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AN ASYMPTOTIC FORMULA OF GELFAND
AND GANGOLLI FOR THE SPECTRUM OF I'\G

NOLAN R. WALLACH

1. Introduction

In [6], Gelfand outlined a proof of an asymptotic formula for the distribu-
tion of multiplicities of spherical principal series in L*/"\G), where G is a
connected semi-simple Lie group with finite center and [" is a discrete sub-
group of G so that I"\G is compact (see Corollary 1.3 for a formulation of
this formula). As pointed out by Gangolli [3] the formula of Gelfand is mar-
ginally wrong and the proof of the formula (even in the case G = SL(2, R))
has a gap. In Gangolli [3] a method using the heat equation was used to prove
the (corrected) Gelfand formula for G complex semi-simple. Also Gangolli
and Warner have in an as yet unpublished manuscript proved the Gelfand for-
mula if /" has no noncentral elements of finite order. In this paper we use the
asymptotic expansion of the fundamental solution of the heat equation to prove
a general asymptotic formula which we now describe.

Let G and I" be as above. Let K be a maximal connected compact subgroup
of G. Let G (resp. K) denote the set of equivalence classes of irreducible unita-
1y representations of G (resp. K). If ¢ € K, let d, be the dimension of any ele-
ment of the class z. If w e G, and ¢ € K, then let [r: o|g] denote the multi-
plicity of ¢ in w looked at as a direct sum of irreducible representations of K
(e, o= [r:wgl). lfoe G, let 2, be the value of the Casimir operator
of G on any element of the class w. Let Z(G) be the center of G and let Z(I")
= Z(G) N I'. Let K, be the subset of K consisting of those = such that Z(I")
acts trivially on any element of the class z. Let /7, denote the right regular
representation of G on L*[I'\G). Then II, = Y . nr(w)o, h(v) e Z,
nr(w) > 0. Our main result is

Theorem 1.1. There is a constant C, depending only on G so that if t ¢ K r
and if [Z(I")] is the number of elements in Z(I"), then

vol (I"\G)

) the _ [Z(1")]
,,,%‘; nr(w)lz: o|glet* = Cqd, ()i

+ o(t~2?) ast—0, t>0,

where vol (I'\G) is the volume of I'\G relative to a fixed choice of Haar
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measure on G, and d = dim G/K = dim G — dim K.

It should be pointed out that if ¢ is the class of the trivial representation of
K,1,then[1: w|zg] =0or1forwe G.

Using the Girding inequality we give a simple proof of the following result
of Gangolli-Warner [5] (for - = 1), Harish-Chandra (unpublished) in general.

Theorem 1.2. If ¢ ¢ K, then

2 [ olglnp(@)(1 + [2,])7%7 < o

for all e > 0, d = dim (G/K) as before.

Of course, if 7 ¢ K r then [z: w|x] = 0 when n.(w) = 0. Hence Theorem
1.2 has interest only in the case r € K.

The above theorem combined with Theorem 1.1 and a Tauberian argument
(see Gangolli [3], [4]) implies the Gelfand conjecture for split rank G equal
to one. In this case the result has already been proved by Eaton [1].

2. The equivariant heat equation

Let M be a compact, connected manifold, and let G be a finite group acting
effectively on M by diffeomorphisms (that is, if gx = x for all x ¢ M, then g
is the identity element of G). We include the following well-known result for
completeness.

Lemma 2.1. If gec G, g # e (e: the identity of G) and M, = {x ¢ M|gx
= x}, then M, has measure zero in M (see the proof for the meaning of this).

Proof. Let <, ) be a Riemannian structure on M so that G acts by iso-
metries. Let p, e M,. Let Exp,, be the exponential map of (M,<{ ) (see
Helgason [8]), and let r > 0 be so small that if B, (r) = {x ¢ T(M),, | <{x, x){r%,
then Exp,,: B,,(r) — U = Exp, (B,,(r) is a difftomorphism. If ge G — {e}
and x e T(M),,, then g - Exp,,(x) = ExXp,,(84p,(*)) (8xp, is the differential of
the action of g at p)). Thus, if {(x,x)>{r* and g- Exp, (x) = Exp,(x), then
84p,(x) = x. Now g,, preserves {, » at p, Hence, if V, ={xe
TM),, | 84p,X = x}, then T(M),, =V, @V} and, by the above, Exp, (V)
=UNM,IftV, =TM),, then g Exp,(x) = Exp,(x) for all X ¢ T(M),,.
Since Expy(T(M),,) = M, g is the identity, and therefore dim V',, < dim T(M),,.
Thus Exp,,(V,,) is a submanifold of U of dimension less than n. Hence UNM,
has measure zero relative to any coordinate system. Since M, can be covered
by a finite number of such U, the result follows.

Corollary 2.2. Let M = {x e M|gx # x for any g + €¢}. Then M — M
has measure zero in M.

Proof. M — M = UgeeM,.

Let E —2> M be a C~ Hermitian G-vector bundle over M. That is, E is a
complex vector bundle over M. If E, = p~'(x), then there is { , >, an inner
product on E, varying smoothly with x, and G acts on E by diffeomorphisms
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such that gE, C E,., and g: E, — E,., is a linear isometry of the fibres.

Let C=(M ; E) denote the space of C* cross-sections of E, and let (g - f)(x) =
gf(g7'x) for g € G, f e C~(M, E). Suppose that there is an elliptic operator D :
C>(M; E) —» C~(M; E) so that the following hold :

(1) D(@g-f) =g-(Df.

(2) If ¢ e T(M)¥, then o(D)(§) = —<£ &),
where T(M)* is the cotangent bundle of M, and a(D) is the top order symbol
of D, and { , > is a Riemannian structure on M.

(3) 1If g is the Riemannian measure on M corresponding to { , >, then

forf, e C*(M; E), i = 1, 2, defining IM (), H,(x) >dp(x) = (f,, f,) we assume

(Dfy, f2) = (fi, Df,) and (Df, f) > 0 for f e C~(M ; E).

Actually results similar to the ones we shall derive are true under very much
less stringent conditions than (1), (2), (3).

Let £E—> R x M be the pull-back bundle pFE = {(t,v)|te R,v ¢ E},
I X p: pfE — R X M the projection, and L = 9/dt 4+ D the evolution oper-
ator associated with D.

Let C>(M; E), = {fe C*(M; E)|Df = 2f} for xe R. If C*(M ; E), # (0),
A€ R, then 1 > 0. Giérding’s inequality (see Palais et. al. [10], F. Warner [3]
or Greenfield and Wallach [7]) implies

Lemma 2.3. Y,.,dim C*(M; E),27¢** < oo for all e > 0, d = dim M.

If ¢, f, g e C>(M ; E), then define

fM (f ® 9)(x, Y)g(»)dy = JM {8, 6O >duMf(x) .

Let EQE — M X M be the exterior tensor product of E with itself. If
heC~(E & E), then J h(x, y)¢(y)dp(y) makes sense for ¢ e C*(E).
M

For 2¢R and 2> 0, let ¢,,,---,¢;,, be an orthonormal basis of
C>(M; E), (dim C>(M; E), = n, < o by the elliptic regularity theorem).
Then Lemma 2.3 implies that

% e (£ .08 $,00) = K, 2,)
B i=
defines a C= cross-section of
PHE @ E)ooysarsar > (Pot, %,5) = (x,9)) .

It is well known and easily proved that if ¢ € C*(M ; E), then the unique solu-
tion to the Cauchy problem :
(i) Lf=0,
(i) lim f(z, x) = $(x)
136
is given by
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(¢, %) = jM K(t, x, D0)da() .

Set I3(E) equal to the space of all f e C=(M ; E) such that g-f = f for g ¢ G.
If ¢ € I3(E), then the uniqueness above implies that if Lf = 0 and 11m flt, x) =
t>0
&(x), then g-f(¢,g7'-x) = f(¢, x) for ge G.
Let C°(M; E)} = C~(M; E), N I3(E). Then we may assume that b1
*++, ¢, m, form an orthonormal basis of C*(M ; E)}. Let

Kolt:x,3) = 3 e 5 6,0 © 4,.0) -

Let (g-H(, x) = gf(z,g7*- x) for fe C*(R x M; E) and geG. Let I; (E) be
the f in C=((0, o) X M; E) such that g-f = f for g ¢ G.

Clearly, if (K()¢)(x) = fM K(, x, y)p(»)dy, t > 0, then K(2) : I3(E) —>I;;’(E).

If (Kg(H)g) = I Ks(, x, y)p(y)dy for t > 0, then K;(8): C*(M; E) — I3(E).

vaeE and we E,, thenset(g®l)(v®w)_gv®w, (1®g)(v®w)
v gw. GRMNWROW) = gv @ hw, g,he G. Hence G X G acts on E Q E.
Clearly

Kot x,y) = ﬁ I, E®DK(Egx)

where [G] is the number of elements in G.

We also look at x — K(¢, x, x) and x — K(2, x, x) as a C* cross-section of
Hom (E, E). Let I be the identity cross-section. The next result is classical, so
we will only sketch its proof.

Lemma 2.4. (a) K(t, x,x) = @Qrt)~ %, + Ot~ 9V ast — 0, > 0.

(b) Let p be the Riemannian metric corresponding to { , » on M. Then
there are constants C > 0, h > 0 so that

| K(t, x, y)|| < Ct~¢%exp (—hp(x, y)*/1) .

Here the norm is relative to the tensor product Hermitian structure on E QE.

Proof (outline). Let ¢ > 0 be such that

(@) Exp,:B,(e) — B(p; ) = {x e M|p(x, p) < ¢} is a diffecomorphism for
pPeM.

(b) E| 3., is a trivial bundle for p ¢ M.

Letp, -+, py € M be such that if U, = B(p;;¢/2), Uy U --- U Uy =M.
Let W, = B(p;;¢). Let {xi,.-.,xi} be a corresponding system of normal
coordinates on W,, and ¥, = (x%, - - -, x%) the corresponding chart (¥ ,(W,) =
{@y, - x) | D x2<e}). Let ¥t Ely, — W, X C™ be a vector bundle iso-
morphism, and let ¢,, - - -, #y be a partition of unity for M, supp ¢, C U,.
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Let&, e C*M), 0< &:(x) < 1,xe M, supp & C U,;, &(x) = 1 for x e supp ¢;.
If feC*(M;E), then F; =Uofo¥7:¥,(W) - U (Wy) X C™, Fy(x) =
x, f;(x)). T;0Df o ¥t = (x, Dfi(x)) where

2 .
9 +sza

+ C*,
0x,0x, oxy,

D; = —} ay

where (ai;(x)) is a positive definite matrix b%, C* e C=(¥';(W;), End(C")). Let
(@>*(x)) = (ai,(x))~?, and set

Zi(t, x,) = (4zt)~¢" exp ( —7411— T a0 (5 — ) — yl))

fort > 0.
Define for f e C*(M ; E),

ZOHG) = % &(x)w;l(x, j S ONZ(t, U (), wi(y))fi(y)dmy)) .

Then it is easily seen (see Friedman [2, Theorem 1, p. 4]) that

lim (Z()H(x) = f(x)
130
for xe M. It is also clear that Z(f) has a C> kernel Z(t,x,y). That is,
ZOHE@ = [ 20,5 9/0)du0) where Z(t,x,5) ¢ E, O E,.
If feC=((0, ) X M; E), g C>(M; E) define L(f ® g) = Lf ® g. Argu-
ing as in Friedman [2, Chapter 1, § 4] we define
@1(t> X, }’) = _LZ(t; X, J’) .

Supposing that @, has been defined, set
t
0.t,x,3) = =\ [ 12(0,%8)00,¢, du(@)ds .

Then the above arguments of Friedman imply that if @(z, x, y) = i D, x,y),
v=1

then @ converges uniformly and absolutely on compact subsets of (0, o) X
M X M to a C* cross-section of C=((0, o) X M X M ; P¥(E® E)). Furthermore
we have that there are C > 0, 27 > 0 so that

@ |2t x,)]| < Ct” exp (—%p(& y)Z) ,

®) [18(t, x,y)|| < Cr- @+ exp (—ﬁtpu, y>2) ,
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© [ILZ(t x,)|| < Ct@*V7 exp (—ép(x, y)Z)

for0<t<T< oo,x,yeM.
Also arguing as in [2, Theorem 8, p. 19] we see

K(t,x,y) = Z(t, x,y) + j jM Z(t — a,x,£)(, &, dpE)do .

Using [2, Lemma 3, p. 15] we see that if

Vi, x,y) = j j 2t — 0,%,9)0(0, & M@)o ,

then
1V, x,y)|| < Ct~@*D2exp (—%p(x,y)z)

for0 <t <T.

The lemma now follows from the fact that Z(¢, x, y) obviously satisfies (1),
(2) of the lemma.

Lemma 2.5. Let for 2¢ R, m; = dim C*(M ; E)} = dim {f e C*(M ; E) |

Df = 2f,g-f = f for all g ¢ G}. Let vol (M) = f dyy(x). Let m be the fibre
M
dimension of E. If d = dim M, then

3 me# = m vol (M)

m ~a/2
: = WG] Gy T

ast— 0,1 >0.
Proof. If f,ge C*(M;E), define tr(f(x) ® gx)) = {f(x),g(x)>. Then
clearly

> me i = jM tr (Ko(t, %, ©)dpz(®) .
Now

Kot x,y) = -[_cl;TK(t’ x,y) + T(l;—]gé E®1D-Kt, g x,y) .

Thus Lemma 2.4 will imply the lemma if we can show that if ¢ # e then
[, 16 ® DK 87x, D) ldpu) = o7

ast—0,¢>0.
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Let now g € G — {e} be fixed and ¢ > 0 be given. Let U be open in M so that

U>M,., (see Lemma 2.1) andJ‘ dpy(x) < 3e CV, C and V to be determined.
U
Let

1) = jM (e ® DK, g%, ) |dpy(x) = jM 1K@, g7x, %) [dpsx) -

Then
10 = [ IKG g%, 0]duo + [ K870 |du)
Now
1K, g7, )| < C1-9% exp (—%p(g‘lx, x)) < crany |
v (= o)
= max exp | ——p(x,¥)) .
z,yeM t
t<1
Thus

Al < [ K g7 0 ) + de

Now M — U is compact and M — U C M — M,_,. Hence there is § > 0 so
that if xe M — U then p(g~'x,x) > 6. Applying Lemma 2.4 again we find
that 7¢2J(f) < }e + C vol (M)e ¢ if t < 1. Take p > 0 so that e #*#/¢ <
3eCvol (M) if 0 < ¢t < p. Then 142](t) < e for 0 <t < p. q.e.d.

In the next section we apply these results to I'\G.

3. Applications to ['\G

Let G be a semi-simple Lie group with finite center and such that G has no
connected, compact, normal subgroups. Let K C G be a maximal connected,
compact subgroup. Let X = G/K. Let g be the Lie algebra of G, and B the
Killing form of g. Let ¥ C g be the Lie algebra of K, and p the orthogonal
compliment to { in relative to B. Then it is well known that B|,,, is positive
definite. We put the G-invariant Riemannian structure < , > on X ; this cor-
responds to making /7,,: p — T(X).x(I : G — G/K is the natural map, and
I1,, is its differential at e ¢ G) an isometry of Bl,,, and { , .

Let now (z, ¥) be an irreducible unitary representation of K. We form the
G-hermitian vector bundle over X, G %<I VQV*) = V where G é(z VR V*

/4 .
is the associated bundle to the principal bundle K — G — X (cf. Kobayashi-
Nomizu [9] or Wallach [12]). Then ¥ is completely described as follows :
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(1) If g is in G, then g induces a linear map ¥, — ¥V, which we denote
v — g-v. The corresponding action of G on ¥ is C*.

(2) The representation of K on V,, given by v — k-v, v € V,y, is equiva-
lent to (r ® I, V @ V*) as a unitary representation.

If feC>(X;V), let (g-H(x) = gf(¢™*-x). Then g-fe C=(X; V) for fe
C(X; V). Let X,,.--,X, be a basis of g, and let Y,, - - -, Y, be such that

B(X,;,Y,) = §;;. Then defining (X-f)(x) = %(exp tX -f(exp (—tX)-x)|;_, for

Xegand fe C~(X; V) we set

Qvf = R XXof .

Thus Q,g-f = gQ,f, 8¢ G.

A simple computation shows that if & € T(X)*,;, then a(2y)(€) = (&, &)l.
Define a G-invariant connection on ¥V by (FV.f)(ek) = (X-f)(ek) for ue
T(G/K)ex, u = I1, (X), X € p. The corresponding connection on V satisfies

X- W =FWp + C Py

Let /? be the connection Laplacian on ¥V corresponding to the connection V/
and the Riemannian structure on X.

Lemma 3.1. Let Qr = — >, Y? where Y, ---, Y, form a basis of { so
that B(Y;,Y;) = —d;;. Let 2, be defined by t©(2g) = A1 (Schur’s lemma im-
plies this makes sense). If f e C=(X ; V'), then

Qvf =V + 4f .
Proof. If feC=(X; V), define f(g) = g~'-f(gk). Then f: G — V,; and
f(gk) = k'f(g) for keK, geG. Let (L) (x) = ¢(g7"'x) ~for 6:G— Ve,
where ¢ is of class C, and g, x ¢ G. We note that if A(f) = fforfe C=(X; V)

and we define B(¢)(gk) = g-¢(g) for ¢: G — Vi, then $(gk) = k7' ¢(g),
keK, geG. Thus B(g) e C>(X; V) and AB(¢) = ¢, BA(f) = f.

Let (Rx¢)(g) = Ed;gb(‘g'e,\cth)],=0 for X e g and ¢: G — V., ¢ being of class

C=. Then a direct computation shows that if X, - - -, X, form an orthonormal
basis of p relative to Bl,,,, then A(F*) = 2., R}, A(f). Also

AQyf) = éR}iA(f) - ﬁ:’jl R%,A(f
= iR‘f’nA(f) + 2(R)AW) = ATH) + 2A() .

Applying B gives the result.
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Let now I' C G be a discrete subgroup so that /'\G is compact and
gl'g™* N K = {e} for all ge G. Then I acts freely and properly discontinu-
ously on X and V. We may thus form E = I'\V - I'\X = M.

Since I" acts by isometries on X, we may “push” the Riemannian structure
and volume element on X down to M. The Hermitian structure on V' induces
a Hermitian structure on E. Finally £, and F'? are G-invariant operators on
¥, and thus the induced second order elliptic operators on E. We still have
Q v — V 2 + l,l .

Set D = —(2y — 2I) = —V* Then (Df,f) > 0, D = D* and (D, &) =
—<&, &1, Thus D satisfies (1), (2), (3) of §2.

Let f(g)(k) = f(gk) for fe C*(I'\G). Then f: I'\G — C=(K). Let C(K)
be the subspace of C=(K) spanned by the matrix entries of (z, V). Let y, be

the character of (¢, V). Define f.(g) = jK 1:(&x.(K)f(gk)dk for f e C=(I'\G).

Then f.: I'\G — C7(K) and f.(gu)(k) = f.(g)(uk). Let C>(I'\G) = {fe
C>(I'\G)|f. = f}. Let (uk)p)(x) = ¢(k~'x) for ¢ e C2(K), and k,x e K. We
therefore see that if f € C=(I"\G), then f: I'\G — C=(K) and f(gu) = p(u)~'f (x)
for x,u e K.

Let 11, be the right regular representation of G on L*/"\G). That is, if
¢ e L*(I"'\G) then (z(x)¢)(I'g) = ¢(I'gx) for g, x e G. Then it is well known
that 7, = Y.cq nr(@)w. G is the set of all equivalence classes of irreducible
unitary representations of G.

If2e¢R, let G, = {o e G|n,(2) = —I for every =, in the class w}.

Lemma 3.2. Set C*(M; E), = {¢ ¢ C>(M ; E)| D¢ = Ap}. Then

dim C*(M; E), = Y, np(w)-lr: olgld.,

w€G1-2,

d., = dim V = y.(e).

Proof. E can be looked upon as the set of equivalence classes of pairs
x,v),xe I'\G, veVQ®V* with (xk, (c(k) ® )W) = (x,v) for k e K. Let
[x, v] denote the equivalence class of (x, v). Let C~(I"\G; 7) denote the space
ofall ¢: I'\G -V ®V*, ¢ e C~ and ¢(xk) = (z(k)~' ® D¢(x). Define B(4)(x)
= [x, g(x)] for ¢ € C>(I’\G; ). Then B defines a bijection of C*(I'\G; 7)
and C~(M; E). Now as a representation of K, (u, C7(K)) is equivalent to
(t®I1,V ® V*). Thus we have B~': C*(M ; E) — C(I"\G). B! is bijective
and extends to a bounded bijective operator on the appropriate L’*-completions.
But then B (C2(M E)) = {fe Co(IN\GD | 2f = —QA — )f}. It fe C2(I'\G),
then f = X, f., f. € np(wH,, (z,, H,) € o. Thus Qf = 3 1.f,, and the result
now follows.

Suppose now that ', C G is an arbitrary discrete subgroup so that I',\G
is compact. Then there is a normal subgroup I” of I, so that /" acts freely and
properly discontinuously on X, and if H = [',\I" then H is a finite group of
isometries of 7"\ X (cf. Raghunathan [11]).
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Now E —» M = '\ X is an H-vector bundle, since E is the associated bundle
to I'\G — I'\X and H acts on the left on I'\G. Let Z(I",) = I'; N Z(G),
where Z(G) is the center of G. We note that since Z(G) C K, Z(I')) C K.
Also, if z € Z(G) then ©(z) = £,(2)], &,: Z(G) — T" being a character. Thus, if
ye€Z(') and h = yI', then h-v = &,(y)v for v € E. We therefore see that
CM;;EY={feC~(M;E),|h-f=fheH}+0onlyif t[;,, =1I.

We assume that z|,,, = I. Arguing as above we find

Lemma 3.3. dim C*(M; E); = X ,c4,_. nr(o)c: olgld,, where I, =
> nr(w)w, and 11, is the right regular rep;esentation of G on LX(I"|\G).

Now H does not necessarily act effectively on /'\X. Let H,= {h e H|hl'x =
I'x for all x e X}. Then, as is easily seen, H, is the image of Z(I")) in H.
Since Z(I') N I' = (e), we see that [H)] = [Z(I")]. Finally E is an H/H,
vector bundle if and only if H, acts trivially on the fibres of E, that is, if and
only if r € K, (see the introduction for the definition of K ).

Combining the above observations with Lemma 3.3 and Lemma 2.5 we see

" e 3 e np e ol = {ZZ{( 113]] 1472 yol (M)d?

+ o(t~47?) ast—0, t>0.

Normalize Haar measure dg on G so that if X}, - -, X, form a basis of g
so that —B(X;,60X;) = 6;; 0|, =1,6|, = —I), thendg(X,, ---,X,) = 1. Let
Cz* be the volume of K relative to the Riemannian volume element on K cor-
responding to the inner product — Bj,,,. Then

vol ['\G) = [[",/I']'vol (I'\G) = [I',/I'T'Cgtvol [\ X) .

Hence C; vol (I";\G) = [I";/I"]™*-vol (I"\X). These observations combined
with (1) above prove

Theorem 3.4. There is a constant C; depending only on G so that if I is
a discrete subgroup of G with I'\G compact and if ¢ € R r, then

ZA nr(w)r: olglet™ = Cqd, [Z()] vol (I'\G) + o(t=?) ,
weG (4n.t)d/2

ast—0, t>0.

We also note that Lemma 2.3 combined with Lemmas 3.2 and 3.3 imme-
diately imply Theorem 1.2 of the introduction.
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