MORSE THEORY ON QUATERNIONIC GRASSMANNIANS

GEORGE D. PARKER

Hangan has shown in [4] that one obtains a simple Morse function on a real or complex Grassmann manifold by embedding the manifold in a suitable projective space via the Plücker determinants (see [5, Chapter VII]) and then restricting a natural function on the projective space to the resulting variety. The method does not immediately work for the quaternionic case due to a lack of determinants over skew fields and the fact that $\boldsymbol{H G}(p, q)$ is not a "quaternionic projective variety." We shall show his method may be adapted and extended to include the quaternionic case.

We denote the Grassmann manifold of p-planes in K^{p+q} by $K G(p, q)$, where $\boldsymbol{K}=\boldsymbol{R}, \boldsymbol{C}, \boldsymbol{H} . \boldsymbol{K} \boldsymbol{P}(n)=\boldsymbol{K} G(1, n)$ denotes a projective space. We assume a knowledge of Morse theory as may be found in [6].

1. $\boldsymbol{H} G(p, q)$ as a real projective variety

The right \boldsymbol{H} space \boldsymbol{H}^{n} may be identified with $\boldsymbol{R}^{4 n}$ together with three linear operators $\boldsymbol{J}_{r}(r=1,2,3)$ which correspond to right multiplication by $\boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k}$. For example if $\varphi(a+b \boldsymbol{i}+c \boldsymbol{j}+d \boldsymbol{k})=(a, b, c, d)$ gives the identification of \boldsymbol{H}^{1} with R^{4}, then J_{1} is represented by the matrix $\left[\begin{array}{rrrr}0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0\end{array}\right]$.

Let $\varphi: \boldsymbol{H}^{p+q} \rightarrow \boldsymbol{R}^{4(p+q)}$ be the identification. If $0 \neq \boldsymbol{v} \in \boldsymbol{H}^{p+q}$, then the quaternionic line $\{\boldsymbol{v} q \mid q \in \boldsymbol{H}\}$ has as its φ-image the real 4-plane $\left\{\left(a \mathrm{I}+b J_{1}+\right.\right.$ $\left.\left.c J_{2}+d J_{3}\right) \varphi(\boldsymbol{v}) \mid a, b, c, d \in \boldsymbol{R}\right\}$. Similarly we obtain $\boldsymbol{H} G(p, q) \subset \boldsymbol{R} G(4 p, 4 q) \subset$ $\boldsymbol{R} \boldsymbol{P}(N-1)$, where $N=$ binomial coefficient $C_{4(p+q), 4 p}$. The second containment is given by the quadratic p-relations, which are homogeneous equations on $\boldsymbol{R}^{N} \simeq \Lambda^{4 p}\left(\boldsymbol{R}^{4(p+q)}\right)$. The first containment is given by the homogeneous linear equations $\Lambda^{4 p}\left(J_{r}\right)(x)=x, x \in \Lambda^{4 p}\left(\boldsymbol{R}^{4(p+q)}\right), r=1,2,3$. These latter equations reflect the statement that a real $4 p$-plane is the φ image of a quaternionic p-plane if and only if it is invariant under the J_{r}. Thus we have $H G(p, q)$ as real projective variety.

[^0]
2. The function f and the ordering of the Schubert Symbols

Let S denote the set of Schubert symbols of $4 p$ elements in $4(p+q)$-space, and T the set of Schubert symbols of p elements in $p+q$ space. Thus $\sigma \in T$ means that $\sigma=\left(\sigma_{1}, \cdots, \sigma_{p}\right)$ with $1 \leq \sigma_{1} \cdots<\sigma_{p} \leq p+q$. Two Schubert symbols are said to be neighbors if they have all but one element in common, e.g., $(1,2,3)$ and $(1,3,4)$ are neighbors.

Let F be the function on $R P(N-1)$ given by $F([x])=\Sigma c_{\rho}\left(x_{\rho}\right)^{2} / \Sigma\left(x_{\rho}\right)^{2}$, where both sums run over all $\rho \in S$ (which will be given a total ordering below), $[x]=\left[x_{1}, \cdots, x_{N}\right]$ are homogeneous coordinates, and c_{ρ} is real with $c_{\rho}<c_{\tau}$ for $\rho<\tau$. Then we have
Theorem 1. $f \equiv$ restriction of F to $H G(p, q)$ is a nondegenerate Morse function, and the critical points are the planes spanned by p of the coodinate axes. If $\sigma \in T$ denotes the critical plane spanned by the $\sigma_{1}-$ th, \cdots, σ_{p}-th axes, then the Morse index at σ is $4 d(\sigma) \equiv 4 \Sigma\left(\sigma_{i}-i\right)$, and the Poincaré polynomial is $P(\boldsymbol{H G}(p, q) ; t)=\Sigma t^{t d(\sigma)}$.

The proof will be given in $\S \S 3,4$.
To complete the definition of F we will need an ordering on S which differs from the standard lexicographic order. (T will be given the lexicographic order.) The new ordering is useful in establishing which points are critical for f. If A, B are subsets of S, then $A<B$ means that $\alpha<\beta$ for all $\alpha \in A, \beta \in B$.

Let $\rho=\left(\rho_{11}, \rho_{12}, \rho_{13}, \rho_{14}, \rho_{21}, \rho_{22}, \cdots, \rho_{p 4}\right) \in S$. Define S_{i} by $S_{i}=\{\rho \in S \mid 4 i-$ $\left.3 \leq \rho_{11} \leq 4 i\right\}$, and set $S_{i}<S_{j}$ if $i<j$. For fixed i define ${ }^{0} S_{i}=\left\{\rho \in S_{i} \mid \rho_{14}=4 i\right\}$, ${ }^{1} S_{i}=\left\{\rho \in S_{i} \mid \rho_{13} \leq 4 i<\rho_{14}\right\},{ }^{2} S_{i}=\left\{\rho \in S_{i} \mid \rho_{12} \leq 4 i<\rho_{13}\right\},{ }^{3} S_{i}=\left\{\rho \in S_{i} \mid \rho_{11} \leq\right.$ $\left.4 i<\rho_{12}\right\}$, and set ${ }^{0} S_{i}<{ }^{1} S_{i}<{ }^{2} S_{i}<{ }^{3} S_{i}$. For $r=1,2,3$ give ${ }^{r} S_{i}$ the lexicographic order. For ${ }^{0} S_{i}$ we repeat the process by considering $\rho_{21}, \rho_{22}, \rho_{23}, \rho_{24}$.
${ }^{0} S_{i}$ is partitioned into sets $S_{i, i+1}, S_{i, i+2}, \cdots$. Each $S_{i j}$ is partitioned into sets ${ }^{r} S_{i j}$, and each ${ }^{0} S_{i j}$ is further partitioned. The process ends at the stage ${ }^{0} S_{i_{1} \cdots i_{p}}$ since this latter set has only one element. Thus we get our desired ordering.

3. The critical points of f

Let $\pi \in \boldsymbol{H} G(p, q)$. We may choose a basis X_{1}, \cdots, X_{p} of π over \boldsymbol{H} so that if the X_{i} are the rows of a matrix, then the matrix is in row echelon form (*). $\varphi(\pi)$ is spanned by the real vectors whose matrix is ($* *$), where $[a+b \boldsymbol{i}+c \boldsymbol{j}$ $+d \boldsymbol{k}]$ denotes the 4×4 matrix $\left[\begin{array}{rrrr}a & b & c & d \\ -b & a & d & -c \\ -c & -d & a & b \\ -d & c & -b & a\end{array}\right]$.

If $\tau=\left(\tau_{1}, \cdots, \tau_{4 p}\right) \in S$, let $v_{\tau}(\pi)$ be the τ-th Plücker determinant of $(* *)$, that is, the determinant of the submatrix of $(* *)$ consisting of the τ_{1}-th, τ_{2}-th, \ldots columns. (Recall, these determinants give the embedding of $R G(4 p, 4 q)$ in $\boldsymbol{R} P(N-1)$-the N-tuple $\left[\cdots, v_{\tau}(\pi), \cdots\right]$ satisfies the quadratic p-relations, and if any other choice of basis of π is made, then the resulting N-tuple from the Plücker determinants is a nonzero multiple of the one above.)
If π is spanned by p basis vectors $X_{i}=\boldsymbol{e}_{\sigma_{i}}$ (and the $q_{i j}=0$ in (*)), by abuse of notation, we shall denote π by $\sigma . \varphi(\sigma) \in R G(4 p, 4 q)$ is spanned by the $4 \sigma_{j}$ $-4+k$ axes $(j=1, \cdots, p ; k=1, \cdots, 4) . \varphi(\sigma)=\rho=\left(4 \sigma_{1}-3,4 \sigma_{1}-2\right.$, $\ldots) \in S . \pi=\sigma$ is critical for f since $v_{\tau}(\pi)=0$ for $\tau \neq \rho$, and every N-tuple with all but one entry zero is critical for F.

Suppose π is not spanned by coordinate axes. Then there is a least integer i such that X_{i} is not a basis vector $e_{e_{i}}$, and for that choice of i there is a least integer $j>\sigma_{i}$ such that $q_{i j} \neq 0$. Let these i, j be fixed in the discussion below.

Define a path in $H G(p, q)$ by $Y_{k}=X_{k}$ if $k \neq i$, and $Y_{i}=(1+t) X_{i}-t e_{a_{i}}$, (the \boldsymbol{e}_{k} are the standard basis vcetors of \boldsymbol{H}^{p+q}). We set $\pi(t)$ to be the plane spanned by the Y_{k}, and prove below that $\left.(d / d t)(f \circ \pi(t))\right|_{t=0} \neq 0$, and hence π is not a critical plane since $\pi(0)=\pi$.

Denoting $v_{\tau}(\pi)$ by v_{τ} and $v_{\tau}(\pi(t))$ by w_{τ}, we compute that $d f / d t=$ $2\left[\left(\Sigma c_{\tau} w_{\tau} w_{\tau}^{\prime}\right)\left(\Sigma\left(w_{\eta}\right)^{2}\right)-\left(\Sigma c_{\eta}\left(w_{\eta}\right)^{2}\right)\left(\Sigma w_{\tau} w_{\tau}^{\prime}\right)\right] /\left(\Sigma\left(w_{\tau}\right)^{2}\right)^{2}$. Hence we need to know $w_{\tau}^{\prime}(0)$. By choice of i we have $w_{\tau} \equiv v_{\tau}=0$ unless $\tau \in S_{\sigma_{1} \cdots \sigma_{i-1}}$ for some $\lambda \geq \sigma_{i}$. Thus we have five cases for possible nonzero terms:
(0) $\tau \in{ }^{0} S_{\sigma_{1} \cdots \sigma_{i}}, w_{\tau} \equiv v_{\tau}, w_{\tau}^{\prime}(0)=0 ;$
(1) $\tau \in{ }^{1} S_{\sigma_{1} \cdots \sigma_{i}}, w_{\tau}=(1+t) v_{\tau}, w_{\tau}^{\prime}(0)=v_{\tau}$;
(2) $\tau \in{ }^{2} S_{\sigma_{1} \cdots \sigma_{i}}, w_{\tau}=(1+t)^{2} v_{\tau}, w_{\tau}^{\prime}(0)=2 v_{\tau}$;
(3) $\tau \in{ }^{3} S_{\sigma_{1} \cdots \sigma_{i}}, w_{\tau}=(1+t)^{3} v_{\tau}, w_{\tau}^{\prime}(0)=3 v_{\tau}$;
(4) $\tau \in S_{\sigma_{1} \cdots \sigma_{i-1}, \lambda}, \lambda>\sigma_{i}, w_{\tau}=(1+t)^{4} v_{\tau}, w_{\tau}^{\prime}(0)=4 v_{\tau}$.

Note that $(0)<(1)<(2)<(3)<(4)$. If we let $\Sigma_{m, n}$ denote $\Sigma\left(c_{\tau}-c_{\eta}\right) v_{\tau}^{2} v_{\eta}^{2}$, the sum running over all $\tau \in(m), \eta \in(n)$, then a simple calculation yields

$$
(d f / d t)(0)=2 \sum_{0 \leq s<r \leq 4}(r-s) \Sigma_{r, s} /\left(\Sigma v_{\tau}^{2}\right)^{2}
$$

Each term in the numerator is nonnegative, so $f^{\prime}(0) \geq 0$. Now $\rho \in(0)$ and $v_{\rho}(\pi)=1$. For $k=1, \cdots, 4$, let $\rho_{k} \in(1)$ be the neighbor of ρ having $4 j-k$ +1 instead of $4 \sigma_{i}$. Then $v_{\rho_{k}}= \pm q_{i j}^{k}$, where $q_{i j}=q_{i j}^{1}+q_{i j}^{2} i+q_{i j}^{3} j+q_{i j}^{4} \boldsymbol{k}$. Since $q_{i j} \neq 0$, we have that one of the $q_{i j}^{k} \neq 0$, the term $\left(c_{\rho_{k}}-c_{\rho}\right) v_{\rho_{k}}^{2} v_{\rho}^{2}>0$ in $\Sigma_{1,0}$, and $f^{\prime}(0)>0$.

Hence π is not critical, and the only critical points are those planes spanned by p of the coordinate axes.

4. The Hessian of f

Let $\sigma \in T$ correspond to a critical point $\rho=\varphi(\sigma)$. A neighborhood of σ is given by all matrices of the form (\#). There are $p q$ arbitrary quaternionic entries in (\#), and hence $4 p q$ real coordinates. Under φ, (\#) goes over to a similar display (\#\#) which we shall omit.
(\#)

$$
\left[\begin{array}{cccc}
\sigma_{1} & \sigma_{2} & \cdots & \sigma_{\rho} \\
1 & 0 & & 0 \\
0 & 1 & & 0 \\
{ }^{*}: & * & \cdots & * \\
\vdots & \vdots & & \vdots \\
0 & 0 & & 1
\end{array}\right] .
$$

Consider the function v_{τ} on (\#\#): it is a homogeneous polynomial in the real coordinates. $v_{\rho}=1$, while v_{τ} is linear if and only if τ is a neighbor of ρ. Let $\left\{j_{1}, \cdots, j_{q}\right\}$ be the set of indices complementary to the elements of σ arranged in increasing order, and $\rho_{a, m, b, n}$ be the neighbor of ρ where $\rho_{a, m}$ is replaced by $4 j_{b}+n-4$, ($m, n \leq 4$). If \ddagger denotes the product on the Klein 4 -group on the symbols $1, \cdots, 4$, with 1 as identity, then it is easy to compute that $\left(v_{\rho_{a, m, b, n}}\right)^{2}=\left(q_{a b}^{m+n}\right)^{2}$.

Now $f=g / h$ where g and h are polynomials with no linear terms. If x and y represent two coordinates of the form $q_{a b}^{s}$ and $q_{c d}^{r}$, then one has $f_{x y}(0)=$ $\left[g_{x y}(0) h(0)-g(0) h_{x y}(0)\right] /(h(0))^{2}$. Furthermore, $g(0)=c_{\rho}, h(0)=1$, and the second order terms of g and h are squares of coordinates by the previous paragraph. Hence $f_{x y}(0)=0$ for $x \neq y$, and $f_{x x}(0)=2 \Sigma\left(c_{\rho_{a, m, b, n}}-c_{\rho}\right)$ where the sum runs over all $m \ddagger n=s$. Note that the order of $\rho_{a, m, b, n}$ and ρ does not
depend on m, n so that $f_{x x}(0) \neq 0$ and σ is a nondegenerate critical point.
The index of f at σ is the number of $q_{a b}^{s}$ such that $\rho_{a, m, b, n}<\rho$ for all $m \neq n$ $=s$. This is the same as four times the number of pairs (a, b) such that $j_{b}<\sigma_{a}$, which is the same as four times the number of neighbors of σ which are less than σ. Hence the index $\lambda_{\sigma}=4 d(\sigma)$. Since the indices are all even, the Morse inequalities are equalities and $\boldsymbol{H} \boldsymbol{G}(p, q)$ has torsion-free homology. Its Poincaré polynomial for any field of coefficients is thus given by $P(H G(p, q) ; t)=\Sigma t^{t d(o)}$. Hence Theorem 1 is proved.

5. The case of critical manifolds

By changing F so that certain of the $c_{\tau}=1$ and the rest $=0$, we can arrange it so that there are two submanifolds of critical points-one consists of all p planes containing the basis vector e_{1}, the other all p-planes orthgonal to e_{1}. These critical submanifolds are nondegenerate in the sense of Bott [1]. This same alteration can also be carried out with Hangan's function in the real and complex cases.

The Morse-Bott inequalities [2, p. 323] and [3, p. 44] are equalities in the cases $\boldsymbol{C G}$ and $\boldsymbol{H G}$ by induction since the indices are even. In the case of $R G$ one applies a technique due to Frankel [3], namely, to combine the MorseBott inequalities with opposing inequalities derived by Floyd in the study of fixed points of involutions, to prove equality as long as the coefficient field is Z_{2}. Thus, following Bott, one has

Theorem 2. $K G(p, q)$ has the same homotopy type as $K G(p-1, q)$ with a dp-dimensional vector bundle over $K G(p, q-1)$ attached, $\left(d=\operatorname{dim}_{R} K\right)$. $P(K G(p, q) ; t)=P(K G(p-1, q) ; t)+t^{d p} P(K G(p, q-1) ; t)$, for Z_{2} coefficients if $\boldsymbol{K}=\boldsymbol{R}$, and for any field of coefficients if $\boldsymbol{K}=\boldsymbol{C}, \boldsymbol{H}$.

Bibliography

[1] R. Bott, Nondegenerate critical manifolds, Ann. of Math. 60 (1954) 248-261.
[2] -, The stable homotopy of the classical groups, Ann. of Math. 70 (1959) 313-337.
[3] T. Frankel, Critical submanifolds of the classical groups and Stiefel manifolds, Differential and Combinatorial Topology, A Sympos. in Honor of M. Morse, Princeton University Presss, Princeton, 1965.
[4] T. Hangan, A Morse function on Grassmann manifolds, J. Differential Geometry 2 (1968) 363-367.
[5] W. Hodge \& D. Pedoe, Methods of algebraic geometry, Vol. I, Cambridge University Press, Cambridge, 1953.
[6] J. Milnor, Morse Theory, Annals of Math. Studies, No. 51, Princeton University Press, Princeton, 1963.

[^0]: Received August 11, 1971. The author held a National Science Foundation Graduate Fellowship at the University of California at San Diego.

