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ON CURVES
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1. Let k be an algebraically closed field, and let d and g be two integers with
g=2andd > 1000g(g — 1). Letn = d + 2 — 2g, and let W be a vector space
of dimension n. G will denote the grassmannian of all codimension-two
subspaces of W, and & will denote the universal rank-two bundle on G. In this
paper, a curve will be a connected one-dimensional projective scheme. Let C be
a curve on G, i.e., C is a subscheme of G which is a curve, and consider
E=6&.= 6|c- Let P-(m) = x((det E)®™) be the Hilbert polynomial of C
where det E = /A\’E. We let S,q be the set of all curves C on G with
Pc(m) =dm + 2 — 2g. Thus S, , is the set of all curves of genus g and degree
donG.

Now W is identified with H%(G, &), so given C € Sy.a5 there is a natural
map

¢,:W- H°C,E).
We will identify W with H°(C, E) if ¢, is an isomorphism. Thus we obtain a
map
¢, N*W - H(C, \’E).
So for any positive integer m, we obtain a map
@30 S"(AW) > HO(C, (det E)®™).

We may and do choose m so that ¢, is onto, so that h°(C, (det E)®*™) = P-(m)
for any C € S, ;. Thus we finally obtain a map

Fc(m) Fe(m) ®
. N S"(AW) - A H(C,(det E)®") =k.

We say C C G is m-Hilbert stable (resp., m-Hilbert semistable) if ¢ is
properly stable (resp., semistable) under the induced action of SL(W) in the
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terminology of Mumford, i.e., ¢ has closed orbit and finite stabilizer (resp., 0
is not in the closure of the orbit of ). We say C is Hilbert stable if it is
m-Hilbert stable for m > 0. We say a pair (C, E) consisting of a curve C and
vector bundle E of rank two is m-Hilbert stable if (C, E) occurs as an
m-Hilbert stable curve in S, ;.

Now if E is a rank-two bundle on a smooth curve C, and L is a subbundle of
E of maximal degree, we define /; = deg E — 2deg L. Recall that E is stable if
g > 0 and semistable if /; = 0.

A curve C is nodal if C is reduced and has only nodes as singularities. Let we
denote the dualizing sheaf of such a curve. Recall C is stable (resp., semistable)
if we has positive degree (resp., nonnegative degree) on each component of C
[5]. For each semistable curve, the sections of &> define a map to P3¢, and
the image of C is a stable curve denoted C,. C, is obtained from C by
collapsing all components on which w. is trivial. These components are smooth
rational curves meeting the rest of C in exactly two points. A semistable
subcurve C’ of C is a subcurve which is the inverse image of a node of C,.

We fix g for the rest of the paper.

Theorem 1.1. There is a D so that for each d = D, there is an M depending
on d so that if m = M, and C is a smooth curve in Se.a with W = H%(C, E), then
C is m-Hilbert stable (resp., semistable) if and only if &, is stable (resp.,
semistable).

Theorem 1.2. For g and d given, there is an M so that if m = M and
C €S, , is m-Hilbert semistable, then C is semistable as a curve and W =
HY(C, &,).

The proof of Theorem 1.1 is given in §§2-5 and that of Theorem 1.2 in
§86-9.

Now in §10 we will suppose C € S, , is m-Hilbert stable for m sufficiently
large, and study E = &. First we will show that if Q is a quotient line bundle
of E, then

(1.3.1) deg E <2deg Q.

Now let C’ be a semistable subcurve of C. E is said to be acceptable on C’ if
either
(1.3.2.1) C’ has one component and so is isomorphic to P!, and E_ is
0@ 0(1) or O(1) ® O(1) or
(1.3.22) ¢’ has two components C; and C,, and E. is isomorphic to
0 & O(1). Further, E.. has no quotient isomorphic to O..

We will show
(1.3.3) E is acceptable on each semistable subcurve of C.
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Finally, let d be odd and suppose C, is an irreducible curve with a node. Let
C be the normalization of C,. Then C maps to C as a component of C if
C # C,. Thus we may consider E, the pullback of E to C. Then we will show

(1.3.4) If C = C and dis odd, then /;= —1.If C # C, then E is semistable.

We wish to thank Ed Griffin for pointing out an error in an earlier version
of this paper.

2. Let C be a curve in S, ,. We wish to apply the Hilbert-Mumford
numerical criterion to ¢f. First, a weighted basis (X, ;) of W is an ordered
basis of W together with rational numbers r, with r, =r, = --- =r,. If the r,
are integers, and their sum is zero, we call B standard. A standard weighted
basis determines a one-parameter subgroup of SL(W) via

AX;)\(a) — ar,‘X'i'

Every 1 — PS occurs in this way. A weighted basis B of W gives rise to
weighted bases on the representations of SL(W') discussed above, as shown in
the table.

REPRESENTATION BASIS ELEMENT WEIGHT
N*w Y, =X, NX, n=rtr,
AN /4 My=Y, - Y s = § T,
pomy
A P(M)Sm A 2W Mﬁ, AR /\Mgp(m) kgl Ts,

If B is standard, so is each of these bases, and each diagonalizes the action of
Ap on the corresponding representation. The coordinate corresponding to
M N---A\M, P(m) does not vanish at ¢¢ if and only if the images under ¢ of
M, - M,,(m) in HO(C, \ *E®™) form a basis there. We will call such a basis
a B-base of H(C, /\*E®™), and denote by wg(m) or wg(m, C) the minimum
weight of such a basis. Each B determines a weighted filtration Fy = {(V,, r;)}
on Wby V, = span{ X, - -, X, }. A useful observation is

Lemma2.1. IfFy = FB ., then wg(m) = wg.(m).

Recall the Hilbert-Mumford numerical criterion: a point x of a representa-
tion ¥ of a reductive algebraic group G has stable orbit if and only if, given
any nontrivial 1 — PS A of G and coordinates which diagonalize the action of
X on V, there is a coordinate not vanishing at x whose A-weight is negative. The
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discussion above therefore gives
Theorem 2.2. (C, E) is m-Hilbert stable (resp., semistable) if and only if for
any nontrivial standard weighted basis B of W, wg(m) < 0 (resp., wg(m) < 0).
Corollary 2.3. (C, E) is m-Hilbert stable (resp., semistable) if for any
nontrivial weighted basis B of W

2mh®(C, (AE)®")
#(C, E)

Proof. Since both sides of the inequality are linear in the r; jointly, it
suffices to prove this when the 7, are integers. We then associate to B the
standard weighted basis B’ = {( X, s,)}, wheres; = nr, — Z7_, r;. The B’-weight
of a monomial of degree m in the exterior products X; A X; equals n times its
B-weight minus 2m3" Since any B-basis contains h°(C (/\2E)®™) ele-

ments,

wy(m) < (resp., <)

n
2 r;.

i=1

/Ix

wi(m) = h°(C, E)wg(m) — 2mh®(C, (A E)°") g r..

The corollary now follows immediately from Theorem 2.2.

We will say C is m-stable with respect to a weighted basis B if the inequality
of Corollary 2.3 holds for wg(m). From the linearity of this inequality in the
{r;} jointly, we see that we are free to translate and rescale the weights so that
n=r=---2r,=0and Z_,r,= 1. We say a weighted basis B satisfying
these conditions is normalized. Note also that if the 7, are integers, then each
side of the inequality in Corollary 2.3 is represented for large m by a
polynomial of degree two in m whose leading term is of the form }em? with e
an integer (cf. [6]). We call e the normalized leading coefficient, written n.l.c.,
of this polynomial, and define e when the r, are rational using the linearity of e
in the ; jointly.

Corollary 24. Fix g, d and a real number € > 0. Then we can choose an
integer M (depending only on g, d and €) so that the statement below is verified:

If B is a normalized weighted basis of W and

n.l.c.wg(m,C) <4 —er,

CES,  thenforallm= M, Cis m-stable with respect to B.

Proof. This can be established by techniques similar to the proof of
Proposition 1.2 of [1].

Now if L is a subbundle of E with degree 1deg E and W = H(C, E), we
can consider the normalized basis which assigns weight 0 to every element of
H°(C, L) and equal weight to every element of W/H°(L). such a weighted



HILBERT STABILITY 5

basis will be said to be special for C. In this situation, we have
Proposition 2.5. (i) There is a D so that for each d = D, there is an € > 0 so
that if C € S, , is smooth with W = H %C, E) and B is a normalized weighted
basis of W which is not special for C, then
n.d.c.wg(m,C) <3 —¢(r,—r,).

(ii) There is an M so that if m = M and B is a normalized special basis of
W = H%C, E), then

2mh®(C,(AZE)°")

wg(m) =
5(m) W(C.E)
Actually in (i) we will fix C € S, ; and B, and show
4d

lec. < —
n.l.c. wg(m) iTi—g
and leave the question of the uniformity of ¢ with respect to C, E and B to the
reader.

This is the key step to Theorem 1.1. The proof occupies the next three
sections:

3. For §8§3, 4 and 5 we fix a smooth curve C of genus g and a vector bundle
Eon C. Let Iy =d — 2d; where L is a linesubbundle of E of maximal degree.
If E is decomposable, /; < 0 but can be arbitrarily negative. However

Proposition 3.1 (Nagata [7]). If E is indecomposable,2 — 2g < I < g.

If L is a sublinebundle of E, we let M, = E/L and write M for M, if the
context determines L. We say L is nice if both L and M both have degree at
least2g + 1.

Lemma 3.2. If L is a nice subbundle of an indecomposable E, and U is any
complement to H%(C, L) in H°(C, E), then the following hold:

(i) The projection from E to M maps U isomorphically onto H°(C, M).
(ii) E is generated by H°(C, L) and U.

(iii) The map ¢y - HYC, L)® H(C, M) - H°(C, L ® M) is surjective.

(iv) The map ¢, takes H(C, L) N U onto H(C, /\ *E).

Moreover if deg E = max(5g + 1, 4g + 2 — I;), and E indecomposable, then
E has a nice linesubbundle.

Proof. For the last statement, note that since 3(deg E — g) =2g + 1 and
I < g, E must have a sublinebundle L of degree at least 2g + 1. The quotient
M, has degree deg E — deg L = j(deg E + I;) =2g + 1.

The long exact sequence associated to the composition series 0 —» L - E —
M-0is0- HYC,L)—- HC, E) > H°C, M) - 0 by the hypothesis on
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L and M, which gives (i). If P € C, let S be a section of L not vanishing at P,
and let 7 be a section in U whose image in H°(C, M) is nonzero at P. Then S
and T generate E at P, which gives (ii). Since L and M have degree at least
2g + 1, the surjectivity of ¢; ,, follows from [5, Theorem 6, p. 52]. Now
observe that L ® M = /\*E and thatif S € H%(C, L), T € H*(C, M) and T
is the section in U lying over T, then ¢,(S A T) = o, m(S ® T); this yields
@iv).

Now for §§3, 4 and 5, we suppose E is semistable and W = H %C, E). We
next recall a Proposition (3.2) which follows from results of [4] concerning
stability of line bundles on C. While we will use some results on multiplicities
to obtain Proposition 3.2, they do not appear in its statement and will not be
used elsewhere. For definitions and a discussion of these multiplicities see [4].
Let S = {(S,, 0;)} be a weighted basis of H°(C, L) where L is a very ample
line bundle on C. Then for large m, S"H°(C, L) maps onto H%(C, L®™), and
we define wg(m) to be the least weight of a basis of H°(C, L®™) consisting of
monomials in the S,. We let L be the pullback of L to C X Al. If the o, are
nonnegative integers decreasing to zero, we define an ideal sheaf 95 on C X Al
by T(% - L) = (S;t°), where ¢ is a parameter on A', and let ej(9) be the
multiplicity of this ideal sheaf with respect to L. Then n.l.c. wg(m) = e( 95) by
Corollary 3.3 of [4]. If S = {(S}, 0;)} and T = {(T}, 7,)} are weighted bases of
H°(C, L) and H°(C, M) respectively with L and M both of degree at least
2g + 1, then we define w(m) to be the least weight of a basis of
HY(C,(L ® M)®™) consisting of monomials in the tensors S, ® T, (with
weight o; + 7;). Such a basis exists by (iii) of Lemma 3.2. If § and T both have
integer weights decreasing to zero, then Proposition 3.9 of [4] and Lemma 3.10
give respectively

nle. (wspy(m)) =er(%) +2e([L, %], [M, §;]) + exi(%;),
e([l:, gs]’ [M’ SI‘T]) < 3(ef(%) + eyi(97))-

Hence we obtain

Proposition 3.3. Suppose S = {(S,,0,)} and T = {(T},7,)} are weighted
bases of H(C, L) and H%(C, M) respectively such that the weights o, and 7, both
decrease to zero and such that L and M both have degree at least 2g + 1. Then
n.l.c. (W r(m)) <2n.lc (wg(m) + wr(m)).

Note that by the homogeneity of this inequality we can allow the o, and 7, to
be rational. We will combine Proposition 3.3 and Lemma 3.2 to obtain an
upper bound for wgz(m) for each nice linesubbundle L of E. Fix a normalized
weighted basis B = {(X,, 0;)} of H%(C, E) and a nice subbundle L of E.
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Recall that the associated long exact sequence is
0- HC,L)- H°C,E) - HC, M) -0.
Choose a basis Y = {Y,,- -+, Y,} of H(C, E) so that

(i) span{Y,---,Y,} =¥, = span{X,,---,X,},

(34) . - : )
(i) Y=SUT whereSisa basisof H(C, L).

Let B’ = {(Y, r;)}. By Lemma 2.1, wg(m) = wg(m) so that in estimating
wg(m) we may assume that B satisfies condition (3.4)(ii). We do so henceforth
without comment and say the basis B is adapted to L. By Lemma 3.2(i) the
image T of T in H%C, M) forms a basis there. Let S = {S1,-+, S, ),
T={(T, -~ Ty} and T=(T,,---,T, } ordered in each case so that the
weights of the corresponding elements of B decrease.

Consider the diagram

¢
H(C,L)® H(C, M) —= H(C, L ® M)
vl Il
@
N*H(C, E) —————— H(C, \%E)

where ¢ is defined by Y(S; ® 7)) = §; A 7.; The diagram commutes, and the
rows are surjective by (iii) and (iv) of Lemma 3.2. Define weights {s,;} on S and
{t;} on T and T so that the weight of each basis element equals the weight of
the corresponding element of B. Then defining the weight of R;; = S, ® T} to
be s; + t; makes  weight preserving. We obtain a commutative diagram

s™(H(C, L) ® H(C, M))——> H°(C,(L ® M)®"™)
sy Il
s™ AN*HO(C, E) HO(C’(/\ZE)W)

with surjective rows and with S™y weight preserving. Thus wg(m) is at most
the minimum weight of a basis of H°(C,(L ® M)™) consisting of monomials
of degree m in the R,;. Let w, = s, and w), = ¢, , and define new weights o,
and 7, by 0; = 5; — w; and 7; = {; — wy,. Observe that one of w; and wy, equals
r, which is zero since B is normalized, and that both the ¢,’s and the 7,’s
decrease to zero by the choice of the orderings on S and T. Let S = {(S}, 0,)}
and T = {(T}, 7))} denote these weighted bases. As the (o, 7)-weight of any of
the R, ; differs from its (s, t) weight by w, + wy,, the (o, 7)-weight of a basis of
HY(C,(L ® M)™) consisting of monomials on the R,; differs from its (s, t)
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weight by mh®(C,(L ® M)™)(w, + w,,). Hence
wg(m) < th(C,(L ® M)®m)(wL + wy) + wsr(m).

Applying Proposition 3.3 and taking leading coefficients gives
Theorem 3.5. If L is a nice subbundle of E, and B is a normalized weighted
basis of H(C, E) adapted to L, then

n.l.c.wg(m) <2d(w, + wy,) + 2(n.Lc.wg(m) + n.l.c.wp(m)).

In the situation of the theorem; especially in §5, we will continue to use the
notation developed in the preceding discussion (e.g., S, o;, w,) to denote the
quantities defined there.

4 Fix a weighted basis B = {( X, r;)} with associated weighted filtration

= {(V,, r;)}. We will give an estimate for nl.c. wg(m) in terms of the

subbundles of E generated by the sections in V. This criterion is an analogue
for the rank-two case of estimates given for invertible sheaves in [2] and [6].

Let E; be the subsheaf of E generated by the sections in V;, d, = deg E,

=d — d;, and let s = s be the greatest index such that rank E, = 2. If i and
J are less than or equal to s, and 0 <k <m, let W, ;, v be the image in
HO(C, (A 2E)®m+ DNy of

SN(S™H(AW,) Vv SH(AW,) v APHO(C, E)).
Ifi<s,let W, , ybe the image of
SM(S™H(N\2V) v SV, A V,) V AHO(C, E)).

Lemma 4.1. There is an N, depending only on the genus g of C such that if
N = Nyand m > 0, then:

() fori,j<s,dimW, ;, y= N(m — k)d; + kd)),

@) fori <s,dmW,, , v = N(m —k)d,.

Proof. We give the proof of (i), that for (ii) being similar. Since E,- is
generated by the sections in V,, /\ E, is generated by the sections in /\*V;.
Hence the elements of W, ,, generate L, j (= (NE)" %@ (N’E)k®
A 2E. Since /\*E is very ample on C, and /\ *H°(C, E) maps onto a very
ample sublinear system of /\’E, W, .k, forms a very ample sublinear system
of L; ; , without base points. Thus for N large, the elements of W, , , , generate
H O(C L? " N.) which by Riemann-Roch has dimension N((m — k)d, + kd; +
d) — g + 1 from which the desired inequality is immediate. We omit the check
that N can be chosen independent of C and E, which follows by arguments like
those of Lemma 2.1 of [2].

Suppose a vector space ¥V with a weighted filtration contains subspaces U,
satisfying:

®OV=U>2U-,2---20U,
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(i) codimU, = ¢,

(iii) the weight of every element of U, is at most w,

Vyw=w_,=-=w,.
Then V has a basis of weight at most Ef;{(wiH — w;)c; + w, dim V. Now pick
a sequence of integers 1 =i} <i, < ---<i,_, <i,= n, where i,_, <s, and
apply this remark to the filtration of H O(C (N\’E )®‘”‘“’N )by W, i on2
ul;l,lz,l,N 2D u/“ 12 mN u/lz,l VVIZ i3, I,N 22 pV:, Lipm,N* The
weight of any section in W, ; , v is bounded by 2N((m k)r, + kr, + ry) if
Jj<s,and by N2(m — k)r, + k(r, + r,) + 2r,) if j = n. From Lemma 4.1, for
J < s we have

LINPE

codimW, , , y<(N(m+1)d —g+1) — N((m — k)d, + kd,)
< N(d+ (m-k)e, + ke;),
codimW, , , y<(N(m + 1)d — g+ 1) — N(m — k)d,)
< N((m — k)e, + (k + 1)d).

Hence we obtain

1-2 m

wg((m + 1)N) < g] ’EOZN(riJ - r,-m)(N((m —k)e;, + ke + d))

+ E N(r, o, rn)( ((m k)e, H(k+ l)d))

+N(m( +r,)+2r)((m+ 1)Nd— g + 1)

'Il

(mN) 2 2 (r —r. )Ne +e,+l)

+(r,_, — r,,)(ei,_l +d)+ 2r,_ +r)d| +0(1),

-

where in the O(1) term we have collected all terms of order 1 in m. If we take B
to be normalized so that r, = 0, then by applying this to all subsequences of
(1,- - -,n) simultaneously and taking leading coefficients we obtain

Theorem 4.2. If B is a normalized weighted basis of H(C, E), then

n.l.c.wg(m) < min 23 (’,-j ,+,)(€ + ez,+,)

(I=i<--<i_1<s) =g

+ri,_.(ei,-1 + 3d).
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5. In this section we fix a smooth curve C and a rank-two bundle E of degree
d on C. Our aim is to establish Proposition 2.5 and thereby to prove

Theorem 5.1. There is an M depending only on g so that if d = M and E is
stable (resp. semistable), then (C, E) is Hilbert stable (resp. semistable).

Proof. We assume E is semistable. Let « = g — 1, and let k = 10%*. We
say a line bundle is good if deg L = k. We divide the proof into two cases. In
our first case, we assume

(5.1.1) tk E,=2 fori<n-—k.

We first estimate h'(E;) for i < n — k. E, has rank two and at least 2g + 2
sections. Let L, be the sublinebundle of E so that S, € H°(L), and let
L,=E/L,. Then both L, and L, have sections, and at least one has g + 1
sections. Hence h'(L,)<a + 1=g, and h'(L,) or h'(L,) is zero. Since
h'(E,) < h'(L,) + h'(L,), we see
(5.1.2) W(E)<a+1 ifi<n—k.

Next we claim

(5.1.3) RN(E)=0 ifi<in— 3a.

Indeed, if h'(E;) # 0, then E;' ® Q' has a section, and so E, has a quotient of
degree at most 2g — 2. Thus E, and hence E would have a subbundle of degree
d; — 2a. Since E is semistable,

(5.1.4) d=2(d, - 2a).
But
(5.1.5) d,.=h°(Ei)+2a—h‘(E,.)

=(n—i+1l)+2a—a—-1=n—i+1.

Since i < in — 3a, we have
d;=4%+3g—2,
and by (5.1.4),

d=2(%+g)=n+2g,

which contradicts the fact that d = n + 2a. Thus (5.1.3) is established.
We see from (5.1.5) that

e,=d—d,=d— (h°(E) +2a— K\(E)) <i—1+h\(E),

sincen + 2a =dand K% E)=n—i+ 1.
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Define ¢, and f; by

. = 22(i—1) ifi<?% - 3a,
B@E—-1)—gs(a+1) iff—-3a<is<n-—k,

(5.1.6) =4i—1—g¢).
We have
(5.1.7) (di-1-23G(-1))=i—-1,
SO
(5.1.8) (=1 +h(E)=e
by (5.1.2) and (5.1.3).

Define

Pn=2  mn 2 (r, =1, ), ey,

P(I) =2 mln 2 ( ,+| ( fi,+|)'

(=iH<--- <ip_ ,71)

Then P(1) = Pg(I). Further define

f_Z
(I) - l i—1 ¢ °
e (i—Df—220f
By Corollary 4.3 of [4],
I
P(I)<20(1) X (r;— ).
j=1
Thus

Po(1) <20(1) 3 (5= 1),

Our next object is to estimate Q(/). To this end, we define §; by
_2d £?
6, =—— —
n (l_ 1)fi_zj<if'

We wish to show 8, = 1/2n. If i <n/2 — 3a, then f, = (i — 1) and a direct
computation shows that 8, = 1/(2n). Assume i > n/2 — 3a. First notice that

we have

fori = 2.

lfi—i+t1l<a+1
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from (5.1.6) and (5.1.7). Hence

(== 2f— =17 =4 = 1)(i —2)|<2a+1)i

j<i

So
(i—1)f— 2f<3(i—1Di+2(a+1)i<i(i+4da+3).
We compute

(2)(G = 05— )8 =2(G - s - S5) - 5(52)
=(i—1)+23¢ ¢

We next claim that

(5.1.10) 2 2 8]_ — 81‘2 > _18(12,

J<i
for i > n/2 — 3a. Once (5.1.10) is established, we will have
s (i—1—18a%)d? _ 2(i — 18a* — 1)d?

=
1

=

1
(((i—0f—Sf)n2" i(i+4a+3)n2  2n
Thus

1
(5.1.11) 8>3

Since (5.1.11) holds for i < n/2 — 3a, (5.1.11) holds in general.

We next establish our claim (5.1.10). Let J be the greatest integer in
n/2 — 3a. Then

i—1

i—1 i—
dzej-=2a§l(j—l)—n(a+1)(i—-J—1)

=a((i—1)(i—2)=-2n(i—J—1)).
The function f(i) = (i — 1}(i —2) — 2n(i — J — 1) has its minimum when
2i — 3 = 2n. Thus since i < N — k and k > 10%32,
fiy=(n—k—-1)(n—k—=2)—2n(n—k—%+3a—1)
= —(6a+ 1)n= —Ta’n.
Also, forn/2 —3a<i<n—k,-2<g <2a So

i—1
2y € — e2 = -18a.
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Thus if (C, E) is not stable with respect to B, we would have for each I

4d _ 4
s (1) Zl('}' -n)|+ r(e; + 3d).
j=
From (5.1.11), we see
2
(,'—1)}:,—2];2 n ! n 2n
So
2d 1
Q(I) S-n——i";.
Thus
(5.1.12) ‘—‘ﬂs("d—l)(Er,—r,)+r,(f1+3d)-
n n j=I

Nextlet B(1) =1 — Z]_,r. Since 2 r, = 1, we can write (5.1.12) as

4d 4d 1
r,(f,+3d—71) >—n”.3(1)+; 2 (r, = ).
j<I
Now
d 1 ,
= ((I=1)~g), -g<7(nt+6g®)<2.
So
h+3d-22r<2n—1)+1).
Thus
(5.1.13) n(3(n = 1) + 1) > 48(1) + 2 (=)
J
In particular,
(5.1.14) r(3(n—1)+1)=48(1).
LetJ, = n — 10’k where k = 10%.
We claim
1
(5115) (k+2)r,0<m.

Indeed, note for any J,
B(n—10J) =9r,_, + B(n—J).

13
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From (5.1.14),
B(n—10J) _4 9 12
== Ly ===l_;.
10J + 1 310 +1 77 117
So r;, = (12/11)'r;. Choose  so that (12/11)' = 300(k + 2) and J,=>2n/3.

(Recall that we are assuming that d and » are large with respect to g and hence
to k.)

4
"n—lOJ>§

[2n/3] n n
1= -21 r= *i'rj[ = —2'(300(1( + 2))rJO.
j:

Thus our claim (5.1.15) is established.
Next note that

I

2(r=r)=1-=8(I) - Ir,

s0 (5.1.13) shows that

n(3n= 1)+ 1+ ) 2 ap(1) + 501 B(D) = 5.
Finally, we take I = J,. Then

3k+2 1

=

100n(k +2) ~ d’

which contradicts d = n + 2a. Thus we have established Theorem 5.1 under
assumption (5.1.1).

We may accordingly assume rk E, , = 1 and hencertk E; = 1 fori=n — k.

Let L be the sublinebundle of E containing E; for i =n — k. We may
replace B by a basis adapted to L without affecting the hypothesis. If / is the
greatest integer so that S, € H°(L), then /= n/2 since otherwise L would
have more than n/2 sections, thus contradicting the semistability of E. Thus
w)ys = 2/n with strict inequality if E is stable.

Recall from Theorem 3.5 that nl.c.wg(m) < 2(w,)d + 2n.l.c.(wg(m) +
wr(m)). Since L is good, d; and d,, are greater than K, and it follows from
Corollary 4.6 of [4] that n.l.c.wg(m) <227t 0; and nlc.wp(m) <237¥, 7.
Note that

n np ny
1= Er,-=nMwM+ Eo,-l— 2 7.
i=1 i=1 j=1
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If E is stable we obtain

ny N
n.l.c.wg(m) <2w,d + 4( So+ > 7}-)
i=1 i=1

=2wyd + 4(1 — nywy,) < % — 2wy (2n,, — n).
If E is semistable, then n,, = n/2, hence w,, < 2/n. Unless n,,w,, = 1, this
implies
n.l.c. wy(m) <% — 2dwy(2n,, — n) <47d,

so that (C, E) is stable with respect to B. If n,w,, = 1, this argument only
shows that n.l.c. wg(m) < 4d/n which does not suffice to prove (C, E) semi-
stable with respect to B. However, in this case all the ¢,’s and 7,’s must be zero.
Hence every section R; = S; ® T, has weight w,,. But then

2mh®(c, (N E)°")
n(C, E)

wB(m)<mh0(C,L®M)®m)wM< ,
since wy, < 1/n,, < 2 /n. This completes the proof of Proposition 2.5.

Now Theorem 5.1 follows from Corollary 2.3. In fact, if E is unstable, L is
the destabilizing line subbundle, and B is any standard basis whose filtration is
W D H%(C, L) D {0}, then g, kills all elements of nonpositive weight, hence
so does each ¢. Therefore wg(m) > 0, and (C, E) is Hilbert unstable. Hence
Theorem 1.1 is proved.

6. We continue to suppose that d = 1000g(g — 1). Our object is to prove

Proposition 6.1. There is an M (depending on d) so that if m = M, and @ is
semistable for C € Sg, 4 then C is semistable as a curve.

We begin with a few general definitions. Let % be a coherent sheaf on a
scheme, and let W C H°(X, ¥ ) be a subspace so that ¥ is generated at each
point by sections in W.

Definition 6.2. A weighted filtration on §

G G ...
B=( ko Jk-1 1)
e  Te—177°h

is a sequence of subsheaves
LCO =6
%, C%_,C---C% =9
and rational numbers r,, r, <r,_; < - -+ <r,. (Note: In the rest of this paper,
filtrations will increase from left to right.)
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(03
B ="
T;

is another weighted filtration on ¥, and if it happens that %, C %, whenever
r; <r/, we say B’ dominates B.

Let #: Y - X be a map. Given a weighted filtration B = (f:‘) on (%),
there is an induced filtration B’ = (}') on W, where

W,= {s€ W|z*(s) e H'(Y,§,)}.

Conversely, given a weighted filtration on W, there is an induced filtration on
7*(%F ), where 6, is the subsheaf of 7*(%¥ ) generated by W,.

The weight of a filtration (') = B on Wis 2 dim(W,/W,_,)r, = w(B).

Now let ¢: % — § be a map of coherent sheaves. The weighted filtration

(ker<p 65)
0 1

If

will be denoted
(6.2.1) [F-8].

Now let L be a line bundle on a curve C, and let ¥ C H°(C, L) be a very
ample linear system. Let (::") = B be a weighted filtration on V. Choose a
compatible weighted basis {(X, p;)} of ¥, and let wg(m, C) be the minimum
weight of a basis of H°(C, L®™"). Then wy(m, C) is a polynomial in m for
m > 0.

Now suppose that C is a curve on G and that (ff") is a weighted filtration on
W. There is an induced weighted filtration B’ on the image ¥ of /\*W in
H(C,det &.). If V is very ample, we define wy(m, C) = wg(m, C).

For the remainder of this section, we consider a curve C, a very ample linear
system ¥V C H%(C, L) and a weighted filtration B = (:ff). Our aim is to give
two useful estimates for n.l.c. wg(m, C).

Lemma 6.4. Suppose C, C C are subcurves of C, and the natural map
9:0.-® ®c, has kernel and cokernel of finite length. Then

n.l.c.wg(m,C) =Y n.lc.wy(m,C).

Proof. Let g be the maximum of the lengths of the kernel and cokernel of
¢. Then for m > 0, the kernel and cokernel of

9, H(C, L*™) - @ H*(C,, L®™)
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have dimension < g. Given a basis P,,- - -, P, of H°(C, L®™), we can suitably
reorder the P; and partition P, --,P,_, into sets Q, C {P),"--,P,_,} so that
Q, gives an independent set in H°(C;, L*™). Thus

we(m, C) = mrig = wy(m, C,) — mrq.

Taking normalized leading coefficients yields the lemma.

Now suppose C is irreducible. Let 7: C - C be the normalization of Ceeds
and let § C O be the ideal of C,4. Let / be the length of the local ring of the
generic point of C. Suppose R is an effective divisor on C. Let B = (¥) be a
weighted filtration and let p be an integer and suppose the r; are integers'.

Proposition 6.5.  Suppose that V, maps to zero in H %€, L) forj > p and that
V, maps to H(C, L((-r, + r)R)). If deg L = (r, — r,)deg R, then we have

n.l.c.wg(m,C) = (r, —r,)’deg R + 2Ir,deg L.

Proof. First, replace C by the subscheme defined by §'. Since ¢’ is sup-
ported at a finite number of points, neither the hypothesis nor conclusion of
the theorem are changed.

Let B’ be the weighted filtration

v, - ¥
rp CEEEEY rl >

that is, we change the weights of the V; for i = p from r, to r,. Now let
{(X;, p;)} be a basis of V' compatible with B. Let M be a monomial in the X;’s
which is nonzero in H°(C, L®™). Then M can involve at most / of X,’s with
X; € V,, since ¢’ = 0. Thus

nl.c.wg(m,C) = nl.c.wg(m,C),

since the B and B’ weights of a monomial differ by at most I(r, — r,), where r,
is the lowest weight in B. Hence we may assume B = B’.
Next, notice that

ho(C, L®™) = midegs L + O(1),

since $¥7! /¥ is nonzero at the generic point of C4 for k = 1,- - -, /. Consider
a new weighted filtration
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Then
wg(m, C) = wg(m, C) + mr,h°(C, L®™)
= wg(m,C) + m’r,ldeg L + O(m).

Hence it suffices to prove Proposition 6.5 for r, = 0.
Since r; = 0,

wy(m, C) = WB(m’ Cred)’

so we may assume C is reduced. Now let M be any monomial in V®™ of
weight Q. Then the image of M is in H(C, L®™((Q — r,m)R)). Thus there is
a constant C; so that the image of an M of weight Q lies in a subspace of
codimension at least (r,m — Q)deg R — C, in H%(C, L®™). Adding up the
possible contributions for each weight Q, we see any basis must have weight at
least

mry

> [Qdeg R+ O(1)] = rideg R

0=0

2
’"T + 0(m).
7. Let CE€ S, ,. We can find curves C, C C and integers /; so that the
following hold:
(7.1.1) Each C, is irreducible.
(7.1.2) 9% =0, where I is the ideal of C,in C.
(7.1.3) 1, is the length of the local ring of the generic point of C.,.
(7.1.4) The natural map O, > @ O, has kernel and cokernel of finite length.
Given a weighted filtration B on W, Lemma 6.4 shows that

n.lc.wg(m,C) = X n.l.c.wg(m,C,).

Now let E = & ® O, let C; be the normalization of (C;),4, and let 7,: C, > C
be the induced map. Let E, = 7*(E) and let d, = deg: E,. Let B be a weighted
filtration on W. If B, is a weighted filtration on E,, we say B dominates B, if
the filtration induced from B on E; dominates B,.

Lemma 7.2. Let R be an effective divisor on C,, and let k = degc E —
2 deg R. Suppose B dominates

(EZ(—R) Ei)

0 1)

If k = 0, then

(7.2.1) n.l.c.wg(m,C;) = 4degR,

while if k + deg R = 0 and k < 0, then
(7.2.2) n..c.wg(m,C;) = deg R + 21,d,.
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Proof. 1f k = 0, the filtration induced by W on /\ *E dominates
(NE',-(—zR) N?E(-R) NE.«)
0 1 2
Applying Proposition 6.5 gives (7.2.1).
If k + deg R = 0 and k < 0, the filtration induced by W on /\ ’E dominates
( NE(-R) A E)
1 2 )
since H%(C, /\ 2E,(-2R)) = 0. Applying Proposition 6.5 gives
nl.c.wg(m,C;) =deg R + 21,d,.
Lemma 7.3. Let E’ be a rank-two subsheaf of E, with deg E’ = 0. Suppose B

dominates
o
0 1/

n.l.c.wg(m,C)=>d, — deg E’.

Then

Proof. The filtration induced on /\ *E, dominates
( NE A ZE,.)
0 1
Now AZ2E’= N’E(-R), where deg R = d, — deg E’. Proposition 6.4 ap-
plies.

Lemma 74. Suppose that 0 > M - E, > L - 0 is exact with M and L
invertible and that B dominates

(M(—R) E)
0 1
Then
n.l.c.wg(m,C) = deg R+ 21,d,,
ifdeg R < deg E..

Proof. The induced filtration on A *E, dominates

( A ZE{(—R) /\221;,.)_



20 DAVID GIESEKER & IAN MORRISON

Lemma 7.5. If B dominates

then n.l.c.wg(m,C,) =4l d,.

Proof. Left to reader.

Now writed/n =1 + ¢ Sincen =d + 2(1 — g) and » = 1000g(g — 1), we
see € <1/998g. Let B be a weighted filtration on W. We will say B is
destabilizing if

n.l.c.wg(m,C) > 4(1 + e)w(B).
Throughout the rest of the section, we will assume C € S, , has no destabilizing
flags. Our aim in this section is to establish that /;, = 1.
Lemma 7.6. If E, has a trivial quotient E, > © > 0, then |, = 1 and d, = 1.
Proof. We consider the filtration B induced on W by [E, —» O] in the

notation of (6.2.1).
Lemma 7.4 with R = @ gives

(7.6.1) n.l.c.wz(m,C) = 2l4d,.

On the other hand, if there is a component C, meeting C;, Lemma 7.3 shows
nlc.wg(m,C) = 1.

Hence from (7.6.1),

4(1 + &) > nlc.wg(m,C) =nlc.wy(m,C)=2ld,.

Hence /;d; < 2, so C, must meet some C,. Thus
(1 + £) >%lldl + %7

which shows /;d; = 1. The same method of proof shows

Corollary 7.6.2. If C' C Cis a curve, and E_. has a trivial quotient, then C’
has one component, and E . has degree 1.

Lemma 7.7. [, =1 foralli.
Proof. Suppose [, = 2. Let B be the weighted filtration on W induced by

(0 E)
0 1/
First, suppose B is the trivial filtration, i.e.,

s=(5 ¥)
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Then the map from W to HY(E,) is injective. Since 21,d;=d, we have
d; < 1d. Hence

d+2(1—g)<h%(E)<degE +2<4+2,
which is impossible.
The total weight of B is less than or equal to h°(E;) < d, + 2. Hence
(7.7.1) (1+e)d, +2)=(1+e)n%(E)=1d,+ 8,
where 8 = 2 .; wg(m, C;) = 0. We reach a contradiction if /, = 3 or d, = 3. So
we may assume /; = 2 and d; < 2.

Now deg, N?E <4, so C, must meet another component C,. Suppose
P € C;maps to C; N C,. Then the filtration on E; induced by B dominates

(Ej(-P) E,).
0 1
Applying (7.2.1)if d; > 2, and (7.2.2) if d; = 1, we see
4 ifd; =2,
3

n.l.c.wg(m,C) >{ ifd, = 1.

Now if d =1, then either C; or C; must meet another component C,, and
Lemma 7.3 shows that

nl.c.wg(m,C,) = 1.

In either case, = 4. This contradicts (7.7.1)if [, >2 and d; = 2. If [, > 2 and
d; = 1, then C; is P', and hence E, has a trivial quotient, contradicting Lemma
7.6. Thus /;, = 1 in all cases.

8. Our aim in this section is to show that C.4 has only nodes as singularities.

Let C’' C C,4 be a curve.

Lemma8.1. Ifh°(C’, E) < deg. E, then deg..(E) = 20g.

Proof. Suppose not. Then some component C; of C must meet C” as we are
assuming d = 1000g(g — 1). Consider the weighted filtration B given by
[E - E.]. Then

n.l.c.wg(m, C) = nlc.wg(m,C’) + nl.c.wg(m,C)
=>4deg. (E) +1,
by (7.5) and (7.3) respectively. But
w(B) = h%(C’, E) = deg.. (E),
n.lc.wz(m,C) < 4(1 + e)w(B).
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Combining these gives
4(1 + e)deg (E) = 4deg. (E) + 1,

which is impossible if deg . (E) < 20g.
Lemma 8.2. Let C' C C, be a curve and let C" be a component of C'. Then
there is a short exact sequence

0-L—E.—M=-0,

where L and M are invertible, L and M have nonnegative degree on each
component of C’, and deg . L > 0. '

Proof. Let P,,- - -, P, be the singular points of C’ and let E’ = E... Let Z;
be the common zeros of sections of E’ which vanish at P,. Then Z, is a finite
set, since if Z, D C, the dimension of the image of H°(E") in H%(C, E’)
would be at most one. But /\ ?E is very ample. By picking a point P € C” not
in any Z;, we can find a section s which vanishes at P, but not at any singular
point. We then let L be the smallest subbundle of E containing S to establish
our lemma.

Corollary 8.2.1. Suppose every line bundle L in E_., which has positive total
degree and nonnegative degree on each component of C’, satisfies h°(C’, L) <
deg.. L. Then deg. E = 20g.

Proof. We write

0-L->E.->M-0.

Since E. is generated by global sections, M has nonnegative degree on each
component of C’. If deg..(M) =0, E_. has a trivial quotient, so Corollary
7.6.2 shows C’ is smooth and rational, and the hypothesis of Corollary 8.2.1
fails. Hence

hO(C,a L) < degC’ (L),
h(C’, M) < deg. (M).

So
K(C', E) < degc (E),

and Lemma 8.1 applies.

Lemma 8.3. Ler P be a point of C,. Then the map m,: C, - C is unramified at
P.

Proof. Suppose not. Let Q = m,(P). Then every section of Oc,o vanishing at
Q vanishes at least twice at P. Thus the hypothesis of Corollary 8.2.1 is
satisfied since (C;),q is singular. Hence degc E = 20.
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Now consider the filtration on W
. ( W W, W.)
0 1 3
induced by
E(-3P) E(-2P) E
0 1 3

Now dimW,/W, <2 as the map from C, to C is ramified at P. Further
dim W, /W; < 2. Hence w(B) < 8. On the other hand, the induced filtration
on N ’E,is

(AE)((-6 + k)P)
k
Proposition 6.5 shows that n.l.c. wg(m, C) = 36. So 4(1 + €)8 = 36, a con-

tradiction.
Lemma 84. C,_ has no triple points.
Proof. Suppose three distinct components, say C,, C,, C;, meet at a point

P. We let B be the weighted filtration on W induced by [E — E,]. Then
w(B) < 2. Now (7.2.1) and (7.2.2) show that

nl.c.wg(m,C,) =3,
fori = 1,2,3 and n.l.c. wg(m, C;) = 0 for i > 3 and therefore
nl.c.wg(m,C) =9

by (6.4). Hence 4(1 + €)2 > 9, a contradiction.
Now if C, and C, meet at a singular point P € C,, then deg C; = 20. Using
(7.2.1) applied to C, and R = #;'(P), we see

nl.c.wg(m, C,) =8,

and we obtain a contradiction as before.

Similarly, C, cannot have a triple point.

Lemma 8.5. C has no tacnodes.

Proof. Suppose that C, and C, meet at P, and that the tangent lines of C,
and G, are identical. Then the two weighted filtrations induced on W by

B = Ei(_ZP) Ei(_P) Ei
' 0 1 2
for i = 1,2 are identical. Call this filtration B.
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We may assume d; < d,. Now if d; = 1, then C, is rational and E, =0 &
O(1). Thus the map from H°(C,, E(-P)) to E(-P) ® k is not surjective. So
w(B)<5ifd,=1l,andw(B)<6ifd, > 1.

Now C, U C, satisfies the hypothesis of Lemma 8.1, so d, + d, = 20g = 40,
and hence d, = 4. Applying Proposition 6.5, we see that

nl.c.wg(m, C) = 16,

if d, = 4. On the other hand, if d, < 4, the filtration induced by W on /\ ’E,
dominates

AZEI(_le) A2E1(—P) /\2E1
4—d, 3 4
since HY(C,, /\ 2E((-d, — 1)P)) = 0. Applying Proposition 6.5,
nlc.wy(m,C,)=d? +2(4 — d,)d, > d,(8 — d,).

Thus if d; = 1, then

4(5)(1 + &) =nl.c.wg(m,C) =16 + 7 = 23,
a contradiction. If d, = 2, then

4(6)(1 + ¢) = n.l.c. wy(m, C) = 16 + 12 = 28,

a contradiction. So C, and C, cross transversally.

Finally, if C, has a tacnode, then d, = 8. A similar argument produces a
contradiction once again.

We have established

Proposition 8.6. C, 4 has only nodes as singularities.

9. Our main aim in this section is to establish that C is semistable as a curve,
and that the map W - H(C, E) is an isomorphism.

We begin with a version of Clifford’s Theorem following Saint-Donat.

Lemma 9.1. Let D be a reduced curve with only nodes, and let L be a line
bundle on D generated by global sections. If H'(D, L) # 0, there is a curve
C’ C D so that

h°(C’, L) <}deg. L+ 1.

Proof. Since H\(D, L) #0, H(L™' ® wp) 0. So there is a nonzero
¢: L - w,. We can find a curve C’ C D so that ¢ is not identically zero on
each component of C’, but @ vanishes at all points C' "D — C’ = {P,,- - -, P, }.
Since wr = wp(—P, - - - —P,), we actually obtain

Q: Lo > wc.
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Choose a basis s, - -,s, of Hom(L., w-) so that ¢ =s,. We can choose a
basis ¢, ---t,of H %(L¢) so that ¢, does not vanish at the zeros of s, nor at any
singular point of C’. Suppose
ay (s )t ay(si b))t = by (sy, )+ by (s, 1)+ o0,

where the pairing (s, ¢) is into H°(C’, wc.). Then (s, t)= (s,t,), where
te H(C, Lc.), and s is a linear combination of s,,- - -,s,. Since ¢ vanishes
where ¢, does, ¢ is a multiple of ¢,. Hence s is a multiple of s,, contradicting the
independence of the s;’s. So

RO(Le) + ho(we ® L) <g+1,
RO(Le) — h¥(we ® L) < dege (L) +1—g.
Adding the above two inequalities thus gives the desired result.
Lemma 9.2. Let C’ be a proper subcurve of C,.4. Then
h°(C', E) > deg. (E) + 2(1 — g).

Proof. Suppose not. Let d’ = deg.(E). Consider the filtration B induced
on Wby [E - E.]. Since dmW=d+2(1 —g)>d +2(1 —g)=w(B),B
is a nontrivial filtration. Further,

n.l.c.wg(m,C) =nl.c.wy(m,C’) = 4d’,
from Lemma 7.5. Thus

d 1
— - (d'+ 2(1 — =—nl.c. ,C)=d'.

This contradicts d’ < d.
Lemma9.3. H'C,q, N\°E)=0.
Proof. Suppose not. Lemma 9.1 shows there is a curve C* C C,4 with

R(C', N’E) <}deg- E + 1.

Thus C’ is not rational, and therefore Lemma 8.1 shows deg.. (E) = 20g. On
the other hand, E is generated by global sections, so we can find a nowhere
vanishing section of E over C":

(9.3.1) 0- 0. - Ec~(N’E). - 0.
Hence

deg (E)

0
h(C,E) < 5

+2<deg~(E)+2—10g.
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In particular,
h°(C’, E) <deg. (E) +2(1 —g),
which contradicts Lemma 9.2.

Lemma94. H'(C.4, E)=0.

Proof. Suppose not. Then there is a nonzero map ¢: E - wc_ . Using the
techniques of the proof of Lemma 9.1, we can find a curve C’ of C,4 of genus
g’ and a map ¢: E - w. which is nonzero on each component of C’. Note
g’ = 2, since otherwise E would have a trivial quotient. Then from (9.3.1),

R(C',E)<h(C',N’E) + 1<deg.(E) +1—g +1,
since H(C’, N?E) = 0. We see deg (E) = 20g from Lemma 8.1. Further
g’ < 2g, since otherwise
h°(C’, E) <deg.(E) +2(1 —g),
contradicting Lemma 9.2.

Now consider the filtration induced on W by [E - w..). We have h°(C’, wc)
=g’,s02r, < g’. We also have

nlc.wg(m,C)=2deg. (E),
from Lemma 7.4. So
4(2g) = 4g' =43 r,> 2deg. (E) = 40g.
Hence we reach a contradiction.
Corollary 9.5. C is reduced and W = H%(C, E).

Proof. Consider 9, the ideal defining C,.4 in C. 9 is supported at a finite
number of points. We claim

(9.5.1) wWnNHC,9-E)+#0.

Let g’ be the genus of C,4, and / be the length of 9. Then g’ = g + /. Thus if
1> 0, then

H%(Cey, E) <degE +2(1 — g) = dimW,

since H'(C..q, E) = 0. S0 (9.5.1) is established.
Now consider the filtration B induced on W by

(57 5)

Then 2 r, < dim W, but n.l.c. wg(m, C) = 4d. We have again reached a con-
tradiction.
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Proposition 9.6.  C is semistable.
Proof. Suppose C = C" U C”, where C’ N C” is a point P, and C” is a
chain of rational curves. The genus of C’ is g, so

h°(C’, E) = deg¢ (E) +2(1 — g).
We have contradicted Lemma 9.2. So C is semistable.

10. Our purpose in this section is to establish some properties of E.
Proposition 10.1.  Let L be a quotient of E. Then 2deg L = degE.
Proof. Let M = ker(E - L). Consider the filtration B:

(v 1)
0o 1/
It is easy to see B is destabilizing if 2deg L < deg E.

Now suppose C’ C C is a chain of rational curves C; U - - - U C,, where the
C; are nonsingular rational, and C; meets only C,_, and C,.,. We further
suppose that C”" =C — C’ is connected, and that C”” meets C, at one point P
and C, at one point Q, and meets no other C,.

Lemma 10.2. deg. (E) <2.

Proof. Suppose not. The genus of C” is g — 1. Consider the filtration B
induced on W by [E — E_.]. First, notice that since 3 <d’ = deg. E, and E
is generated by global sections over C’, H%(C’, E) > 4. Hence the filtration B
is nontrivial. We claim that

(10.2.1) n.l.c.wg(m,C’) = 8.

Suppose (10.2.1) has been established. Let d” = d — d’. Then A°(C”, E) =
d” + 22 — g), since C” has genus g — 1. So

d
—[d" +2(2 - =d" + 2.

After a short computation, we obtain d’ < 2.

To establish (10.2.1), consider case one: / = 1. If we let R =P + Q, and
apply (7.2.1) if d’ =4 and (7.2.2) if d’ = 3, then we obtain (10.2.1). Next,
consider case two: d’ = 3. We claim that H(C’, A\ *E(—2P — 2Q)) = 0. Let
s be such a nonzero section. We must have deg, /\E = 1 or deg, /\’E = 1,
since d’ = 3. Say deg, N\ ’E = 1. Then s vanishes on C,, and therefore on
C,N C,. If I =2, s vanishes twice at Q and once at C, N C,, and so s
vanishes. If / = 3, then degca(/\ ’E) = 1. So s vanishes on C; also. But then s
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vanishes on G, zs well, since deg E = 1. Hence H oC!, N2E(—2P — 2Q)) =
0. So the filtration induced by B on /\ ZEC, is dominated by
(E(—P -0) E)
1 2/
Applying Lemma 7.2, (10.2.1) holds, and d’ < 2.

By applying cases one and two to subchains of C, we may assume that E
does not have degree 3 on any subchain, and that deg E < 2 for each i. It
follows that the degree of E’ on each C, is two. But applying Lemma 7.2, we
see

wg(m,C,) =4, wz(m,C)=4.
Then using Lemma 6.4, (10.2.1) holds, and d’ < 2.
Now suppose the stable model C; of C is an irreducible curve with a node N.
Let C, be the normalization of C,, and d’ = deg E,,.
Lemma 10.3. Assume d to be odd. Let L be a quotient of E,. Then
2deg L=d — 1ifd=d’, and E, is semistable if d + d'.
Proof. Suppose for some é = 0

(10.3.1) 2degL<d—2—.
Then
(10.3.2) RO(L)<id+1—g+18.

Indeed, if A'(L) = 0, (10.3.2) follows from Riemann-Roch. If '(L) # 0, then
h%(L) < g — 1.Butd’ = 20g (Lemma 8.1). So (10.3.2) follows in any case.

Now consider the weighted filtration B on W induced by [E — L]. First,
suppose C = C,, and let P, Q € C, be the points corresponding to N. Now E,
and E'Q are identified with Ey. Under this identification, L, # L, as quotients.
Indeed, if L, = Ly, then L descends to a line bupd]e on C. This possibility is
ruled out by Proposition 10.1. Thus if M = ker(E, » L), then B is dominated
by the filtration induced by

B’:(M(—P_Q) EO)‘
0 1
From Lemma 7.4 we see

nlc.wg(m,Cy) =2d+ 2.

Combining these inequalities with n.l.c. wg(m, C) < 4dw(B)/n, we obtain
1

A short computation shows (10.3.3) is impossible.



HILBERT STABILITY 29

Next suppose that d # d’ and that EO is not semistable. Since d — d’ <2

and d is odd, we may assume there is an L satisfying (10.3.1) with § = 1. Now
letting C’ = C — C,, we see

nlc.wg(m,C’) =2, nlc.wg(m,C)=2d".

As above, this leads to

d d 1 1
3.4 ———|s+1-g—=|=-(2d :
(10.3.4) d+2(1—g)(2 g 2) 4(2d+2)
A short computation shows (10.3.4) cannot occur.

(]

(2]
B3]
4]
5]

(6]
(7

(8]

Thus we have established (1.3.1), (1.3.3) and (1.3.4).
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