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AN ASYMPTOTIC FORMULA OF GELFAND
AND GANGOLLI FOR THE SPECTRUM OF Γ\G

NOLAN R. WALLACH

1. Introduction

In [6], Gelfand outlined a proof of an asymptotic formula for the distribu-
tion of multiplicities of spherical principal series in U(Γ\G), where G is a
connected semi-simple Lie group with finite center and Γ is a discrete sub-
group of G so that Γ\G is compact (see Corollary 1.3 for a formulation of
this formula). As pointed out by Gangolli [3] the formula of Gelfand is mar-
ginally wrong and the proof of the formula (even in the case G = SL(2, R))
has a gap. In Gangolli [3] a method using the heat equation was used to prove
the (corrected) Gelfand formula for G complex semi-simple. Also Gangolli
and Warner have in an as yet unpublished manuscript proved the Gelfand for-
mula if Γ has no noncentral elements of finite order. In this paper we use the
asymptotic expansion of the fundamental solution of the heat equation to prove
a general asymptotic formula which we now describe.

Let G and Γ be as above. Let K be a maximal connected compact subgroup
of G. Let G (resp. K) denote the set of equivalence classes of irreducible unita-
ry representations of G (resp. K). If τ e K, let dτ be the dimension of any ele-
ment of the class τ. If ω e G, and τ € K, then let [τ: ω\κ] denote the multi-
plicity of τ in ω looked at as a direct sum of irreducible representations of K
(i.e., ω = Σ[τ: ω\κ]τ). If ω e G, let λω be the value of the Casimir operator
of G on any element of the class ω. Let Z(G) be the center of G and let Z(Γ)
— Z(G) Π Γ. Let KΓ be the subset of K consisting of those τ such that Z{Γ)
acts trivially on any element of the class τ. Let Π Γ denote the right regular
representation of G on U(Γ\G). Then ΠΓ = Σ ω 6 £ nΓ(ω)ω, nΓ(ω) € Z,
nΓ{ω) > 0. Our main result is

Theorem 1.1. There is a constant CG depending only on G so that if τ e KΓ

and if [Z(Γ)] is the number of elements in Z(Γ), then

Σ nΓ(ω)[τ: ω\κ]e»« = CGdτ

 [ f ™ vol (Γ\G)
a>zG (4πt)d/2

+ o(Γd/2) ast-+Ό, t>O,

where vol (Γ\G) is the volume of Γ\G relative to a fixed choice of Haar
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measure on G, and d = dim G/K = dim G — dim K.
It should be pointed out that if τ is the class of the trivial representation of

K, 1, then [ 1 : ω\κ] = 0 or 1 for ω e G.
Using the Garding inequality we give a simple proof of the following result

of Gangolli-Warner [5] (for τ = 1), Harish-Chandra (unpublished) in general.
Theorem 1.2. If τ e K, then

Σ [r : ω\κ]nΓ(ω)(l + W ) " * ' 2 - < oo

for all ε > 0, d = dim (G/K) as
Of course, if τ ‡ KΓ then [r: ω\κ] = 0 when rcr(ω) Φ 0. Hence Theorem

1.2 has interest only in the case τ e KΓ.
The above theorem combined with Theorem 1.1 and a Tauberian argument

(see Gangolli [3], [4]) implies the Gelfand conjecture for split rank G equal
to one. In this case the result has already been proved by Eaton [1].

2. The equivariant heat equation

Let M be a compact, connected manifold, and let G be a finite group acting
effectively on M by diffeomorphisms (that is, if gx = x for all x e M, then g
is the identity element of G). We include the following well-known result for
completeness.

Lemma 2.1. 7ƒ g € G, g Φ e (e: the identity of G) and Mg = {x € M \ gx
= x}, then Mg has measure zero in M (see the proof for the meaning of this).

Proof. Let <( , ) be a Riemannian structure on M so that G acts by iso-
metries. Let p0 β Mg. Let Exp^ be the exponential map of (M, < )) (see
Helgason [8]), and let r > 0 be so small that if BPo(r) = {x <= T(M)Po \ <JC, x)<r2},
then Exρ P o : BPo(f) —> U = Exp^CB^(r)) is a diffeomorphism. If g <= G — {e}
and x e Γ(M)p0, then g • ExpPo(x) = Exp^/g^^/x)) fe^^,„ is the differential of
the action of g at p0). Thus, if (x, x}(r2 and g ΈxpPo(x) = ExpPo(^), then
5*POW = Λ• N o w ^*PO preserves < , > at p0. Hence, if 7 P o = {x €
Γ(Af)pJg*p^ = Λ}, then Γ(Af)p„=7,„ΘKi and, by the above, ExpPo(VPo)
= U ΠMg. If F P o = T(M)Po, then g • Expo(x) = Expo(x) for all X e Γ(Aί)Po.
Since Exp0(Γ(M)Po) == M, g is the identity, and therefore dim VPo < dim T(M)Po.
Thus Exp^(F^) is a submanifold of £/ of dimension less than n. Hence U Π Mg

has measure zero relative to any coordinate system. Since Mg can be covered
by a finite number of such U, the result follows.

Corollary 2.2. Let M = {x eM\gx Φ x for any g Φ e\. Then M — M
has measure zero in M.

Proof. M - M= UgΦeMg>

Let E —P-> M be a C°° Hermitian G-vector bundle over M. That is, E is a
complex vector bundle over M. If Ex = p~ 1 ^), then there is < , }x an inner
product on Ex varying smoothly with x, and G acts on E by diffeomorphisms
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such that gEx c Egmχ and g: Ex^ Eg.x is a linear isometry of the fibres.
Let C°°(M; E) denote the space of C°° cross-sections of E, and let (g • f)(x) =

gf(g~1*) for g e G, ƒ € C°°(M, 2s)• Suppose that there is an elliptic operator D:
C~(M; E) -> C°°(M; £) so that the following hold:

(1) D(g.f) = g•(Df)•
(2) If ξ <= Γ(M)*, then σ(D)(f) - - < ? ξ>I,

where Γ(M)* is the cotangent bundle of M, and σ{D) is the top order symbol
of D, and < , ) is a Riemannian structure on M.

(3) If μ0 is the Riemannian measure on M corresponding to < , ) , then

for ft <ε C°°(M ;E),i = 1, 2, defining f <£(*), f2(x)}dμ0(x) = (ƒ1? ƒ2) we assume

(Dƒ1? ƒ2) = (ƒ1? Dƒ2) and (Dƒ, ƒ) > 0 toτf € C°°(M; £ ) .
Actually results similar to the ones we shall derive are true under very much

less stringent conditions than (1), (2), (3).
Let E -> R x M be the pull-back bundle p‡E = {(*, v) 11 e /?, v e £},

I X p: pfE -+ R X M the projection, and L = 3/3t + D the evolution oper-
ator associated with D.

Let C~(M; £) , = {ƒ e C~(Af ;E)\Df = λ†} for ;c 6 i?. If C~(M; £ ) a ^ (0),
Λ e i?, then λ > 0. Garding's inequality (see Palais et. al. [10], F. Warner [3]
or Greenfield and Wallach [7]) implies

Lemma 2.3. Σ*ΦO dim C°°(M; E)λλ~d/2-ε < oo ƒor all ε > 0, d = dim M.
If ^, ƒ, g <= C°°(M; £) , then define

ί (f&g)(x,y)Φ(y)dy=[ <g(y),Φ(y)>dμQ(y)f(x) .

Let E ( x ) £ - > M χ M be the exterior tensor product of E with itself. If

h € C°°(E ® E), then ί h(x, y)φ(y)dμo(y) makes sense for φ e C°°(E).

For λ€ R and /I > 0, let φ2fl9 • • •, ̂ j Λ i be an orthonormal basis of
C°°(M;E)λ (dim C°°(M; J5)̂  = nλ < oo by the elliptic regularity theorem).
Then Lemma 2.3 implies that

Σ e-» (Σ ΦU*`) ® Λ,i(y)) - κα, Λ, y)
λ \ί=l /

defines a C°° cross-section of

P*(B ® β)l(o,co,x3fxjf , ( ^ ( ί , Λ, y) = (Λ, y)) .

It is well known and easily proved that if φ € C°°(M; £) , then the unique solu-
tion to the Cauchy problem :

(i) Lf = O,
(ii) lim f(t, x) = φ(x)

ot-+o
ί>O

is given by
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f(t, x) = j M K(t, x, y)φ(y)dφ) .

Set I%(E) equal to the space of all f e C°°(M; E) such that g•f = fίor geG.

Itφ ζ IQ(E), then the uniqueness above implies that if Lf = 0 and lim ƒ(ί, x) =
ί->O
ί>O

φ(x), then g. ƒ(ί, g"1.*) = f(t, JC) for g e G.
Let C°°(M; E)° = C~(M; £) , Π I%(E). Then we may assume that φitl,

• • •, 0iϊTOjl form an orthonormal basis of C™(M; E)\. Let

K0(t9x,y) = Σ e~u Σ
i = l

Let (g•f)(t, x) = gf(t, g-`-x) for ƒ e C~(Λ X M; £ ) and g e G. Let / | ( £ ) be
the ƒ in C"((O, M ) X M ; I ) such that g•ƒ = fίoτ gς.G.

Clearly, if (X(/)^)(*) = f K(t, x, y)φiy)dy, ί > 0, then K(t): I%(E)^I%(Š).
J M

If (Ko(;t)φ) = ί K0(t, x, y)φ(y)dy for t > 0, then KG{t): C~{M; E) -> ƒ | ( £ ) .

If v e £ Λ and w 6 £ y , then set (g (x) l)('y (x) w) = gv (x) w, (1 (x) g)(v ® >v) =
v ® gw. (g (x) h)(v ®w) = gv® hw, g,heG. Hence G X G acts on £ (x) E.
Clearly

X ( / J C y ) A
[G]

( g ®

where [G] is the number of elements in G.
We also look at x —• X(ί, JC, x) and ;t —> ^ G ( ί ? ^, x) as a C°° cross-section of

Horn (E, E). Let / be the identity cross-section. The next result is classical, so
we will only sketch its proof.

Lemma 2.4. (a) K(t, x, x) = (AπtYd/2Ix + O(r'd'1)/2) ast->O,t>O.
(b) Let p be the Rίemannίan metric corresponding to ( , `) on M. Then

there are constants C > 0, h > 0 so that

\\K(t,x,y)\\ < CΓ*'*exp(-hp(x,yy/t) .

Here the norm is relative to the tensor product Hermitian structure on E®E.
Proof (outline). Let ε > 0 be such that
(a) Expp : 2?p(ε) —> B(p; ε) = {x eM\p(x, p) < ε} is a diίϊeomorphism for

p eM.
(b) EI B(p;ε) is a trivial bundle for p e M.
Let p19...`,pNeAf be such that if [/< = B(pt; ε/2), ^ U • • • U UN = M.

Let Wt = B(pi\ ε). Let [x{, • • •,JCJ} be a corresponding system of normal
coordinates on Wi9 and Wt = (JC{, • • •, 4 ) the corresponding chart (^(W*) =
{(^i, `•',Xd)\Σxl< ε2D• L e t ψt : ‰ - > ^ X ^ w be a vector bundle iso-
morphism, and let φ19 • • -,φN be a partition of unity for M, supp ^ C C/̂ .
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Let ξt e C~(M), 0 < ξi(x) <l,xς,M, supp ‰ c C/ί; ‰O) = 1 for x e supp 04.
If ƒ 6 C~{M;E), then Ft = ψofoψ^: ψt(Wύ -» ^ < W X C», F<(JC) =

(JC, ƒt(*)). y« o £>ƒ o r r 1 = (JC, DΛW) where

Dt = -Σ ««^-ζ- + Σ *i-/- + c«,
xx Xkaxι

where (a*wW) is a positive definite matrix b\,O e C~(ri(^i),End(C1)). Let
(α*•*'(jc)) = (ai,(*))"1. and set

Z,(ί,*,y) = (4πO-ί/2exp (– J - Σ α'•*••(y)(** - ?*)(*» - )
\ At k,l

for t > 0.
Define for feC~(M;E),

N -if Γ

Then it is easily seen (see Friedman [2, Theorem 1, p. 4]) that

lim (Z(Oƒ)W - ƒ(jc)
ί>O

for xeM. It is also clear that Z(t) has a C°° kernel Z(ί, Λ:, y). That is,

(Z(O/)(Jt) = ί Z(t, x, y)j(y)dμ,(y) where Z(t, x, y) e £ x (x) £,.

If ƒ € C-((O, o o ) x M ; l ) , ^ C°°(M; E) define L(ƒ (x) g) = Lf (x) g. Argu-
ing as in Friedman [2, Chapter 1, § 4] we define

Φi(t,x,y) = -LZ(t,x,y) .

Supposing that Φv has been defined, set

Φ,+i(t,x,y) = -^^LZ(tσ,x,ξ)ΦXσ,ξ,y)dμ,(ξ)dσ .

Then the above arguments of Friedman imply that if Φ(t, x, y) = J] φv(t, χ9 y)9

v = l

then Φ converges uniformly and absolutely on compact subsets of (0, œ) x
M x M t o a C " cross-section of C"((O, oo) x M x M; Pf(E&E)). Furthermore
we have that there are C > 0, h > 0 so that

(a) ||Z(/,*,y)|| < Cr""exp ( - — />(Λ:,;

(b) \\Φ(t,x,y)\\<C
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(c) \\LZ(t,x,y)\\ < CΓ^

for 0 < t < T < oo,x,yeM.
Also arguing as in [2, Theorem 8, p. 19] we see

K(t, x, y) = Z(t, x, y) + Γ ί Z(t - σ, x, ξ)Φ(σ, ξ, y)dμ,(ξ)dσ .

Using [2, Lemma 3, p. 15] we see that if

V(t, x, y) = Γ ί Z(t - σ, x, ξ)Φ(σ, ξ, y)dμ,{ξ)dσ ,
Jθ J M

then

ll*U*,:v)ll <

for 0 < t < T.
The lemma now follows from the fact that Z(t, x, y) obviously satisfies (1),

(2) of the lemma.
Lemma 2.5. Let for λ<zR, mλ = dim C°°(M; E)\ = dim {ƒ € C°°(M; E) \

Df = λf,g-f = ƒ ƒor fl// g € G}. L^/ vol (M) = ί έ//i0W• L^^ m b e the fibre
J M

dimension of E. If d = dim M, then

Σ 1† m vol (M) . t*-ήi2\
m1e~u = — — + o(t d/2)

* [G] (4πt)d/2

as t -> 0, t > 0.

Proof. If f,geC~(M;E), define tr(ƒ(jc) ® ^ ( Λ ) ) = <ƒW,g(jc)>. Then
clearly

2 m,έΓ" = f tr ‰ ( ί , x, x))dμjix) .

Now

KQ(f9x9y) = ± i OK(Ux,y) + Σ (g ® D^,^^>O
[G] [G] =̂̂e

Thus Lemma 2.4 will imply the lemma if we can show that if g Φ e then

f life® l)K(t, g~`x, x) \\dμ,(x) = o(Γ*'*)
J M

as t -> 0, ί > 0.
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Let now g € G — {e} be fixed and ε > 0 be given. Let U be open in M so that

U D Mg-! (see Lemma 2.1) and dμo(x) < %ε CV, C and V to be determined.
j u

Let

J{t) = f life® l)K(ί,r'*,*)lkW*) = f IIK(/,g-
J M J M

Then

ƒ(O = f \\K(t,g-%x)\\dμ,(x) + f Il l‰2-^

Now

HK(ί,*-1*,*)!! < Cr^exp (-lip(g-%xή < cr*<Ψ ,

F = max exp ( - — p(x,y)) .
ί<l

Thus

t*'*J(t)<. \ \\K(f,g-%x)\\dμ,(x) + iε.
JM-U

Now M — U is compact and M — U c M — M^_x. Hence there is <5 > 0 so
that if Λ: € M — C7 then ρ(g~ιx, x) > δ. Applying Lemma 2.4 again we find
that td/2J(t) <%ε + C vol (M)e~δ2h/t if ί < 1. Take μ > 0 so that <rδ2/ι/ί <
JεC vol (M) if 0 < ί < μ. Then /ώ/2ƒ(0 < ε for 0 < t < μ. q.e.d.

In the next section we apply these results to Γ\G.

3. Applications to Γ\G

Let G be a semi-simple Lie group with finite center and such that G has no
connected, compact, normal subgroups. Let K c G be a maximal connected,
compact subgroup. Let X = G/K. Let g be the Lie algebra of G, and B the
Killing form of g. Let ϊ C g be the Lie algebra of K, and p the orthogonal
compliment to ϊ in relative to B. Then it is well known that B\pxp is positive
definite. We put the G-invariant Riemannian structure ( , ) o n l ; this cor-
responds to making 77*β: p -> T(X)ek(Π: G -> G/K is the natural map, and
Π*e is its differential at e e G) an isometry of £ | p X ί ) and < , }ek.

Let now (τ, V) be an irreducible unitary representation of K. We form the
G-hermitian vector bundle over Z , G X ( F (g) V*) = V where G X (V <g) F*)

τ<g>I r<g)I

is the associated bundle to the principal bundle K^G • X (cf. Kobayashi-
Nomizu [9] or Wallach [12]). Then V is completely described as follows:
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(1) If g is in G, then g induces a linear map Vx —> Vgx which we denote
v —> g-v. The corresponding action of G on V is C°°.

(2) The representation of K on Vek given by v —* /:•^, Ϊ; e Vek, is equiva-
lent to (τ (g) /, F (x) F*) as a unitary representation.

If ƒ e C - ( * ; F), let (g.ƒ)(jc) = sƒ(g-1-*). Then * . ƒ 6 C " ( Z ; F) for ƒ <=
C~(X; F) . Let X19--.,Xn be a basis of g, and let Y19—-,Yn be such that

B(Xi9 Yj) = δtj. Then defining (X•f){x) = 4 ^ e x P *X-f(&P (-tX).χ‰0 for

Z € g and ƒ € C°°(Z; F) we set

Ωrf=
ΐ =

ThusflFg.ƒ = gΩyf,geG.
A simple computation shows that if £ e Γ(X)*efc, then σ(Ωγ)(ξ) = <f, f>/.

Define a G-invariant connection on F by (FJ)(βk) = (X-f)(ek) for we
T(G/K)ek, u = Π*e(X),X e p. The corresponding connection on F satisfies

* . < ? ? » - < F ^ , ? > + <Ψ,Fzη> .

Let F2 be the connection Laplacian on F corresponding to the connection V
and the Riemannian structure on X.

Lemma 3•l. Let Ωκ = —J^Y\ where Y1? • • • ,Yk form a basis of ϊ so
that B(Yt, Yj) = — δij. Let λτ be defined by τ(Ωκ) = λτl (Schur's lemma im-
plies this makes sense). If f e C°°(Z; F) , then

Ωvf = F2f + λj .

Proof. If ƒ € C~(X; F), define J(g) = g~ι'f(gk). Then ƒ: G-+ Vek and
Kgk) = k~`f(g) for keK,geG. Let (L,0)(Λ) = 0fe-1*) for ^ : G - F e f c ,
where 0 is of class C°°, and g , x e G . We note that if A(f) = ƒ for ƒ e C°°(Z; F)
and we define B(φ)(gk) = g•^(g) for 0 : G-> Fejfc, then ^(gΛ) = k'ι-φ{g),
keK,gεG. Thus 5(0) € C~(X; F) and ΛB(0) = φ, BA(f) = ƒ.

Let (Rxφ)(g) = —φ(gexptX)\t=0 for X e g and φ: G -> FeA;, 0 being of class

C°°. Then a direct computation shows that if Xl9 • • •, Xv form an orthonormal
basis of p relative to B\PX9, then A(V2f) = Σ?=i R\Λ(f). Also

V V

ί=i % i=l

i = l

Applying B gives the result.
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Let now Γ c G b e a discrete subgroup so that Γ\G is compact and
gΓg~1 Π K = [e] for all g e G. Then Γ acts freely and properly discontinu-
ously on X and V. We may thus form E = Γ\V^Γ\X = M.

Since Γ acts by isometries on X, we may "push" the Riemannian structure
and volume element on X down to M. The Hermitian structure on F induces
a Hermitian structure on E. Finally Ωv and V1 are G-invariant operators on
V, and thus the induced second order elliptic operators on E. We still have
Qy = V2 + λj.

Set D = ~{Ωy- λτl) = -V\ Then (Dƒ, ƒ) > 0, D = D* and σ(D,ξ) =
-<£, ξ}L Thus £> satisfies (1), (2), (3) of § 2.

Let f(g)(k) = f(gk) for ƒ <= C~(Γ\G). Then ƒ: Γ\G -> C~(K). Let C?(K)
be the subspace of C"(X) spanned by the matrix entries of (τ, F). Let χτ be

the character of (τ, F). Define ƒrfe) = ί χXe)χMf(gk)dk for ƒ e C~(Γ\G).

Then fτ:Γ\G^C:(K) and fXgu)(k) = fXg){uk). Let CΓ(Γ\G) = {ƒ 6
C°°(Γ\G)|ƒr - ƒ}. Let Oi(A)0)(jt) = ^(Λ"^) for φ e C:(K), and ik,^ e K. We
therefore see that if ƒ e C?(Γ\G), then ƒ : Γ\G^C:(K) and ƒ(gn) = μ{μY'f{x)
for x, w 6 &.

Let 77Γ be the right regular representation of G on L\Γ\G). That is, if
φ e L\Γ\G) then (τrΓ(jc)^)(Γg) = 0(Γg;c) for g , κ G . Then it is well known
that πΓ = Σ ω € G nΓ(ω)ω. G is the set of all equivalence classes of irreducible
unitary representations of G.

If λ e R, let G; = {ω 6 G | πω(fi) = — λl for every π„ in the class ω}.
Lemma 3.2. Set C°°(M; E)λ = {φ ε C~(M ;E)\Dφ = λφ). Then

dim C~(M; E)λ = Σ nΓ(ω) • [T : ω\κ]dτ ,

dτ = dim F = χτ(e).
Proof. E can be looked upon as the set of equivalence classes of pairs

O, v), x € Γ\G, veV(g)V* with (xk, (τ(k) (x) iγιv) = (JC, v) for k e K. Let
[x, v] denote the equivalence class of (x, v). Let C°°{Γ\G; τ) denote the space
of all φ: Γ\G — V <g> F*, 0 € C°° and (̂jcΛ) = (τ(&)-1 ® ƒ)^(jc). Define B(^)(Λ)

= ίx,φ(x)] for ^ € C~(Γ\G; τ). Then ,B defines a bijection of C°°(Γ\G; τ)
and C°°(M;E). Now as a representation of K,(μ,C™(K)) is equivalent to
(τ (x) /, F (x) F*). Thus we have B"1: C^(M; £) -> CΓ(Γ\G). 5" 1 is bijective
and extends to a bounded bijective operator on the appropriate ZΛcompletions.
But then B-\C7(M; E)λ) = {f e CΓ(Γ\G) | i3ƒ = —U — Of}- Π / e CΓ(Γ\G),
then † = Σf<o> fa>z nΓ(ω)Hω, (πω, HJ e ω. Thus Ωf = 2 ^ωƒω, and the result

now follows.
Suppose now that Γj C G is an arbitrary discrete subgroup so that A\G

is compact. Then there is a normal subgroup Γ of Γx so that Γ acts freely and
properly discontinuously on X, and if H = ΓX\Γ then # is a finite group of
isometries of Γ\X (cf. Raghunathan [11]).
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Now E -» M = Γ\X is an //-vector bundle, since E is the associated bundle
to Γ\G -* Γ\X and H acts on the left on Γ\G. Let Z(ƒ"\) = ƒ\ Π Z(G),
where Z(G) is the center of G. We note that since Z(G) C K, Z(ΓJ C £ .
Also, if z e Z(G) then τ(z) = ξτ(z)I, ξτ: Z(G) -> T1 being a character. Thus, if
p e ZCΓ\) and /ι = γΓ, then h•v = ξτ(γ)v for v € £ . We therefore see that
C~(Λf; £)J = {ƒ e C~(M;E)>\h•f = f,h ε H} Φ 0 only if r | Z ( Γ l ) = /.

We assume that τ\ZiΓl) = I. Arguing as above we find
Lemma 3.3. dim C°°(M; E)\ = ‰^λ_λ nΓl(ω)[τ: ω\κ]dτ, where ΠΓl =

Σ nΓl(ω)ω, and ΠΓl is the right regular representation of G on L2(Γλ\G).
Now H does not necessarily act effectively on Γ\X. Let Ho = {h € H\ hΓx =

Γx for all x <= X). Then, as is easily seen, Ho is the image of Z(Γλ) in H.
Since Z(ƒ\) Π Γ = (e), we see that [fl0] = [Z(Γ,)]. Finally E is an H/Ho

vector bundle if and only if Ho acts trivially on the fibres of E, that is, if and
only if r € KΓl (see the introduction for the definition of KΓl).

Combining the above observations with Lemma 3.3 and Lemma 2.5 we see

(ω)dτ[τ: ω\κ] = i ξ ^ i r ^ 2 vol (M)d\
(l) a,a [Γ,\π

+ o(Γd/2) as t -> 0 , t > 0 .

Normalize Haar measure dg on G so that if X19 • • •, Xn form a basis of g
so that -B(XU ΘXj) = δtj (θ\t = /, θ\p = - / ) , then dg(X19 • • •, Xn) = 1. Let
C^1 be the volume of K relative to the Riemannian volume element on K cor-
responding to the inner product —B\ΐxΐ. Then

vol(Λ\G) = [ΓJΓ]-`.vol (Γ\G) = [ƒy/T`Q*vol(Γ\Z) .

Hence CG vo\(Γ,\G) = [ΓJΓ]~1-vol (Γ\X). These observations combined
with (1) above prove

Theorem 3.4. There is a constant CG depending only on G so that if Γ is
a discrete subgroup of G with Γ\G compact and if τ € KΓ, then

βΣ nΓ(ω)[π: ω\κ]e'*^ = CGdτj^β- vol (Γ\G) + o(r<^) ,

ast^>O, t > 0 .

We also note that Lemma 2.3 combined with Lemmas 3.2 and 3.3 imme-
diately imply Theorem 1.2 of the introduction.
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