Svarc. The problem was the fact that the group action is not free. The Z 2

cohomology of the quotient has still not to our knowledge been computed
despite many attempts; however it appears to have infinitely many generators
in most dimensions! In §4.3 we calculate for the s.c. CROSS'S what we would
like to propose as a new candidate for the title "circular connectives": the
mod 2 equivariant cohomology of Λ for the group 0(2).

The equivariant Morse theory has been used by Atiyah and Bott [3] in their
work on the Yang Mills equations. The idea is this: Given a group action on a
manifold X which leaves a differentiable function invariant one would like to
"divide out" by the action. But if the group action is not free the quotient will
have singularities. To resolve these singularities one looks instead at the
homotopy quotient of Borel. The equivariant Morse theory is then the Morse
theory on the homotopy quotient or, equivalently, the Morse theory on the
space X itself with the equivariant cohomology replacing ordinary cohomology.
All the standard theorems and (recent) proofs of Morse theory carry over to
the equivariant case.

§1 deals with some well-known facts about equivariant cohomology and
methods of computation. In §2 the equivariant Morse theory is introduced;
topological implications are discussed. In §3 we outline the usual facts about
Morse theory on the Sobolev space Hι[S\ M ] and give an elementary proof of
an equivariant version of Palais' theorem to the effect that Hι[S\ M] has the
weak homotopy type of the space of continuous closed curves. §4 contains
computations for CROSS'S. This paper was written with a reader in mind who
is more familiar with the geometry involved than the topology.

The author knows no words sufficient to thank her teacher, R. Bott, who
was a constant source of inspiration and who suggested applying this technique
to the problem of closed geodesies. T. Goodwillie, T. Parker, M. Wang and W.
Ziller provided many helpful discussions and suggestions. Some of these results
appeared in the author's thesis [28].

1. Equivariant cohomology

1.1 Preliminaries. Let G be a locally compact Lie group. A G-space is a
topological space X with a continuous G-action. We shall also assume that the
action of G is proper, i.e., G X X -> X X X by (g, x) -> (gx, x) is a proper
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map. This ensures that, if XΊs Hausdorff [16]:
(i) The stability subgroup Hx of a point x E XΊs compact.

(ii) The orbit G ° JC of x in X is closed.
(iii) The orbit space G/X is Hausdorff in the quotient topology.

Proper group actions have many of the properties of compact group actions

since we are guaranteed the existence of a slice; see [39].
A G-map from a G-space A" to a G-space 7 is a continuous map φ with

Φg — gΦ for all g in G. If A is a category of topological spaces whose
morphisms are continuous maps, we can form the category AG: An object in
AG is a space X in A together with a continuous G-action so that g: X -> X is a
morphism of A for all g in G. The morphisms of AG are the G-maps of A. A
G-object or morphism will mean "in the category AG\ e.g. G-manifold,
G-diffeomorphism, G-homotopy equivalence.

A G-manifold will be a differentiable (possibly infinite dimensional) para-
compact Hausdorff manifold M with a continuous G-action so that g: M -> M
is differentiable for all gEG. (Differentiable will mean sufficiently smooth,
e.g. C00.) Note that if M is a locally compact G-manifold then the G-action
G X M - ^ M i s differentiable; see [9], [39].

If M is such a manifold with a free G-action, i.e. gx Φ x for g φ 1, then the
projection M -* G\M is a smooth fibration and G\M is also a manifold.
However if the action is not free, G\M will in general have singularities. In
order to "resolve" these singularities we will use the homotopy quotient of
Borel.

If X and Y are G-spaces we denote by X X G Y the quotient of X X Y by the
diagonal G-action, with the quotient topology. There are natural projections
from X X c Y to G\X and G\y; the inverse image of the orbit G ° x E G\X
is identified with HX\Y, with Hx C G the stability group of x.

1.2 Classifying spaces (see [10], [30]). A universal G-bundle is a principal
G-bundle whose total space EG is contractible. The base space BG — G\EG is
a classifying space for G. Such bundles always exist; BG is unique up to
homotopy type in the category of CW complexes.

For example, if G is discrete an Eilenberg-Maclane space K{G\ 1) is a BG. If
G is embedded in GL(«; k) with A: = R or C then

FΛ(w, oo) = {ordered ^-frames in A:00}

is the total space of a universal G-bundle. If FR(n, oo) is the space of
orthonormal w-frames then the Grassmannian GR(w, oo) = O(n)\FR(n, oo) of
w-planes in R00 is a classifying space for the orthogonal group 0{n).

The classifying property of BG is the following: If E is a principal G-bundle
over a paracompact base J9, then there is a map a: B ^ BG so that α*(£G) = £



EQUIVARIANT MORSE THEORY 89

and thus a correspondence

ί Equivalence classes of 1 f Homotopy classes of]

1 G-bundles over B j [ m a P s B -* BG J "

For example if Bn is a manifold embedded in R00 and if a: B -> GR(«, oo)

gives the usual identification of the tangent space to 2? at a point with a linear

subspace of R00, then α is a classifying map for the orthonormal frame bundle

associated to the tangent bundle TB of B, and

If γ: G -> G' is a continuous homomorphism, then we can form the principal

G'-bundle

EGXGG' -*BG,

where G acts on G' by γ. By the above this bundle is the pull-back of EG'

under a map Γ: BG -> i?G'. Thus a map γ: G -> G' induces a map G (up to

homotopy) so that

EGXGG
f >EG'

I J
BG >BG'

r

is a pull-back diagram. In fact Milnor has shown [34] that any principal

G'-bundle over BG is induced by a map G -> G'.

1.3 The Homotopy quotient (see [10], [29]). If X is a G-space the homotopy

quotient of X is defined by

XQ - ^X(jEG.

A^ is the "universal G-bundle with fiber X". Associated to XG is the mixing

diagram:

X< X X EG >EG

I I I
G\X< XG >BG

The projection π{: XG -» G \ ^ c a n be thought of as sort of "blow-up" in the

sense of homotopy of the singularities which occur in G\ X when the action of

G is not free. If X is a G-manifold with G X X -+ X differentiable and we have

a G-manifold for EG, then 7Γ2: XG -> 5G is a smooth fibration with fiber X and

XG is a manifold. Moreover π{ is a weak homotopy equivalence whenever the

action is free. Note that if x G X, π{\G o x) « HX\EG with //^ the stability

group of x. Thus π{\G ° x) has the homotopy type of the classifying space BHX.

If Hx is trivial, π{](G ° x) has the homotopy type of a point.
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As an example consider the group G = Z 2 acting on R2 by reflection about

the origin. Let EG = S0 0 with G acting by the antipodal map. The inverse

image π{\G ° x) of a general point in G\Xis £G (a point in homotopy!) The

inverse image under TΓ, of the orbit of the origin is the projective space RP°°.

Another way to view the homotopy quotient is this: X X EG is a space with

the homotopy type of X on which we have a free G-action reflecting the

G-action on X. Without changing the homotopy type of G, we have "made G

act freely". The homotopy quotient is the quotient of X X EG by this free

action.

If X and Y are G-spaces and φ: X -* Y a G-map, then φ X id: X X EG -> Y

X £G descends to a continuous map

Thus X -> Λ^ is a functor from the category of G-spaces and G-maps to that of

topological spaces and continuous maps. If φ is a G-homotopy equivalence,

then φG is a homotopy equivalence.

If X is a G'-space and γ: G -> G' a homomorphism, then Λ' is also, by γ, a

G-space. It is easy to see that the homotopy quotient XG is the bundle over BG

given by the pullback of the bundle Xσ -> BG' over the map Γ induced by γ:

?. '?
Γ

1.4 Equivariant cohomology (see [10], [29]). If X is a G-space the equi-

variant cohomology of X is defined by

HG satisfies by definition the exactness, homotopy and excision axioms for

cohomology theories but not the dimension axiom: If we consider a point as a

trivial G-space then

H% is a functor from G-spaces to #*(£G)-modules. The structure of Hξ(X)

as an //*(£G)-module is given from the cohomology theory point of view (left

hand side of (*)) by the G-map

* - > p t .

and from the homotopy quotient point of view (right hand side of (*)) by the

map
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A homomorphism γ: G -* G' gives naturally, as we have seen, a functor
from G'-spaces to (/-spaces and maps XG -> Xσ and BG -> BG'. The induced
maps # £ -> 7/* and H*(BG') -> H*(BG) are compatible with the module
structure.

1.5 G-vector bundles. A G-vector bundle over a G-manifold M is a G-space
V which is a (differentiable) vector bundle over M and so that g: V -* V is a
vector bundle map; i.e. g preserves and is linear on the fibers. The G-map
V -* M induces the vector bundle VG -» MG. For example the tangent bundle
TM of a G-manifold M is naturally a G-vector bundle; if gx — y (g e G;
x j e M ) then g: TXM -* TyM is the derivative of the map g: M -> M. If G
acts by isometries then Fis a G-Riemannian vector bundle.

If F -> M is a G-vector bundle the restriction of V to an orbit G ° Λ: is a
G-vector bundle over G ° x « G/Hx. Now let H be a compact subgroup of G
and consider a G-vector bundle V -+ G/if. The action of // on V gives a
representation of H on the fiber F over the identity coset in G/H. Since the
G-action gives a trivialization of the pullback of V under the map G -> G///"
this representation determines the bundle V -> G/fl" uniquely. Thus we have a
1-1 correspondence

{ G-vector bundles 1 f Representations
overG/if J ~ l o f ί Γ

The inclusions H -* G and i7 -> F induce isomorphisms:

The bundle FH -> .β/ί is the canonical bundle over BH associated to the
representation of H on F.

If F -> M is a real G-orientable Riemannian vector bundle (if G is connected
this simply means that F is orientable; otherwise we must insist also that G
preserve the orientation) we have the Thorn isomorphism

where D and S denote the disk and sphere bundles and λ is the dimension of
F. This follows from the standard Thorn isomorphism since the bundle
VG -> MG will be orientable precisely when Fis G-orientable.

1.6 Examples and techniques. The Serre spectral sequence for the fibration
MG -* BG with fiber M allows one to compute H%(M) in many cases; often
the spectral sequence also gives information about the structure of Hζ(M) as
an i/*(2?G)-module. We mention some standard results.
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If Sι = 50(2) is the circle group then S ^ S 0 0 = CP0 0 is a tfS1 and

the polynomial ring on a generator in dimension 2. The map γm: S1 -> 5 ι by
ym(g) = £ m induces Γ*: H*(BSX) -> H*(BSι) byw-> mw.

Let ZΛ be the cyclic group of order n. Embedding Zn in S] we see that the
lens space ZnS°° is a £ZΠ . We have

In particular if n divides m the inclusions Zn -* Zm -> S1 induce surjections
H*(BSι) -> H*(BZn) ^ H*(BZn).

The Euler class of the canonical bundle over .BZ^ corresponding to the
2-dimensional representation with eigenvalues e±7Γ/m/w i s m-times a generator

H*(BZn) can be computed from a free resolution of Z[ZJ. The compu-
tation works as well for any local coefficient system on BZn given as a
Z[ZJ-module. If X is a Zw-space the Z[ZJ-module C*(X) gives the local
coefficient system for the fibration XZn -> BZn. In particular there is a spectral
sequence converging to H*(XZ ) with Eβq = Cq(X) and differentials

rf: ^ ^ ^ ^ ' ^ + 1 the ordinary differential Cq(X) -> C^+

δ: fif^ ^ ^ + ι < ? the map C 9 ( ^ ) -> Cq(X) induced by

{ • +t"-λ) (podd)9

where t is a generator of ZΛ.
For example let σ be an orthononal representation of Zn on Rλ whose

associated ZM-bundle V -* pt. is «oί orientable, i.e. det σ(t) = - 1 . Then n is
even; taking the J-cohomology H^DV, SV) which has E{ term = 0 except in
the row q = λ. In this row we have (setting ί = -1)

Thus

τij ( nv ?v\ — ί^2> λ <j andλ +j odd,
z " ' i 0, otherwise.

If O(n) is the orthogonal group then

where wz in dimension i is the ith Steifel-Whitney class.
Haefliger [27] has shown that one can use Sullivan theory to compute

/f<j(Γ;Q), where Γ is the space of continuous sections of a G-fiber bundle.
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Sullivan and Vigue-Poirrier [45] investigated the following example: Let G = Sι

and consider the S1-bundle Sι X M -* S\ where M is a manifold and Sι acts
trivially on M. Then Γ is the space of continuous maps from Sι to M with Sι

acting by a change of parameter. If M = S2m+\ m > 0, then H£(Γ) has
minimal model Q[c] ® Λ(x, jc) with deg c = 2, 2 m + l = deg x = deg ic 4- 1
and ί/c = 0, dx — -de, dx = 0. Thus

When G is discrete an Eilenberg-Maclane space K(G, 1) is a J?G and
H*(BG) is the Eilenberg-Maclane cohomology of G which is computed alge-
braically from a free resolution [17]. The analog for a topological group is a
semi-simplicial construction. A semi-simplicial space (which corresponds to a
free resolution when G is discrete) is constructed whose geometric realization is
a BG (or XG for a G-space A"); the cohomology of this semi-simplicial space is
that of BG (or Xc\ [34], [35], [14].

2. Equivariant Morse theory

Using the Morse theory one gains information about the topology of a
manifold by studying the critical points of an appropriate function or, working
backward, deduces information about the critical set of a function on a
manifold from the topology. Often such problems come equipped with a
"built-in" symmetry in the form of a group action on the manifold which
leaves the function invariant; one would like to divide out by the group action.
There is ample evidence that this is not always a good idea in the long history

1 of mistaken proofs in the subject of closed geodesies. An alternative is the
equivariant Morse theory. This can be thought of as the usual Morse theory on
the homotopy quotient of the given manifold, or as the Morse theory on the
manifold itself using the functor H% rather than H*. While we always have the
first point of view in mind, the second has technical advantages. As many
authors have noted, cf. [25], [46], the usual proofs of the standard theorems of
Morse theory are also valid in the equivariant category. The first part of this
section is devoted to statements of these theorems.

2.1 Statement of the theorems in the equivariant context. The customary
set-up for the Morse theory on Hubert manifolds starts with a complete
Hubert manifold M with a differentiable function satisfying condition (C) of
Palais and Smale [40]. In the equivariant setting for a Lie group G this means:
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M is a complete G-Riemannian manifold equipped with a G-invariant differen-
tiable function/. The appropriate form of condition (C) is

(CG) Let {.*„} be a sequence of points in M so that f(xn) is bounded, and
I V/(xπ)| converges to 0. Then {xn} contains a subsequence whose image in
G\M converges.

If G is the trivial group this is condition (C).
We shall also assume that / satisfies a regularity condition: If x E M is a

critical point then G -> G ° c is differentiate. The orbit of x will then be an
embedded submanifold.

Condition (CG) is used in two ways: First it implies that if K C M is the set
of critical points of/and a, b E R, then the image of f~ι[a, b] Π Kin G\M is
compact; second it ensures that | v/ | will be bounded away from 0 on the
complement of any neighborhood of Kin f~x[a, b].

Let M be a complete G Riemannian manifold and let / be a differentiable
G-function satisfying (CG).

Theorem A. If[a,b] contains no critical values then Mh is G-diffeomorphic to
Ma.

The proof is by pushing Mb down to Ma along - v/. (See Palais [40]; the
proof is still valid if one puts a G- front of every third word as are the proofs
cited below.)

Let A C M be a critical manifold of /, i.e. a submanifold of M consisting of
critical points. The symmetric bilinear Hessian form Hf is defined on the
normal bundle N(A) to A in M\ see Meyer [36]. A is nondegenerate if the
self adjoint operator SQ given by

is invertible (as bounded operator) on NX(A) for each x E A. If A is nondegen-
erate and χ is the characteristic function of [0, oo) then P — χ(S0) is a
G-orthogonal bundle projection. We define the negative and positive bundles
of ,4 by

N~(A) = (1 - P)N(A)\ N+ (A) = PN(A).

The index of A is the dimension of N~(A). It follows from (CG) that
nondegenerate critical manifolds are isolated and that if the critical manifolds
are isolated and that if the critical set K of/consists entirely of such manifolds,
then the critical manifolds of/are isolated.

Let E, E' be G-Riemannian vector bundles over a manifold B. Then
DE θ DE' is a handle-bundle of type (£, E').

Theorem B. Let M be a complete G-Riemannian manifold and let f be a
differentiable G-invariant function satisfying (CG). If[a,b] contains one critical
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value c E {a, b), and if K Π f~\c) is a union of nondegenerate critical G-mani-
folds Ai9 then Mb is G-diffeomorphic to Ma with the handle-bundles (N+

(At% N-(Ai)) disjointly attached along DN+(A,) Θ SN^A^.
For the proof see Palais [40] and Wassermann [46].
Next we turn to the case of isolated degenerate critical manifolds. That is,

we consider submanifolds Ai of M having neighborhoods Ui with Uι n K = Ai9

but now with no restriction on the Hessian form.
In the equivariant theory we have the analog of the local invariants of

Gromoll-Meyer and an equivariant version of the splitting theorem; see
Gromoll and Meyer [25]. For our purposes we need only the following version
of the principle of subordinated homology classes:

Theorem C. If[a,b] contains one critical value c E (a, b\ if K Γ\f~\c) is a
union of isolated critical G-manifolds Aiy and ifuE HG*(M) satisfies ŵ  = Ofor
each /', then

Π u: HG*(Mb, Ma) -> HG*(Mh, Ma)

is the zero map.
Proof. By the usual arguments, for any G-neighborhood U of UAi there is

an ε > 0 so that HG*{U, Uc~ε) -* HG*(Mb, Mc~ε) is surjective. The latter is
naturally isomorphic to HG*{Mh, Ma). Thus the above cap product factors
through

ΓΊ (u]υ): HG.(U9U
c-ε) - HG.(U,Uc-ε).

2.2 Topological implications; nondegenerate case. Using Theorems A, B
and C one can hope to calculate H£(M) once the structure of the critical point
set of an appropriate function is known. Suppose M is a complete G-Rieman-
nian manifold and that/is a G-function satisfying (CG). From Theorem A it
follows that if [a, b] contains no critical values, then

Now suppose the hypotheses of Theorem B are met: [a, b] contains one critical
value c E (a, b) and K Π f~\c) is a union of nondegenerate critical manifolds
At. Let DN~(Ai) be the closed disk bundle of the negative bundle over At.
Then

H*G{M\ Ma) £ 0 HξiDN-iAt), SN'(AS)).
i

If all the bundles N'iA^ are G-orientable and G\Ai is connected, then the

Thorn isomorphism yields

where λ, is the index of Aι,.
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Now when G is the trivial group one can look for nondegenerate critical
points. In general the best that one can hope to find is nondegenerate critical
orbits. Suppose x E M and the orbit G ° x is a nondegenerate critical mani-
fold. We call this the nondegenerate case as the Hessian form has the minimum
degeneracy required by the G-structure. Let H = Hx be the stability group of
x. Then

H*(DN~(G o χ)9 SN-(G o x)) = H*(DVG, SVC)9

where VG = (N~(G ° x))G is the canonical bundle over BH determined by the
representation of H on the fiber of N~(G ° x). If N~ is G-orientable then

H*(DN~(Go x), SN~(G o *)) = H*-\BH).

If the critical set # consists entirely of nondegenerate critical manifolds, then
by (CG) we can find an increasing sequence {at} E R with no limit points so
that [ai9 ai+x] contains one (interior) critical value. If we know the structure of
each negative bundle N~(A) and thus H%(M°i+ι, MQi), we can hope to recover
the equivariant cohomology of M via the long exact sequences

(*) - Hi(M«+*9 Ma')

-» H J

G ( M a i ) ^ H J

G

+ \ M a ^ \ M a ' ) - > • • - .

Thus inductively if we know HG{MOi) (e.g. if / is bounded below) and can
recover the boundary maps θ then, at least for coefficients in a field /c, we can
determine the ^-module H^(M°i+l).

We define the Poincare series for a field k by

PG(M) k9t) = Σ Rank
j

and the Morse series by

, k, t) = ^

where A{ ranges over the (nondegenerate) critical manifolds of M. If each
N~{At) is G-orientable then

//t particular in the nondegenerate case the contribution of a critical orbit to the

Morse series is the Poincare series of the classifying space of the stability group

"jacked up" by the index tλ. The Morse inequalities, which are a direct result
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of the long exact sequences (*), can be stated as follows [11]:

Let / be bounded below. Then there is a series Q(t) with
nonnegative integer coefficients so that

91tc(M; /, k91) = PG(M; k, t) + (1 + t)Q(t).

If g ( ί ) Ξ θ , then / is called a perfect Morse function (for the field k). This
means that the boundary maps of (*) are all trivial; for each /, j \

Hί(Ma'"'9 k) = WG{Ma- k) Θ #£(Λfβ'+1, Ma"9 k)

and there is no "cancelling out" of the cohomology of one critical set with that
of another. In this case/has the "minimal critical set" (i.e. the smallest Morse
series) prescribed by the topology of M (i.e. by the Poincare series).

Now the Morse inequalities reflect the information contained in the long
exact sequences (*) when Hξ is considered as a functor to ^-modules. In the
equivariant case we actually have much more information, since the boundary
maps

3: H*(Ma<) -> Hξ + ι(Ma'+\ Ma>)

are H*(BG)-module maps. This is important in practice as H£(MOi) is likely
to have infinitely many generators as a /c-module, but will be a finitely
generated //*(5G)-module if H*(Ma<) has finite rank.

2.3 Completing manifolds and self-completing bundles. If one can find
G-completing manifolds for the critical manifolds A then the boundary maps
must vanish. A G-completing manifold for A is a G-submanifold B of M
satisfying:

(i) A C B as a submanifold of codim λ = index A,

l

(iii) H%(B, Bf(A)~ε) -> H%(B) is injective for all ε > 0.
(The third condition will be satisfied e.g., if there is a map B -> A consistent
with the inclusion A -> B giving B as a G-fibration over A whose fiber is a G-
and 7r,(^4)-orientable manifold.)

Proof. Suppose for simplicity that/(Λ) = 0 and K Πf~ι(0) = A. Commuta-
tivity of the diagram

implies that the boundary map 3 is zero.
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The notion of completing manifolds goes back to Morse [37]. In the
equivariant situation one encounters the phenomenon of self-completing bun-
dles (see Atiyah-Bott [3]). First note that the above argument also works for a
manifold B with boundary if dB Π A = 0 however in this case (iii) will never
hold if A is finite dimensional in the ordinary Morse theory (trivial G). Let
B = DN'(A). Then Bε - SN'(A); if N~(A) is G-orientable the Thorn iso-
morphism identifies the map (iii) with the map

by multiplication with the Euler class χ E HG(A) of the bundle (N~(A))G -»
AG. Thus if multiplication with χ is injective on HG(A), the boundary maps 9
must be trivial, no matter how the negative bundle iV~(̂ 4) is "attached"! We
call N~(A) a G-self-completing bundle.

For example put G — Sλ\ let A — S]/Zn. If V -> A is the bundle given by a
representation with eigenvalues e

±27rim/n for m prime to n, then V is S^self-
completing for Zn coefficients.

2.4 Topological implications; degenerate case. In the degenerate case Luster-
nik-Schnirelmann theory allows one to use the homology of M to predict
critical points. If G is trivial and the critical set K of / consists entirely of
nondegenerate critical points, then the Morse inequalities imply that the
number of critical points of / is bounded below by the sum of the Betti
numbers P(M\ k, 1) for any field k. On the other hand an isolated degenerate
critical point (e.g. a monkey's saddle) can contribute more than 1 to P(M /c, 1).
Theorem C is the analog in the equivariant theory of the principle of sub-
ordinated homology classes, which in the ordinary Morse theory gives a
correspondence between subordinated homology classes and distinct (possibly
degenerate) critical points.

For our purposes the Birkhoff minimax principle can be stated as follows
(Klingenberg[32]).

Let / be a G-differentiable function on a complete G-Riemannian manifold
M9 satisfying (CG). Let α , f t£R and suppose that/has no critical values in
(a, a + ε] for some ε > 0. Let w0 E HG*(Mb, Ma) be a nontrivial homology
class. Put

κ(w o )= Inf Sup f(p)9
w^wo / elmage(w)

where w ranges over the repesentatives of the class w0. Then κ(w0) > a, and
fc(w0) is a critical value of/.

Suppose/is bounded below on M and that the critical set K of/consists of a
union of isolated critical orbits. It follows from Theorem C that if wλ> w2 G
HG*(M; k) with wλ = w2 Π x, dim x > 0, (i.e. wλ is subordinate to w2) and if
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x \κnf-\κ(w2)) — 0, then κ(wx) < κ(w2). Under these conditions wλ and w2

produce distinct critical orbits by the minimax construction. Note however that
if f~\κ(w2)) contains a critical point with nontrivial stability group, then
K Π f~\κ(w2)) is likely to have a large cuplength.

2.5 The fixed point set of a normal subgroup. Let M be a complete
G-Riemannian manifold. Let H C G be a normal subgroup and let MH C M
be the fixed point set of H. Since H is normal, MH is a G-space. If x e MH

then the action of G induces an orthogonal representation of H on the tangent
space TX(M). Put

TX

H(M) = {vE Tx(M)\hv = v VΛei/}.

MH is a closed geodesic G-submanifold of M. Moreover it is clear that if φ:
M -> M' is a G-map (resp. diffeomorphism, homotopy equivalence, vector
bundle map) then

Φ\MH: MH ^ M'H

is a G-map (resp. etc.).
Now suppose that/is a differentiable G-function on M satisfying (CG). Then

Vf\MH C TH{MH) and the critical set of the restriction of/to MH is equal to
MH Π A'. Since MH is closed the restriction of/to Λf" also satisfies (CG), and
the diffeomorphisms of Theorems A and B restrict to diffeomorphisms of the
same type on MH. If A is a nondegenerate critical G-submanifold of M, then
AH is a submanifold of A and NH~(AH) is a G-subbundle of N~(AH) (the
restriction of iV~(Λ) to AH).

Suppose now that A — AH and that A is connected modG. Then N~(A)
splits:

Let λ and λ^ be the index of A in M (dimension of N~) and the index of A in
M7 7 (dimension of NH~). If # " " and Λ^//~± are G-orientable then Thorn
isomorphism identifies the map

(*) H£(DN-9 SN-) -* H*(DNH~

induced by the bundle inclusion with the map

given by multiplication with the Euler class χ G i/£(Λ) of the bundle

{NH~{A)±)G-> AG. If the latter bundle is self-completing then (*) is an

injection.
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3. Morse theorem for closed curves

3.1 Preliminaries. Let M be a compact Riemannian manifold. Λ =
Hι[S\ M] will be the space of Hι maps from Sι = R/Z to M. The C°° vector
bundle Hι[S\ TM] -» Hλ[S\ M] is naturally identified with the tangent bun-
dle 7Ά -* Λ. If c E Λ is C00, I"C(Λ) can be viewed as the space of Hι vector
fields along c (i.e. V(t) E Tc{ί)M). We define a metric on ΓC(Λ) by

This metric has a unique extension to a Riemannian metric on ΓΛ. The energy
function is defined by

ΐ A.dt

The group 0(2) of isometries of the circle acts naturally on Λ leaving /
invariant. (For general facts about Λ and the proofs of the following theorems
see Anosov [2], Eliasson [21], Eells [19], Klingenberg [32].)

1. Λ = HX[S\ M] is a complete separable C°° 0(2)-Riemannian manifold.
M -* Hι[Sι, M] is a. functor from the category of compact differentiable maps
to that of 0(2)-manifolds, 0(2)-invariant differentiable maps.

2. The energy function / is a C00 0(2)-invariant map Λ -* R. The critical
points of / are the closed geodesies on M. The energy function satisfies
condition (C) of Palais and Smale.

Note that 0(2) X Λ -> Λ is continuous but not differentiable; however if
c E Λ is C00 then 0(2) -> 0(2) ° c is differentiable. Thus if c is a geodesic,
0(2) o c is a submanifold of Λ.

The space Λ of closed curves, together with the energy function /, is
appropriate for equivariant Morse theory with the group 0(2). Thus one can
use the cohomology of Λ to predict critical points, i.e. closed geodeiscs.
However each geometrically distinct closed geodesic c E Λ gives rise to an
infinite number of critical 0(2)-orbits, corresponding to its rath iterates cm(t)
— c(mt). In order to use Morse theory to predict closed geodesies we need to
get a hold on the index of these iterates. The main theorem in this direction is
due to Bott.

Let M be a compact Riemannian manifold. If c: Sι -> M is a closed
geodesic, then the index and nullity of c are the index and nullity of the critical
manifold^1 ° c C Λ .

Theorem [12]. To each geodesic c on Mn is associated a matrix P E

Sp(« — 1). P in turn determines, up to an additive constant, a nonnegative
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integer valued function a(z) defined for \z\— 1. Let b(z) — Nul l i ty^ - zl).

Then:

(i) The nullity of cm is 2zm=xb(z).

(ii) Ifb(z) — 0, then a is constant at z; the absolute value of the jump of a at a

point z is bounded by b(z); a(z) — a(z).

(iii) The index of cm is given by

M c m ) = Σ «(z).
zm=\

The matrix P is the (linear) Poincare map given by the "normal part" of the
derivative of the symplectic diffeomorphism TM -> TM given by the geodesic
flow at the fixed point (c(0), dc(0)/dt) E TM. The geodesic c is called elliptic
if all eigenvalues of P lie on the unit circle and hyperbolic if none of the
eigenvalues has absolute value 1. Note that if c is hyperbolic, then cm is
nondegenerate (i.e. nullity cm — 0) for all m, and λ(cm) = mλ(c).

A closed curve has multiplicity m if it has stability group Zm C SO{2)\ a.
prime curve is a curve of multiplicity 1.

3.2 "G-weak homotopy type" of Λ. Let C°[S\ M] be the continuous closed
curves on M with the usual sup norm. It is easy to see that a homotopy
equivalence M -* M' induces an O(2)-homotopy equivalence C°[S\ M] -•
C°[S\ Λf']. Let C°°[S \ M] carry the C00 topology. The inclusions

(•) C°°[S\ M] -> Hι[S\ M] -> C°[S\ M]

are continuous; it follows from a fundamental theorem of Palais [41], [42] that
the maps (*) are homotopy equivalences. One would like to show that they are
in fact O(2)-homotopy equivalences. We will settle for the

Theorem. Let X = C°°[S\ M] or H][S\ M] and Y = C°[S\ M]. Let H
and G be subgroups of 0(2), with H normal. Ifi:X-*Y is the inclusion then

is a weak homotopy equivalence.

The theorem follows from the fact that, for each subgroup G, i: X -* Y is a
G-map with the property of the following lemma, which may be thought of as
describing a "G-weak homotopy equivalence."

Lemma. Let h: (K9 A) -> (Y, i(X)) be a continuous map of a pair of compact
sets into Y so that h ^ lifts to a continuous map into X. Then there is a homotopy
ht\ (X, A) -> (y, i(X)) so that h0 = Λ, and:

(i) h^ lifts to a (continuous) homotopy.

(ii) hx lifts to a continuous map K -> X.
(iii) ho(x) = gho(y) => ht(x) = ght{y)for x,y(ΞK,gEG.
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Assume the lemma, let T: S" -* YG be given. Triangulate Sn so that the
restriction of T to each simplex has a continuous lift to a map (A,-, w )̂:
A ^ 7 X £ G . Putting # = U ^ ^ Δ, and A |Δ = A, by (iii), the homotopy
Ht ^ (A,, w): U Δ, -> 7 X £ c descends to a homotopy from T to a map with a
continuous lift T': Sπ -» AΓG.

Y X Er

1 G

Thus τrπ(^G) -> 7rπ(yG) is surjective. The same argument with T: (Z>"+1, S"1) ->
(7 C , /(Λ^)) shows that 7rw(jrG) -» ^(Y^) is injective.

Proof of Lemma. We use a smoothing argument. Let V C M n be an open
set with local chart ψ: F ^ 5 4 e C Rπ. Let (φ, φr) be a C0 0 partition of unity on
R" with φ = 1 on Bε and φ' = 1 on Rn — B2ε. {ey} will denote an orthonormal
basis of Rw and for x E Rn, xy will be theyth coordinate. Let u: R -> R be a
nonnegative even C0 0 function with support in [-1,1] and f™ζ>ou(t)dt = 1. Put
w/0 = jw(|). For γ: R -• R" we define ί/,γ: R -> Rw by l/̂ γ =
Σ e7w*[(φ ° γ)γ 7 ] (convolution product). Then there is a δ > 0 so that for
c elmh:K-* Yands 6(0 ,5] ,

(i) &r(ψ o c) is C0 0 for / G (ψ o cJ-'ίΛ^).
(ii) t/,(ψ o c) = 0 for / « (ψ o c ) - ^ ^ ) .

(iii)

lim Sup

cElm//

(see e.g. [22]). Thus for 5 E (0, δ ] and c E Im A

- φ(ψ o c )ψ ° c(t)\ = 0

provides an approximation for the restriction of c to (ψo c)~\B4ε)) which is
C°° for / E (ψ o c)" !(Be). By (ii) the approximation extends (by the identity) to
an approximation Ws{c) for all t. (Note that (ii) depends on the fact that K is
compact.) Moreover if A ̂  gives a continuous map A -> X, then the maps
AT X {1} -> X, Λ X / -> ^ b y (x, s) -> W δ̂j o ft(x) are continuous.
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We can find a finite number of sets Vt C M so that M C U£L, Ψi\Bε/2).

Write Wj(c) for the (extended) approximation (*) corresponding to the set Vt.

For sufficiently small δ > 0 the homotopy K X / -* Y given by

will have the desired properties. This homotopy is naturally G-invariant since

all choices were made on the "source" manifold M.

4. Examples: Simply connected compact rank 1 symmetric spaces

4.1 Preliminaries. A standard computation in Morse theory gives H*(A) if

M is a S.C. CROSS, i.e., M = S", CP\ H P " or CaP2. We refer to Besse [7] for

general facts about such spaces.

The standard metric on M is normalized so that the maximal sectional

curvature is 1. Then all geodesies are closed and of length 2ττ; the Poincare

map is the identity and the critical set of the energy function on Λ consists of

the critical manifolds Am of geodesies of length 2πm, m > 0. We have Ao = M

and Am = STM9 the unit tangent bundle, for m > 1.

Let β = π,2,4 or 8 (M = Sn

9CP\HPn

9 CaP2) and let r = dim M/a

( = 1, Λ, w, n). Then

H*(M)=Z[u]/ur+x =0,

a truncated polynomial ring on one generator in dim a. If x G M and Fj, E

TXM is a unit vector, then (see [7], [47]) there is an orthonormal basis

{Vu 11 < / ^ r, 1 <y < a} for ΓXM so that:

(i) the Vλj span (by exp) a projectiυe line of M, i.e., a totally geodesic

fl-sphere of constant curvature 1,

(ii) Vλj and Vif, iφ\, span a totally geodesic R P 2 of constant curvature \.

Note that the projective line of (i) is uniquely determined by Vu. It is easy to

see by counting zeros of Jacobi fields that Am (m > 0) is a nondegenerate

critical manifold of index

λ(Aj = (2m - l)(a ~ 1) + (m - l)(r - \)a.

The negative bundle N~(Am) is orientable.

The relative cycles of H#(A) can be completed by the method of Bott and

Samelson [15]: To complete the negative bundle over Am we let Bm C Λ be the

set of curves c having

C \J/2mjLJ+2)/2m)

c [j/mjLj+ i)/m] U e s i n a Projective line as in (i).
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Let φ,: Λ -> Λ be the flow along - v/. Then for t > 0, Bm = φtBm is a
completing manifold for the bundle N~(A). (Note a point in Bm — Am has
"corners".) Thus the energy function is perfect for ordinary cohomology on Λ.
We have

Γ 00

HJ(A)=HJ(M) Φ 0 HJ-χ{

[m=\
Remark. The completing manifold Bm is not 0(2)-invariant. This is re-

flected in the fact that the energy function is not perfect for //*O(2); see the
remark at the end of the next section. Bm is invariant under the dihedral
subgroup H C 0(2), although it is not an //-completing manifold. This will be
used in §4.3.

4.2 H*O(2)(A9 Λ°; Q) for M a s.c. CROSS. Now let G = SO(2). We com-
pute the rational Poincare polynomial PG(A, Λ°;Q, t). Over Q, HG(Am) =
HG(A) where A — Ax (see Lemma 1, §6.1). A spectral sequence calculation for
the fibrations A -* M, A -> G\A yields the Poincare polynomials of the
critical manifolds:

M P0(A;Q,ί) PG(A;Q,t) M^m)

S",
n even

s\
n odd (1 +

1 +tln~x

• t-χ.+ ' " )
(1 - /

1

1

n —

1

-t2n

-t1

)( i + /"- 1 )

-t2

(2m - 1){

(2m - l)ι

in- 1)

[n- 1)

a-\+(m-\){na
\-ta ( 1 _ / β ) ( 1 _ ί 2 )

The energy function is G-perfect for rational coefficients on (Λ, Λ°) since the
Morse polynomial is lacunary, i.e. all cohomology is in either even or odd
dimensions. Thus the Poincare polynomial is given by Σm tλ(Am)PG(A; Q, ί):

M Pc(A,A°;Q,0

n even [ 1 - /2 1 - r 2"" 2

o« Γ i tn-\
& ? ^ / i — I I _ι_

n odd [ l — t2 \ — tn

CPn — ^ ( 1 + / 2 - h ••• +
1 - r

J Ί
HP"
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Remark. The energy function is not perfect for G-cohomology on Λ for the

standard metric on S2n+ι if we do not mod out by the point curves Λ°. One

can detect some nonzero boundary maps by computing the rational cohomol-

ogy of Λ by Haefliger's method (§1.6). We have

1 t2n

P(ΔQt) +° 1 -t2 \-t2n'

But the Morse polynomial is given by PG(A°; Q, t) + PG(A9 Λ°; Q, t) so that

In '' ~ ' \-t2 \-t2 \~t

The difference (911 - P) is t2n+\l + 0/(1 - ' 2 ) It follows that for x = ywi

G//*(Λ°) with y E H2n+\S2n+ι) and w <Ξ H2(BG) nonzero and y > 0,

dx G //£+ 1(Λ, Λ°) is nonzero.

In particular H£(A, Λ°;Q) is mtf a torsion #*(2?G)-module, giving an

example of the failure of the localization theorem [10] in the noncompact case.

4.3 //0(2)*(Λ> Λ°; Z 2 ) for M a s.c. CROSS. Next we compute the mod2

series PG(A, Λ°; Z 2 , t) for G the full orthogonal group 0(2). We find the

polynomials PG(Am\ Z 2 , /) and show that the energy function is again perfect.

While the negative bundles N~(Am) are not in general orientable they are, of

course, orientable mod 2. All coefficients will be mod 2.

The computation of PG(Am; t) breaks down to two cases, depending on the

parity of m. For the applications we will be particularly interested in the first

part of the

Lemma, (i) // m is odd then H£(Am\rL1) is generated over H*(BG) by

powers M2, 2k < /*, of a class u2 which is the restriction to H%(Am) of a global

class u2 G H2a(A).

(ii) For m odd

(1 _ j«+1)(i - tar)(\ - tar+a)
PC(Λm9t)= ( l _ 0 ( l _ , 2 ) ( l _ , 2 « )

(iii) When m is even H£(Am) is generated over H£( A) by a class w, G H£(Am).

(iv) For m even

Proof. Put A = Am. First suppose that m is odd but r is even, so that M has

even Euler characteristic. Then

H*{A) = Z2[κ] ® A(x)/ur = 0,
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with dim u — a and dim x = ar + a — 1. When m is odd the map (A)G -* G\A
induces an isomorphism in mod 2 cohomology. Consider the spectral sequence
for AG -> BG. Since G\A is a (2ar — 2)-dimensional manifold, and since
Rank Hk(BG) grows linearly, we must have 0 Φ dα+]u E Hα+\BG). Let
/ C H*(BG) be the ideal generated by dα+λu. The £"+ 2-term of the spectral
sequence looks like:

B

Section A consists of rows 0 through αr — 1 and is generated over Z 2 by
u2kH*(BG)/I with 0 < k < (r - 2)/2; section B is rows αr through 2αr - 1
and is generated by the xu2kH*(BG)/I. Now all differentials of the term u2 in
A must vanish since the transgression of a square is zero. To show that all
terms in B must have nonzero differentials it is sufficient to see that // so, then
the polynomial PG(A, T) we obtain is consistent with Poincare duality, i.e.
t2αr~2P(\/t) = P{t). But this polynomial is easily seen to be the product of
three Poincare duality polynomials. Thus H%(A) is generated over H*(BG) by
classes uk which restrict in H*(A) to the u2k.

When r is odd we have

H*(A) = Z2[u] 0 Λ(x)/w r + 1 = 0

with dimu = α and dimx = αr— 1. The spectral sequence is more com-
plicated since it may be that dαx ψ 0. However the previous argument still
goes through.

Note that for spheres Sn, by uniqueness of the classifying map the canonical
map 7r2: (Aλ)G -> BG is homotopy equivalent to the inclusion

G(2, A2+ l)-*G(2,oo).

To complete the proof of the first half of the lemma we must show that the
classes uk E HG(A) are restrictions of classes in HG(A). First note that u2 is
characterized by the fact that its image in H*(A) is the square of the pullback
under the "evaluation map" of a generator u of H*(M). Next take a class in
H£(A°) = H\M X BG) whose image in H*(A°) s H*(M) is w, and square it:

M ^ Λ ° >A< A

1 I 1
Λ°G > A C < A G

Since this class is a square it is the restriction to //<?"(Λ°) of a classy e H£"(A).
The map H%(A) -»H*(A°) factors through H*(A). Since ^ 2 f l (Λ) has only
one generator over Z 2 , the image of y in H*(A) must be equal to e*(κ2), where
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e\ Λ -» Λ° is the evaluation map. But then the restriction of y to A is equal to
e*u2, since e: A -> Λ° is the composition of e: Λ -> Λ° with the inclusion
A - A .

Now let m be even. Let H C 0(2) be the dihedral subgroup Z 2 X Z 2,
Z2 = H0 = HΠ 50(2), and let Hx = H/Ho. Then H*(BH) s Z2[t?l9t>2] with
dimυ, = 1, H*(BG) -> H*(BH) by H^ -> t>, +1?2, w2 -» ϋ,υ2 and H*(BH) -*
H(*BH0) = Z[v] by t>, -> υ. Mod2 the subgroup H "captures" all the G-action
in the sense that H£(A) =-> H^(A), since AH -» ΛG is trivial mod 2.

Commutativity of

gives Hfr(A) ^ i/^^^ϋj/t)^ H- wxυλ + vv2 = 0, where wλ and w2 are identi-
fied with their images in H%{A). When m is even Ho acts trivially on A and

We view H£(A) as a subalgebra of the ring on the right.
We determine PHι(A\ Z 2, t) using the fibration:

M

The fibration is cohomologically trivial for a > 2 since //*(Ri)αr~1) is gener-
ated by a class in dim 1 using commutativity of the fibration with the
inclusions S 2 -> S3, S 2 -> CP" we see that it is in fact always trivial, and

(I - tar) (\ - ta(r+l))

Next consider the fibration:

A • AHχ

I
BHX

We have H*(A) = Z2[w] 0 A(x)/us = 0 where s = r (r + 1) if M has even
(odd) Euler characteristic, and dim x = (2r — s + X)a — 1. Since H*(M) «•
H*(AHι) all differentials of the entry w in the £2-term of the spectral sequence
must vanish. If we assume that all terms in the spectral sequence containing a
factor of x have some nonzero differential we obtain the correct polynomial.
Thus the assumption is justified; H£(A) is generated over H*(BG) by classes
u\ E Hζk(A), 1 < k < s. The image of ux in i/*(Λ) is the pull back under the
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evaluation map of a generator u of H*(M). As before u2 is the image of a class

inH2a(A). q.e.d.
Finally we show that the energy function is G-perfect mod 2 for (Λ, Λ°). Let

am— f{Λm) + ε. Recall that the energy function is perfect for ordinary

cohomology on Λ. Thus the right-hand vertical arrow in the following diagram

is an injection:

(Each group in the upper row has one generator over Z 2 , corresponding to the

Thorn class of the negative bundle over Am.) Commutativity implies that the

left vertical arrow is an injection.

Let x G i/g(Λα™, A**-1), m > 1. We want to show that the boundary

dx G # £ + 1 ( Λ , A*™) is zero. But H*(Aa»>9 Λ
α- ) = H*+MA»>\Am) is generated

over H*(BG){u$] C Hξ(A) by classes in dim < λ(Am) + a. It is sufficient to

show that the boundaries of these generating classes are zero. But H£(A9 Aam)

— 0 in dim <λ(Am+x). Since by the above diagram the lowest dimension of

//£(Λ, Aa»ι) cannot be killed we are done when λ(Am+λ) > λ(Am) + a, i.e.

ra > 2 or M φ S2.
For S2 we work a little harder. Since H^(A°m

9 Λ f l m l ) is generated over

H£(A) by a single class in dimλ(v4m) = 2m — 1 when m is odd, and by

classes in dim 2 m — 1, 2 m H- 1 when m is even, it is sufficient to show that

Hζ(Aa»>, Λα»'- ) -> i/^A**, Λ°) is injective for m odd. Let m be odd. Since

i / ^ Λ Ή Aa*-') ^ H%(A°m, A0--1) is injective for the dihedral subgroup # C G

it is enough to show H%(Aa»>9 A**-') -> ̂ ( Λ f l - , Λ°) is injective.

Now the completing manifold constructed by the method of Bott-Samelson

is invariant under H. But Bm does not fiber over Am as an //-manifold; 2?m

contains points with stability group Hλ C H while // acts freely on Am. Thus it

is not clear (in fact it is false for m = 1) that H%(Bm9 B^m~ε) -> H%(Bm) is

injective. However, # m does "complete" Λw "down to Λ° " : Let J9^ C Bm be the

fixed point set of Hλ. Then F acts freely on Bm - £ ° ; H%(Bm, B^'ε) ^

H%(Bm, B%) is injective in the top dimension because H Bm — B% is a mani-

fold. But

i/*(Λ J ^ Z 2 [ W l , υλ]/w\ = o,v] + υxwλ + υλw
2 = 0

is generated by classes from H%(Bm)\ by Poincare duality we have injectivity

of H%(Bm, B^~ε) -> H%(Bm, B°). Since no nontrivial geodesic is fixed by Hu

by pushing Bm down by - v / we can assume f(B%) C [0, ε], so that / is a

G-perfecton(Λ,
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Remark. The energy function is not G-perfect (or //-perfect) on Λ for

M — S2: Let x be a nonzero class in H3(A% Aa£). The image of x in

//3(G\Λα ', G\Λ°) is represented by the set of "circles" on S2, i.e. intersections

of S2 with 2-planes in R3. So ΘJC G H2(G\A°) is a generator of H2(S2).

The Poincare series for (Λ, Λ°) is given by Σ tλ(Am)PO(2)(Am; Z 2 , t). We have

_ t°~\\ - tar)(\ - tar+a)[\ - ta+λ + tra +

" (\ ~ t){\ ~ t2){\ ~ tla)(\ ~ t*ra

For M — Sn this reduces to

t»-\\ - tn)[\ - tn+ι + /2"~2(1 + /"

5. Existence of short closed geodesies on s.c. CROSS'S

A circle on Sn is the intersection of Sn with a 2-plane in Rn+K A circle on Ms

for Ms - CP",HPn or CaP2 is a circle on some isometrically embedded

Sa C Ms. Put λ = ar/n. Let g(λ, n) be the cuplength of the space of great

circles on M5.

Theorem. Let M be a compact Riemannian manifold with the property that

every geodesic loop on M has length > 2ττ. For Ms = S"\ CPn, HP" or CaP2 let

a: Ms -* M be a differentiable homotopy equivalence with the property that the

image under a of any circle on Ms has length < 4π. Then M has g(λ, n) closed

geodesies without self-intersection of length <4π. If all geodesies on M are

nondegenerate then there are a(a + \)r(r + l)/4 closed geodesies with the same

property.

Remarks. Alber [1] has computed the cuplength g(l, n) of G(2, n + 1); it is

given by

g(l,n) = n + 2 k - 1, w h e r e 2 k <n< 2 k + ι .

Klingenberg [31] has computed g(λ, n) for n > 1;

g(λ,n) = 2λn- ( 2 λ - \)s - 1, where 0 < s = n - 2k < 2k.

By a theorem of Klingenberg [18] the hypothesis on the length of loops will

be satisfied if the sectional curvature satisfies 1 > K > \ or, in the even

dimensional case,l >• K > 0.

Using the space of "biangles" and a new proof of the sphere theorem,

Ballman, Thorbergsson and Ziller [5] have proved the same result for spheres

with only the assumption that \ < K < 1.
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Proof. All coefficients will be mod 2. The map a: Ms -> M induces an

isomorphism #O ( 2 )*(ΛMS, A°MS)^HO{2)*(AM9 Λ°M). Now

has a(a + l)r(r + l)/4 linearly independent classes, g(λ, «) of which are
pairwise subordinated by means of classes wfw2u2 E HOi^{AMs). We will
show that the images of these classes can be represented in (Λ87r2~εM, Λ°M).
These classes then correspond by the minimax construction to closed geodesies
of energy < 4π. Such a geodesic c has trivial stability group by hypothesis, so
that HO(2)*(O(2) ° c) = Z 2 . The theorem then follows from §2.4.

Let A C AMS be the space of great circles, and let π: C -> A be the
0(2)-bundle of parametrized circles "parallel" to a great circle in A. lί c E A
then (π- ι(c), ir"ι(c) Π 3C) -> (ΛM,, Λ°ΛQ represents the Thorn class of the
negative bundle over A in Hλ(A])(AMs, Λ°). (It is enough that C has the correct
dimension and that / < 27r2 on C — A.) Now let x E C+(y4O(2)) represent a
class of HOi2*{A). The corresponding class in HO(2*+λ(Aχ){AMs, Λ°) is repre-
sented by T Γ ^ X ) . By hypothesis a^v^2)x) E HO(2*+λ(A])(AM, Λ°M) lies in
the homotopy quotient of the curves of length < 4ττ — ε for some ε > 0.

By the Schwartz inequality the energy and length of a closed curve are
related by f(c) > ί(/(c))2; we have equality if and only if c is parametrized
proportional to arc length. To complete the proof we give an O(2)-deformation
of the C00 map α: (C, 3C) -* (ΛM, Λ°) so that the image of C lies in Λ87r2~εM.
This is done by pushing ac down along the gradient of the restriction of the
energy function to the "reparametrizations" of ac.

A C00 map γ: S] -> M induces a C00 function /γ on Hλ[S\ S]] by /γ(ω) =
/(γ o ω ) . Let φ(γ): R+ ^ ^ H ^ 1 * 51] be the flow along - v/γ with initial value
the identity map Sι -* S1. We get a continuous map

Φ: (C X R+ , 3C X R+ ) -+ (ΛM, Λ°) by Φr(c) = αc o φ^αc).

Since C is compact we can find K > 0 so that /(αc) < /c =*f(ac) < 8π2 — ε
for c E C, and # so that /(αc) ^ ^ for c G C. Consider the immersions γ:
S1 -> M with /(γ) E [κ,47r - ε] and /(γ) < K. Since the energy function on
J/^S 1, S1] satisfies condition (C) there is a Γ G R + so that for such γ,
/(γ o φΓ(γ)) ^ 87r2 - ε. But the immersions are dense in AM (dim M ^ 2) so
that Φ Γ gives the desired deformation.

6. Hyperbolic case for s.c. rational CROSS'S

6.1 "Localization" theorem for manifolds with all geodesies hyperbolic.
Let M be a compact Riemannian manifold, all of whose closed geodesies are
hyperbolic. Let/? > 2 be prime; k a multiple of/?.
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Theorem. Suppose i/£O(2)(Λ^, Λα; Zp) contains a class which is annihilated

by some nonzero element of H*(BSO(2); Zp). Then Aβ contains a closed geodesic

of index k whose multiplicity is prime top.

Corollary. // M has only finitely many closed geodesies, then for p sufficiently

large multiplication with H*(BSO(2); Zp) is injectiυe on HgO{2)(A9 Λ°; Zp).

The corollary follows from the theorem by Bott's formula (§3.1) if we take/?

greater than the index of each prime closed geodesic.

The idea is this: We put G = £0(2). If we work mod p then a geodesic c

whose multiplicity m is divisible by/? has

H*(G o c) « H*(BZm) « Zp[x2] ® Λ(*,),

a free H*(BG, Z/?)-module. If the multiplicity of c is prime to p then G ° c

looks like a point in G-cohomology mod /?. In the hyperbolic case with only

finitely many closed geodesies, by Bott's formula for large primes p any

G-cohomology which appears in a dimension divisible by p must "come from"

a geodesic whose multiplicity is divisible by /? and will generate a free

if*(5G;Z/ 7)-module in #£(Λ, Λ°). However, for example, for a sphere Sn

with the standard metric closed geodesies with multiplicity divisible by p

appear only with index > (2p — \)(n — 1) and the module structure of

i/£(Λ, Λ°) provides a contradiction to the hypotheses of the Corollary.

Proof of Theorem. Let G = SO(2) and let M be a compact Riemannian

manifold. For m E Z+ let im: Am -> Λ be the inclusion of the fixed point set

of Zm C G in Λ. By §2.5 Am is a closed submanifold; the critical set of the

restriction of the energy function / to Am is the set of closed geodesies whose

multiplicity is divisible by m.

Let Λ -» Λ by c -> cm, where c m (ί) = c(wί). This is an embedding of Λ onto

Λm; Λm is given as a G-manifold by Λ and by the homomorphism ym: G ^ G

by g -* gm- Since f{cm) = m2f(c), the index of c m in Am is equal to the index

of c in Λ.

Let Γm: BG -> 2?G be the map induced by γm and write ^ m for the

G-manifold given by X and γm. Recall that H*(BG\ Z) » Z[w]; Γ*: H\BG\ Z)

— H\BG\ Z) is multiplication by m. Pulling back the spectral sequence for

XG -> 5G by Γ* we have the first part of

Lemma 1. Let p be prime.

(i) Γ*: H*(X, Zp) -> Hξ(Xm; Zp) is an isomorphism if(p9 m) = 1.

(ii) Ifp divides m then Hζ(Xm; Zp) = H*(BG; Zp){H*(X; Zp)}\ in particular

H*(Xm; Zp) is a free H*(BG; Zp)-module.

The second part comes from looking at the pullback of spectral sequences

induced by the inclusion Zm -» G since (Xm)zm = x x B7jm-
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Note that we have two maps ιw, Γm: Λ m c -> ΛG. The first is the identity on
the base BG and "multiplication by w " on the fiber, i.e. im\ Am -» Λ. The
second is the identity Λ -> Λ on the fiber and "multiplication by nC\ i.e., Γw,
on the base.

Let p > 2 be prime and let c 6 Λ^ be a nondegenerate geodesic of multi-
plicity m, index λ. The action of Z m on the negative bundle over the orbit G° c
of c gives a splitting

where Npc is the negative bundle at c in Ap, i.e. the subspace on which
Zp C Zm acts as the identity and N~c is a sum of 2-dimensional subspaces
corresponding to representations with eigenvalues e±ιa where eιa is an mth
root of unity with eiam/p Φ 1. Note that Np is orientable if and only iϊ N~ is.
Let DN~ and SN~ be the unit disk and sphere bundles; let λ^ be the index of c
Ίnλp.

Lemma 2. // N~ is orientable then H*(DN~, SN~9 Zp) = H*+λ(BZm; Zp)
is a free H*(BG; Zp)-module on generators in dim λ, λ + 1; H%(DNp, SN~; Zp)
is a free H*{BG\ Zp)-module on generators in dim λ^, λ^ + 1 and

/*: Hξ(DN~9 SN~;Zp) - Hξ(DN;, SNp-9 Zp)

is an injection.
Proof. The lemma follows from the Thorn isomorphism and §§1.6, 2.3, 2.5:

the bundle No~ is self-completing mod p since the Euler class of No -» BZm is
Πααm/2ττ times a generator of HΆλ~λp\BZm) « Zm and since a — 2πj/m
with j/p ^ Z.

Lemma 3. Let p > 2 be prime. Suppose (α, β ] contains one critical value. If
all geodesies on M are nondegenerate, and if all geodesies c of index k with
a < f(c) ^ β have multiplicity divisible by p, then

i*: Hk

G{K^, A Z,) - # * ( Λ £ , Λ' Z j

is injective.
Proof. By Theorem B in §2.1, Λ^ is G-diffeomoφhic to Λα with a handle

bundle disjointly attached for each critical orbit in Λ^ - Λα. By §2.5 this
diffeomoφhism restricts to a diffeomorphism of the same type on Aβ

p. So we
can assume that Λ^ — Λα intersects the critical set K of / in the G-orbit of a
single closed geodesic of index λ and multiplicity m. In the unorientable case
H%(DN-, SN~\ Zp) = 0 for p φ 2 (§1.6). In the orientable case if (/?, m) = 1
then by hypothesis λ φ k. So

H*(M>, Λ"; Zp) = Hk~\BZm, Zp) = 0.

lip divides m, i* is injective by Lemma 2.
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Proposition. Suppose all geodesies on M are hyperbolic. Let p be prime; k a
multiple of p. If all geodesies of index k in Aβ have multiplicity divisible by /?,
then i*p: H*(A*9 Λ«; Zp) - H*(A'p9 Aa

p9 Zp) is injectivefor all a E R.
Proof. From now on we assume Zp coefficients. For this extension of

Lemma 3 we shall need
Lemma 4. Suppose all geodesies on M are hyperbolic and that (σ, T ] contains

one critical value. Let w be a generator ofH*(BG).
(i) IfxE HJ

G(Aτ

p9 Aσ

p) is in the image ofi*Hi(Aτ

9 Aσ) then x is of the form
x = xyfori<j(p- \)/2p.

(ii) Ifx G HJ

G(Aτ

p, Aσ

p) then xwι is in the image ofi* for i >j(p - l)/2.
Lemma 4 follows from Lemma 2 and the fact that λ(cp) = pλ(c).
The proposition is proved by induction, up on β and down on a. First it is

true when β = 0 or, by Lemma 3, when (α, β] contains one critical value. Let
γ be such that (α, γ ] contains one critical value. We assume

(A) i* is injective on H%(A\ Λ σ ) ,τ<j8,σGR.
(B) i* is injective on H%(Aβ, Ay).
Note that by hypothesis all geodesies are hyperbolic and thus nondegener-

ate, so that the critical values of/are isolated.
Suppose 0 ^ x 6 HG(Aβ, A") and i*x = 0. By (A) x comes from a class

xτ G ff£(Aβ, Λτ) where (T, β] contains one critical value. Let xκ be the image
of xτ in Hς{Aβ, Aκ) and put xκ — i*xκ. By Lemma 4(i) and Lemma 3

0 Φ x^yy-W'2' G H*(A$9 A
τ

p).

Then also

0 Φ xy = yyw<P-»k'2' G H*(A'p9 A],).

Here xy φ 0 by (B). Now i*x = xa = 0 implies jcγ -* 0 in H%(Aβ

p9 Aa

p);
thus by Lemma l(ii) yy ^ 0 in H%/p(Aβ

p9 Aa

p). So there is a v E
Hk/p~\Ay

p9 Aa

p) with dv = yy. By Lemma 4(ϋ) there exists u E H£~l(A\ Aa)
with

Consider du G /^(Λ^, Λγ). By commutativity i*(du) = xγ. But then by (B)
ΘM = xy so that 0 = xα = Λ;, a contradiction, q.e.d.

The theorem follows immediately by Lemma l(ii).
6.2 Simply connected rational CROSS'S. The goal of this section is the
Theorem. Let M be a simply connected Riemannian manifold with the

rational homotopy type of a compact rank 1 symmetric space. Suppose all
geodesies on M are hyperbolic. Let n(l) be the number of prime closed geodesies
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on M of length < I. Then

> 0 .

The theorem will follow from the
Lemma. Let Ms be a simply connected CROSS with standard metric. There

exists an integer b so that, for each prime p > χ(M), there is a nonzero class
xp E HG(A, Λ°; Zp)for some positive multiple k < bp ofp so that:

(i) xp is annihilated by some nonzero class in H*(BG).
(ii) xp+>0 in //*(Λ2"2P\ Λ°; Zp).
Assume the lemma. Using obstruction theory one can find a differentiable

map a: Afs-* M inducing rational homotopy equivalence. This follows from a
theorem of Sullivan (Inst. Hautes Etudes Sci. Publ. Math. no. 47) since the
spaces are formal. One can also give a "direct" proof. Then for some K E R ,
a(AaMs) C AκaM for all a. For large primes p we will have an isomorphism
H*(M; Zp) -> H*{MS\ Zp) and an isomorphism of i/*(£G)-modules

H*(AM, A°M;Zp)^H*(AMsy A°Ms;Zp).

For each such prime the lemma and the theorem of §6.1 give a geodesic of
length < Iπpy/ϊϊ and index k whose multiplicity is prime to p. By Bott's
formula the multiplicity of such a geodesic is < b and the theorem is proved.

It remains to prove the lemma. By Lemma l(i) of §6.1, the Poincare
polynomial of §4.2 gives PG(A, Λ°; Zp91) accurate to order tλ{Ap) up does not
divide the Euler characteristic of M. Since λ(Λm) = a + b(m — 1) with a — b
^ 0 and a ^ 0 mod p for large/?, p will divide λ(Am) for some 2<m<p — 1.
Let k = λ(AJ. Then/7 ^k<bp, and Hk(A9 Λ°; Zp) -> #*(Λ2lr2*\ Λ°; Zp) is
injective.

When Ms Φ 5 3 , CP n , it is easy to see from the table that
Rank i/£(Λ, Λ°; Zp) > Rank //^ 2(Λ, Λ°; Zp).

When Ms = S3 or CP\ Rank WG{A, Λ°; Zp) = Rank i/^+2(Λ, Λ°; Zp) for
λ(^ 2 ) ^7 < M^p) ~ l Since the energy function is perfect for i/*(Λ; Zp)9

the map

is nonzero for λ = λ(Λm + 1); the Thorn class of the negative bundle over
(Am+X)G pulls back to the Thorn class for Am+X. But since Λ is the fiber of
ΛG -* BG, i* = 0 on classes of the form x w. It follows that the kernel of

o-MAm))/2. # * ( Λ > Λ o .

is nonzero and the lemma is proved.
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