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REMARKS ON CONFORMAL TRANSFORMATIONS

S. T. YAU

1. Introduction

Let (M^gJ and (M2,g2) be two connected riemannian manifolds. A dif-
feomorphism from Mx to M2 will be said to be conformal if the pull back of
the metric g2 is proportional to gλ. For the two-dimensional case, these dif-
feomorphisms are just holomorphic transformations between the underlying
complex structures of Mx and M2. For dimension greater than two, under the
condition that (M1,gι) = (M2,g2) various authors have been trying to find
conditions for a one-parameter group of conformal transformations to be
actually a one-parameter group of isometries. It seems that the basic philosophy
for such a phenomena is similar to that of Schur's theorem, which states that
if the sectional curvature of a connected riemannian manifold of dimension
greater than two is constant at every point, then the manifold has constant
curvature throughout this paper by curvature alone we always mean sectional
curvature. To verify this principle, we modify the Schur's type argument to
generalize and simplify some known theorems. Some new phenomena are also
obtained.

In § 1, using a result of H. Omori we prove that if M is complete with the
sectional curvature bounded from below and the scalar curvature bounded
above by a negative constant, then every conformal transformation on M
preserving the scalar curvature is an isometry. This result was obtained by
M. Obata [12] in case M is compact.

In § 2, we prove that if M is einsteinian and dim M > 3, then either M
has constant curvature or every conformal transformation is a homothety.
This is true even for pseudoriemannian manifolds. Kulkarni [8] proved this
fact under some additional assumption, namely, at a generic point the curvature
function (of the grassmannian of two planes) has only nondegenerate critical
points. For the four-dimensional case, he assumed the manifold to be nowhere
constantly curved. If M is complete, the general result was obtained by Yano
and Nagano [16], and Nagano [11]. A special case of [11] was reproved in [8].

In § 3, we study the totally geodesic submanifolds of a conformally flat
manifold. Using these results we are able to prove that a nontrivial riemannian
product cannot be conformally flat unless both factors have constant curvature.
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We believe that this is a new phenomena. Using this and the results of Cheeger
and Gromoll [2], we are able to classify complete conformally flat manifolds
with nonnegative curvature and compact conformally flat manifolds with non-
negative ricci curvature. We remark that it has only been proved before by
Bochner that the latter manifolds are homology spheres. At last, we classify
all complete locally homogeneous manifolds each of which admits a non-
homothety conformal transformation. This result was obtained by Goldberg
and Kobayashi [5] and Barbance [1] if M is compact and has dimension > 4 .

Finally, we would like to thank W. C. Hsiang and Kulkarni for discussions.

2. Local formulas

Let (M1,g1), (M2,g2) be two connected riemannian manifolds with metrics
#! and g2 respectively, and F be a mapping of Mx into M2. We say F is con-
formal if there is a function p on Mγ such that F*g2 = e2pgx. Except in Theorem
1 below, we shall assume p > — oo.

Let ω19 -,ωn be a local coframe field on Mx. Then the structure equa-
tions are

(2.1) da)i =• — 2 o)ij A o)j, (ϋij + (ϋji = 0 ,

dcϋij = — 2 (*>ik Λ ωkJ + Ωij ,

(2.2)
®ij — έ Σ RijklMk A O)ι ,

where 1 < /, / < n.
Let ώf = epa)i, 1 < i < n. From now on, if Φ is an object on (M^g

then Φ* will be the corresponding object on Aί1 with the metric e2pgλ. Thus

dωf = — ep 2 (Oij Λ ωά + ep 2 PJQ>J Λ ω« = — 2 ω*y A ω^ ,
j ί j

where

(2.3) ωfj = ωij +

Furthermore, by using (2.1), (2.2), (2.3) and directly computing dω% +

Σ u ω*k A ωfj we can easily obtain

Ωfj = Ωij — 2 (pjk — PkPj)o*i A ωk

(2.4)
— Σ (Pik — /0«/0*)ω* A ω^ — 2 ι°X A

k

where (pjk) is the hessian of p and is defined by

(2.5) 2 PjkOJk = dpj — 2
k k
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On the other hand, by letting u = e~p, we find

(2.6) ut = —e-'pi ,

(2.7) Uij = —e-'ipij

We shall call u the associated junction of the conformal transformation F.
From (2.4), (2.6) and (2.7) we have

(2.8) Ωfj = fl4i + ^ Σ «j*ωt Λ % + ^ Σ "i*ωfc Λ ω, - e2' Σ u\<*i Λ ω, .
fc A Λ

Thus (2.4) and (2.8) give

(2.9) J'Rfjt, = /?„„ + p) - 9ss + pϊ-pu-Σ pl ,

(2.10) R*jtl = !*««„„ + UMM + HH^ - Σ «4 ,
A;

whenever / ̂  /. Also, when {/, /, k} are distinct, we have

(2.11) e*>R*Jtk = Rίjίk - Pjk + pkPj ,

(2.12) R*Jik = u2Rijik + uujk .

Let the ricci curvature in direction / be denoted by Ric (/), and the scalar
curvature by R. Then

Ric (/) = Σ Rijij, R = Σ Ric (/) ,

and we can easily obtain

(2.13) e2? Ric* (/) = Ric (/) - Δp - (n - 2) Σ pl - (n - 2)(Pjj - p)) ,
k

(2.14) Ric* (/) = u2 Ric (y) + uΔu + (n - 2)uuj} - (« - 1) Σ «l >

(2.15) e2"i?* = Λ - 2(« - l)Jp - n(n - 2) Σ pl ,
k

(2.16) R* = u2R + 2(n - \)uΔu - n(n - 1) Σ «ϊ ,
k

where Jw = Σ * «« a n d ̂  = Σ i / 0 ^ a r e t n e laplacians of the functions u and
p respectively. When n > 3 and j φ k, we have

e2 ' Ric* (/, Λ) = e2^ Σ Rfjt*
(2.17) ^ ' f c

= Ric (/, k) - (n - 2)pjk + (n -

(2.18) Ric* (/, k) = u2 Ric (/, k) + (n - 2)uujk .
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Recall that the Weyl conformal tensor Cijkl is defined for dim Mx > 4 as
follows:

CijU = Rijkl - -—^-{Ric (/, k)δjt - Ric (/, k)δu + δik Ric (/, /)

- δjk Ric (i, /)} + Λ —(δnδjt - δjkδu) .
(n — l)(n — 1)

It is well known that if the conformal tensor vanishes, then the manifold is
locally conformally euclidean or, in other words, conformally flat.

Now formula (2.8) shows

(2.19) c '^ijki = ^ijki J

(2.20) Cfjkl = u2Cijkl

for all {/, /, k, /}. Note that in (2.19) and (2.20) the left hand side is evaluated
at F(x) whereas the right hand side is evaluated at x.

In the 3-dimensional case, the Weyl conformal tensor should be replaced by

Cijk — ϊr(RiJk — Rikj) — -zz ZTZ ^^(^ij^k ~ $ikRj) ?

where

dRij — Rkjωki — Rikωkj

is the covariant derivative of the Ricci tensor. In this case the vanishing of
such a conformal tensor is a necessary and sufficient condition for the manifold
to be conformally flat. Moreover, we can prove

(2.21) Cfjk = u*Cίjk .

3. Manifolds with nonpositive scalar curvature

In this section, we shall assume that the manifold Mλ is complete and has
curvature bounded from below (not on M2). The last assumption is made for
the purpose of using a theorem of H. Omori. It seems reasonable that the
theorems still hold without this assumption.

First of all, let us introduce the terminology of the following two functions
which the author knows from Kulkarni [8]:

(a) K is a function defined on Mx which associates to every point the in-
finimum of all the sectional curvatures at that point.

(b) Ric is a function defined on M1 which associates to every point the
infinimum of the ricci curvature at that point.
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Now we can have our theorem:
Theorem 1. Let F: Mλ-+M2 be a conformal mapping such that F*g2 =

e2pgλ, and suppose p is not identically — oo.
(i) Then inf R > 0 implies sup R* > 0.

(ii) // inf R < 0, and sup R* < 0, then

(3.1)
sup R*

(iii) If R = R*, and R is bounded from above by a negative constant, then

(3.2) F*g2<gι.

Furthermore, the above assertions remain true if we replace R by K or Ric.
Proof. Let u — e~p. Then u is a positive function satisfying (2.16). Let ε

be an arbitrary positive number. Then a slight modification of Theorem Ar of
[14] gives a point q in Mλ such that

Σ M • < a , Jw > —ε u\q) < inf w2 + ε , u(q) < inf u + ε .

Formula (2.16) then implies

#*(<?) > u\q)R(q) - 2(n - l)u(q)ε - π(n - l)ε

(3.3) > w2(<?) inf # - 2(AZ - l)(inf w)ε - (2 + ή)(n - l)ε

> (inf u2) inf /? - ε inf R - 2(n - l)(inf w)ε - π(π - l)ε .

Assertion (i) then follows by letting ε-^0 in (3.3). Assertion (ii) can be proved
similarly.

Assertion (iii) is equivalent to inf u2 > 1. If this is not true, then inf u2 < 1,
and therefore we can find points {q^} such that

R(qi)a - u\qi)) >-{n- l)(2w(^)ε + n)ε, inf u(qd < 1 .

This is impossible if R is bounded above by a negative constant. The final
remarks are proved by using (2.10) and (2.14) instead of (2.16).

Corollary 1.1. Suppose R > 0. Then there exists no nondegenerate con-
formal mapping of Mx into a manifold with the scalar curvature bounded from
above by a negative constant.

Note that Corollary 1.1 implies that there is no nondegenerate conformal
mapping of euclidean space or euclidean space minus a point into the ball
because the first two spaces admit conformal metric which has nonnegative
curvature. For the two-dimensional case, the last assertion is the Liouville
theorem.

Corollary 1.2. Let M1 ? M2 be two complete riemannian manifolds with the
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sectional curvature bounded from below and the scalar curvature bounded
from above by a negative constant. Then any conformal diffeomorphism be-
tween the two manifolds, which preserves the scalar curvature, must be an
isometry. The same conclusion holds if we replace the scalar curvature by K
or Ric.

In case Mx = M2 = a compact manifold and the scalar curvature is a
negative constant, Corollary 1.2 was obtained by Lichnerowicz [10] for an
infinitesimal conformal transformation. Later Obata [12] generalized it to a
conformal diffeomorphism. Kulkarni [8] also obtained the above corollary by
assuming the manifold to be compact and those objects to be constant. All of
these ideas are similar.

If the manifold Mx is compact, we can improve (i) as follows:
Theorem 2. Let Mx be a compact manifold of dimension > 3 and with

nonpositive total scalar curvature, and M2 be another manifold with nonnegative
scalar curvature. If F is a conformal diffeomorphism between Mλ and M2, then
F must be a homothety. Furthermore, both Mλ and M2 should have zero scalar
curvature.

Proof. From formula (2.15), we have

R = 2(/ι - ϊ)Δp + n(n - 2) Σ pi +
(3.4)

> 2(/i - \)Δp + n(n - 2) Σ pi

since M1 is compact. Integrating (3.4) over Mλ gives

(3.5) 0>
Mi Mi

Since n > 3, from (3.5) it is seen that p is constant and F is a homothety.
The last assertion follows from the fact that now (3.4) and (3.5) become
equalities, q.e.d.

In view of Theorems 1 and 2, we have
Corollary 2.1. Let gλ and g2 be two conformally equivalent metrics on a

compact manifold. If both metrics have constant scalar curvatures, then the
curvatures have the same sign.

Theorem 2 was obtained by Obata [12] under the assumption that Mx has
nonpositive scalar curvature, and by Lichnerowicz [10] and Yano [15] under
the assumption that the scalar curvatures of both M1 and M2 are constant.

4. Einstein manifolds

In this section, we shall prove a local theorem, i.e., no completeness or
compactness will be assumed in case Mx and M2 are einsteinian. Precisely, we
have
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Theorem 3. Let MlyM2 be two einsteίn manifolds of dimension > 3 , and
F: M1-^M2 be a conformal diffeomorphism. Then either F is a homothety or
both M1 and M2 have constant curvature.

Proof. From (2.14) we have

UJJ = Ric* (/) - u2 Ric (/) - uΔu + (n - 1) Σ ul ••
k

As both Mλ and M2 are einsteinian, Ric* (/) and Ric (/) are constants. Thus
UJJ is independent of /, so that formula (2.10) gives

(4.1) Rfjtj - u2Rijiό = luΔujn - Σ «ϊ
k

On the other hand, formula (2.18) implies that ujk = 0 whenever j Φ k
since both R% and Rjk are zero whenever j Φ k. Thus from (2.12) and (2.8)
we have Rfnj = u2Rίjίk and

(4.2) Ωfj - Ωij = hωt A ω3

for some function h.
We are going to exteriorly differentiate (4.2). First of all, exterior differenti-

ation of (2.2) gives

(4.3) dΩu = Ωίk A ωkj — ωίk A Ωkj ,

Similarly,

(4.4) dΩfj = Ωfk A ωfj - ωfk A Ωtj .

Thus from (4.2) we have

— Ωik A ωkj + ωίk A Ωkj + Ωfk A ωfj — ωfk A Ωfj

= dh A (Of A o)j — hωίk A cok A o)j + hωt + ωjk A o)k ,

Using (2.3), (4.2) and simplifying, we obtain

Σ pjΩ*k A ωk — Σ pkΩfk A cύj — Σ Pkωί A Ωkj

(4.5) k k k

+ Σ Piωk A Ωfk = Σ hk«*k Λ ^ Λ
k k

Equating the coefficients of α)fc Λ ^ Λ ωj on both sides of (4.5) thus gives

(4.6) PkR*tk + PkR*jkj = hk

for distinct {/, /', k). Note that by taking the exterior derivative for the formula
corresponding to (2.1) we have the Bianchi identity Σ ®*k Λ %* = 0.

Now in (4.6), summing on i first and then on / we obtain
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(4.7) in - \)pk Ric* (k) + (n- 3)pk

which, together with (4.7), implies

(4.8) Pk(Rfkik + R%jk - 2 Ric* (k)/(n - 1)) = 0 ,

whenever {/, /', k} are distinct.

Now write M1 = M[ (J M[' such that £ f c ̂  = 0 on M£ and Σk pi Φ ° o n

M". Let us restrict (4.8) to the interior of M", and fix a point p in Λί", so
that the vector grad p is not zero at this point. Choose a frame e19 , en such
that at p,

(4.9) ^ = <gradp, *«>=£().

Since M2 is einsteinian, Ric* (/) is independent of /. Thus (4.8), (4.9) imply
that Rfkik + Rfkjjc is independent of {/, /, k) whenever they are distinct. From
this, one easily finds that Rfjίά is independent of /, / whenever i Φ j . Hence
from (4.9) again, Rfjtj = Ric* (ί)/(n — 1) = constant = c* (say). We have
therefore proved that the sectional curvature associated with the plane spanned
by ei9 βj is a constant c* whenever ei9 eά can be completed into a frame satisfy-
ing (4.9). Hence by continuity, the sectional curvature at p is actually a
constant equal to c*.

Now (4.2) gives

(4.10) Ωij = (c*e2' - h)a>i A ωs .

Schur's theorem or an argument similar to the above then shows that c*e2p — h
= c is a constant. This constant is the sectional curvature of M" which in
turn equals Ric(/)/(n — 1).

Finally, we claim that M[ is equal to Mx or M[ consists of isolated points of
Mx. This fact will, of course, conclude the proof of the theorem.

We recall that we have

(4.11) uij = 0 ΆiΦj,

(4.12) 2uuu =
k

Let p be a boundary point of M[ if it is not empty, and g b e a geodesic
through p parametrized by the arc length s. Choose a frame {e19 , en} such
that ex is tangent to g and the frame is parallel along g. (4.11) and (4.12) then
give

(4.13) 2uun = u\ + c* - u2c

along g with ux = 0 at p. Since w > 0 along g, (4.13) is a regular ordinary
differential equation with analytic coefficients. Hence the unique solution of



CONFORMAL TRANSFORMATIONS 377

(4.13) is analytic on g. In particular, ux is analytic on g. This implies that
on g, ux either is identially zero or has only isolated zeroes. Let us write (4.13)
in the following form:

(4.14) (2<fu)n = | ( c * ~ u2c)u~V2.

If c* — u2c Φ 0 at p, then (V u )1 and hence ux cannot be zero in a small
geodesic ball around the point p. The radius of such a ball can be estimated
from the value c* — u\p)c. (Note that in a general riemannian manifold, one
can always find a geodesically convex neighborhood around a point.) Hence p
is isolated.

Now suppose c* — u\p)c = 0. Let q be any point on g such that ux{q) = 0.
Since ux(p) = 0, one can find a point qx such that p < qλ< q and (V w ίnO^)
= 0. (4.14) then implies that c* - u2(q,)c = 0. If c = 0, then c* = 0, and
(4.14) implies uλ = 0 on g. So assume c ^ 0. From this and c* — u2(p) = 0,
one sees w(p) = w(g). This again implies that there is a point q2 such that
P < #2 < <Zi and Wi(g2) = 0. Continuing this process, we find a sequence of
distinct points {q^ converging to p and such that u^q^ = 0. By the real
analyticity of u19 uλ = 0 on g. Let N be a geodesically convex neighborhood
around p. We have therefore proved M[ Π iV is geodesically convex. By a
theorem of Cheeger and Gromoll, we know that M[ is actually a convex
manifold with boundary. By taking a geodesic transversal to the boundary and
applying the above argument, one sees that M[ must be a point. This finishes
the proof of Theorem 3.

When M1 = M2 and dimension M1 = 4, R. Kulkarni [8] proved the follow-
ing statement: If Mλ = M2 is einsteinian and nowhere constantly curved, then
every conformal difϊeomorphism of Mx is a homothety. This statement is, of
course, a special case of Theorem 3. We note that the proof of Theorem 3
works for pseudoriemannian manifolds.

Corollary 4.1. Let M1,M2 be einstein manifolds of dimension > 3 . // M1

is complete, then either every conformal dίβeomorphism of M1 onto M2 is a
homothety or Mx and M2 are isometric to spheres.

Proof. If the conformal diffeomorphism is not a homothety, Theorem 3
implies that both M1 and M2 have constant curvature. Theorem 1 and the
discussions below will show that both Mλ and M2 are spheres.

If M1 — M2, this corollary was first obtained by Nagano and Yano [16] for
a one-parameter group of conformal difϊeomorphisms. Nagano [11] then gene-
ralized it to the case where M1 = M2 = a complete manifold with parallel
ricci tensor and the one-parameter group replaced by a conformal diffeo-
morphism. The special case where Mx and M2 are coincident complete einstein
manifolds was reproved by R. S. Kulkarni [8].

From the proof of Theorem 3, we have the following
Proposition 1. Let M19 M2 be two constantly curved manifolds, and F be a



378 S. T. YAU

conformal diffeomorphism of Mι onto M2. Then the gradient of the associated
junction u of F can have only isolated zeroes in Mλ.

Let us now examine more closely the case where Mx and M2 are simply
connected open domains in euclidean space. In this case, we fix a global
coordinate system {x\ , xn) in the euclidean space, and write ωί = dx\

(4.11) and (4.12) imply that ut is independent of xj when / Φ ί and that
uu — UJJ for all /, /. Hence actually uu = uόj = a, where a is a constant.
Solving these equations, we know

(4.15) u = aΣ*ί2 + Σbtx1 + d

for some constants {bt} and d. (4.12) then gives

4ua = Σ Qax1 + b,)2 ,
i

which is reduced to, in consequence of (4.15),

(4.16) 4ad= £J fcj .
i

Now there are two cases. If a = 0, (4.16) implies bt = 0 for all / and hence
u = d = constant. In this case, the transformation is obviously a composite
of a euclidean motion and a standard homothety with constant d. The second
case is a ψ 0. Then (4.15) and (4.16) together imply

u = a Σ (*' - ibt/ay ,
ί

so that by choosing coordinate suitably we may assume

In this case, it is easy to see that the transformation F is given by a euclidean
motion, a homothety and an inversion. One may prove this fact in the follow-
ing way: composing F with a homothety and an inversion, one can get an
isometry which must be the euclidean motion. In this second case, F cannot
be defined at some point. Hence the only conformal transformation which is
globally defined in the euclidean space is a homothety. The other cases of
Corollary 3.1 follow either from Theorem 1 or the proof of Theorem 3.

5. Locally product manifolds, nonnegative curved manifolds

and locally homogeneous manifolds

In this section, we shall see that if a conformally flat manifold is a product,
then actually it is a product of two manifolds with constant curvature. We first
prove the following

Proposition 2. Let M be a conformally flat manifold, and N a connected
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totally geodesic submanifold of M. Suppose at each point of N we can find a
normal en such that the sectional curvature associated with the plane spanned
by en and any vector in the tangent plane of N is zero. Then N has constant
curvature.

Proof. First of all, suppose dimN > 3. Then from (2.10), we have

(5.1) RjkJk - Rijij + RiJcik = 2uujΊ - Σ «* >
k

whenever {i, j , k) are distinct. Taking / to be the normal direction en mentioned
in the proposition, one sees from (5.1) that the sectional curvature of N is
constant at every point. Schur's theorem then implies that N has constant
curvature.

For the two-dimensional case, we note that ds2 = ω\ + ω\ is a flat metric
and that u~2ds2 = (u~ιω^2 + (u~ιω2)

2 is the metric of the manifold. Formula
(2.14) then shows un = u22 and

(5.2) u(un + u22) — MΪ — MΪ — wί = u(un + u22) - u\-u\

is the Gauss curvature of N. Hence uz = 0. On the other hand (2.18) gives
ul2 = u21 = 0. The equation un = u22 then implies un = u22 = constant on N
and a straightforward computation from (5.2) thus shows the Gauss curvature
of N to be constant.

Proposition 3. Suppose, in Proposition 2, M is of dimension > 4 . Then
the sectional curvature of M associated with the plane spanned by any two
vectors normal to N is a constant c, and c = — c* where c* is the constant
sectional curvature of N.

Proof. Let et and ek run over the vectors tangent to N. Summing on i and
fc in (5.1), one finds 2m(2uUjj — J]k uϊ) is the scalar curvature of N, where
m is the dimension of N. Thus uiS is constant at a point as far as eό is normal
to N. Hence at every point the sectional curvature of M associated with the
plane spanned by any two vectors normal to N is a constant, and this constant
is equal to — c* due to the vanishing of the Weyl conformal tensor.

Theorem 4. Let M be a conformally fiat manifold of dimension > 3 . Sup-
pose M is a nontrivial product Nx X N2. Then both N1 and N2 have constant
curvature, and if both N1 and N2 are of dimension > 2 , then the curvature of
Ni and N2 just differ by a sign.

The case dim M = 3 and the last fact of Theorem 4 were pointed out to
the author by Kulkarni. Now it is possible to use a strong result of Cheeger
and Gromoll [2] and Kuiper [7] to prove the following

Theorem 5. Let M be a complete conformally fiat manifold with non-
negative curvature. Then either one of the following holds:

(i) M is conformally equivalent to an elliptic space form,
(ii) M is covered by the isometric product of a line and a manifold of

constant curvature, and the covering transformation is a local isometry,
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(iii) M is contractible.

Proof. If M is compact and has finite fundamental group, then (i) is a
theorem of Kuiper [7]. So suppose the universal cover M of M is noncompact.
By Theorems 3.1 and 9.1 of [2], there is a compact toally convex manifold
S in M such that all sectional curvatures vanish for planes spanned by a tangent
vector and a normal vector of S. Furthermore, if 5 is empty, then either M is
isometric to euclidean space or M = M is contractible. If 5 is nonempty,
Proposition 1 above shows that S has constant curvature. Since S is compact
and simply connected, it must be the standard sphere. Thus Proposition 3
shows codim S= 1, and Theorem 4.2 of [2] completes the proof of the theorem.

Remark. Examples show that (iii) is best possible, i.e., M need not be
isometric to euclidean space. In fact, M may be the product of a complete
positively curved open surface and a Euclidean space. Actually we can con-
struct such a manifold with positive curvature.

Another strong result of Cheeger and Gromoll enables us to prove the
following

Theorem 6. Let M be a compact conformally flat manifold with non-
negative ricci curvature. Then M is either conformally equivalent to an elliptic
space or ίsometrically covered by the direct product of a straight line and a
manifold with constant curvature.

Proof. The proof is similar to that of Theorem 5 except that here we use
the result of [3].

Remark. Bochner (cf. [4]) proved before that a compact conformally flat
manifold with positive ricci curvature is a homology sphere.

Finally, let us consider locally homogeneous manifolds. First of all, we
define such a manifold. A manifold M is said to be locally homogeneous if
for any two points p, q in M, there exists an isometry of a neighborhood of p
onto a neighborhood of q carrying p into q.

Proposition 4. Let M be a locally homogeneous manifold of dimension >
3. If M admits a nonisometric conformal transformation, then M is conformally
flat. If M is further complete, then M has nonnegative curvature.

Proof. Since M is locally homogeneous, the conformal tensors CίjkU Cijk

have constant length. (2.20) and (2.21) then show that either u = 1 or the
conformal tensor vanishes. If M is complete, Theorem 1 is applicable since
the function K is a constant. Hence the manifold has nonnegative curvature.

Remark. In case dimM > 4, the proposition was obtained by Yano [15]
for a one-parameter group of conformal transformations and by Kulkarni [8]
for a nowhere conformally flat M. The idea of using the local homogeneity to
get the constancy of the length of the Weyl conformal tensor has already been
used by Barbance, Hsiung, Lichnerowicz and others.

Finally, by using Theorem 5 we have

Theorem 7. Let M be a complete locally homogeneous manifold of dimen-
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sion > 3 . If M admits a nonhomothetic conjormal transformation, then M is

isometrically covered by

(i) euclidean space,

(ii) the direct product of a line and the sphere,

(iii) sphere.

Proof. Since every complete locally homogeneous manifold is covered by

a homogeneous one, we may assume M to be homogeneous. By Theorem 5,

we have only to prove that if M is contractible, then M is isometric to euclidean

space. This is a special case of a theorem of Cheeger and Gromoll [3].

Remark. For a compact M of dim > 4 , Theorem 7 was obtained by

Goldberg-Kobayashi [5] for the continuous case, and by C. Barbance [1] for

the discrete case. Barbance's result was reproved by Kulkarni [8].
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