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SOME PROPERTIES OF fc-FLAT MANIFOLDS

CLAUDE ALBERT

Introduction

In a recent paper [18], P. Molino, studying the characteristic classes of flat
G-structures, remarked that his results more generally apply to the G-structures,
which are locally equivalent to those denned, on a Lie group K, by action,
under a group of automorphisms of the Lie algebra k, on the left invariant
parallelism of K. He named them "G-structures lisses".

Here we present some properties of this sort of structures, which we call
έ-flat structures (structures lisses de type k). Their behaviour is indeed led by
a sort of flatness, where the usual abelian (i.e., torsion free) model is replaced
by another one which is characterized by a canonical torsion, and is given by
the local geometry of the Lie group K. Thus a A:-flat manifold admits k, in a
reasonable sense, as its Lie algebra (see [4]).

By defining morphisms so as to respect these Lie algebras, we obtain a
category of *-flat manifolds which admits the category of Lie groups as a sub-
category. Furthermore, the Lie groups are precisely the "tangent objets" in
the category of *-flat manifolds. We also notice that the subcategory consisting
in /?n-flat manifolds is but the usual C°° category (§ 3).

Another aspect of the theory is the G-structural one. In this direction, we
use a special kind of connections which generalizes the Cartan-Schouten con-
nections on Lie groups [10].

Our main results are the characterization of έ-flat manifolds whose structural
group is of finite type (if k is a semi-simple Lie algebra, this is always the
case): they are discrete quotients of some open set of the Lie group K (§ 4),
and the fact that if k is a reductive or a nilpotent Lie algebra, then any formal
/c-flat structure on a manifold is &-flat (§ 8).

§ 2 deals with a weak notion of fc-flatness which seems to us not to be
lacking of interest. In §§ 5 and 6, we look for the polynomial vector fields, so
useful in the study of flatness, and see them in a special kind of sub-structure
(strict ft-flatness). Some special cohomological properties of ^-flatness are
pointed out in § 7.

The author wishes to thank P. Molino for his helpfull suggestions while
preparing this paper.

Notation. Let k denote a real n-dimensional Lie algebra. A basis (e19
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• • •, en) for its underlying vector space is given once for all, and we also use
the dual basis (e\ • • •, en) of the dual vector space A*. Let us denote by k the
opposite Lie algebra of k, and by u ι-> ΰ the canonical anti-isomorphism k —> k.
One can identify with this map the spaces gl(k) and gl(k) (resp. GL(k) and
GL(k)). If AUT(k) is the subgroup of GL(k) consisting of all linear isomor-
phisms a\k-^>k such that a[u, v] = [au, av] for all u, v in k, one can easily
see that AUT(k) agrees with AUT(k) in the former identification. We can thus
write AUT(k) = AUT(k) = Go.

Let us introduce the structure constants of k (with respect to (el9 • • •, en))

[ei9 ed] = τofe Λ βj) = τ\fik ,

and thus [ei9βj] = -τk

ijek.
K is the (connected and) simply connected Lie group, whose left invariant

Lie algebra is k, and consequently its right invariant Lie algebra is k. There
is a natural isomorphism of Go onto the Lie group AUT(K) ([9], [15]) given
by a (exp u) = exp (au) whenever a e Go and u <z k. We will identify these two
groups in this way.

1. Bracket manifolds

Let M be an n-dimensional differentiate manifold. Throughout this paper
this means that M i s a smooth, real, connected manifold which satisfies the
second axiom of countability and that dM = 0. A k-bracket structure on M
is given by a Lie algebra bundle structure on the tangent bundle TM. Endowed
with such a structure, M is said to be a k-bracket manifold.

A έ-bracket structure on M is thus given by a vector valued 2-form
τ: f\2TM —> TM satisfying Jacobi's identity Γ A Γ = O, and in addition

(1) the Lie algebra structure defined by τ on each fibre of TM is isomorphic
to k.

(2) for each x e M, there exists a neighborhood U of x equipped with n
linearly independent vector fields X19 • • •, Xn such that

τ(X, A Xj) = τξjXt ,

τ\j being the έ-structure constants; (X19 • • • ,.Xn) will be called a distinguished
trivialization of ΓM.

Frequently, one also denotes τ(X AY) = \X, F ] . Notice that a έ-bracket
structure on M is equivalently given by a G0-structure Eτ(M) on M. The in-
terest of this type of structure was pointed out by K. Nomizu and K. Yano in
[21].

Example 1.1. Let k be Rn (the abelian Lie algebra). Thus any differentiable
manifold is obviously endowed with a IΓ-bracket structure.

Example 1.2. By ‰-bilinearity we extend the left-invariant vector field
bracket onto all of TK. This gives a ^-bracket structure on K, which will be
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referred to as the standard one. (e15 • • •, en) is a global distinguished trivia-
lization for it. More generally, let H be a discrete subgroup of K. The standard
^-bracket structure on K projects itself onto a /[-bracket structure on the right
homogeneous space K/H. There is no global distinguished trivialization of
T(K/H), unless H is a normal subgroup of K.

Example 1.3. Let M be an n-dimensional manifold equipped with a G-
structure E, where G is some Lie subgroup of Go. By extending the structural
group of E to Go, one obtains a ^-bracket structure on M. So any parallelized
manifold can be seen in this way as a έ-bracket manifold.

One can define, in an obvious sense, a bracket morphism φ\M-*Mf from
a ^-bracket manifold M into a &'-bracket manifold M'.lίU and TJ' are some
open sets in the bracket manifold M, they are equipped with the induced k-
bracket structure. A diffeomorphism φ from U onto U', which is a bracket
morphism, is said to be a local automorphism of M. The set of such automor-
phisms is a pseudo-group on M, which obviously coincides with the pseudo-
group of local automorphisms of the G0-structure Eτ(M). The infinitesimal
automorphisms of M are denned in the usual manner. They are the local vector
fields Z such that [Z, r] = 0. Here [, ] denotes the Nijenhuis bracket of vector
valued forms.

Let h be some Lie subalgebra of k. An h-distribution on a ^-bracket manifold
is a Lie subalgebra bundle C of TM with fibre h. If such a distribution is in-
tegrable, each leaf of the foliation thus obtained is a /z-bracket manifold; we
shall use the word h-foliation in such a situation.

For instance, on the ^-bracket manifold K there is a natural /ι-foliation, the
leaves of which are the Hz's, where z € K and H is the connected subgroup
of K whose Lie algebra is h.

Proposition 1. Let j be a characteristic ideal of k. Then on every k-bracket
manifold there is canonically defined a j distribution Cp which is invariant
under the local automorphisms of M.

Recall that a characteristic ideal is a subspace of k invariant under Go. For
every x € M, choose any r in the fibre over x of Eτ(M) and define Cj(x) — r(f).
This is obviously independent of the choice of r and satisfies the former
conditions.

Use the theory developped in [10]. From the vector valued 2-form τ, one
obtains two operators which act as skew-derivations on the sheaf /\* <J'*M of
germs of alternate froms on M :

seτ-. /\
They are defined iτω = ω A τ and if rω = [τ, ω], ω € /\p J'* M. iτ is an
linear map. Thus we have a vector bundle complex

ί i> Λ P ™ - ^ Λ p + 1
 TM-> •-.
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the cohomology of which is a vector bundle with fibre Hp(k; R).
In fact, we shall use the skew-derivation of degree one

δ: /\p F*M-* /\P+1^*M

defined by δ = d + iτ. £>τ is given by Jžfτ = δ2 = dδ + δd. Also notice the
naturality of these operators: for every bracket morphism φ: M —> M! we have
φ%, = ίτφ*, φ*S£τ, = J?τφ*, φ*δ' = δφ*.

Introduce now some terminology: let ω be a p-form on M. We say that ω
is a

k-basic form if <£τω = ίTω = 0 , and k-flat form if δω = 0 .

Remark that if ω is a έ-basic or a £-flat form, so is dω. Considering global
forms on M, we can thus define k-basic cohomology spaces Hf(M) and k-flat
cohomology space Hf(M).

For instance, on the Lie group K endowed with its ^-bracket structure, any
left invariant form ω is λ-flat. If, moreover, we notice that the map which
sends every £-flat p-form

onto the left invariant form ω ί l... ί ; p(l)e ί l Λ • • • Λ eip (1 is the neutral element
of K) commutes with d, then we obtain

H*(k;R)(ZH*{K) .

In particular, if K is compact, we have the strict inclusion

H*B(k; R) C H*(K) .

The fundamental problem given by the existence of a έ-bracket structure on
a manifold M is to know if it is possible to realize this bracket by a geometric
one. This actually is an integrability problem. We shall introduce two degrees
of integrability:

Weak integrability for the ^-bracket structure means that each point of M
admits a neighborhood equipped with n linearly independent vector fields whose
vector field brackets are precisely given by r.

Strong integrability (in short, integrability) means that these vector fields
further define a distinguished trivialization of TM.

2. Weak A-flat manifolds

Let M be a έ-bracket manifold, and a = (X19 • • - ,Xn) a local section of
the bundle of frames B(M) of M. σ will be called an allowable section if
[Xi,Xj] = \XuXj`\ for every i,j in {l,2,'• • •,n}, and M a weak k-flat
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manifold if every x e M has a neighborhood U provided with an allowable
section of B(M).

For instance, K is a weak /c-flat manifold, and so is the discrete homogeneous
space K/H with its standard bracket structure.

A very useful tool is given by some special connections: if σ: f/ —> B(M) is
an allowable section, write σ = (Xl9 • • •, Xn) and define on U three linear
connections F~,F+, F° by the formulas

An easy computation shows that F° is torsion free, and the torsion and curva-
ture tensors of F~ and F+ are given by

T- = -τ , R- = 0 ,

Γ+ = r , # + = -F~τ .

With the use of a partition of unity, on any weak k -flat manifold M we can
thus build linear connections the torsion of which is — τ, τ or zero. These
connections are referred to as (—)-connections, ( + )-connections, (O)-connec-
tions, and generalize the so-called connections introduced on the Lie groups
by Cartan-Schouten [6].

To every (—)-connection F on M, associate the ( + )-connection F and the
0

(O)-connection F where

F = F + τ , V = F + \τ .

_ 0

Notice that F, F, F admit the same geodesic curves.
_ 0

This association (F, F, F) agrees with (F~, F + , F°) in the case of local con-
nections defined by an allowable section of B(M). Also notice that if d is the
usual antisymmetrization map

d: ŽΓ*M® f\P,T*M-> /\P+1,T*M ,

then for any (—)-connection F and p-form ω,

dω = dFω .
Pi

From this one can see that any allowable local section σ = (X19 • • -9Xn) of
B(M) dualizes into a local £-flat ^-valued 1-form θ = θιeι + • • • + θnen. Hence

Proposition 2.1. Let M be a k-bracket manifold. Then the following con-
ditions are equivalent:

( i ) M is a weak k-flat manifold,
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(ii) each x e M has a neighborhood endowed with a flat (—)-connection,
(iii) each x e M has a neighborhood on which there is defined a k-fiat k

valued 1-form θ of rank n.
Thanks to condition (iii) of Proposition 2.1, it is possible to deal with the

weak integrability problem with the use of some results of H. Goldschmidt
111], [12]. For each integer p, 0 < p < oo, let JVT denote the ƒ?-jet bundle of
TM. The vector field bracket induces a bracket

while r induces another one

We say that a ^-bracket structure on a manifold M is formally weak integrable
if for every x e M there exist Z 1 ? • • •, Zn e (ƒ^Γ)^. such that

(a) the projections (X19 •••,ZJ of (Z l 5 • ••,ZJ on Tx are linearly
independent,

(b) [Z„ Zj] = [Z„ Z,] for any i, j in {1, 2, • • •, n}.
Thus let δp : / P Γ* —> Jv_^ /\2 Γ* denote the vector bundle morphism as-

sociated to δ for every p, 1 < p < oo, and Rp = ker^ p . Condition (iii) of
Proposition 2.1 implies

Proposition 2.2. The k-bracket structure on the manifold M is formally
weak integrable if and only if the natural map R^ —> T* is onto.

In fact, it is easy but sometimes rather tendious to check up the following
facts:

Rλ is a vector bundle and the natural map Rλ —> Γ* is onto ;
the symbol of Rx is involutive;
the natural map p\\ R2^> Rλ is not onto;
let JRX = ρl(R2); it pi: Rι-> Γ* is of constant rank, then R2 is an involutive

(and thus formally integrable) differential equation. Hence the ^-bracket struc-
ture on M is formally weak integrable if and only if Rλ —• T* is onto.

Introduce a local distinguished trivialization ψ of M. It is given by the vector
fields Xl9 • • >,Xn on the open set U. Carrying by ψ the vector field bracket
of the X\s, one obtains a tensor field γ: U -> f\2k* ®k where

γ{x){e, A ej) = ψ?[Xt,Xj](x) .

Let a: U-+ Λ 3 έ*®έbe

a(x)(u A v A w) = $ {[γ{x)(u A v), w] - \γ(x)(u A [v, w]) ,
u,v,w

where $ indicates the sum over the cyclic permutations of (w, v, w). Finally,
u,v,w

introduce the exact sequence
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S*k* (x) k ^ i /\*k*(g)k —?-> Q > 0 ,

where β: S2k* —» /\3 /c* is defined as

(ii Λ M w ) = $ C([M, V] Λ W) .

This gives on 17 the tensor field a(x) — χ(a(x)). A simple computation yields
for θzT*

θ € p&RJ 4=> 0ψ o a(x) e im β ,

where #Ψ is the element in fc* associate with θ by ψ^. Hence
Theorem 2.1. Γήe k-bracket structure on M is formally weak-ίntegrable if

and only if the (local) tensor field a associated to each local distinguished
trivialization of TM is zero.

Notice that if a is zero on U, and ψ' is another distinguished trivialization
on U, then the tensor field a' associated to ψ' is necessarily zero.

On the other hand, a = 0 for each local distinguished trivialization means
that i£2 is formally integrable, and thus using [11, Theorem 7.1] one obtains

Theorem 2.2. Let an analytic manifold M be endowed with an analytic
k-bracket structure. Then M is a weak k-fiat manifold if and only if the local
tensor field a associated to every analytic local distinguished trivialization is
zero.

Example 2.1. Let n = 3. Then a = 0 (look at the dimensions) and so
every analytic bracket structure of dimension 3 is weak integrable.

Example 2.2. Let M be a Lie group, and (X19 • • -,Xn) a left invariant
parallelism on it, i.e., a basis for m. According to Example 1.3 this gives on
M an analytic ^-bracket structure. Let γ be the m-bracket on M. Thus we
have a global tensor field

α = Z(Ϊ"O A γ — \y A To) ,

which shows that the ^-bracket structure denned on Rn by its canonical
parallelism is weak integrable (γ = 0). Take m = R(e19 e2, e39 e4) with

γ(e, A e2) = e2; γ(e, Λ ex) = e3; γ(e3 A eA) = eλ

(the others are zero), and take k = R{eu e2,e3, e4) with

τo(e2 Λ e3) = τo(e3 A e4) = τo(e4 A e2) = ex

(the others are zero). The corresponding a Φ 0, and so we obtain a nonweak
integrable ^-bracket structure on a manifold.
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3. A-flat manifolds

A ^-bracket structure on M is said to be ίntegrable if each x e M admits a
neighborhood U equipped with an allowable section a of Eτ(M). In this case
we will call M a k-flat manifold.

Thus, if M is a £-flat manifold, then on a neighborhood of each point of
M there exist n linearly independent vector fields Xl9 • • •, Xn such that
[Xi9 Xj] = {Xi9 X,`\ = τ*<jXt for any ί, ƒ in {1, 2, •. ., n}.

A map φ: M —> M', where M is a έ-flat manifold and Λf' a Λ'-flat manifold,
is said to be a morphism if it is a morphism of bracket manifolds. We thus
obtain a category of manifolds, which we call the *-flat category.

Example 3.1. Every /t-dimensional difϊerentiable manifold is an Rn-fiat
manifold. A morphism from an 2?n-flat manifold into an /?m-flat manifold is
but a differentiable map. In this sense, the usual category of manifolds is a
subcategory of the category of *-flat manifolds.

Example 3.2. The Lie group K is a jfc-flat manifold. Let H be another Lie
group and therefore an A-flat manifold. Any Lie homomorphism φ: K —> H is
a morphism of *-flat manifolds, and the converse is not true. So the usual
category of Lie group is a subcategory of the *-flat category.

Also notice that if H is a discrete subgroup of K, then K/H is a έ-flat
manifold.

The G0-structure Eτ(K) on K associated with its standard ^-bracket structure
plays a central role in the study of £-flat manifolds. Its elements are the frames
deduced from (e19 • • •, en) by the action of an element of Go.

Theorem 3. Let M be a k-bracket manifold. Then the following properties
are equivalent:

( i ) M is a k-flat manifold;
(ii) the G0-structure Eτ(M) is locally equivalent to Eτ(K);
(iii) there exists an open covering (C/α) of M such that each Eτ(Ua) is

endowed with a flat ( — )-connection;
(iv) there exists an open covering (Ua) of M such that each Eτ(Ua) is

endowed with a flat ( + ^-connection;
(v) at each point of M, there exists a germ of a k-flat k-valued \-form of

rank n which defines a germ of a section of Eτ(M).
Proof. Obviously, condition (ii) implies any of the other ones. Moreover,

it is easy to see that (i) t=} (iii); (iii) and (v) are dual formulations of the same
property. So it suffice to show that (iii) & (iv) and (v) => (ii). Let V be any
(_)_connection, and V the associated ( + )-connection. The curvature tensors
# and R of V and F satisfy

(R - R)(X A Y)Z = (Vxτ)(J Λ Z) - {Vxτ)(X A Z)

for any X,Y,Z e 3~M. From this it follows that V is a connection on Eτ(M) if
_ _ 0

and only if R = R. On the other hand, (F, F, F) are simultaneously defined
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on Eτ(M) if and only if one of them satisfies this property. Hence (iii) {=$ (iv).
Finally, let θ a έ-valued 1-form on M of rank n. It defines a section of

Eτ(M) if and only if it commutes with the brackets, i.e., iβ = \\θ,θ\. If
moreover such a form is &-flat, it satisfies the Maurer-Cartan condition

dθ + i[θ, Θ] = O,

and consequently (v) => (ii).
Corollary. If M is a k-ftat manifold, then Eτ(M) is a transitive G0-stmcture

on M, whose structure tensor is zero.
To obtain the first assertion, observe that Eτ(M) can be considered as the

Lie group K x Go (semi-direct product). The left translations of K x Go are
automorphisms of the G0-structure Eτ(K) —> K.

Example 3.3. Let Rn be equipped with the ^-bracket structure defined by
its canonical parallelism. As it has been shown (Example 2.2) this is a weak
έ-flat manifold. We can see that it is not a &-flat manifold. In fact, the Go-
structure so defined on Rn is flat. It suffices to show that, without other
hypothesis concerning k, Eτ(K) is not a flat G0-structure. Using the first pro-
longation of Eτ(K) consisting of all torsion free horizontal subspaces of Eτ{K)
—> K, [22], one can see that an obstruction for Eτ(K) to be flat is given by the
d-Spencer cohomology class [Ω] e H2>2(g0), where fls Λ 2 £ * ® Sois t n e value
at 1 of the curvature of the (O)-connection of Cartan-Schouten on K. We have
Ω(u Λ v) = |ad [ M „-j. Take for instance k = o(p); then g0 = o{\p(p — 1)) and
[0] Φ 0.

Example 3.4. Take k so that Dk should be an abelian Lie algebra. Thus
a ^-bracket manifold M is a £-flat manifold if and only if Eτ(M) is a flat Go-
structure. Look at the logarithmic coordinates (JC1, • • •, xn) associated to (e19 e2,
• . •, en) on a neighborhood U on 1 of K, and define for x e U the matrix
A(x) = (A)(x)) by

e*(x) = j

Consider B(x) = ad l o g α ; on U. Then £(*) € go, and [9]

^W = Σ -^B*-\x) .

It is easy too see that the condition on k implies A(x) e Go for any x e U.
In the category of £-flat manifolds we have a specific notion of tangent

bundle defined as follows: let JX(K, M) be the K x G0-principal bundle over
M whose elements are the 1-jets at 1 of local bracket isomorphisms from K
into M. We have an isomorphism

J,(K,M) = EXM)XK,
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which shows that Eτ(M) is both a subbundle and a quotient bundle of Jλ(K, M).
We define the group tangent bundle TKM of M by

It is a nonprincipal fibre bundle over M with fibre K, which admits Go as
structural group, More precisely,

TKM = Er(Λf) X K .
Go

Thus TKM admits a global canonical section, the unit section, which assigns

to every x <= M the class (r, 1), where r e £T(M) projects onto x. Also notice
that the usual tangent bundle TM (which agrees with this definition when
k = Rn) can be considered as

TM = E£M) X K ,
Go

and one obtains a natural exponential map exp: TM —• Γ^M. Thanks to this
map, it is easy to see that every bracket morphism φ: M —• M', where M is
a £-flat manifold and Mr a ^-flat one, gives rise to a group bundle morphism

I . I
such that, for every x e M, the tangent group homomorphism φx only depends
on ƒΊ0(*).

Let ƒ: Eτ(M) —> /x(i^, M) be the natural inclusion. If ώ is a connection form
on the bundle J^K,M) —• M, then ƒ*ώ is a 1-form defined on £`r(M) with
values in the Lie algebra k © go, and so decomposes into

ƒ*ώ = ^ -f- α) .

The f o -P a r t ω is a connection form on E(M), and the /:-part 37 is a tensorial
form of type identity. On the other hand, choose a connection form ω on Eτ(M)
and a tensorial 1-form η of type identity with values in k. Then there exists
one and only one connection form ώ on Ji(K, M) such that ƒ'*ώ = η + ω. This
allows us to mimic the classical construction of the development of the curves
of the manifold M.

Let ω be a given connection form on Eτ(M), and ώ the unique connection
on J,(K, M) such that j*ώ = θ + ω, where 0 is the fundamental form on E r(M).
For every C°° curve (xf) in M and every r0 e Eτ(M) which projects itself onto
JC0, one can define the ω-horizontal lift (rf) of (xt) in Er(M) from r0 and the
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ώ-horizontal lift (rt) of (xt) in Jλ{K, M) from ro, and the K-development of (xt)
relative to ω is (zt) such that

Thus we have
Proposition 3. A curve (xt) in M is a geodesic for the connection ω if and

only if its development (zt) is a geodesic in K.
The geodesies in K are, of course, relative to the Cartan-Schouten connec-

tions, i.e., the exponential curves.

4. &-flat (7-structiires

Let G be a Lie subgroup of Go. We now study the "good" G-reductions of
Eτ(M). Here "good" means that on the standard &-flat manifold K the G-re-
ductions locally agree with the reduction of E{K) = K X Go to the subgroup
KxG = EG(K).

First of all, notice that a manifold M equipped with a G-structure is a k-
bracket manifold (cf. Example 1.3).

Proposition 4.1. Let EG(M) be some G-structure on an n-dimensional
manifold M. Then the following properties are equivalent:

( i ) EG(M) is locally equivalent to K X G,
(ii) there exists an open covering (Ua) on M such that each EG(Ua) is

endowed with a flat ( — )-connection,
(iii) at each point of M, one can find a germ of a k values k-flat \-form of

rank n which defines a germ of a section of EG(M).
This allows us to say that a G-structure EG(M) on M is a k-flat G-structure

if it satisfies of the above properties. EG(K) = K X G will be referred to as the
standard k-flat G-structure.

Example 4.1. Let k = Rn and G c GL(Rn). An Rn flat G-structure is but
a flat G-structure. The local flat ( —)-connections are here the local torsion
free flat connections defined by local coordinates, and EG(Rn) is the standard
flat G-structure.

Corollary. Let EG(M) be a k-flat G-structure. Then EG(M) is transitive,
and its structure tensor is ( —r0) mod d(k* (x) g).

Remark that if G Z) ad#, the structure tensor of EG(M) is zero. In fact,
under this hypothesis there exist ( + )-connections and (O)-connections on

EG(M)•
We shall say that a £-flat structure on a manifold M is discrete if Eτ(M)

admits a £-flat G-reduction, where G is a discrete subgroup of Go. For instance,
the standard ž-flat structure on the discrete homogeneous space K/H is discrete.

Proposition 4.2. The k-flat structure on the manifold M is discrete if and
only if there exists a global flat (—)-connection on Eτ(M).

The proof is straightforward.
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The importance of the discrete ^-flatness notion is given by
Theorem 4.1. If a manifold M admits a discrete k-flat structure, then the

universal covering M of M is an open set of the Lie group K, and the k-flat
structure on M is a quotient of the standard k-flat structure on K.

Proof. The pull-back of Eτ(M) is a &-flat G0-structure on M, which admits
a global flat ( —)-connection, and thus is reducible to a έ-flat {l}-structure.
This parallelism defines on M a global ^-valued &-flat 1-form θ of rank n,
which satisfies the Maurer-Cartan condition dθ + \[θ, θ] = 0. Thus the theorem
follows from [23, Chapter V, Theorem 2.4].

We can now state one of the main results of this section:
Theorem 4.2. If k is a semi-simple Lie algebra, every k-flat structure is

discrete.

Proof. The deep argument is that if k is a semi-simple Lie algebra, then
a έ-flat structure on a manifold M provides M with a pseudo-riemannian
structure (a riemannian structure if moreover k is a compact Lie algebra).

Let M be equipped with a £-flat G-structure EG(M). Look at the first pro-
longation Efl) of EG(M) consisting in all horizontal subspaces of EG(M) —> M
with torsion tensor — τ0. (This is indeed the canonical prolongation of the k-
flat G-structure EG(M).) G acts on the right on Efly The bundle E?2JG -> M
has G (1) as its fibre, and thus admits global sections. Such a section is easily
seen to be a (—)-connection on EG(M), and we obtain the

Lemma. If EG(M) is a k-flat structure such that gω = 0, there exists a
unique ( — )-connection on M.

Also notice that this ( —)-connection locally coincides with the local flat
(—)-connections given by Proposition 4.1. So it is flat.

To obtain the theorem, it suffices now to use Proposition 4.2 and to remark
that if k is a semi-simple Lie algebra, then g^ = 0 because gQ keeps invariant
aΊ}ilinear symmetric form on k which is nondegenerate (namely, the Killing
form on k).

Theorem 4.2 has an analogue without restriction on k, when one supposes
that the structural group G is of finite type, [22], [13]. To see this, introduce
for every integer p the ideal of g defined by contraction

Write g(oo) = Π S(P) > & i s * e infinite ideal of g, [22].

Theorem 4.3. Every k-flat G-structure admits a k-flat G^-reduction, where
Goo is a subgroup of G whose Lie algebra is g(oo).

This theorem, given in [3] in the case of flat G-structures, follows from
Molino's theorem on finite codimensional sub-structures [18]. Indeed, g(oo) is,
in the sense of [18], a finite codimensional subalgebra of g. Therefore, if EG(M)
is a έ-flat G-structure on M, and EG(M) is its pull-back over the universal
covering of M, then EG{M) admits a global G(oo)-reduction, where G(oo) denotes
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the connected Lie subgroup of G whose Lie algebra is g(oo). Moreover, EG{oo)(M)
is locally equivalent to K x G(0O), and thus is a £-flat G(oo)-structure. From
this it is not difficult to see that EG(00)(M) projects itself onto a G^-reduction of
EG(M), GM being a Lie subgroup of G which admits G(00) as its neutral
component.

Corollary. Every k-flat G-structure with G of finite type is discrete.
We have g(OQ) = 0 in this case. To complete this study, let us give an example

of a nondiscrete &-flat structure:
Example 4.2. Take k = n(3,R), the Lie algebra of matrices of the type

a,β,γeR .

Write such a matrix for aeι + βe2 + γez\ Since [e,,e^\ = [e1? e2] = 0 and
[e2, e3] = el9 the Lie algebra g0 is

' trace A

0
0

a β`

a,βeR , A e gl(2,R) .

Dk is an abelian Lie algebra, and therefore a έ-filat G0-structure on a manifold
M is flat (Example 3.4).

Choose a volume form ω on $2, and consider on $1 x $2 the structure ob-
tained by the product of the flat parallelism on $1 and the automorphisms of
ω on $2. This is indeed a flat #-structure on $1 X $2, where H is the group of
all matrices in GL(3, R) of the type

/ H O 0 \

H is a subgroup of G, and (as in Example 1.3) this gives us a έ-flat structure
on $1 X $2. It is not discrete, because if it were, Theorem 4.1 would give on
R x $2 an absolute parallelism (X19X2,XJ with Xλ tangent to the fibers of
the fibering R x $2 —» R; this is obviously impossible.

5. Automorphisms of a έ-flat G-structure

Let EG(M) be a έ-flat G-structure on a manifold M, and let ΓG(M) denote
the pseudo-group of local automorphisms of EG(M). We shall drop the G if
G = Go • ΓG(M) is a transitive Lie pseudo-group on M, whose first order in-
finitesimal structure is EG(M). Thanks to Proposition 4.1, the local behaviors
of ΓG(M) are the same as those of the pseudo-group ΓG(K) of the standard
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-structure on K. Let simply denote ΓG = ΓG(K). A local diffeomorphism
φ of K belongs to ΓG if and only if at every point x in the domain of φ the
tangent map φ*x acts on k as some element of G. This means that φ is a bracket
morphism whose tangent group homomorphism, at every point in its domain,
belongs to G. (This makes sense because the existence of EG(M) implies that
TKM admits G as its structural group.)

ΓG(M) is a regular pseudo-group in the sense that it admits a Lie pseudo-
algebra &Q(M) (this is a L.A.S. in [22]). The group structure on EG(K) =
K x G translates into the fact that the right invariant Lie algebra k © g is a
subalgebra of the Lie algebra of the global sections of <£ G over £ . Consequently
J*?G(M) is transitive on EG(M).

The rest of this section is devoted to the study of the formal algebra LG of

First of all let us give an algebraic model for the jet spaces of vector fields.
If X is a vector field defined on some neighborhood of 1 in K, we can write
X = Xieί. The infinite jet j ^ X(l) is thus determined by the sequence

For each r, define the tensor ξr <z (g)r k* (x) k by

This correspondance assigns to every jet /'«, X(l) the tensor f e ŽZ® * ® έ,
where C/(έ) is the universal envelopping algebra of k, and standard theorems
on C°° functions show that the correspondance

so defined is 1: 1. We shall denote

(5.1) L(k) = U_(k)*®k .

Let us introduce the usual filtration Up+ι(k) C Up(k) of t/(it). The former
correspondance gives for every integer p an isomorphism

p ®k = ίp(k) ,

so that the Poincare-Birkhoff-Witt theorem furnishes the exactness of the

sequence

(5.2) 0 -> S*k* <g> k -> Jp(k) -> J_v_λ(k) -+ 0 .

The bracket [ , ] , defined for each p, 1 < p < oo, a bracket
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by [ƒpZ(l), ƒpY(l)] = ƒp[Z, Y](l). This translates onto

with [f, 37] = Σ [?p> 3?<?]> ?p denoting some representant of the homogeneous

component of degree p of ξ. It is easy to show that [fp, ^ ] e (g)p+qk* (x) & is
given by

[ £

( 5* 3 ) = Σ [fpK®•••®^ p ),%K + 1 ®•••®"., + β )] s

(7P)β denoting the set of shuffle permutations (p,q) oί p + q elements. From
this formula it follows that the space lp(k) endowed with the bracket [ , ] is
a Lie algebra. On the other hand, one can show that the bundle BP(M) of
frames of order p on any A;-flat manifold M is canonically equipped with a
Zp(έ)-bracket structure. Relative to these structures, the morphisms π\\ BP(M)
—• BP(M) (0 < q < p) are bracket morphisms.

Now the vector field bracket in l(k) differs from [ , ] by a contraction part,
(which is of course the only one in the flat case):

so that {ξ,η} = ξ°η — η°ξ, the composition product being defined on homo-
geneous components by

(<g)* k*<g>k)<g> (<g)« k* (x) it) -> (x)^^"1 k* (8) Λ ,

Σ

with the convention w o fp = 0 for w e έ•
The two Lie algebra structures on J(k) given by [, ] and [ , ] induce the

same structure on the subspace k.
Now, look at the map

dL: l(k) -> k* (x) J_(k) = E(k)* <g> Λ* ® Λ ,

which assigns to every ξ e l(k) the map k

M ^ [ξ * u] .

Then ξ 6 LG if and only if d[-f € t/(Λ)* ® g . On a system of homogeneous
components ξ0 + f x + • • • + ξp + • • • of ξ, this is written as :
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for any integer p, and ut's in k, the map

(5.5) u .-* [u, ξp(u, (8) . . . (g) MP)] + fp+i(Wi <8> • • • ® wp <8> w)

belongs to g.

Introduce the usal graduation on LG. If Jp(k) denotes the kernel of the map

ί(k) -> Zp(έ), define

LG admits έ θ f a s a subalgebra, and moreover

(5.6) LG = k © g 0 LG (direct sum of vector spaces) .

One can see that the formal vector fields corresponding to ΰ e k or A e g
are not homogeneous in l(k). Systems of homogeneous components for them
are ΰ = (w)0 + • • • + (ΰ)p + • • • and A = (A)o + • • • + (A)p + • • • defined
as

(i/)n =: U ,
(5.7)

(w)*(t>i (8) • • • ® vp) = [• • •, [u, v,], • • •, vp] , P > 0;

U)o - 0 , ( A = A ,

( i 4 ) p ( v ! (2) • • • (8) v p ) = [• • •, W Ί > 1 ? v 2 ] , ` - , V p ] , p > 1 .

Let (LG)p denote the image of LGΛunder the natural map ƒ(Λ) -• ƒp(Λ). It
is a technical point to show that at least when g D ad^, the sequence

(5.9) 0 -> g<P+» -> ( L σ ) p + 1 -> ‰ ) , ̂  0

is exact. From this it follows that in this case we have

(5.10)

and therefore Jžf G(M) is transitive on all the prolongations of the G-structure
EG(M).

The bracket [, ] on J(k) induces a bracket [, ]0 on gr l(k) = S(Λ*) ® A.
Relative to [, ]0, gr J(k) usually is not a Lie algebra, but gr P(k) is. Let us
say that a subalgebra L of /(£) is a graduate Lie algebra if L is isomorphic to
the completion gr L of gr L equipped with the bracket [, ] 0.

For instance, in the flat case it is a fundamental property of LG to be a
graduate Lie algebra. Let us see what happens when τ Φ 0. Denote gr LG —
k®g®gι® • • • A necessary condition for LG to be a graduate Lie algebra is that
for every Ap e gp and u,v € k, Ap[u, v] = 0. This means indeed that (gr LG;
[, ]0) is a Lie algebra. This is also a sufficient condition. Introduce the strict
prolongations of g:
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gP[i] = μ p + i 6 gP(D \A* + 1[U, V] = 0} ,

and fM = g ^ - m = g[i](p-i>. Then we have

Proposition 5. For any integer p > 0 αrcd α/ry sequence (g, g\ • • •, gp)

( i) f/ίfl subalgebra of go,
(ii) r c gα"1)C1] (1 < i < p),
(in) [g\ g'] <= ii+i, 0 < ΐ, ƒ, ί + j<p,

there exists a graduate Lie subalgebra Lgi...tgP of LG which admits k ® g as a
subalgebra such that

In particular, the algebra Lg so obtained from the sequence (g) is the
maximal graduate subalgebra of LG which contains k.

Let us simply give an outline of the proof. To each Ap e gίpl, define the

formal vector field Ap e (LG)
P by the condition

[ΰ, Ap\ = Apu for any ΰ e k .

Formulas (5.3) and (5.4), together with (5.8), show that such an Ap is uniquely

determined, and moreover, (5.5) holds for Ap. In fact, a system of homo-

geneous components Ap can be found as

(A>\ = (A>\ = • • • = (A% = 0 , (A%+1 = A* ,
fC ^ί f\\ ( A p\ (i. /O\ (\t\ 11 \ Γ Γ Λ P11 11 ii ii Ί i / Ί
v^J. i-\Jj \si jq\Ui vcy * ' * Vy Mqj — L * * * 5 L^1 UιU2 * • • Mp + 1 , Wp + 2J? ' * * ? W Q J

if ^ > p + 1 .

I t is n o w a s t r a i g h t f o r w a r d c o m p u t a t i o n t o s h o w t h a t f o r e v e r y p,q>O

[Ap, Aq] = [Ap,Aq]0 ,

and therefore Proposition 5 is valid.

6. Strict A-flaίness

Let us consider the standard έ-flat G-structure EG(K). If j is any charac-
teristic ideal of k, there corresponds to it a bi-invariant foliation ^'5_ on K,
defined by the normal subgroup J. ^F3• is of course invariant under ΓG. Since
/ is also a normal subgroup of K x G, J^• lifts into a foliation # ^ on EG(K)
with the same dimensional leaves. The elements of ΓG which keep β^i invariant
constitute a transitive Lie sub-pseudo-group ΓGii of ΓG, whose equation is
obtained by reduction of E^ —> EG(K) to the subgroup of G1 whose elements
vanish on j . ΓGtj_ is a regular pseudo-group and its Lie algebra LGtJ. contains
k@g. ~ '~
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Take in particular j = D = Dk, and call a regular pseudo-group a graduate
pseudo-group if its formal algebra is. Thus we have

Theorem 6.1. The pseudo-group ΓGfΏ admits LGfΩ = Lg as its formal
algebra. It is the maximal graduate sub-pseudo-group of ΓG which contains
the left translations on K.

Proof. Proposition 5 first gives gr LGyQ C grL £ , so that it is enough to
assign to any element a € gr Lg a local analytic vector field X(a) e 3?G,B about
1. This is already known if a € k or a € g. Suppose it is done if a e k © g 0
• • • 0 gίp~`\ and let Ap be any element in gίp\ p>l. Define X(AP) by the
analytic first order differential equation

[X(u),X(A*)] = X{A*u) , X(Aη(l) = 0.

Proposition 5 implies that this equation admits a unique formal solution
(namely Ap) and analyticity assumes the convergence of this solution. The re-
maining of the proof is now quite obvious.

Using the preceeding argument and the fact that J?G,D contains infinitesimal
left translations, one obtains

Theorem 6.2. Let p a nonnegative integer, and (g, g1, • • •, gp) a sequence
such that

( i ) g is a subalgebra of go,
(ii) i * c j ^ ( l < i < p ) ,
(in) [g\gj] C gί+J, 1 < i,j, i + j< p.

Then there exists an analytic sub-pseudo-group Γω

gr..^ of ΓG on K, which
admits Lgr.^gΊ> as its formal algebra.

Take now for Γgi...igP the C°° complete of Γgr..igP; on K one gets a graduate
Lie pseudo-group of order p + 1, whose first order associated infinitesimal
structure is EG(K) and whose formal algebra is Lgi...tgP. Γgi...igP is said to be
the standard strict k-flat pseudo-group with model (g, g\ • • •, gp).

Let now EG{M) be a £-flat G-structure on a manifold M. In the sense of
[14] it is a /^-structure on M. We shall call EG{M) a strict k-flat G-structure
if it is defined indeed by a ΓG^-structure on M.

Let &Q be the natural D-foliation on M. If EG(M) is a strict £-flat G-struc-
ture, žFu lifts into a same dimensional foliation # 5 on EG(M), which corre-
sponds to the foliation defined on EG(K) by the normal subgroup DK of K.

Thus any strict /c-fϊat G-structure is a foliated G-structure over SP'Ώ in the
sense of [17]. This fact will give some interest results in the next section.

We shall say a Lie pseudo-group Γ of order p + 1 on a manifold M is a
strict k-flat pseudo-group modeled over (g, gι, • • •, gp) if

( i ) there exist a Lie algebra k with the same dimension as M and a sequence
(£> #1? * ' * > SP) a s m Theorem 6.2 such that Γ admits a formal algebra isomor-
phic to ££,...,fp,

(ii) the linear isotropy group G of Γ is a subgroup of Go,
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(iii) the G-structure associated to Γ is k-ΆdX.
These conditions are redundant: condition (ii) always holds if G is connected,
and a consequence of Theorem 8.1 is that (iii) is true whenever (i) and (ii) are.

For such pseudo-groups, denoting L = k + g + • • • + gq + • • • and using
the infinite ideal of g with respect to L one has an analogue of Theorem 4.3 :

g~,L = Π gq,L with gq^ = <g«, S«k> .

g^^L is stricty imbedded in g(oo).

Theorem 6.3. If Γ is a strict k-flat pseudo-group modeled over (g, • • •, gp)
on the manifold M, there exists on M a strict k-flat sub-pseudo-group Γ„ of
Γ modeled over (goo,z,)•

The proof is essentially the same as that of Theorem 4.3. For a quite dif-
ferent proof, see [1],

Corollary. A k-flat G-structure on M is strict if and only if it admits a
G' k-flat reduction, where the Lie algebra g' acts trivially on Dk.

7. Cohomology of λ-flat manifolds

If j is any characteristic ideal in k, Proposition 1 gives on any fc-flat manifold
a foliation J^. which has the same dimension as j . This yields a first obstruc-
tion to the existence of a έ-flat structure on a manifold M with a given k: let
dk be the subset of {1, 2, • • •, ή) whose elements are the dimensions of all the
characteristic ideals of k; for any integer p e dk, M must admit a p-dimensional
foliation. This leads to some topological properties of έ-flat manifolds. For
instance, if 1 € dk, then χ(M) = 0 for a compact έ-flat manifold M.

Let EG{M) be a λ-rlat G-structure on M, and

λ: P{G) — H*v(M)

be the Weyl homomorphism. If a e P{G) and ω is a connection form on M,
we shall write λja) the closed 2p-form πa(Ωp) on M, which defines the class
λ(a). Take a (—)-connection as ω, whose curvature Ω is a 2-form on EG(M)
with values in the subspace d(k ® g{l)) of g. Thus we obtain

Theorem 7.1 (Molino [18]). Let G be a subgroup of Go. Let a e P{G)
such that a{Av) = 0 for any A e d{k* (g) gω). Then for any k-flat G-structure
on M the characteristic class λ{a) is identically zero.

To illustrate this result, consider a vector subspace V of k invariant under
G. It defines, as in Proposition 1, a distribution tfv on M, invariant under
ΓG{M). Notice that ^ F is not integrable, unless V is a subalgebra of k. Let
EQ denote the bundle of frames over M transversed to ^ v and deduced from
EQ{M). The natural map EG{M) -> EQ induces an epimorphism p\G->GQ

on the structural groups, and so we get an injection
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p* : I*(GQ) -> /*(G) .

Now, if β e I*(Gq) and S e k* <g) ga\ then p*β(3S) = 0 as long as p >
2 coding F, and thus the theorem can be applied. This leads to saying that a
distribution ? o n a manifold M is έ-ftat if there exist a Lie algebra k and a
έ-flat G-structure EG(M) on M such that the infinitesimal first order structure
on M defining Ή can be reduced to EG{M). This means that # is invariant
under some &-flat pseuod-group. The preceeding argument gives

Theorem 7.2 (Bott-Molinό). Let Q be the normal vector bundle of a q-co-
dimensional k-flat distribution *$ on M. Then

Pont1 (β) = 0 if l>2q .

Suppose now that moreover g consists of elements which vanish identically
on V. Then we have Pont (Q) = Pont (M), and therefore

Corollary. If a manifold M admits a k-flat G-structure, where g acts trivially
on the subspace V of k, then necessarily

P o n t ' ( M ) = 0 forl>2q.

In particular, a necessary condition for M to admit a strict k-flat structure is
that

Pont' (M) = 0 for / > 2 coding Dk .

Now we shall give new cohomological invariants for k-ήat manifolds. This
construction hinges on the following fact :

Let M be a manifold equipped with a principal G-bundle E > M. Let ω
and α/ be two connections on E which admit the same curvature Ω. The dif-
ference ΎJ = ωr — ω satisfies

(7.1) Dη + i[η,η] = 0 ,

when D is the exterior covariant differentiation relative to ω.
Then for any α e IP(G) and 0 < ƒ < p — 1

(7.2) <•<(α) = πα(η Λ [η, η]p-j~ι Λ Ω>)

is a closed (2p — l)-form on M which defines the cohomology class [μl^(cc)]
6 H‰\M);

Also notice that >l„(α) = Λβ/(α) so that the Chern formula [7]

Jo
Λ
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where Ωt is the curvature form of ωt = ω + tη, shows that

vω ω,(a) = π[1 pa(η A Ωf~')dt
Jo

defines another cohomology class [vmt^(a)] eH‰\M). An easy computation
gives the existence of some universal coefficients aό{p) such that

*.,•-(«) = Σ aj(p)μί,Λ<*`) '
0<j<p-1

On the other hand, let us consider the Chern-Simons transgressed form [8]:

Ta(ω) = f pa(ω A Ωf~')dt , where Ωt = tΩ + K'2 ~ O[ω, ω] .
Jo

Using α/ for any r e E such that π{r) = x one can define a horizontal lifting

and a vertical one

Pη:(TM)x->(TE)r

such that

(7.3) ηpm = ωpη , ηpη = ωpω = 0 , π*pη = 0 , π*ρω = identity,

and so we obtain a projection pq : /\q T*E -> f\q Γ*M given by

PQ= Σ Pi,j , where pitj = p* Λ - • Λ p* Λ p* Λ - - Λ p* .
i + j = q `` , ` ,

i 3

As before one gets the existence of universal coefficients bj(p) such that

p2v-J`a{ω) = Σ bj(p)μί ,(a) .
0<_ƒ<p-1

Now return to the k-fiat case. Suppose E to be the £-flat G0-structure Eτ(M)
on M. It is easy to find couples of connections with the same curvature: take
as ω a (— )-connection on Eτ(M) and as α/ = ω the associated ( + )-connection.
One gets η = ε, which is a canonically defined 1-form on Eτ(M). Simply denote
μl(<x) — μί,a>{a).

Theorem 7.3. If M is a k-flat manifold, the cohomology class defined
from any a e IP(GO) and 0 < ƒ < p — 1 by

μj(a) = [μί(a)] € H‰\M)

is independent of the choice of the { — )-connection ω on Eτ(M).
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This means that the μj(aYs can bring some information about the &-flat
structure on M. We shall call them the secondary invariants of M. Indeed,
they are carried over by the έ-flat morphisms of rank n.

The proof of Theorem 7.3 goes as that given by Chern for the same property
of the λ(a)'s. In fact,

μUM ~ μίQ{a) = d Γ (-iy-^jπa(ε Λ [ε, ε ] ^ " 1 Λ ωγ - ω0 A Ω{~')dt ,
Jo

Ωt being the curvature form of ω0 + t(ωί — ω0).
There are two kinds of μj(aY$. The first one consists of those for which

0 < j < p. The curvature Ω of some ( —)-connection on Eτ(M) appears in their
definition. So they can carry some obstructions to reduction of the structural
group.

Let j be any characteristic ideal of k, and q = codimfc j . Suppose there exists
over M a έ-flat G-structure, where g is the ideal of g0 consisting of all deriva-
tions acting trivially on j . As it has been remarked in § 6, the natural j-foliation
^j on M lifts into a same dimensional foliation #^• of EG(M). Moreover,
β^J: is invariant under the right action of G, so that EG(M) is a foliated G-
structure over ŠFv Let ω be any (—)-connection on EG(M). Its torsion form
Θ satisfies

Θ + ‡[θ, Θ] = O

and therefore, if σ is any allowable section of EG(M), then ω has the char-
acteristic property

(7.4) σ*ω Λ Λ = O.

From this it follows that the leaves of β^ž are ω-horizontal. Moreover, Bianchi's

identity implies that i%Ω — 0 for any X e # r A direct consequence is
Theorem 7.4. Let EG(M) be a k-fiat G-structure on M, g being the ideal

of g0 whose elements act trivially on the characteristic ideal j of k. If q =
codim*. j , the characteristic class λ(a) of EG(M) defined by a e P(G) vanishes
as long as p > [q/2]. Moreover, if a e /P(GO), the secondary invariants μj(a)
of M vanish as long as j > [q/2].

Corollary 1. If M is a discrete k-fiat manifold, for any a e IP(GO) and
0 < ƒ < p the relations

λ(a) = 0 , μJ(ά) = 0

hold.
Corollary 2. If M admits a strict k-fiat structure, for any a € IP(GO) we

have
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λ{a) = 0 for 2p > coding Dk ,

μJ(a) = 0 for 2/ > coding Dk .

These corollaries are obtained by choosing j = k and j = Dk in the theorem.
The second kind of μ'(α)'s consists of the μ\a)'s. They are only defined by

the form ε, and so may be nontrivial on the model space K. Notice that on
K the map μ° factorizes through the left invariant cohomology ring:

H2p~Kk,R)

For instance, take k = o(3) and therefore K = $3. An easy computation shows
that for any a <= P(SO(3)), a Φ 0, the 3-form πa(ε Λ [ε, ε]) nowhere vanishes
on M, and thus μ°(a) Φ 0.

Foliations on the /c-fϊat manifolds associated to the ideals of k have some
topological properties. For instance,

Theorem 7.5. Let j be a characteristic ideal of k. Then the [-foliation ^'ž
on any k-ftat manifold M admits a C.T.P. (connexion transverse projetable).

See [19] for the definition and properties of foliations with C.T.P. In fact,
let ω be any (—)-connection on Eτ(M). Let ET denote the G<f-bundle over M
of the frames which are transversal to J^• and deduced from Eτ(M). The con-
nection ω projects onto a connection ωT on Eτ which satisfies the desired
conditions.

8. The equivalence problem for λ-flat (7-structures

Let G be a sub-group of Go. We shall say that a G-structure EG(M) on a
manifold M is formally 4-flat if it is formally equivalent to the standard ž-flat
G-structure EG(K) on K. If G ZD adx , the transitivity of ΓG on all the prolonga-
tions of EG(K) allows us to use the construction of V. Guillemin [13] to give
a simple criterion for formal έ-flatness. Using the bundle E[1^ as the standard
prolongation of EG(K) we see that EG(M) is formally k-ΆdX if and only if all
its Guillemin structure tensors vanish.

The problem is now: are all formally έ-flat G-structures έ-flat structures?
More generally, a Lie pseudo-group Γ on the manifold K is said to be έ-flat

if
( i ) left translations are elements of Γ,
(ii) the linear isotropy group G of Γ is a subgroup of Go,
(iii) the equation of Γ is an analytic subbundle of BP(K).

For instance, ΓG is a έ-flat pseudo-group of order 1 on K. For any sequence
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(g, g\ - • •, gp) as in Theorem 6.2, the pseudo-group Γgy...tgP is a &-flat pseudo-
group of order p + 1.

A Lie pseudo-group Γ is said to satisfy the equivalence theorem if on any
manifold M any almost-,Γ-structure is indeed a .Γ-structure (with the terminology
of [14]).

Example 8.1. If k is the abelian Lie algebra Rn, then a iT-flat pseudo-
group is a weak flat pseudo-group in the terminology of [20]. [5] and [20] lead
thus to the result: any i?"-flat pseudo-group satisfies the equivalence theorem.

Example 8.2. If k is a semi-simple Lie algebra, Theorem 4.2 implies that
any /;-flat pseudo-group is of finite type. [13] leads then to : any £-flat pseudo-
group satisfies the equivalence theorem.

Example 8.3. If Dk is an abelian Lie algebra, Example 3.4 implies that
the pseudo-group ΓGo(K) is a flat pseudo-group. Theorefore ΓGo(K) satisfies
the equivalence theorem.

It seems reasonable to think that any &-flat pseudo-group satisfies the equi-
valence theorem. Our purpose is now to show how relative flatness theorem
of P. Molino can be used to give an affirmative answer to this question for
some types of &-flat pseudo-groups.

If Γ is a έ-flat pseudo-group on K with linear isotropy group G, Examples
8.1 and 2 allow us to suppose there exist ideals of k which are invariant under
G. Let j be such an ideal, and ^ ί the ƒ-foliation on K associated to it. The
leaf of ^j through 1 is the connected subgroup of K with algebra j , and thus
it is closed. Let Γ^ be the pseudo-group on / obtained by restriction of the
actions of elements of Γ. The formal completion Γί of Γ'ž is a j-flat pseudo-
group on / .

In the same way, ŽF`i defines a fibering K —> K/J, and the analycity of the
equation of Γ allows us to consider the quotient pseudo-group Γ^ of Γ by this
fibering (see [16]). Let q: Γ -> ΓJ be the natural map. Γ\ is a fc/^-flat pseudo-
group on the Lie group K/J. So it admits a sub-pseudo-group γj which is
simply transitive on K/J, namely, the local restrictions of left translations of
K/J. Thus γž — q\γf) is a Λ-flat sub-pseudo-group of Γ whose linear isotropy
algebra is g Π der (k, j).

Lemma. If the pseudo-groups Γ] and γι satisfy the equivalence theorem,
so does Γ.

Proof. Consider an almost-Γ-structure on a manifold M. Let ŽF5_ be the
induced /-foliation on M. Since restriction to a leaf and projection along the
leaves of !F5_ are formal properties (they are done on jet spaces), we see that
any local submanifold W transverse to &ό_ (resp. any leaf of J**p is endowed
with an almost-ΓJ-structure (resp. an almost /^-structure). Let x be a point
of W. The hypothesis on ΓJ implies that in some neighborhood of x in M the
almost-Γ-structure reduces to an almost-^-structure. The lemma thus follows.

Suppose now Γ is a strict ž-flat pseudo-group. If p + 1 denotes its order,
there exists a sequence (g, g\ • • •, gp) as in Theorem 6.2 such that the formal
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algebra L of Γ is ^ . . . ^ , . Take j = Dk. Since g1 c £C1], D£ is an ideal of
L, and thus k is a finite dimensional subalgebra of L which is flat relative to
L. Molino's theorem on relative flatness [20] thus gives

Theorem 8.1. Any strict k-flat pseudo-group Γ satisfies the equivalence
theorem.

Now, if k is a reductive Lie algebra, its radical r equals its center. So the

quotient pseudo-group Γτ

r is &/r-flat with k/r semi-simple. On the other hand,

γr is a strict £-flat pseudo-group. From the above lemma and Theorem 8.1,

we obtain
Theorem 8.2. If k is a reductive Lie algebra, any k-flat pseudo-group

satisfies the equivalence theorem.
Notice that this theorem contains Examples 8.1 and 8.2.
Another case to which these technics apply is given by the hypothesis: k is

a nilpotent algebra. Look in this case at the central sequence

k z> Ck =) • • • z> Cqk ID 0 .

Take j = Ck. k/Q^ is an abelian Lie algebra. Therefore the proof of the above
lemma shows that any almost-Γ-structure locally reduces to an almost Γλ-
structure with linear isotropy algebra contained in der (k, Ck). Notice that any
A c der(έ ; Ck) satisfies A(Dk) C C2k. We can thus apply once more the
lemma with j = C2k, and so on. Finally, the relations

A € der (k, Crk) ^> A(Dk) c Cr+ίk , 1 < r < q ,

lead us to a έ-flat paralleling in some neighborhood of any point of M. We
thus have

Theorem 8.3. If k is a nilpotent Lie algebra, any k-flat pseudo-group
satisfies the equivalence theorem.
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