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1. Let k be an algebraically closed field, and let d and g be two integers with
g > 2 and d ̂  1000g(g - 1). Let n = d + 2 - 2g, and let PTbe a vector space
of dimension n. G will denote the grassmannian of all codimension-two
subspaces of W, and & will denote the universal rank-two bundle on G. In this
paper, a curve will be a connected one-dimensional protective scheme. Let C be
a curve on G, i.e., C is a subscheme of G which is a curve, and consider
£ = S c = S |C. Let Pc(m) = χ((det ί )®") be the Hubert polynomial of C
where det E = Λ 22s. We let 5gjrf be the set of all curves C on G with
Pc(m) — dm + 2 — 2g. Thus 5 g ̂  is the set of all curves of genus g and degree
rfonG.

Now W is identified with H°(G9 S), so given C E S^, there is a natural
map

φx:W->H°(C9E).

We will identify W with H°(C, E) if φj is an isomorphism. Thus we obtain a
map

ψ2:A
2W^H°(C,A2E).

So for any positive integer m, we obtain a map

φ3:S
m(A2w) -*H°{C, (det £ ) 0 m ) .

We may and do choose m so that <p3 is onto, so that λ°(C, (det £)®m) = Pc(m)
for any C E Sgd. Thus we finally obtain a map

Λ r ( Λ V ) - > Λ H°(c,(dQtE)®m) =k.

We say C C G is m-Hilbert stable (resp., m-Hilbert semistable) if φ™ is
properly stable (resp., semistable) under the induced action of SL(W) in the
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terminology of Mumford, i.e., φ™ has closed orbit and finite stabilizer (resp., 0
is not in the closure of the orbit of φ£). We say C is Hubert stable if it is
m-Hilbert stable for m » 0. We say a pair (C, E) consisting of a curve C and
vector bundle E of rank two is m-Hilbert stable if (C, E) occurs as an
m-Hilbert stable curve in Sgd.

Now if E is a rank-two bundle on a smooth curve C, and L is a subbundle of
E of maximal degree, we define lE = deg E — 2 deg L. Recall that E is stable if
lE > 0 and semistable if /^ ̂  0.

A curve C is nodal if C is reduced and has only nodes as singularities. Let ωc

denote the dualizing sheaf of such a curve. Recall C is stable (resp., semistable)
if ωc has positive degree (resp., nonnegative degree) on each component of C
[5]. For each semistable curve, the sections of ω®3 define a map to P5g~5, and
the image of C is a stable curve denoted Cs. Cs is obtained from C by
collapsing all components on which ωc is trivial. These components are smooth
rational curves meeting the rest of C in exactly two points. A semistable
subcurve C of C is a subcurve which is the inverse image of a node of Cs.

We fix g for the rest of the paper.
Theorem 1.1. There is a D so that for each d> Z), there is an M depending

on d so that ifm>M9 and C is a smooth curve in Sgd with W = H°(C, £), then
C is m-Hilbert stable (resp., semistable) if and only if &c is stable (resp.,
semistable).

Theorem 1.2. For g and d given, there is an M so that if m ̂  M and
C E Sgd is m-Hilbert semistable, then C is semistable as a curve and W —
H°(C,&C).

The proof of Theorem 1.1 is given in §§2-5 and that of Theorem 1.2 in
§§6-9.

Now in §10 we will suppose C E Sgd is m-Hilbert stable for m sufficiently
large, and study E — &c. First we will show that if Q is a quotient line bundle
of E, then

(1.3.1) d e g £ < 2 d e g β .

Now let C be a semistable subcurve of C. E is said to be acceptable on C" if
either
(1.3.2.1) C has one component and so is isomorphic to P1, and Ec is
0 Θ 6(1) or 0(1) Θ 0(1) or
(1.3.2.2) C has two components Cλ and C2, and Ec is isomorphic to
0 θ β(l). Further, Eσ has no quotient isomorphic to Θc,.

We will show
(1.3.3) E is acceptable on each semistable subcurve of C.
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Finally, let d be odd and suppose Cs is an irreducible curve with a node. Let

C be the normalization of Cs. Then C maps to C as a component of C if

C Φ Cs. Thus we may consider E9 the pullback of E to C. Then we will show

(1.3.4) If C = Cs and d is odd, then Ig ^ - 1 . If C φ Cs then E is semistable.

We wish to thank Ed Griffin for pointing out an error in an earlier version

of this paper.

2. Let C be a curve in Sgd. We wish to apply the Hilbert-Mumford

numerical criterion to φ™. First, a weighted basis (Xi9 η) of W is an ordered

basis of W together with rational numbers η with rx> r2> - — > rn. If the η

are integers, and their sum is zero, we call B standard. A standard weighted

basis determines a one-parameter subgroup of SL(W) via

χλ(a) = ariχ^

Every 1 — PS occurs in this way. A weighted basis B of W gives rise to

weighted bases on the representations of SL(W) discussed above, as shown in

the table.

REPRESENTATION

A2W

Sm A2W

A P(m)Sm A 2W

BASIS

57 =

M3 =

M9ιΛ

ELEMENT

X: AX.
ι\ ι2

Y, •Y,

^P(m)

WEIGHT

rι — η +
m

r*= Σ
k=\

P(m)

%

If 5 is standard, so is each of these bases, and each diagonalizes the action of

λB on the corresponding representation. The coordinate corresponding to

Mj Λ Λ M P ( m ) does not vanish at φ^ if and only if the images under φ^ of
2

M\y" ΊMP{m)
i n Λ form a basis there. We will call such a basis

a £-base of H°(C, A 2E®m\ and denote by wB(m) or wfl(m, C) the minimum

weight of such a basis. Each B determines a weighted filtration FB = {(Vh η)}

on Why Vt] = span{Xi9- —9Xn}.A useful observation is

Lemma 2.1. If FB — FB,, then wB(m) = wB,(m).

Recall the Hilbert-Mumford numerical criterion: a point x of a representa-

tion V of a reductive algebraic group G has stable orbit if and only if, given

any nontrivial 1 — PS λ of G and coordinates which diagonalize the action of

λ on V, there is a coordinate not vanishing at x whose λ-weight is negative. The
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discussion above therefore gives
Theorem 2.2. (C, E) is m-Hilbert stable (resp., semistable) if and only if for

any nontriυial standard weighted basis B of W, wB(m) < 0 (resp., wB(m) < 0).
Corollary 2.3. (C, E) is mΉilbert stable (resp., semistable) if for any

nontriυial weighted basis BofW

wB(m) < (resp, <) \ y > 2 r,
n (C, t) / = 1

Proof, Since both sides of the inequality are linear in the η jointly, it
suffices to prove this when the η are integers. We then associate to B the
standard weighted basis B' — {(Xi9 s,)}, where sz = nη — Σ"=, η. The ^'-weight
of a monomial of degree m in the exterior products Xt Λ Xj equals n times its
^-weight minus imΣ^^η. Since any 5-basis contains A°(C,(Λ 2Eγm) ele-
ments,

The corollary now follows immediately from Theorem 2.2.
We will say C is m-stable with respect to a weighted basis B if the inequality

of Corollary 2.3 holds for wB(m). From the linearity of this inequality in the
{/*,} jointly, we see that we are free to translate and rescale the weights so that
rx> r2> - - - > rn — 0 and Σ"=1 ri — 1. We say a weighted basis B satisfying
these conditions is normalized. Note also that if the η are integers, then each
side of the inequality in Corollary 2.3 is represented for large m by a
polynomial of degree two in m whose leading term is of the form \em2 with e
an integer (cf. [6]). We call e the normalized leading coefficient, written n.l.c,
of this polynomial, and define e when the η are rational using the linearity of e
in the r, jointly.

Corollary 2.4. Fix g, d and a real number ε > 0. Then we can choose an
integer M (depending only on g, d and ε) so that the statement below is verified:

If B is a normalized weighted basis of W and

n.l.c.wB(m,C)<¥ - erl9

C E Sgd, then for all m^ M, C is m-stable with respect to B.
Proof. This can be established by techniques similar to the proof of

Proposition 1.2 of [1].
Now if L is a subbundle of E with degree ^deg E and W s H°(C, £), we

can consider the normalized basis which assigns weight 0 to every element of
H°(C, L) and equal weight to every element of W/H°(L). such a weighted
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basis will be said to be special for C. In this situation, we have
Proposition 2.5. (i) There is a D so that for each d^ D, there is an ε> 0 so

that if C E Sg d is smooth with W — H°(C, E) and B is a normalized weighted
basis of W which is not special for C, then

n.l.c.wB(mX)^¥-ε(rλ-rn).

(ii) There is an M so that if m> M and B is a normalized special basis of
W= H°(C9E),then

_ 2mh°(c,{A2Efm)
Wβ^m) ~ h°(C,E) '

Actually in (i) we will fix C G Sg d and B, and show

n.l.c.wB(m) <-———,

and leave the question of the uniformity of ε with respect to C, E and B to the
reader.

This is the key step to Theorem 1.1. The proof occupies the next three
sections:

3. For §§3, 4 and 5 we fix a smooth curve C of genus g and a vector bundle
E on C. Let lE — d — 2dL where L is a linesubbundle of E of maximal degree.
If E is decomposable, lE^0 but can be arbitrarily negative. However

Proposition 3.1 (Nagata [7]). IfE is indecomposable, 2 — 2g ^ lE ^ g.
If L is a sublinebundle of £, we let ML = E/L and write M for ML if the

context determines L. We say L is nice if both L and M both have degree at
least 2 g + 1.

Lemma 3.2. If L is a nice subbundle of an indecomposable E9 and U is any
complement to H°(C, L) in H°(C, E\ then the following hold:

(i) The projection from E to M maps U isomorphically onto H°(C, M).
(ii) E is generated by //°(C, L) and U.

(iii) The map φLM: #°(C, L) 0 H°(C, M) -* H°(C, L®M) is surjectiυe.
(iv) The map φ2 takes //°(C, L) Λ U onto H°(C9 Λ 2E).
Moreover i/deg E > max(5g + 1, 4g + 2 — lE), and E indecomposable, then

E has a nice linesubbundle.
Proof. For the last statement, note that since i(deg £ - g ) ^ 2 g + 1 and

lE^ g, E must have a sublinebundle L of degree at least 2g + 1. The quotient
ML has degree deg E - deg L ^ ^(deg E + lE) > 2g + 1.

The long exact sequence associated to the composition series 0 -> L -» E ->
M -> 0 is 0 -> 7/°(C, L) -> #°(C, £ ) -» H°(C9 M) -» 0 by the hypothesis on
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L and M, which gives (i). If P G C, let S be a section of L not vanishing at P,
and let Γ be a section in £/ whose image in H°(C, M) is nonzero at P. Then S
and Γ generate £ at P, which gives (ϋ). Since L and M have degree at least
2g + 1, the surjectivity of φL M follows from [5, Theorem 6, p. 52]. Now
observe that L ® M = Λ 2E and that if S G #°(C, L), Γ G #°(C, M) and f
is the section in U lying over Γ, then φ2(S Λ f ) = φL M (S (8) T)\ this yields
(iv).

Now for §§3, 4 and 5, we suppose E is semistable and W — H°(C9 E). We
next recall a Proposition (3.2) which follows from results of [4] concerning
stability of line bundles on C. While we will use some results on multiplicities
to obtain Proposition 3.2, they do not appear in its statement and will not be
used elsewhere. For definitions and a discussion of these multiplicities see [4].
Let S = {(Si9 σ,)} be a weighted basis of H°(C, L) where L is a very ample
line bundle on C. Then for large m, SmH°(C, L) maps onto #°(C, L 0 m ) , and
we define ws(m) to be the least weight of a basis of H°(C, L®m) consisting of
monomials in the 5Z. We let L be the pullback of L to C X A1. If the σ, are
nonnegative integers decreasing to zero, we define an ideal sheaf ίs on C X A1

by T0S - L) = (Sjtσi), where t is a parameter on A1, and let e£($s) be the
multiplicity of this ideal sheaf with respect to L. Then n.l.c. ws(m) = βj0s) by
Corollary 3.3 of [4]. If S = {($, σ,)} and T = {(Tp τ7)} are weighted bases of
H°(C, L) and H°(C, M) respectively with L and M both of degree at least
2g + 1, then we define w(S T)(m) to be the least weight of a basis of
^°(C,(L<8>M)0m) consisting of monomials in the tensors S, <8> 7} (with
weight σ, + τy). Such a basis exists by (iii) of Lemma 3.2. If S and Γboth have
integer weights decreasing to zero, then Proposition 3.9 of [4] and Lemma 3.10
give respectively

n.l.c. {w(ST)(m)) = eί{%) + 2e([£9 Ss], [M, ίτ]) + eΛ(ίτ)9

Hence we obtain

Proposition 3.3. Suppose S= {(Si9 σ,-)} β«(i Γ = {(7) , τ7)} are weighted

bases ofH°(C, L) and H°(C, M) respectively such that the weights σ, and Ύj both
decrease to zero and such that L and M both have degree at least 2g + 1. Then
n.l.c. (W(s,τ)(m)) ^ 2 n.l.c. (ws(m) + wτ(m)).

Note that by the homogeneity of this inequality we can allow the σ, and Ί} to
be rational. We will combine Proposition 3.3 and Lemma 3.2 to obtain an
upper bound for wB(m) for each nice linesubbundle L of E. Fix a normalized
weighted basis B = {(Xi9 σ,)} of #°(C, E) and a nice subbundle L of £.
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Recall that the associated long exact sequence is

0 -> #°(C, L) -> //°(C, £ ) - i/°(C, M) -> 0.

Choose a basis Y = {η, , Yn) of i/°(C, £ ) so that

(i) span{ V ..9γn} = vi = span{Λi, ••,*„},

(ii) y = S u f where S is a basis of H°(C,L).

Let £ ' = {(Yi9 η)}. By Lemma 2.1, wβ(m) = v%(m) so that in estimating
wB(m) we may assume that B satisfies condition (3.4)(ii). We do so henceforth
without comment and say the basis B is adapted to L. By Lemma 3.2(i) the
image T of f in H°(C, M) forms a basis there. Let S= {Sl9- 9SnL}9

f— {fl9'"9fNM} and T— {Γ,, -,7^} ordered in each case so that the
weights of the corresponding elements of B decrease.

Consider the diagram

H°(C, L) ® H°(C, M) ΦL'M > H°(C, L®M)

Ψl II

Λ 2H°(C, E) • H°(C, Λ 2E)

where ψ is defined by \p(St ® Tj) = St Λ f.. The diagram commutes, and the
rows are surjective by (iii) and (iv) of Lemma 3.2. Define weights {,?,} on S and
{tj} on f and T so that the weight of each basis element equals the weight of
the corresponding element of B. Then defining the weight of RtJ = 5, ® 7} to
be Sj + ί • makes ψ weight preserving. We obtain a commutative diagram

Sm(H°(C, L) 0 H°(C9 M))

with surjective rows and with 5mψ weight preserving. Thus wB(m) is at most
the minimum weight of a basis of H°(C,(L ® M)m) consisting of monomials
of degree m in the Λ/y. Let wL = 5WL and wM = *ΠΛ#, and define new weights σ,
and τy by σ, = ^ — wL and τy = /7 — wM. Observe that one of wL and wM equals
rπ which is zero since B is normalized, and that both the σ/s and the τy's
decrease to zero by the choice of the orderings on S and T. Let S — {(£,-, σ,-)}
and T = {(Tj9 τy)} denote these weighted bases. As the (σ, τ)-weight of any of
the Ry differs from its (s91) weight by wL + wM9 the (σ, τ)-weight of a basis of
H°(C,(L ® M) m ) consisting of monomials on the Λl7 differs from its (5, 0
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weight by m/i°(C, (L ® M)m)(wL + wM). Hence

wB(m) < mh°{C, (L ® M)®m)(wL + wM) + w(S,Γ)(m).

Applying Proposition 3.3 and taking leading coefficients gives
Theorem 3.5. // L is a nice subbundle of E, and B is a normalized weighted

basis ofH°(C, E) adapted to L, then

n.l.c. wB(m) < 2d(wL + wM) + 2(n.l.c. ws(m) + n.l.c. wτ(m)).

In the situation of the theorem; especially in §5, we will continue to use the
notation developed in the preceding discussion (e.g., S, σi9 wL) to denote the
quantities defined there.

4. Fix a weighted basis B = {(Xi9η)} with associated weighted filtration
FB — {(Vi9 η)}. We will give an estimate for n.l.c. wB(m) in terms of the
subbundles of E generated by the sections in Vt. This criterion is an analogue
for the rank-two case of estimates given for invertible sheaves in [2] and [6].

Let Ej be the subsheaf of E generated by the sections in Vi9 dt — deg Ei9

et — d — dh and let s = sB be the greatest index such that rank Et — 2. If / and
j are less than or equal to s, and 0 < k < m, let WijkN\>e the image in

^^Λ2^) V Sk( Λ 2Vj) V Λ 2//°(C, E)).

If / < s, let WinkN be the image of

SN(Sm~k(A 2V) V Sk(Vi Λ F j V Λ 2H°(C, E)).

Lemma 4.1. There is an No depending only on the genus g of C such that if
N^ NQ and m » 0, then:

(ϊ)for ij ^ s9 dimWiJkN > N((m - k)di + kdj\
(ii) for i < s, dim WinkN > N(m - k)dt.
Proof. We give the proof of (i), that for (ii) being similar. Since Et is

generated by the sections in Vi9 Λ
 2Ei is generated by the sections in Λ 2Vi.

Hence the elements of WiJtkJ generate Lt,j k = (Λ 2Ei)
m~k ® (Λ 2Ej)

k %
Λ 2E. Since Λ 2E is very ample on C, and Λ 2H°(C, E) maps onto a very
ample sublinear system of Λ 2Ey Wijkl forms a very ample sublinear system
of Lijk without base points. Thus for iV large, the elements of WijkN generate
H°(C,LfJk) which by Riemann-Roch has dimension N((m - k)dt + kdj +
d) — g + 1 from which the desired inequality is immediate. We omit the check
that N can be chosen independent of C and E, which follows by arguments like
those of Lemma 2.1 of [2].

Suppose a vector space V with a weighted filtration contains subspaces Ut

satisfying:
( i)K= [ / / D I / H D O Ul9
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(ii)codiml^ = ci9

(iii) the weight of every element of Ui is at most wi9

(iv) Wj ^ Wj_λ > " - >wλ.

Then Fhas a basis of weight at most Σ{Ξ1I(H>I + 1 — w^ς + wx dim F. Now pick
a sequence of integers 1 = iι < i2 < < iι_λ < i{ = «, where i , ^ ^ s, and
apply this remark to the filtration of H°(C>(Λ2E)0(m+l)N) by Wi]h0ND

x2 U , 2 , A 2, 3,. ^,,Λ!

weight of any section in WijkΉ is bounded by 2N((m — k)η + kη + r0) if
j < 5, and by N(2(m — k)η + /:(/; + rn) + 2r0) ify = n. From Lemma 4.1, for
j < 5 we have

+ 1)J - g + 1) - N((m - k)dι

<#(</+ (m^e^ kβj),

codimWin kN^(N(m+ l)d - g + 1) -Nim

^ N((m - k)ei + (k+ \)d).

Hence we obtain

\)N) <Σ Σ 2N(r - η )(N((m ~ k)ei} + ket + d))
j=\ k = 0

+ Σ N(V, - rn){N{(m - k)eu_χ + (k + \)d))
k=0

+ N{m(riι_ί + rn) + 2ro)((m + l)Nd - g + 1)

7 = 1

+

where in the 0(1) term we have collected all terms of order 1 in w. If we take B
to be normalized so that rn — 0, then by applying this to all subsequences of
(1, ,n) simultaneously and taking leading coefficients we obtain

Theorem 4.2. If B is a normalized weighted basis ofH°(C, E), then

1-2

n.l.c.wB(m) < min 2 2 (η ~ ^ )(et + eι• )
( 1 = J , < <1/-1<J) j = Q J

r, U: +3d).
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5. In this section we fix a smooth curve C and a rank-two bundle E of degree
d on C. Our aim is to establish Proposition 2.5 and thereby to prove

Theorem 5.1. There is an M depending only on g so that if d^ M and E is
stable (resp. semistable), then (C, E) is Hilbert stable (resp. semistable).

Proof. We assume E is semistable. Let a = g — 1, and let k — 106α2. We
say a line bundle is good if deg L^ k. We divide the proof into two cases. In
our first case, we assume

(5.1.1) r k £ , = 2 ίor i<n~k.

We first estimate λ 1^-) for / < n — k. Et has rank two and at least 2g + 2
sections. Let Lx be the sublinebundle of E so that Sλ E H°(L% and let
L2 — E/Lv Then both Lx and L2 have sections, and at least one has g + 1
sections. Hence Λι(L, ) < a + 1 = g, and Λ^Lj) or h\L2) is zero. Since
Λ 1 ^ ) ^ λ ι(L,) + h\L2)9 we see

(5.1.2) Λ1(£/ ) < α + 1 i f/</i-fc .

Next we claim

(5.1.3) A1(£|.) = 0 if i<i#i — 3α.

Indeed, if A 1 ^ ) ^ 0, then E~x Θ Ω1 has a section, and so £, has a quotient of
degree at most 2g — 2. Thus Ei and hence £ would have a subbundle of degree
di — 2 a. Since £ is semistable,

(5.1.4) d>2(di-2a).

But

(5.1.5) rf, =

^ (AZ - / + 1) -f 2α - a - 1 ̂  n - i + 1.

Since / < ̂ « — 3α, we have

dι ^ f + 3g - 2,

and by (5.1.4),

which contradicts the fact that d-nJr2a. Thus (5.1.3) is established.
We see from (5.1.5) that

since « -h 2α = d and Λo(£, ) > n — i + I.
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Define ε, and fi by

ε = ί ¥ ( ' - l ) i f / < f - 3 α ,
£ ' yf{i- 1 ) - 3 ( o + 1) iff - 3 α < ι « ε n - λ ; ,

(5.1.6) / = < ( / - 1 - e , ) .

We have

(5.1.7) ( ΐ ( / - l - ¥ ( |

SO

(5.1.8) / / > ( * - l ) +

by (5.1.2) and (5.1.3).
Define

P(I) = 2 < min( = 2 (% - rhj{ftj +fij+ι).

Then P(I)> PB(I). Further define

g ( O = n H " , . , w ' , - w

By Corollary 4.3 of [4],

Thus

7 - 1

Our next object is to estimate (>(/). To this end, we define δ, by

We wish to show δ, ̂  1/2Λ. If / ̂  /i/2 - 3α, then / = (/ - 1) and a direct

computation shows that δ, > \/{2n). Assume / > n/2 ~ 3a. First notice that

we have

|/. - I + 11< α + 1
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from (5.1.6) and (5.1.7). Hence

0 - 1)/, -Σfj-(i- I)2 - i(ί - 0(ί - 2) 2(o + 1)/.

So

('" - 1)// - Σfj<\(i - 1)'" + 2(« + I)* <i'"(» + 4« + 3).

We compute

(5)2((i - 0/ - ΣfM = 2((/ - 1)/, - Σ/y) - 3(/ 2)3

We next claim that

(5.1.10) 2 2 βj,- εj > -18α2,

for / > n/2 — 3a. Once (5.1.10) is established, we will have

{i-\-\ia2)d2 ^ 2{i - 18α2 - \)d2 ^ 1

Thus

(5.1.11) δ , > ^ .

Since (5.1.11) holds for i < n/2 - 3α, (5.1.11) holds in general.
We next establish our claim (5.1.10). Let / be the greatest integer in

n/2 — 3a. Then

/-I i-l

d 2 ε̂ , = 2a 2 (j ~ 1) ~ n(a + \)(i - J - 1)
7 = 1 7 = 1

The function /(ι) = (/ — 1)(/ — 2) - 2/ι(ι — / — 1) has its minimum when
2i - 3 = 2/i. Thus since i ^ # - Jfc and fc > 106α2,

/(/) >(n-k- 1)(Λ - /t - 2) - 2Λ(Λ - /c - f + 3α - 1)

= - ( 6 α + l)/i> -7α2w.

Also, for n/2 - 3α < i < n - ky -2 < εî  < 2α. So

i - l

r ε2 > -18α2.
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Thus if (C, E) is not stable with respect to B, we would have for each /

n 7=1 /

From (5.1.11), we see

fi2 _ 2d , ^ 12d 1

So

Thus

(5.1.12) 4τ-

Next let β(I) = 1 - Σf=, rz. Since Σ r, = 1, we can write (5.1.12) as

r( f + 3 d - ^ Λ ^lίβίD+l V (r - r \
\ n i n n .^j J

Now

ΐl u

So

Thus

(5.1.13) rr(3(n-I)+ 1)2

In particular,

(5.1.14) />(3(Λ — J

Let Jι = n- \0ιk where A: = 106α2.

We claim

Indeed, note for any /,

j8(« - 107) > 9Jrn_j + β(n - J).
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From (5.1.14),

4 β(n - 10/) ^ 4 9/ > j 2
Ίi-io/ ^ 3 10/ + l ^ 3 10/ + 1 T«-J ^ 11 Γn~J'

So r7/ ^ (12/ll)'ι>o. Choose / so that (12/11)7 ^ 300(A; + 2) and /, ^ 2/ι/3.
(Recall that we are assuming that d and n are large with respect to g and hence
to/c.)

[ / ]

7 = 1

Thus our claim (5.1.15) is established.
Next note that

2 ( 1 - r,) = 1 - J8(7) - /r/f

so (5.1.13) shows that

^ ) > 4 ) 8 ( 7 ) + 1 ( 1 - β ( l ) ) > .

Finally, we take I' = /0. Then

3k + 2

100n(A: + 2) ^rf'

which contradicts d = n + 2a. Thus we have established Theorem 5.1 under
assumption (5.1.1).

We may accordingly assume rk En_k — 1 and hence rk Et — 1 for i > n — k.
Let L be the sublinebundle of E containing E{ for i> n — k. We may

replace 2? by a basis adapted to L without affecting the hypothesis. If / is the
greatest integer so that S{ E H°(L), then l> n/2 since otherwise L would
have more than n/2 sections, thus contradicting the semistability of E. Thus
wM ^ 2/n with strict inequality if E is stable.

Recall from Theorem 3.5 that n.l.c. wB(m) < 2(wL)d + 2n.l.c. (ws(m) +
wΓ(m)). Since L is good, dL and rfM are greater than K, and it follows from
Corollary 4.6 of [4] that n.l.c.ws(m) ^2Σ"±ισi and n.l.c.wΓ(m) ^2Σn

j^ιτJ.
Note that

n "L
 nM

1 = Σ i = " M W M + Σ σ, + Σ τ>
/ = 1 / = 1 7 = 1
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If E is stable we obtain

n.l.c. wB{m) ^ 2wMd + 4 Σ σ, + Σ V
\i=\ i = l /

4d
= 2wMd + 4(1 - nMwM) <—- 2wM(2nM - n).

If E is semistable, then nM ^ n/2, hence wM ^ 2/Λ. Unless nMwM = 1, this
implies

4d 4J
nJ.c. wB(/n) < — - 2dwM(2nM -**)< — ,

so that (C, £ ) is stable with respect to B. If nMwM = 1, this argument only
shows that n.l.c. wB(m) < Ad/n which does not suffice to prove (C, E) semi-
stable with respect to B. However, in this case all the σ/s and τ/s must be zero.
Hence every section Rh = S, 0 7} has weight wM. But then

*°(C,£)

since wM < 1/«M < 2/n. This completes the proof of Proposition 2.5.
Now Theorem 5.1 follows from Corollary 2.3. In fact, if E is unstable, L is

the destabilizing line subbundle, and B is any standard basis whose filtration is
W D H°{C, L) D {0}, then φ3 kills all elements of nonpositive weight, hence
so does each φ™. Therefore wB{m) > 0, and (C, E) is Hubert unstable. Hence
Theorem 1.1 is proved.

6. We continue to suppose that d > 1000g{g — 1). Our object is to prove
Proposition 6.1. There is an M {depending on d) so that ifm>M, and φ™ is

semistable for C E Sgd, then C is semistable as a curve.

We begin with a few general definitions. Let ^ be a coherent sheaf on a

scheme, and let W C H°{X, <$) be a subspace so that ^is generated at each

point by sections in W.

Definition 6.2. A weighted filtration on 5"

*k *k-X Λ\

rk rk_x . rx

is a sequence of subsheaves

and rational numbers η, rk ^ rk_x < < τv {Note: In the rest of this paper,
filtrations will increase from left to right.)
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If

is another weighted filtration on 3F, and if it happens that % C ^( whenever
η ^ r/, we say Bf dominates B.

Let 7r: Y -> X be a map. Given a weighted filtration Z? = (f ) on 7τ*((3Γ),
there is an induced filtration B' = ffi) on W9 where

Conversely, given a weighted filtration on JV, there is an induced filtration on
τr*(SΓ), ψhere S. is the subsheaf of 7r*(Sr) generated by J^ .

The weight of a filtration (J*Ό = B on JFis Σ dim(J^/^-i)>*, = *(*)•
Now let φ: ®ί -> § be a map of coherent sheaves. The weighted filtration

/ kerφ

I 0
will be denoted

(6.2.1) [ff->S].

Now let L be a line bundle on a curve C, and let F C i/°(C, L) be a very
ample linear system. Let (Jf) = B be a weighted filtration on F. Choose a
compatible weighted basis {(Xj9 py.)} of F, and let w5(m, C) be the minimum
weight of a basis of #°(C, L<8>m). Then wβ(m, C) is a polynomial in m for
m » 0.

Now suppose that C is a curve on G and that (J*Ό is a weighted filtration on
W. There is an induced weighted filtration Br on the image V of Λ 2 JF in
/f °(C, det S c). If Fis very ample, we define wB(m9 C) = wB,(m, C).

For the remainder of this section, we consider a curve C, a very ample linear
system F C i/°(C, L) and a weighted filtration 2? = (£)• Our aim is to give
two useful estimates for n.l.c. wB(m, C).

Lemma 6.4. Suppose Cz C C are subcurυes of C, and ίfte natural map
φ : Θc -» Θ 0C. to kernel and cokernel of finite length. Then

n.l.c. wB(m, C) > 2 w./.c. wβ(m, Cf ).

Let f̂ be the maximum of the lengths of the kernel and cokernel of
φ. Then for m » 0, the kernel and cokernel of
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have dimension ^ q. Given a basis Pu- ,Pt of H°(C, L 0 m ) , we can suitably

reorder the Pt and partition Pλ9- ,Pt-q into sets Qt C {Pl9- ,/)

/_^} so that

Qt gives an independent set in H°(Ci9 L®m). Thus

wB(m9C) - m^q^^Wβim.q) - mrkq.

Taking normalized leading coefficients yields the lemma.

Now suppose C is irreducible. Let π: C -> C be the normalization of C r e d;

and let ί c β c be the ideal of C r e d. Let / be the length of the local ring of the

generic point of C. Suppose R is an effective divisor on C. Let B — (JΓ') be a

weighted filtration and let/7 be an integer and suppose the η are integers.

Proposition 6.5. Suppose that V} maps to zero in H°(C, L)forj > p and that

Vt maps to H°(C, L((-rx + η)R)). 7/deg L>(rχ- /^deg R, then we have

n.!.c.wB(m9C) > (r, - rp)
2degR + 2lrpdegL.

Proof. First, replace C by the subscheme defined by iι. Since ίι is sup-

ported at a finite number of points, neither the hypothesis nor conclusion of

the theorem are changed.

Let B' be the weighted filtration

rP ' "

that is, we change the weights of the V{ for / ̂  p from η to rp. Now let

{(Xi9 pt)} be a basis of V compatible with B. Let M be a monomial in the Jζ 's

which is nonzero in H°(C9 L®m). Then M can involve at most / of X/s with

Xi G ^ , since 47 = 0. Thus

n.l.c. wB(m, C) = n.l.c. w^(m, C),

since the B and 5 ' weights of a monomial differ by at most l(rp — rk)9 where rk

is the lowest weight in B. Hence we may assume B — B'.

Next, notice that

Λ°(C, L^ m ) = m/degcL -h O(l) ,

since ί^" 1/^ is nonzero at the generic point of C r e d for k — \9-—9l. Consider

a new weighted filtration

Vi

rp
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Then

wB(m, C) = wB,(m9 C) + mrph°(C, L®"1)

= wB,(m,C) + m2rpldegL + <9(m).

Hence it suffices to prove Proposition 6.5 for rp — 0.
Since η > 0,

wB(m,C)> wβ(m,C r e d),

so we may assume C is reduced. Now let M be any monomial in V%m of
weight Q. Then the image of M is in H°(C9 L®m((Q - r{m)R)). Thus there is
a constant Cx so that the image of an M of weight Q lies in a subspace of
codimension at least (r,m - Q)degR - Cx in H°(C, L®m). Adding up the
possible contributions for each weight Q, we see any basis must have weight at
least

7. Let C E Sg d. We can find curves C, C C and integers /z so that the
following hold:
(7.1.1) Each C, is irreducible.
(7.1.2) ί£ = 0, where ί c is the ideal of Ci in C.
(7.1.3) /, is the length of the local ring of the generic point of Cf .
(7.1.4) The natural map Θc -> Θ 6C. has kernel and cokernel of finite length.

Given a weighted filtration B on W, Lemma 6.4 shows that

n.l.c. wB(m9 C) > ^n.l.c. wB(m, C,).

Now let E = S ® 6C, let C, be the normalization of (C,)red, and let TΓ, : C, -» C
be the induced map. Let £,. = Tr̂ i.E) and let dt — deg^ Et. Let 5 be a weighted
filtration on W. If 2?, is a weighted filtration on Ei9 we say B dominates Bt if
the filtration induced from B on Et dominates Br

Lemma 7.2. Let R be an effective divisor on Ci9 and let k —
2 deg R. Suppose B dominates

0 1

Ifk>0, then

(7.2.1) n.l.c.Wβim.q) >4degR,

while ifk + degR>0 and k<0, then

(7.2.2) /!./.c.Hfc(/n,C,) ^ deg* + 2/^..
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Proof. If k > 0, the filtration induced by W on Λ 2E dominates

A%(-2R) Λ^i-R) Λ 2 /

0 1 2

Applying Proposition 6.5 gives (7.2.1).
If k + deg R > 0 and k < 0, the filtration induced by W on Λ 2E dominates

1 2

since H°(C, Λ 2£,(-2#)) = 0. Applying Proposition 6.5 gives

n.l.c. wB(m, ς ) > deg R + 2/,.</,..

Lemma 7.3. Le/ E' be a rank-two subsheaf of Et with deg £ ' > 0. Suppose B
dominates

\ 0 1

Then

Proof. The filtration induced on Λ 2Ei dominates

Λ 2Ef Λ 2Ei

0 1

Now f\2Ef = Λ2£.(-Λ), where degΛ = rf,-- deg£'. Proposition 6.4 ap-
plies.

Lemma 7.4. Suppose that 0-*M^>Ei-*L->0 is exact with M and L
invertible and that B dominates

M(-R) E,

0 1

Then

n.l.c. wB(m, Cj) > deg R + 2ltdi9

if deg Λ ^ deg Et.
Proof. The induced filtration on Λ 2Ei dominates
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Lemma 7.5. // B dominates

,0 1

then n.l.c. wB(m, C,) > 4/,-έ/,..

Proof. Left to reader.

Now write d/n = 1 + ε. Since n - d + 2(1 - g) and n ^ 1000g(g - 1), we

see ε < l/998g. Let B be a weighted filtration on W. We will say B is

destabilizing if

n.l.c. wB(m9 C) > 4(1 + e)w{B).

Throughout the rest of the section, we will assume C G Sgd has no destabilizing

flags. Our aim in this section is to establish that /,- = 1.

Lemma 7.6. If Et has a trivial quotient Eι•, ^ Θ -> 0, then lt — 1 and dt— 1.

Proo/. We consider the filtration B induced on W by [£, -> Θ] in the

notation of (6.2.1).

Lemma 7.4 with R= 0 gives

(7.6.1) n.l.c.w l ϊ(/π,C ί)>2/ I.rf i.

On the other hand, if there is a component Cy meeting C,, Lemma 7.3 shows

n.l.c. H>fl(m,<^) ^ 1.

Hence from (7.6.1),

4(1 + ε) > n.l.c. wB(m, C) > n.l.c. wN(m, C() > 21^.

Hence lidi < 2, so C, must meet some C,. Thus

which shows //d/ = 1. The same method of proof shows

Corollary 7.6.2. If C Q C is a curve, and Eσ has a trivial quotient, then C"

has one component, and Ec has degree 1.

Lemma 7.7. /z = 1 for all i.

Proof. Suppose /, ̂  2. Let B be the weighted filtration on W induced by

0 E,

0 1

First, suppose B is the trivial filtration, i.e.,

lo l /•
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Then the map from W to H°{Et) is injective. Since Σljdj = d, we have
dt <t\d. Hence

d + 2(1 - g) < A°(£f.) < deg £,. + 2 < ί + 2,

which is impossible.
The total weight of B is less than or equal to A°(^) < dz + 2. Hence

(7.7.1) (1 + ε)(dt + 2) > (1 + ε)*°(j?,) > /.rf,. + f,

where δ = Σ7 ̂ , wB(/π, Cy) ^ 0. We reach a contradiction if /, ̂  3 or rf. ^ 3. So
we may assume /z = 2 and rf^ < 2.

Now degc Λ 2E < 4, so C, must meet another component Cj. Suppose
P E Cj maps to C, Π ( .̂ Then the filtration on ^ y induced by B dominates

0 1

Applying (7.2.1) if d} ^ 2, and (7.2.2) if dj=l, we see

Γ4

Now if dj— 1, then either Cz or Cj must meet another component Ck9 and
Lemma 7.3 shows that

n.l.c. wB(m9 Ck) > 1.

In either case, δ > 4. This contradicts (7.7.1) if /, ̂  2 and dt = 2. If /z ^ 2 and
rf/, = 1, then C, is P1, and hence £ c has a trivial quotient, contradicting Lemma
7.6. Thus /z = 1 in all cases.

8. Our aim in this section is to show that Cred has only nodes as singularities.
Let C C Cred be a curve.
Lemma 8.1. Ifh°(C\ E) ^ degc,£, then degc,(E) ^ 20g.
Proof. Suppose not. Then some component Cj of C must meet C as we are

assuming d> 1000g(g— 1). Consider the weighted filtration B given by
[E -> Eσ]. Then

n.l.c. wB(m, C) ** n.l.c. wB(m, C) + n.l.c. wB(m, Cy)

by (7.5) and (7.3) respectively. But

w(5) = Λ°(

n.l.c. wB(m, C) < 4(1 + ε)w(B).
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Combining these gives

4(1 + e)degσ(E)>4degσ(E) + 1,

which is impossible if deg r (E) < 20g.
Lemma 8.2. Let C C Cred fee α cwπ e and let C" be a component of C. Then

there is a short exact sequence

0 -> L -> £ c , -> M -> 0,

where L and M are invertible, L and M have nonnegative degree on each
component of C", and degc» L > 0.

Proof. Let P,, ,Pk be the singular points of C" and let /?' = 2?c,. Let Z,
be the common zeros of sections of E' which vanish at Pt. Then Z, is a finite
set, since if Z, D Cy, the dimension of the image of H°(E') in H°(Cj, E')
would be at most one. But Λ 2E is very ample. By picking a point P E C" not
in any ZI? we can find a section s which vanishes at P9 but not at any singular
point. We then let L be the smallest subbundle of E containing S to establish
our lemma.

Corollary 8.2.1. Suppose every line bundle L in Ec, which has positive total
degree and nonnegative degree on each component of C", satisfies h°(C\ L) <
degc,L. Then dεgc,E> 20g.

Proof. We write

0 -> L -> £ c , -> M ̂  0.

Since £ c , is generated by global sections, M has nonnegative degree on each
component of C". If degc,(M) = 0, Eσ has a trivial quotient, so Corollary
7.6.2 shows C is smooth and rational, and the hypothesis of Corollary 8.2.1
fails. Hence

Λ°(C',L)<deg c ,(L),

A°(C',M)<deg c , (M).

So

and Lemma 8.1 applies.
Lemma 8.3. Let P be a point of C,. Then the map ττi: Ct -* C is unramified at

P.

Proof. Suppose not. Let Q = τr,(P). Then every section of 6CQ vanishing at
Q vanishes at least twice at P. Thus the hypothesis of Corollary 8.2.1 is
satisfied since (C;)red is singular. Hence degc E > 20.
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Now dim Wx/W2 ^ 2 as the map from C, to C is ramified at P. Further
dimW2/W3 ^ 2. Hence w(B) < 8. On the other hand, the induced filtration
on Λ 2Ei is

Proposition 6.5 shows that n.l.c. wB(m9 C) ^ 36. So 4(1 + ε)8 > 36, a con-
tradiction.

Lemma 8.4. C r e d has no triple points.

Proof. Suppose three distinct components, say Cλ,C2,C3, meet at a point
P. We let B be the weighted filtration on W induced by [E -> EP]. Then
w(B) < 2. Now (7.2.1) and (7.2.2) show that

n . l . c . H ' ^ C ; ) ^ ,

for i = 1,2,3 and n.l.c. wB(m, Ci)>0 for i > 3 and therefore

n.l.c. wB(m,C) >9

by (6.4). Hence 4(1 + ε)2 > 9, a contradiction.
Now if Cj and C2 meet at a singular point P E C,, then deg Cj ̂  20. Using

(7.2.1) applied to C, and Λ = π{\P), we see

n.l.c. wB(m,C{) > 8,

and we obtain a contradiction as before.
Similarly, Cx cannot have a triple point.
Lemma 8.5. C has no tacnodes.
Proof. Suppose that Cλ and C2 meet at P, and that the tangent lines of Cλ

and C2 are identical. Then the two weighted filtrations induced on JFby

B [EX-IP) Et-P) Et

\ 0 1 2

for i = 1,2 are identical. Call this filtration B.
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We may assume dx < d2. Now if dx — 1, then Cx is rational and ECχ = 0 θ
Θ(l). Thus the map from H°(Cλ9 E(-P)) to E(-P) ® kP is not surjective. So
w(B) < 5 if dx = 1, and w(£) < 6 if rf, > 1.

Now C, U C2 satisfies the hypothesis of Lemma 8.1, so dx + d2 > 20g > 40,
and hence d2 > 4. Applying Proposition 6.5, we see that

n.l.c. wB(m, Cf ) > 16,

if dt > 4. On the other hand, if dx < 4, the filtration induced by W on Λ 2EX

dominates

A2Ex(-dxP) ••• Λ 2 £,(-P) A2ί

4-dx ••• 3 4

since H°(CX, Λ
 2E((-dx — 1)P)) = 0. Applying Proposition 6.5,

n.l.c. wβ(m, Cλ) > d\ H- 2(4 — ί/Jrfj ^ ^ ( 8 — Jj).

Thusifrfj = 1, then

4(5)0 + e) > n.l.c. wB(m9 C) > 16 + 7 = 23,

a contradiction. If J, > 2, then

4(6)(1 + ε) > n.l.c. wB(m9 C) > 16 + 12 = 28,

a contradiction. So Cx and C2 cross transversally.

Finally, if Cx has a tacnode, then dj > 8. A similar argument produces a
contradiction once again.

We have established
Proposition 8.6. C r e d has only nodes as singularities.

9. Our main aim in this section is to establish that C is semistable as a curve,
and that the map W -> H°(C9 E) is an isomorphism.

We begin with a version of Clifford's Theorem following Saint-Donat.
Lemma 9.1. Let D be a reduced curve with only nodes, and let L be a line

bundle on D generated by global sections. If Hι(D, L) φ 0, there is a curve
C CD so that

Proof. Since H\D9 L) φ 0, H°(Lι ® ωD) φ 0. So there is a nonzero
φ: L -> ωD. We can find a curve C C D so that φ is not identically zero on
each component of C", but <p vanishes at all points C Π D — C = {Pλ9- 9Pk).
Since ωc, = ωD(-Px Pk\ we actually obtain

φ: Lσ -> ωC/.
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Choose a basis sl9- -,sr of Hom(L c,, ωσ) so that φ = sv We can choose a
basis tλ tp of H°(Lσ) so that /, does not vanish at the zeros of sx nor at any
singular point of C". Suppose

where the pairing (5, /) is into H°(C\ωσ). Then ( ^ , , ί ) = (s,tx), where
/ G H°(C\ Lc), and s is a linear combination of s2,- * *,^r. Since / vanishes
where tx does, /is a multiple of tλ. Hence s is a multiple of sx, contradicting the
independence of the stf's. So

) - A°(ωc, ® Lc1') < degc, (L) + 1 - g.

Adding the above two inequalities thus gives the desired result.
Lemma 9.2. Let C be a proper subcurυe of C r e d. Then

Proof. Suppose not. Let d' — degc,(£). Consider the filtration B induced
on W by [E -» £ c,]. Since dim ] ^ = d + 2(1 - g) > dr + 2(1 - g) =
is a nontrivial filtration. Further,

n.l.c. wB(m, C) ^ n.l.c. wβ(m, C ) > 4J',

from Lemma 7.5. Thus

2(1 - g)) > |n. l .c . wβ(m, C)

This contradicts d' < d.
Lemma 9.3. H\Cτcά, Λ 2 £ ) = 0.

/. Suppose not. Lemma 9.1 shows there is a curve C" C Cred with

Thus C is not rational, and therefore Lemma 8.1 shows deg c,(£) ^ 20g. On
the other hand, E is generated by global sections, so we can find a nowhere
vanishing section of E over C :

(9.3.1) 0 -> 6C, -> £ r -> (Λ 2 ^ ) c / -, 0.

Hence

Λ°(C, £ ) < d e g c ^ } + 2 < deg c ( £ ) + 2 - lOg.
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In particular,

h°(C'9E)<degσ(E) + 2(l-g)9

which contradicts Lemma 9.2.
Lemma 9.4. H\Cτed, E) = 0.
Proof. Suppose not. Then there is a nonzero map φ: E -> ωC r e d. Using the

techniques of the proof of Lemma 9.1, we can find a curve C of Cred of genus
g' and a map φ: E -> ω c which is nonzero on each component of C. Note
g' ^ 2, since otherwise E would have a trivial quotient. Then from (9.3.1),

Λ°(C\ £ ) < *°(C, Λ 2 £ ) + 1 ̂  degc, (E) + 1 - g' + 1,

since J / ^ C , Λ 2 £ ) = 0. We see deg c,(£) > 20g from Lemma 8.1. Further
g' < 2g, since otherwise

contradicting Lemma 9.2.
Now consider the filtration induced on JFby [E -> coc,]. We have h°(C\ ωσ)

= g\ so Σ rf < g'. We also have

from Lemma 7.4. So

4(2g) > 4g' ̂  4 2 i > 2deg r ( £ ) > 40g.

Hence we reach a contradiction.
Corollary 9.5. C is reduced and W=H°(C9E).
Proof. Consider ί, the ideal defining Cred in C. ί is supported at a finite

number of points. We claim

(9.5.1) WΠH°(CJ E) ^0.

Let g' be the genus of Cred, and / be the length of ί. Then g' = g + I. Thus if
/ > 0, then

#°(C r e d , E) < deg £ + 2(1 - g) = dim wr,

since / ^ ( C ^ , £ ) = 0. So (9.5.1) is established.
Now consider the filtration B induced on Why

E ί E\
0 1 Γ

Then Σ η < dim W9 but n.l.c. wB(m, C) = 4d. We have again reached a con-
tradiction.
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Proposition 9.6. C is semistable.
Proof. Suppose C = C ' U C", where C" Π C" is a point P, and C" is a

chain of rational curves. The genus of C is g, so

We have contradicted Lemma 9.2. So C is semistable.

10. Our purpose in this section is to establish some properties of E.
Proposition 10.1. Let Lbe a quotient ofE. Then 2 degc L > degc E.
Proof. Let M = ker(£ -» L). Consider the filtration B:

M
0

It is easy to see B is destabilizing if 2 deg L < deg E.
Now suppose C" C C is a chain of rational curves Cj U U C,, where the

C, are nonsingular rational, and C, meets only C^x and C/+1. We further
suppose that C" —C — C" is connected, and that C" meets Cx at one point P
and Q at one point (?, and meets no other C, .

Lemma 10.2. degc> (£) ^ 2.
Proof. Suppose not. The genus of C" is g — 1. Consider the filtration B

induced on Why [E -> Ec\ First, notice that since 3 ̂  dr — degc,E9 and £
is generated by global sections over C\ H°(C\ E) > 4. Hence the filtration B
is nontrivial. We claim that

(10.2.1) n.l.c.wB(m9C')>S.

Suppose (10.2.1) has been established. Let d" = d - d'. Then Λ°(C", E) =
d" + 2(2 — g), since C" has genus g — 1. So

— — ^ r [d" + 2(2 - g)] ^ rf- + 2.

After a short computation, we obtain dr < 2.
To establish (10.2.1), consider case one: / = 1. If we let R = P + Q, and

apply (7.2.1) if d' > 4 and (7.2.2) if d' = 3, then we obtain (10.2.1). Next,
consider case two: d' = 3. We claim that tf^C, Λ 2^(-2i> - 2β)) = 0. Let
5 be such a nonzero section. We must have degCi Λ 2E = 1 or degC/ /\2E — 1,
since rfr = 3. Say degCi Λ 2E — 1. Then 5 vanishes on Cl9 and therefore on
Cx Π C2. If / = 2, s vanishes twice at £? and once at Cx Π C2, and so ̂
vanishes. If / = 3, then deg c (Λ 2E)—\.Sos vanishes on C3 also. But then s
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vanishes on C2 ~s well, since dcgCiE = 1. Hence H°(C, Λ 2E(-2P - 2Q)) =
0. So the filtration induced by B on Λ 2Eσ is dominated by

(E(-P-Q) E\

Applying Lemma 7.2, (10.2.1) holds, and d' < 2.
By applying cases one and two to subchains of C, we may assume that E

does not have degree 3 on any subchain, and that degc E < 2 for each i. It
follows that the degree of E' on each C, is two. But applying Lemma 7.2, we
see

wB(m,Cx)>49 wB(m9C,)>4.

Then using Lemma 6.4, (10.2.1) holds, and d' < 2.
Now suppose the stable model C, of C is an irreducible curve with a node iV.

Let Co be the normalization of C5, and d' = deg Eo.
Lemma 10.3. Assume d to be odd. Let L be a quotient of Eo. Then

2 deg L > d - lifd=d\ and Eo is semistable ifdφ d'.
Proof. Suppose for some δ ^ 0

(10.3.1)

Then

(10.3.2)

Indeed, if h\L) = 0, (10.3.2) follows from Riemann-Roch. If h\L) φ 0, then
Λ°(L) < g - 1. But d' > 20g (Lemma 8.1). So (10.3.2) follows in any case.

Now consider the weighted filtration B on W induced by [E -> L], First,
suppose C = Cs, and let P, Q E Co be the points corresponding to N. Now £p
and ^ are identified with EN. Under this identification, LP φ LQ as quotients.
Indeed, if LP — LQ, then L descends to a line bundle on C. This possibility is
ruled out by Proposition 10.1. Thus if M — ker(f?0 -> L), then B is dominated
by the filtration induced by

({-P-Q) 4
0 1

From Lemma 7.4 we see

n.l.c. w5(ra, Co) > 2rf + 2.

Combining these inequalities with n.l.c. wB(m, C) < 4dw(B)/n9 we obtain

( 1 0 - 3 3 ) rf +

A short computation shows (10.3.3) is impossible.
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Next suppose that dφ d' and that Eo is not semistable. Since d — d' < 2

and d is odd, we may assume there is an L satisfying (10.3.1) with δ = 1. Now

letting C" = C — Co, we see

n.l.c. wβ(w, C") ^ 2, n.l.c. H>β(w, Co) ^ 2</'.

As above, this leads to

< ° M>
A short computation shows (10.3.4) cannot occur.

Thus we have established (1.3.1), (1.3.3) and (1.3.4).
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