EXTENDIBILITY AND TRANSVERSALITY

STEPHEN J. GREENFIELD \& MICHAEL MENN

1. Introduction

In [1] Errett Bishop wrote: "It is thought that a manifold $M^{n+1} \subset C^{n}$ has, in general, the property that holomorphic functions in a neighborhood of M extend to be holomorphic in some fixed open set." In this paper we analyze Bishop's statement and discover an interpretation for "in general".

We say a subset K of C^{n} is extendible to a connected subset K^{\prime} of \boldsymbol{C}^{n} (with $K \subsetneq K^{\prime}$) if every function holomorphic about K extends to a holomorphic function defined in a neighborhood of K^{\prime}.

In [5] conditions were obtained for a real $(n+k)$-dimensional submanifold M of \boldsymbol{C}^{n} to be extendible to a set containing an open subset of \boldsymbol{C}^{n}. These conditions were stated in terms of holomorphic and antiholomorphic vector fields on M and their Lie brackets.

But from the point of view of [8] the conditions mentioned above can be interpreted as restrictions on the $(n+k)$-jet of the map $i: M \rightarrow C^{n}$, where i is the inclusion of M in C^{n}. Careful examination of the restrictions on the jet of i reveals that "most" $(n+k)$-jets satisfy these restrictions; so, therefore, do "most" maps in C^{m} topology, for m large enough (verifying Bishop's remark). More precise statements of this are made in $\S 4$, where a corollary on function algebras is also deduced.

In § 2 the notation and some of the main ideas of [8] are reviewed with special attention to the situation considered here. Computations comparing jets of maps and Lie brackets are done in $\S 3$.

2. Singularities of maps of real manifolds into complex manifolds

If $\phi: X \rightarrow Y$ is a map of topological spaces and $x \in X$, then ϕ_{x} will denote the germ of ϕ at x. Let $\mathscr{F}(p, q)=\left\{\phi: \boldsymbol{R}^{p} \rightarrow \boldsymbol{R}^{q} \mid \phi\right.$ is C^{∞} and $\left.\phi(0)=0\right\}$ and $J(p, q)=\left\{\phi_{0} \mid \phi \in \mathscr{F}(p, q)\right\}$. If $\phi \in \mathscr{F}(p, q)$ or $\phi \in J(p, q)$, then $[\phi]^{n}$ will denote the set of germs at the origin of elements of $\mathscr{F}(p, q)$ which agree with ϕ up to and including order n. Let $J^{n}(p, q)=\left\{[\phi]^{n} \mid \phi \in J(p, q)\right\} . J^{n}(p, q)$ is a real finite dimensional vector space. $[\phi]^{n}$ will occasionally be abbreviated to ϕ.

Whenever m is an integer, \mathscr{L}_{m} will denote the group of invertible germs in $J(m, m)$. There is a group action of $\mathscr{L}_{p} \times \mathscr{L}_{q}$ on $J^{n}(p, q) ;(\alpha, \beta)\left([\phi]^{n}=\right.$

Communicated by J. J. Kohn, February 8, 1971.
[$\left.\beta \phi \alpha^{-1}\right]^{n}$. Similar definitions can be made in the complex case. Let $\boldsymbol{C} \mathscr{F}(p, q)$ $=\left\{\phi: \boldsymbol{C}^{p} \rightarrow \boldsymbol{C}^{q} \mid \phi\right.$ is holomorphic and $\left.\phi(0)=0\right\}, \boldsymbol{C J}(p, q)=\left\{\phi_{0} \mid \phi \in \boldsymbol{C F}(p, q)\right\}$, $\boldsymbol{C J}{ }^{n}(p, q)=\left\{[\phi]^{n} \mid \phi \in \boldsymbol{C J}(p, q)\right\}$, and $\boldsymbol{C} \mathscr{L}_{m}$ be the group of invertible germs in $\boldsymbol{C J}(m, m) . \boldsymbol{C} \mathscr{L}_{p} \times \boldsymbol{C} \mathscr{L}_{q}$ acts on $\boldsymbol{C J}^{n}(p, q)$.

By manifold we mean real C^{∞} paracompact Hausdorff manifold. All maps of manifolds are C^{∞}. By complex manifold we mean complex analytic paracompact Hausdorff manifold. Maps of complex manifolds are holomorphic.
Let $U \subset \boldsymbol{R}^{p}\left(U \subset C^{p}\right)$ be open and let $\phi: U \rightarrow \boldsymbol{R}^{q}\left(\phi: U \rightarrow \boldsymbol{C}^{q}\right)$. Define $t_{\phi}: U \rightarrow J(p, q)\left(t_{\phi}: U \rightarrow C J(p, q)\right)$ by $t_{\phi}(x)$ to be the germ at the origin of $y \rightarrow$ $\phi(x+y)-\phi(x)$. The projection of t_{ϕ} onto $J^{n}(p, q)\left(C J^{n}(p, q)\right)$ will also be written t_{ϕ}.

Let $\tilde{\mathscr{L}}_{m}\left(\boldsymbol{C} \tilde{\mathscr{L}}_{m}\right)$ be a subgroup of $\mathscr{L}_{m}\left(\boldsymbol{C} \mathscr{L}_{m}\right)$. Suppose M is an m-dimensional (complex) manifold and Q is an atlas of coordinate functions for M. The pair (M, Q) will be called a (complex) manifold of type $\tilde{\mathscr{L}}_{m}\left(\boldsymbol{C} \tilde{\mathscr{L}}_{m}\right)$ if $t_{\alpha_{2} \alpha_{1}-1}\left(\alpha_{1}(x)\right) \in \tilde{\mathscr{L}}_{m}\left(\boldsymbol{C} \tilde{\mathscr{L}}_{m}\right)$ for all $x \in M$ and coordinate functions $\alpha_{1}, \alpha_{2} \in Q$ whose domain contains x. The atlas Q will be suppressed from the notation.

If X is a (complex) p-manifold and Y is a (complex) q-manifold, then $J^{n}(X, Y)\left(C J^{n}(X, Y)\right)$ will denote the fiber bundle with base $X \times Y$, fiber $J^{n}(p, q)\left(\boldsymbol{C J}{ }^{n}(p, q)\right)$ and group $\mathscr{L}_{p} \times \mathscr{L}_{q}\left(\boldsymbol{C} \mathscr{L}_{p} \times \boldsymbol{C} \mathscr{L}_{q}\right)$. If X is a (complex) manifold of type $\tilde{\mathscr{L}}_{p}\left(\boldsymbol{C} \tilde{\mathscr{L}}_{p}\right)$ and Y is a (complex) manifold of type $\tilde{\mathscr{L}}_{q}\left(\boldsymbol{C} \tilde{\mathscr{L}}_{q}\right)$, then the group of $J^{n}(X, Y)\left(\boldsymbol{C J} J^{n}(X, Y)\right)$ is reducible to $\tilde{\mathscr{L}}_{p} \times \tilde{\mathscr{L}}_{q}\left(\boldsymbol{C} \tilde{\mathscr{L}}_{p} \times \boldsymbol{C} \tilde{\mathscr{L}}_{q}\right)$.

Let X and Y be manifolds of type $\tilde{\mathscr{L}}_{p}$ and $\check{\mathscr{L}}_{q}$, respectively. If $A \subset J^{n}(p, q)$ and is invariant under $\tilde{\mathscr{L}}_{p} \times \tilde{\mathscr{L}}_{q}$, then A determines a subbundle $J^{n}(X, Y ; A)$ of $J^{n}(X, Y)$. If A is a submanifold of $J^{n}(p, q)$, then $J^{n}(X, Y ; A)$ is a submanifold of $J^{n}(X, Y)$. Furthermore, the codimension of $J^{n}(X, Y ; A)$ on $J^{n}(X, Y)$ is the codimension of A in $J^{n}(p, q)$.
$J^{n}(X, Y)$ may be looked at as the set of n-equivalence classes of germs of maps of X into Y where two germs are n-equivalent if they agree to order n. If $f: X \rightarrow Y$ and $x \in X$, let $f^{n}(x)$ be the n-equivalence class containing the germ of f at x. Thus a map $f: X \rightarrow Y$ induces a commutative triangle:

Let $A(f)$, the singular set of f of type A, be defined by $A(f)=\left(f^{n}\right)^{-1} J^{n}(X$, $Y ; A)$. If f is such that f^{n} is transversal to $J^{n}(X, Y ; A)$, then f will be called A-transversal. If f is A-transversal, then $A(f)$ is a submanifold of X with codimension equal to that of A in $J^{n}(p, q)$. Similar definitions and statements may be made in the complex case.

If $f: X \rightarrow Y$, let $T f: T X \rightarrow T Y$ be the induced map of tangent bundles.

If $\left(a_{1}, \cdots, a_{m}\right)$ is a tuple of integers with $0 \leq a_{m} \leq \cdots \leq a_{1}$, define $P\left(a_{1}, \cdots\right.$, a_{m}) to be the dimension of the symmetric product $\boldsymbol{R}^{a_{m}} \circ \cdots \circ \boldsymbol{R}^{a_{1}}$ (see [8, § 6] for a definition of the symmetric product).

Theorem 2.1. Let p and q be positive integers. It is possible to assign to each tuple (a_{1}, \cdots, a_{n}) of nonnegative integers, with $a_{1} \geq p-q$ and $a_{1} \geq \cdots$ $\geq a_{n}$, a submanifold $Z\left(a_{1}, \cdots, a_{n}\right)$ of $J^{n}(p, q)$ in such a way that
i) each $Z\left(a_{1}, \cdots, a_{n}\right)$ is invariant undr $\mathscr{L}_{p} \times \mathscr{L}_{q}$,
ii) if $f: X \rightarrow Y$ is a map of a p-manifold into a q-manifold, then $Z(a)(f)$ $=\left\{x \in X \mid\right.$ dimension kernel $\left.T f_{x}=a\right\}$,
iii) if $f: X \rightarrow Y$ is a $Z\left(a_{1}, \cdots, a_{m}\right)$-transversal map of a p-manifold into a q-manifold (so $Z\left(a_{1}, \cdots, a_{m}\right)(f)$ is a manifold), then $Z\left(a_{1}, \cdots, a_{m}, a_{m_{+1}}\right)(f)=$ $\left\{x \in Z\left(a_{1}, \cdots, a_{m}\right)(f) \mid\right.$ dimension (kernel $\left.\left.T f_{x} \cap T Z\left(a_{1}, \cdots, a_{m}\right)(f)_{x}\right)=a_{m_{+1}}\right\}$,
iv) if $f: X \rightarrow Y$ is $Z(a)$-transversal, then the codimension of $Z(a)(f)$ in X is $a(q-p+a)$. If $m \geq 2$ and f is $Z\left(a_{1}, \cdots, a_{m-1}\right)$-transversal and $Z\left(a_{1}, \cdots, a_{m}\right)$ transversal, then the codimension of $Z\left(a_{1}, \cdots, a_{m}\right)(f)$ in $Z\left(a_{1}, \cdots, a_{m-1}\right)(f)$ is $P\left(a_{1}, \cdots, a_{m}\right)\left(q-p+a_{1}\right)-\sum_{i=2}^{m} P\left(a_{i}, \cdots, a_{m}\right)\left(a_{i-1}-a_{i}\right)$.

For a proof, see [2] or [8].
It is possible to define complex submanifolds $\boldsymbol{C Z}\left(a_{1}, \cdots, a_{n}\right)$ of $\boldsymbol{C J}^{n}(p, q)$ which are invariant under $\boldsymbol{C} \mathscr{L}_{p} \times \boldsymbol{C} \mathscr{L}_{q}$ behaving analogously to the $Z\left(a_{1}, \cdots\right.$, a_{n}) with respect to holomorphic maps of complex manifolds. The proof is formally identical to that of Theorem 2.1.

If X and Y are manifolds, let $C^{m}(X, Y)$ denote the set of C^{∞} maps of X into Y, provided with the topology of compact convergence of all partials of order less than or equal to n.

Let B be a submanifold of $J^{n}(X, Y)$. Then, according to the Thom transversality theorem, $\left\{f: X \rightarrow Y \mid f^{n}\right.$ is transversal to $\left.B\right\}$ is dense (in fact, a Baire set) in $C^{n+1}(X, Y)$. If X is compact, this set is open as well as dense in $C^{n+1}(X$, Y). See [7] for a proof of the transversality theorem.

If $f: X \rightarrow \boldsymbol{R}^{q}$ (or $f: X \rightarrow \boldsymbol{C}^{q}$), then f_{j} will denote the j th coordinate function of f. If $\phi: \boldsymbol{R}^{2 p} \rightarrow \boldsymbol{R}^{2 q}$, define $\hat{\phi}: \boldsymbol{C}^{p} \rightarrow \boldsymbol{C}^{q}$ by $\hat{\phi}_{j}\left(x_{1}^{1}+i x_{2}^{1}, \cdots, x_{1}^{p}+i x_{2}^{p}\right)=$ $\phi_{j}\left(x_{1}^{1}, \cdots, x_{1}^{p}, x_{2}^{1}, \cdots, x_{2}^{p}\right)+i \phi_{q+j}\left(x_{1}^{1}, \cdots, x_{1}^{p}, x_{2}^{1}, \cdots, x_{2}^{p}\right)$. (Note that $\hat{\phi}$ is not necessarily holomorphic.) If $S \subset C J(p, q)$, let $\check{S}=\{\phi \in J(2 p, 2 q) \mid \hat{\phi} \in S\}$. A real $2 q$-manifold Y is a complex q-manifold if and only if Y is a manifold of type $\left(\boldsymbol{C} \mathscr{L}_{q}\right)^{\vee}$.

If $P: \boldsymbol{R}^{p} \rightarrow \boldsymbol{R}^{2 q}$ is a polynomial with $P_{j}\left(x_{1}, \cdots, x_{p}\right)=\sum_{j_{1}, \ldots, j_{p}} a_{j_{1}, \ldots, j_{p}}^{j_{1}} x_{1}^{j_{1}} \cdots x_{p}^{j_{p}}$, define $\rho(P): \boldsymbol{C}^{p} \rightarrow \boldsymbol{C}^{q}$ by

$$
(\rho P)_{j}\left(z_{1}, \cdots, z_{p}\right)=\sum_{j_{1}, \cdots, j_{p}}\left(a_{j_{1}, \cdots, j_{p}}^{j_{p}}+i a_{j_{1}, \cdots, j_{p}}^{q+j}\right) z_{1}^{j_{1}} \cdots z_{p}^{j_{p}} .
$$

The function ρ induces a map $J^{n}(p, 2 q) \rightarrow \boldsymbol{C J}^{n}(p, q)$ also denoted by ρ. This map is an isomorphism of real vector spaces. If A is a submanifold of $\boldsymbol{C J}^{n}(p$, $q)$ then, since ρ is an isomorphism, $\rho^{-1}(A)$ is a submanifold of $J^{n}(p, 2 q)$. It is
easy to show that if A is invariant under $\boldsymbol{C} \mathscr{L}_{p} \times \boldsymbol{C} \tilde{\mathscr{L}}_{q}$, then $\rho^{-1}(A)$ is invariant under $\mathscr{L}_{p} \times\left(\boldsymbol{C} \tilde{\mathscr{L}}_{q}\right)^{\vee}$.

Thus if X is a p-manifold, Y is a complex q-manifold, $a_{1} \geq p-q$ and $a_{1} \geq \cdots \geq a_{n} \geq 0$, then $J^{n}\left(X, Y ; \rho^{-1} C Z\left(a_{1}, \cdots, a_{n}\right)\right)$ is a submanifold of $J^{n}(X, Y)$.

Let X and Y be as above and let $f: X \rightarrow Y$ be C^{∞} (as a map of real manifolds). It is immediate that $\rho^{-1} C Z\left(a_{1}\right)(f)=\left\{x \in X \mid\right.$ the complex span of $T f\left(T X_{x}\right)$ is a $\left(p-a_{1}\right)$-dimensional complex subspace of $\left.T Y_{f(x)}\right\}$. Suppose $p \leq 2 q$ so that it is possible for $Z(0)(f)$ to be nonempty. From the fact that $Z(0)(f)$ is open in X, it follows that if f is $\rho^{-1} C Z\left(a_{1}\right)(f)$-transversal, then $Z(0)(f) \cap$ $\rho^{-1} C Z\left(a_{1}\right)(f)$ is a submanifold of X with codimension $2 a_{1}\left(q-p+a_{1}\right)$. Define a vector subbundle K of $T X$ over $Z(0)(f) \cap \rho^{-1} C Z\left(a_{1}\right)(f)$ by $K=\left\{v \mid v \in T X_{x}\right.$ for some $x \in Z(0)(f) \cap \rho^{-1} C Z\left(a_{1}\right)(f)$ and $\left.i T f(v) \in T f\left(T X_{x}\right)\right\}$. The fiber of K is $2 a_{1}-$ dimensional. Define $\alpha: K \rightarrow K$ by $T f(\alpha(v))=i T f(v)$.
$\boldsymbol{R}^{2 q}$ will be identified with \boldsymbol{C}^{q} by associating the tuple $\left(a_{1}+i b_{1}, \cdots, a_{q}+i b_{q}\right)$ with the tuple $\left(a_{1}, \cdots, a_{q}, b_{1}, \cdots, b_{q}\right)$. We will need the following computational facts about ρ : Let $f \in \mathscr{F}(p, 2 q)$ be a polynomial and let $v, \boldsymbol{w} \in \boldsymbol{T R}_{0}^{p}$. Let $\rho: J^{n}(p, 2 q) \rightarrow \boldsymbol{C J}^{n}(p, q)$ be as above. Then it is simple to show:
i) $T(\rho f)(v+i w)=T f(v)+i T f(w)$,
ii) $\quad T t_{\rho f}(v+i w)=T_{\rho} T t_{f}(v)+i T_{\rho} T t_{f}(w)$.

Proposition 2.2. Let X be a real p-manifold, Y be a complex q-manifold, and $F: X \rightarrow Y$ be $\rho^{-1} C Z\left(a_{1}, \cdots, a_{m}\right)$-transversal. If $x \in Z(0)(f) \cap \rho^{-1} C Z\left(a_{1}\right.$, $\left.\cdots, a_{m}\right)(f)$, let $W_{x}=\left\{v \in K_{x} \mid v\right.$ and $\alpha(v)$ both are elements of $T \rho^{-1} C Z\left(a_{1}, \cdots\right.$, $\left.\left.a_{m}\right)(f)\right\}$. Let $V=\left\{x \in Z(0)(f) \cap \rho^{-1} C Z\left(a_{1}, \cdots, a_{m}\right)(f) \mid\right.$ dimension $\left.W_{x}=2 a_{m+1}\right\}$. Then $V \subset \cup_{b \geq a_{m+1}} \rho^{-1} C Z\left(a_{1}, \cdots, a_{m}, b\right)(f)$.

Proof. This is a local question. Suppose $X=\boldsymbol{R}^{p}, Y=\boldsymbol{C}^{q}=\boldsymbol{R}^{2 q}, f: \boldsymbol{R}^{p} \rightarrow \boldsymbol{C}^{q}$ is a $\rho^{-1} C Z\left(a_{1}, \cdots, a_{m}\right)$-transversal polynomial, and $0 \in V$. Let $v_{1}, \cdots, v_{a_{m+1}} \in$ $\boldsymbol{T R}_{0}^{p}$ be such that $W_{0}=\operatorname{span}\left\{v_{1}, \cdots, v_{a_{m+1}}, \alpha\left(v_{1}\right), \cdots, \alpha\left(v_{a_{m+1}}\right)\right\}$. It follows from i) that for $j=1, \cdots, a_{m+1}, T(\rho f)\left(v_{j}+i \alpha\left(v_{j}\right)\right)=T f\left(v_{j}\right)+i T f\left(\alpha\left(v_{j}\right)\right)=0$.

We will show that $v_{j}+i \alpha\left(v_{j}\right) \in$ kernel $T(\rho f)_{0} \cap T C Z\left(a_{1}, \cdots, a_{m}\right)(\rho f)_{0}$ for each j so that the complex dimension of kernel $T(\rho f)_{0} \cap T C Z\left(a_{1}, \cdots, a_{m}\right)(\rho f)_{0}$ is at least a_{m+1}. If we also show that ρf is $C Z\left(a_{1}, \cdots, a_{m}\right)$-transversal at 0 , then the result will follow from the complex analogue of Theorem 2.1.
$\boldsymbol{J}^{m}\left(\boldsymbol{R}^{p}, \boldsymbol{R}^{2 q}\right)=\boldsymbol{R}^{p} \times \boldsymbol{R}^{2 q} \times J^{m}(p, 2 q)$, and t_{f} is the projection of f^{m} onto $J^{m}(p, 2 q)$. Thus $\rho^{-1} C Z\left(a_{1}, \cdots, a_{m}\right)(f)=t_{f}^{-1}\left(\rho^{-1} C Z\left(a_{1}, \cdots, a_{m}\right)\right)$, and t_{f} is transversal to $\rho^{-1}\left(\boldsymbol{C Z}\left(a_{1}, \cdots, a_{m}\right)\right)$. If $v, w \in \boldsymbol{T R}_{0}^{p}$, then $T t_{\rho f}(v+i w)=T_{\rho} T t_{f}(v)+$ $i T_{\rho} T t_{f}(w)$. That $t_{\rho f}$ is transversal to $C Z\left(a_{1}, \cdots, a_{m}\right)$ at 0 follows from the fact that t_{f} is transversal to $\rho^{-1} C Z\left(a_{1}, \cdots, a_{m}\right)$. Thus $v+i w \in T C Z\left(a_{1}, \cdots, a_{m}\right)(\rho f)$ if and only if $T t_{\rho f}(v+i w) \in T C Z\left(a_{1}, \cdots, a_{m}\right)$. But for $j=1, \cdots, m$, $T t_{\rho f}\left(v_{j}+i \alpha\left(v_{j}\right)\right)=T_{\rho} T t_{f}\left(v_{j}\right)+i T_{\rho} T t_{f}\left(\alpha\left(v_{j}\right)\right)$. Since v_{j} and $\alpha\left(v_{j}\right)$ both are elements of $T \rho^{-1} C Z\left(a_{1}, \cdots, a_{m}\right)(f), T t_{f}\left(v_{j}\right)$ and $T t_{f}\left(a\left(v_{j}\right)\right)$ are elements of $T \rho^{-1} C Z\left(a_{1}, \cdots, a_{m}\right)$. Thus $T t_{\rho f}\left(v_{j}+i \alpha\left(v_{j}\right)\right) \in \operatorname{TCZ}\left(a_{1}, \cdots, a_{m}\right)$, and $v_{j}+$
$i \alpha\left(v_{j}\right) \in T C Z\left(a_{1}, \cdots, a_{m}\right)(\rho f)$. Hence the proposition is proved.
Example 2.3. Let $f: \boldsymbol{R}^{2} \rightarrow \boldsymbol{C}^{2}$ be defined by $f(x, y)=\left(x+i y, i\left(x^{2}+y^{2}\right)\right)$. f is $\rho^{-1} C Z(1)$-transversal. Furthermore, $0 \in Z(0)(f) \cap \rho^{-1} C Z(1,1)(f)$, but $W_{0} \cap T Z(0)(f)=\{0\}$ since $T Z(0)(f)=\{0\}$. It follows that the inclusion $V \subset U_{b>a_{m+1}} \rho^{-1} C Z\left(a_{1}, \cdots, a_{m}, b\right)(f)$ of Proposition 2.2 cannot be replaced by $V \subset \rho^{-1} C Z\left(a_{1}, \cdots, a_{m+1}\right)$.

It is possible, despite Example 2.3, to interpret the sets $\rho^{-1} C Z\left(a_{1}, \cdots, a_{m_{+1}}\right)(f)$ (for suitably transversal f) in a more precise fashion than Proposition 2.2. This would, however, take space. The point we are trying to make here is that the singular types constructed in [8] give rise to singular types of maps of real manifolds into complex manifolds.

3. Lie brackets

If \boldsymbol{U} is an open subset of \boldsymbol{R}^{p}, then $\phi: U \rightarrow \boldsymbol{R}^{q}$ and $x \in U$ define $D \phi_{x}: \boldsymbol{R}^{p} \rightarrow$ \boldsymbol{R}^{q} by $T \phi\left(v_{x}\right)=\left(D \phi_{x}(v)\right)_{\phi(x)}$. $D \phi$ will abbreviate $D \phi_{0}$. Let $\Sigma \subset J^{n}(p, q)$ be open, and E_{1}, E_{2}, B be vector subbundles of $\Sigma \times \boldsymbol{R}^{p}$. Define F by the exactness of $0 \rightarrow B \rightarrow \Sigma \times \boldsymbol{R}^{p} \rightarrow \boldsymbol{F} \rightarrow 0$. Let $\pi: J^{n+1}(p, q) \rightarrow J^{n}(p, q)$ be the projection.

If s and t are nonnegative integers, let $M(s, t)$ denote the set of linear maps from \boldsymbol{R}^{s} to \boldsymbol{R}^{t}. Give $M(s, t)$ the usual structure as a real vector space, so we may identify $M(s, t)$ with $\boldsymbol{R}^{s t}$.

Suppose that the fiber dimension of E_{i} is $e(i)$. Let $\phi \in \mathscr{F}(p, q)$ be such that $[\phi]^{n} \in \Sigma$, and U be a neighborhood of $[\phi]^{n}$ in Σ such that E_{1} and E_{2} are both trivial over U. Then there are bundle equivalences $\delta_{i}: U \times R^{e(i)} \rightarrow E_{i} / U$. Define C^{∞} maps $C_{i}: U \rightarrow M(e(i), p)$ by $\delta_{i}\left([\psi]^{n}, v\right)=\left([\psi]^{n}, C_{i}\left([\psi]^{n}\right)(v)\right) . C_{i}\left([\psi]^{n}\right)$ has rank $e(i)$ and its image is $\left\{w \in \boldsymbol{R}^{p} \mid\left([\psi]^{n}, w\right) \in E_{i}\right\}$. Straightforward linear algebra shows that there are an integer N and smooth functions $A_{i}: U \rightarrow M(p, N)$ such that $\left([\psi]^{n}, v\right) \in E_{i}$ if and only if $A_{i}\left([\psi]^{n}\right)(v)=0$.

Let $v_{i}: U \rightarrow E_{i}$ be sections for $i=1,2$. Recall that since $\phi \in \mathscr{F}(p, q)$ there is a map $t_{\phi}: \boldsymbol{R}^{p} \rightarrow J^{n}(p, q)$. The sections v_{i} are pulled back to sections $t_{\phi}^{*} v_{i}$ of $t_{\phi}^{*} E_{i}$ over $t_{\phi}^{-1}(U)$. Note that the bundles $t_{\phi}^{*} E_{i}$ and $t_{\phi}^{*} B$ are equivalent to subbundles of $\boldsymbol{T} \boldsymbol{R}^{p}$ over $t_{\phi}^{-1}(U)$. Furthermore, there is an exact sequence $0 \rightarrow t_{\phi}^{*} B$ $\rightarrow \boldsymbol{T R}^{p} \xrightarrow{\varepsilon} t_{\phi}^{*} F \rightarrow 0$ over $t_{\phi}^{-1}(U)$.

Define $\bar{v}_{i}: t_{\phi}^{-1}(U) \rightarrow \boldsymbol{R}^{p}$ by: $t_{\phi}^{*} v_{i}(x)=\left(\bar{v}_{i}(x)\right)_{x} . A_{i}\left(t_{\phi}(x)\right) \cdot \bar{v}_{i}(x)$ is zero for each $x \in t_{\phi}^{-1}(U)$. Consequently all directional derivatives of $A_{i}\left(t_{\phi}(\cdot)\right) \bar{v}_{i}(\cdot)$ are 0 . Thus $\left(D\left(A_{1} \circ t_{\phi}\right)\left(\bar{v}_{2}(0)\right)\right) \cdot \bar{v}_{1}(0)+\boldsymbol{A}_{1}\left([\phi]^{n}\right) \cdot \boldsymbol{D} \bar{v}_{1}\left(\bar{v}_{2}(0)\right)=0$ and $\left(\boldsymbol{D}\left(\boldsymbol{A}_{2} \circ \boldsymbol{t}_{\phi}\right)\left(\bar{v}_{1}(0)\right)\right)$ $\cdot \bar{v}_{2}(0)+A_{2}\left([\phi]^{n}\right) \cdot D \bar{v}_{2}\left(\bar{v}_{1}(0)\right)=0$. Since $D\left(A_{i} \circ t_{\phi}\right)$ is determined by $[\phi]^{n+1}$ and the kernel of $A_{i}\left([\phi]^{n}\right)$ is $\left\{v \mid v_{0} \in\left(t_{\phi}^{*} E_{i}\right)_{0}\right\}$, it follows that the Lie bracket $\left[t_{\phi}^{*} v_{1}, t_{\phi}^{*} v_{2}\right](0)$ is determined up to $\left(t_{\phi}^{*} E_{1}+t_{\phi}^{*} E_{2}\right)_{0}$ by $[\phi]^{n+1}$ and the $v_{i}\left([\phi]^{n}\right)$.

If we suppose that $E_{i} \subset B$ for $i=1,2$, then $\varepsilon\left(\left[t_{\phi}^{*} v_{1}, t_{\phi}^{*} v_{2}\right](0)\right)$ is determined by $[\phi]^{n+1}$ and $v_{i}\left([\phi]^{n}\right) . E_{1}^{*} \otimes E_{2}^{*} \otimes F=\left\{\left([\psi]^{n}, L\right) \mid[\psi]^{n} \in \Sigma\right.$ and $L:\left(E_{1}\right)_{[\psi]^{n}} \times$
$\left(E_{2}\right)_{[\psi]^{n}} \rightarrow F_{[\psi]^{n}}$ is bilinear\}. Thus, if each $E_{i} \subset B$, then Lie bracketing induces a morphism $\gamma: \pi^{-1} \Sigma \rightarrow E_{1}^{*} \otimes E_{2}^{*} \otimes F$ of fiber bundles over Σ. If a is less than or equal to the fiber dimension of F, define $\Sigma(\gamma, a)$ to be the set of points ψ in $\pi^{-1} \Sigma$ such that the linear map $\left(E_{1}\right)_{[\psi]^{n}} \otimes\left(E_{2}\right)_{[\psi]^{n}} \rightarrow F_{[\psi]^{n}}$ corresponding to $\gamma(\psi)$ has rank a.

A function $f: J^{n}(p, q) \rightarrow \boldsymbol{R}$ will be called a polynomial if, given some choice of vector space basis for $J^{n}(p, q), f$ is a polynomial in the coordinate functions of $J^{n}(p, q)$. A function $g: J^{n}(p, q) \rightarrow \boldsymbol{R}^{s}$ will be called a polynomial if each coordinate projection of g is a polynomial.

Suppose Σ is such that there is a polynomial $g: J^{n}(p, q) \rightarrow \boldsymbol{R}^{N}$ such that $\Sigma=\left\{[\phi]^{n} \mid g\left([\phi]^{n}\right) \neq 0\right\}$. Let U be a vector subbundle of $\Sigma \times \boldsymbol{R}^{p}$. We will say that U is polynomially determined if there are an integer K and a polynomial function $G: J^{n}(p, q) \rightarrow M(p, K)$ such that for $[\psi]^{n} \in \Sigma$, then $\left([\psi]^{n}, v\right) \in U$ if and only if $G\left([\psi]^{n}\right) \cdot v=0$. It is apparent that if the bundles E_{1}, E_{2} and B are polynomially determined, each $\Sigma(\gamma, a)$ is determined by polynomial equalities and inequalities. If a is maximal with respect to the property that $\Sigma(\gamma, a) \neq \phi$, then there is a polynomial h on $J_{(p, q)}^{n+1}$ such that $[\psi]^{n+1} \in \Sigma(\gamma, a)$ if and only if $h\left([\psi]^{n+1}\right) \neq 0$. Consequently, $\Sigma(\gamma, a)$ is open.

Now suppose that $\check{\mathscr{L}}_{p} \subset \mathscr{L}_{p}$ and $\tilde{\mathscr{L}}_{q} \subset \mathscr{L}_{q}$ are subgroups, and that Σ is invariant under the action of $\tilde{\mathscr{L}}_{p} \times \tilde{\mathscr{L}}_{q}$. Define an action of $\tilde{\mathscr{L}}_{p} \times \tilde{\mathscr{L}}_{q}$ on $\Sigma \times \boldsymbol{R}^{p}$ by $(\alpha, \beta)\left([\phi]^{n}, v\right)=\left(\left[\beta \phi \alpha^{-1}\right]^{n}, D \alpha(v)\right)$, and suppose that E_{1}, E_{2} and B are invariant under $\tilde{\mathscr{L}}_{p} \times \tilde{\mathscr{L}}_{q}$. The actions of $\tilde{\mathscr{L}}_{p} \times \tilde{\mathscr{L}}_{q}$ on $\Sigma \times \boldsymbol{R}^{p}$ and B determine an action on F. The actions on E_{1}, E_{2} and F determine an action on $E_{1}^{*} \otimes E_{2}^{*} \otimes F$ as follows: an element of $E_{1}^{*} \otimes E_{2}^{*} \otimes F$ is a pair $\left([\phi]^{n}, L\right)$ where $[\phi]^{n} \in \Sigma$ and $L:\left(E_{1}\right)_{[\phi]^{n}} \times\left(E_{2}\right)_{[\phi]^{n}} \rightarrow F_{[\phi]^{n}}$ is bilinear. Define $(\alpha, \beta)\left([\phi]^{n}, L\right)=$ $\left(\left[\beta \phi \alpha^{-1}\right]^{n},(\alpha, \beta) L\right)$ where $(\alpha, \beta) L$ is defined by $((\alpha, \beta) L)\left(\left(\left[\beta \phi \alpha^{-1}\right]^{n}, D \alpha v\right)\right.$, $\left.\left(\left[\beta \phi \alpha^{-1}\right]^{n}, D \alpha w\right)\right)(\alpha, \beta)\left(L\left(\left([\phi]^{n}, v\right),\left([\phi]^{n}, w\right)\right)\right.$). We now show that γ is equivariant thereby showing that $\Sigma(\gamma, a)$ is invariant under $\tilde{\mathscr{L}}_{p} \times \tilde{\mathscr{L}}_{q}$.

Let U, open in Σ, be such that E_{1} and E_{2} are trivial over U, and let $v_{i}: U \rightarrow$ E_{i} be sections. If $(\alpha, \beta) \in \tilde{\mathscr{L}}_{p} \times \tilde{\mathscr{L}}_{q}$ then, for $i=1,2,(\alpha, \beta) v_{i}$ is a section of E_{i} over $(\alpha, \beta) U$. Since $\left(t_{\phi \phi \alpha-1}^{*}(\alpha, \beta) v_{i}\right)(\alpha(x))=T \alpha\left(t_{\phi}^{*} v_{i}\right)(x)$), it follows that

$$
\left[t_{\beta \phi \alpha-1}^{*}(\alpha, \beta) v_{1}, t_{\beta \phi \alpha-1}^{*}(\alpha, \beta) v_{2}\right](0)=T \alpha\left[t_{\phi}^{*} v_{1}, t_{\phi}^{*} v_{2}\right](0) .
$$

The equivariance of γ is now immediate.
Since $\Sigma(\gamma, a)$ is invariant under $\tilde{\mathscr{L}}_{p} \times \tilde{\mathscr{L}}_{q}$ and is determined by polynomial equalities and inequalities, it may (see [3]) be written as a finite union of disjoint manifolds each of which is invariant under $\tilde{\mathscr{L}}_{p} \times \tilde{\mathscr{L}}_{q}$.

Let X be a manifold of type $\tilde{\mathscr{L}}_{p}$, and Y a manifold of type $\tilde{\mathscr{L}}_{q}$. Then $J^{n+1}(X, Y ; \Sigma(\gamma, a))$ is a finite union of disjoint manifolds. If a is maximal with respect to the property that $\Sigma(\gamma, a) \neq \phi$ then $\cup_{b<a} J^{n+1}(X, Y ; \Sigma(\gamma, b))$ is a finite union of disjoint manifolds, each of which has positive codimension in $J^{n+1}(X, Y)$. Thus, if $f: X \rightarrow Y$ is such that f^{n+1} is transversal to each of these
manifolds, then $X \sim \Sigma(\gamma, a)(f)$ is a finite union of manifolds of dimension less than p.

Let $A_{1}\left(A_{2}\right)$ be a maximal atlas of coordinate functions for $X(Y)$ such that if $\alpha_{1}, \alpha_{2} \in A_{1}\left(A_{2}\right)$ and x belongs to the domain of both α_{1} and α_{2}, then $t_{\alpha_{2} \alpha_{1}-1}\left(\alpha_{1}(x)\right) \in \tilde{\mathscr{L}}_{p}\left(\tilde{\mathscr{L}}_{q}\right)$. Let $p_{1}: X \times Y \rightarrow X$ and $n: J^{n}(X, Y) \rightarrow X \times Y$ be the projections. We will define for $i=1,2$ a vector subbundle $E_{i}(X, Y)$ of $n^{*} p_{1}{ }^{*} T X$ over $J^{n}(X, Y ; \Sigma)$, which corresponds to E_{i}. An element of $n^{*} p_{1} * T X$ over Σ is a pair (ϕ, v) where $\phi \in J^{n}(X, Y ; \Sigma)$ and $v \in T X p_{1 n(\phi)}$. Let $n(\phi)=$ $(x, y), \alpha \in A_{1}$ be such that $\alpha(x)=0$, and $\beta \in A_{2}$ be such that $\beta(y)=0$. Then $\beta \phi \alpha^{-1} \in \Sigma$. Let $T \alpha(v)=w(v, \alpha)_{0}$, and define $E_{i}(X, Y)=\left\{(\phi, y) \in n^{*} p_{1}{ }^{*} T X \mid\right.$ $\left.\left(\beta \phi \alpha^{-1}, w(v, \alpha)\right) \in E_{i}\right\}$. This definition is independent of the choices of α and β. We may, in a similar fashion, define a vector subbundle $B(X, Y)$ and a factor bundle $F(X, Y)$ of $n^{*} p_{1}^{*} T X$ over $J^{n}(X, Y ; \Sigma)$, which correspond respectively to B and F.

The equivariance of γ ensures that γ induces a morphism of fiber bundles, $J^{n+1}\left(X, Y ; \pi^{-1} \Sigma\right) \rightarrow E_{1}(X, Y)^{*} \otimes E_{2}(X, Y)^{*} \otimes F(X, Y)$, which will also be denoted γ. If $f: X \rightarrow Y$, then $E_{i}(f)$ (respectively $\left.B(f), F(f)\right)$ will denote $f^{n^{*}} E_{i}(X, Y)$ (respectively $f^{n^{*}} B(X, Y), f^{n^{*}} F(X, Y)$) over $\Sigma(f) . \gamma$ induces a section $\sigma(f): \Sigma(f) \rightarrow$ $E_{1}(f)^{*} \otimes E_{2}(f)^{*} \otimes F(f)$ defined by $f^{n+1^{*}} \sigma(f)(x)=\gamma\left(f^{n+1}(x)\right)$. $\sigma(f)$ is induced by Lie-bracketing vector fields in $E_{1}(f)$ with vector fields in $E_{2}(f)$ and projecting onto $F(f)$, i.e., if $v_{i}: \Sigma(f) \rightarrow E_{i}(f)$ are sections, then $\sigma(f)(x)\left(v_{1}(x) \otimes v_{2}(x)\right)$ is the projection of $\left[v_{1}, v_{2}\right](x)$ on $F(f)$. If $x \in \Sigma(f)$, let $L_{x}(f)=\left\{\left[v_{1}, v_{2}\right](x) \mid v_{i}\right.$ is a section of $\left.E_{i}(f)\right\}$. Then $\Sigma(\gamma, b)(f)=\left\{x \in \Sigma(f) \mid \operatorname{dim}\left(L_{x}+B(f)_{x}\right)=b+\operatorname{dim} B(f)_{x}\right\}$. If a is maximal with respect to the property that $\Sigma(\gamma, a) \neq \phi$, then $J^{n+1}(p, q) \sim$ $\Sigma(\gamma, a)$ may be written as $\cup_{i=1}^{r} M_{i}$ where each M_{i} is a manifold invariant under $\tilde{\mathscr{L}}_{p} \times \tilde{\mathscr{L}}_{q}$. If f is M_{i}-transversal for each i, then $X \sim \Sigma(\gamma, a)(f)$ is a finite union of disjoint manifolds of dimension less than p.

We now summarize.
Theorem 3.1. Let $g: J^{n}(p, q) \rightarrow \boldsymbol{R}^{N}$ be a polynomial, and let $\Sigma=$ $\left\{[\phi]^{n} \mid g\left([\phi]^{n}\right) \neq 0\right\}$. Let $\tilde{\mathscr{L}}_{p} \subset \mathscr{L}_{p}$ and $\tilde{\mathscr{L}}_{q} \subset \mathscr{L}_{q}$ be subgroups. Suppose that Σ is invariant under $\tilde{\mathscr{L}}_{p} \times \tilde{\mathscr{L}}_{q}$, and further that E_{1}, E_{2} and B are polynomially determined vector subbundles of $\Sigma \times \boldsymbol{R}^{p}$, which are invariant under $\tilde{\mathscr{L}}_{p} \times \tilde{\mathscr{L}}_{q}$. Define F by the exactness of $0 \rightarrow B \rightarrow \Sigma \times \boldsymbol{R}^{p} \rightarrow F \rightarrow 0$. Let $\pi: J^{n+1}(p, q) \rightarrow J^{n}(p, q)$ be the projection, and assume that $E_{1}+E_{2} \subset B$. Then Lie-bracketing of vector fields in E_{1} with vector fields in E_{2} induces a map $\gamma: \pi^{-1} \Sigma \rightarrow E_{1}^{*} \otimes E_{2}^{*} \otimes F$, i.e., γ assigns to each $[\phi]^{n+1} \in \pi^{-1} \Sigma$ a linear map $\gamma\left([\phi]^{n+1}\right):\left(E_{1} \otimes E_{2}\right)_{[\phi]^{n}} \rightarrow F_{[\phi]^{n}} . \gamma$ is equivariant. If b is a nonnegative integer, let $\Sigma(\gamma, b)=\left\{[\phi]^{n+1} \in \pi^{-1} \Sigma \mid\right.$ image $\gamma\left([\phi]^{n+1}\right)$ has rank $\left.b\right\}$. Each $\Sigma(\gamma, b)$ is a union of a finite number of submanifolds of $J^{n+1}(p, q)$ each of which is invariant under $\tilde{\mathscr{L}}_{p} \times \tilde{\mathscr{L}}_{q}$. Define \tilde{B}, a bundle over $\Sigma(\gamma, b)$, by $\tilde{B}=\left\{\left([\phi]^{n+1}, v+\right.\right.$ $w) \mid\left([\phi]^{n}, v\right) \in B$, and the projection of $\left([\phi]^{n}, w\right)$ on F is an element of the image of $\left.\gamma\left([\phi]^{n+1}\right)\right\}$. \tilde{B} is polynomially determined and is invariant under $\tilde{\mathscr{L}}_{p} \times \tilde{\mathscr{L}}_{q}$. Let a be maximal with respect to the property that $\Sigma(\gamma, a) \neq \phi$.

There is a polynomial h on $J^{n+1}(p, q)$ such that $\Sigma(\gamma, a)=\left\{[\phi]^{n+1} \mid h\left([\phi]^{n+1}\right) \neq 0\right\}$.
Let X be a manifold of type $\tilde{\mathscr{L}}_{p}$, and Y a manifold of type $\tilde{\mathscr{L}}_{q}$. The bundles E_{i} and B induce bundles $E_{i}(X, Y)$ and $B(X, Y)$ over $J^{n}(X, Y ; \Sigma)$ and hence induce bundles $E_{i}(f)$ and $B(f)$ over $\Sigma(f)$ for $f: X \rightarrow Y$. If $x \in \Sigma(f)$, let $L_{x}(f)=$ $\left\{\left[v_{1}, v_{2}\right](x) \mid v_{i}\right.$ is a section of $\left.E_{i}(f)\right\}$. Then $\Sigma(\gamma, b)(f)=\{x \in \Sigma(f) \mid$ dimension $\left(L_{x}+B(f)_{x}\right)=b+$ fiber dimension $\left.B\right\} . J^{n+1}(X, Y) \sim J^{n+1}(X, Y ; \Sigma(\gamma, a))$ may be written as a finite union of manifolds of positive codimension in $J^{n+1}(X, Y)$. If $f: X \rightarrow Y$ is such that f^{n+1} is transversal to each of these manifolds, then $\left\{x \in X \mid x \notin \Sigma(f)\right.$ or $\operatorname{dim}\left(L_{x}+B(f)_{x}\right) \neq a+$ fiber dimension $\left.B\right\}$ is a finite union of manifolds of dimension less than p.

The set of functions obeying the above transversality conditions is a Baire set in $C^{n+2}(X, Y)$, and is open and dense if X is compact.

Corollary 3.2. Let $p>q, X$ be a real p-manifold, and Y be a complex q manifold. If $f: X \rightarrow Y$ and $x \in X$, let $E_{x}(f)=\left\{v \in T X_{x} \mid i T f(v) \in T f\left(T X_{x}\right)\right\}$ and $E(f)=\cup\left\{E_{x}(f) \mid x \in X\right\}$. Let $L(f)$ be the Lie algebra of vector fields generated by vector fields in $E(f)$. If $x \in X$, let $L_{x}(f)=\{v(x) \mid v \in L(f)\}$. Let $S(f)=$ $\left\{x \in X \mid L_{x}(f) \neq T X_{x}\right\}$. Then there are an integer m and a Baire set \mathscr{F} (open and dense if X is compact) in $C^{m}(X, Y)$ such that if $f \in \mathscr{F}$ then $S(f)$ is contained in a finite union of manifolds of dimension less than p.
Proof. Case $1, p \geq 2 q$: Let $\Sigma=\left\{[\phi]^{-1} \in J^{1}(p, 2 q) \mid T \phi_{0}\right.$ has rank $\left.2 q\right\}$. Straightforward linear algebra shows that if $f: X \rightarrow Y$ and $x \in \Sigma(f)$, then $E_{x}(f)=T X_{x}$. Let $\mathscr{F}=\{f: X \rightarrow Y \mid f$ is $Z(a)$-transversal for all $a\}$.

Case $2, p<2 q$: Identify $\boldsymbol{R}^{2 q}$ with \boldsymbol{C}^{q}, and let $\Sigma^{1}=\left\{[\phi]^{1} \in J^{1}(p, 2 q) \mid T \phi_{0}\right.$
 $J^{1}(p, 2 q)$ such that $[\phi]^{1} \in \Sigma^{1}$ if and only if $g^{1}\left([\phi]^{1}\right) \neq 0$. Let $E^{1}=\left\{\left([\phi]^{1}, v\right) \mid[\phi]^{1} \in \Sigma^{1}\right.$ and $\left.T \phi\left(v_{0}\right) \in i T \phi\left(\boldsymbol{R}_{0}^{p}\right)\right\}$. Now suppose that g^{k} is a polynomial on $J^{k}(p, 2 q)$, $\Sigma^{k}=\left\{[\phi]^{k} \mid g^{k}\left([\phi]^{k}\right) \neq 0\right\}$, and E^{k} is a polynomially determined vector subbundle of $\Sigma^{k} \times \boldsymbol{R}^{p}$. Define F^{k} by the exactness of $0 \rightarrow E^{k} \rightarrow \Sigma^{k} \times \boldsymbol{R}^{p} \rightarrow F \rightarrow 0$, let $\pi^{k+1}: J_{(p, 2 q)}^{k+1} \rightarrow J_{(p, 2 q)}^{k}$ be the projection, and $\gamma^{k}:\left(\pi^{k+1}\right)^{-1} \Sigma^{k} \rightarrow E^{k^{*}} \otimes E^{k^{*}} \otimes F^{k}$ be the map induced by Lie-bracketing. Let a^{k} be maximal with respect to the property that $\Sigma^{k}\left(\gamma^{k}, a^{k}\right) \neq \phi$. Define $\Sigma^{k+1}=\Sigma^{k}\left(\gamma^{k}, a^{k}\right)$, and let g^{k+1} be a polynomial on $J_{(p, 2 q)}^{k+1}$ such that $[\phi]^{k+1} \in \Sigma^{k+1}$ if and only if $g^{k+1}\left([\phi]^{k+1}\right) \neq 0$. Complete the inductive definition by defining $E^{k+1}=\left\{\left([\phi]^{k+1}, v+w\right) \in \Sigma^{k+1} \times\right.$ $\boldsymbol{R}^{p} \mid\left([\phi]^{k}, v\right) \in E^{k}$ and the projection of $\left([\phi]^{k}, w\right)$ on F^{k} is in the image of $\left.\gamma^{k}\left([\varphi]^{k+1}\right)\right\}$. The proof will be complete if we can show that there is a k such that $E^{k}=\Sigma^{k} \times \boldsymbol{R}^{p}$ (for then we can choose $m=k+1$). To show this it suffices to show that if $E^{j} \neq \Sigma^{j} \times \boldsymbol{R}^{p}$ then $a^{j} \neq 0$.

But suppose $E^{j} \neq \Sigma^{j} \times \boldsymbol{R}^{p}$ and $\phi: \boldsymbol{R}^{p} \rightarrow \boldsymbol{C}^{q}$ is such that $[\phi]^{j} \in \Sigma^{j}$. We may assume that $D \phi_{0}$ is given by

$$
\left(\begin{array}{cc|c}
\begin{array}{cc}
1 i & \\
\cdot & 0 \\
0 & 1 i
\end{array} & 0 \\
\hline 0 & & I_{2 q-p}
\end{array}\right)
$$

where $I_{2 q-p}$ denotes the $(2 q-p) \times(2 q-p)$ identity matrix, and the matrix in the upper left hand corner has 1 for each $(k, 2 k-1)$-entry and i for each ($k, 2 k$)-entry. Let U be a small open neighborhood of the origin in \boldsymbol{R}^{p}. If $u: U \rightarrow \boldsymbol{R}^{p}$ defines a section $\tilde{u}: U \rightarrow \boldsymbol{T} \boldsymbol{R}^{p}$ by $\tilde{u}(x)=u(x)_{x}$.

We may find functions $v, w: U \rightarrow \boldsymbol{R}^{p}$ such that
i) $v(0)=(1,0, \cdots, 0)$,
ii) if $x \in U$, then $v_{1}(x)=1$; and if $2 \leq k \leq 2 p-2 q$, then $v_{k}(x)=0$,
iii) if $x \in U$, then $i D \phi_{x} v(x)=D \phi_{x} w(x)$.

Define functions f and g from U to R^{q} by $\phi(x)=f(x)+i g(x)$. If $x \in U$, let $A(x)$ be the matrix consisting of the last $2 q-p$ columns of $D f_{x}$, and $B(x)$ be the matrix consisting of the last $2 q-p$ columns of $D g_{x}$. Let $M(x)$ be the $(2 q) \times(2 q)$ matrix $\left(\begin{array}{cc}B(X) & D f_{x} \\ A(X) & -D g_{x}\end{array}\right)$, and let $N(x)$ be the first column of $\binom{D g_{x}}{D f_{x}}$. If v, w obey i)-iii), then $M(x)\left(\begin{array}{c}v_{2 p-2 q+1}(x) \\ \vdots \\ v_{p}(x) \\ w_{1}(x) \\ \vdots \\ w_{p}(x)\end{array}\right)+N(x)=0$ for all $x \in U$.
Repeated differentiation of this matrix equation enables us to compute the derivatives of v and w in terms of the derivatives of f and g. In particular, if n is an integer, the nth order derivatives of v and w at the origin are determined by the $(n+1)$-jets of f and g at the origin. Also if $2 p-2 q+1 \leq k \leq p$, there are real numbers R_{k} and S_{k} depending only on [$\left.\phi\right]^{j}$ such that

$$
\begin{gathered}
\frac{\partial^{j} w_{k}}{\partial x_{1}^{j}}(0)=-\frac{\partial^{j+1} f_{k}}{\partial x_{1}^{j} \partial x_{2}}(0)+\frac{\partial^{j+1} g_{k}}{\partial x_{1}^{j+1}}(0)+R_{k}, \\
\frac{\partial^{j} v_{k}}{\partial x_{1}^{j-1} \partial x_{2}}(0)=\frac{\partial^{j+1} g_{k}}{\partial x_{1}^{j-1} \partial x_{2}^{2}}(0)-\frac{\partial^{j+1} f_{k}}{\partial x_{1}^{j} \partial x_{2}}(0)+S_{k}
\end{gathered}
$$

Define a vector field L_{2} by $L_{2}=[\tilde{v}, \tilde{w}]$, and define $L_{r+1}=\left[\tilde{v}, L_{r}\right]$ if L_{r} is defined. A direct computation shows that the k th component of $L_{j+1}(0)$ is $\left(\partial^{j} w_{k} / \partial x_{1}^{j}\right)(0)-\left(\partial^{j} v_{k} / \partial x_{1}^{j-1} \partial x_{2}\right)(0)+T_{k}$ where T_{k} depends only on the derivatives of v and w at the origin of order less than j. It follows that if $2 p-2 q+$ $1 \leq k \leq p$, then the k th component of $L_{j+1}(0)$ is $-\left(\left(\partial^{j+1} g_{k} / \partial x_{1}^{j+1}\right)(0)+\right.$ $\left.\left(\partial^{j+1} g_{k} / \partial x_{1}^{j-1} \partial x_{2}^{2}\right)(0)\right)+U_{k}$ where U_{k} depends only on $[\phi]^{j}$. Thus given $[\phi]^{j} \in \Sigma^{j}$ one can choose $[\phi]^{j+1} \in\left(\pi^{j+1}\right)^{-1}\left([\phi]^{j}\right)$ in such a way that $\gamma^{j}\left([\phi]^{j+1}\right) \neq 0$, so $a_{j} \neq 0$ and the result follows.

4. Results on extendibility

We briefly review the terminology and principal result of [5].
If V is a real vector bundle, $V \otimes C$ has a natural automorphism "一" ob-
tained by extending complex conjugation from C. There is a natural linear map $r e: V \otimes C \rightarrow V$, which is just "taking real parts".

The holomorphic tangent bundle $H\left(\boldsymbol{C}^{n}\right)$ of \boldsymbol{C}^{n} is the complex subbundle of $T\left(\boldsymbol{C}^{n}\right) \otimes \boldsymbol{C}$ generated (at $p \in \boldsymbol{C}^{n}$) by tangent vectors of the form $\sum a_{j}\left(\partial / \partial z_{j}\right)_{p}$. Let W be a real differentiable submanifold of $C^{n} . H(W)$, the holomorphic tangent bundle of W, is just $H\left(C^{n}\right) \cap(T(W) \otimes C$) over $W . \mathscr{L}(W)$ (called the Levi algebra of W in [5]) is the Lie algebra of vector fields generated by sections of $H(W)$ and $\overline{H(W)}$.

Then $V A 3$ of [5] gives:
Theorem 4.1. Suppose W is a real $(n+k)$-dimensional differentiable submanifold of an n-dimensional complex manifold Y, and that fiber $\operatorname{dim}_{C} H(W)=k$ $(H(W)$ can be defined locally as above). Then W is extendible to a subset of Y containing a real submanifold N with $\operatorname{dim} N=n+e$ where $e=\sup$ fiber $\operatorname{dim}_{c} \mathscr{L}(W)$.

It is easy to connect the work of $\S 3$ with this theorem. If $f: X \rightarrow Y$ is as in Corollary 3.2, then take $W=f(X)$. The bundle $E_{x}(f)$ of Corollary 3.2 is just $r e(H(W)+\overline{H(W)})$. The integer e of Theorem 4.1 above can be obtained as sup fiber $\operatorname{dim}_{R} L(f)(L(f)$ as in Corollary 3.2). This is true, since $\mathscr{L}(W)=\overline{\mathscr{L}}(W)$ are $\operatorname{re} \mathscr{L}(W)=L(f)$.

We say that a subset S of a complex manifold Y is locally extendible to an open set if and only if every relatively open subset of S is extendible to a set containing an open subset of Y. Clearly, a set which is locally extendible to an open set is extendible to a set containing an open subset of Y. Then the remarks at the end of Corollary 3.2 translate as:

Theorem 4.2. Let X be an $(n+k)$-dimensional real differentiable manifold, and Y an n-dimensional complex manifold. Let \mathscr{M} be a set of maps from X to Y, equipped with the C^{m} topology (m sufficiently large).
a) If X is compact, then there is an open and dense subset \mathcal{O} of \mathscr{M}, such that if $f \in \mathcal{O}$, then $f(X)$ is locally extendible (and hence extendible) to an open subset of Y.
b) If X is not compact, then there is a Baire subset of \mathscr{M} with the same properties as \mathcal{O} in a).

Proof. We prove a). Take for \mathcal{O} the set of functions described in Corollary 3.2, and suppose $f \in \mathcal{O}$. Then fiber $\operatorname{dim}_{R} L(f)=n$ except possibly on some lower dimensional manifolds. An open subset of X has, therefore, some point where fiber $\operatorname{dim}_{C} \mathscr{L}(f(X))=n$. Applying Theorem 4.1 shows that $f(X)$ is locally extendible to an open subset of Y. b) is proven similarly.

Remark. The integer m in the statement of Theorem 4.2 above can be more explicitly obtained by carefully examining the work of $\S 3$. In particular, if $\operatorname{dim}_{R} X=\operatorname{dim}_{C} Y+1$, then $m=\operatorname{dim}_{R} X$ suffices. (In fact, as $\operatorname{dim}_{R} X$ increases, m can be much less than $\operatorname{dim}_{R} X$.)

Precise results will be given in a forthcoming paper by M. Menn,

We can derive a simple corollary about analyticity in maximal ideal spaces of function algebras. (See [4] for background on function algebras.) Suppose K is a compact subset of $C^{n} . C(K)$ will denote the algebra of continuous com-plex-valued functions on K with the uniform norm ; $A(K)$ is the closure in $C(K)$ of restrictions to K of functions analytic in a neighborhood of K. spec $A(K)$ will denote the maximal ideal space of $A(K)$, with the Gelfand topology. We recall that each function $f \in A(K)$ extends to a continuous function \hat{f} on spec $A(K)$.

An important question arises: how can one describe the behavior of \hat{f} on $\operatorname{spec} A(K)-K$. (See [4, p. 56].) We can contribute the following:

Theorem 4.3. Let \mathscr{H} be the collection of compact subsets of \boldsymbol{C}^{n}, topologized with the Hausdorff metric [6, p. 131]. There is a dense subset D of \mathscr{H} such that if $K \in D$, then there are an open subset U of C^{n} and an embedding $h: U \rightarrow \operatorname{spec} A(K)-K$ such that $\hat{f} \circ h: U \rightarrow C$ is analytic for every $f \in A(K)$.

Remarks. 1) We do not know, but suspect, that D is also open in \mathscr{H}.
2) Suppose $K \in D$. Put $C=\{x \in \operatorname{spec} A(K)-A(K) \mid x \in$ image of some embedding $h\}$. Is $\bar{C}=\operatorname{spec} A(K)$? (The appropriate corona problem.)

Proof. The subset D of \mathscr{H} is the collection of images of all $(n+1)$-dimensional compact real manifolds X by maps $f: X \rightarrow C^{n}$ which have the properties of Theorem 4.2a). Thus $f(X)$ is extendible to a set containing an open subset U of \boldsymbol{C}^{n}. Since every analytic function defined in a neighborhood of $f(X)$ extends to U (with a sup norm on U dominated by that on $f(X)$), we can see that each element of $A(f(X))$ extends to U hence evaluation at each point of U is a member of spec $A(F(X))$. The Gelfand topology is easily seen to agree with the natural topology on U. So the elements of D have the desired property.

We must show that D is dense in \mathscr{H}. If $K \in \mathscr{H}$, consider $K(t)=K+S(t)$ (vector sum), where $S(t)$ is a closed ball of radius t centered at the origin. As $t \rightarrow 0, K(t) \rightarrow K$ in the Hausdorff metric. The sets $K(t)$ have a finite number of arcwise connected components, and it is fairly clear how to approximate them by images of ($n+1$)-dimensional manifolds; then (since C^{m} approximation is finer than Hausdorff metric approximation) by elements of D, using the density of Theorem 4.2a).

References

[1] E. Bishop, Differentiable manifolds in complex Euclidean space, Duke Math. J. 32 (1965) 1-22.
[2] J. M. Boardman, Singularities of differentiable maps, Inst. Hautes Études Sci. Publ. No. 11 (1961) 383-419.
[3] A. Borel \& A. Haefligher, La classe d'homologie fondamentale d'un espace analytique, Bull. Soc. Math. France 89 (1961) 461-513.
[4] A. Browder, Introduction to function algebras, Benjamin, New York, 1969.
[5] S. J. Greenfield, Cauchy-Riemann equations in several variables, Ann. Scuola Norm. Sup. Pisa 22 (1968) 275-314.
[6] J. L. Kelley, General topology, Van Nostrand, Princeton, 1955.
[7] H. I. Levine, Singularities of differentiable mappings, Mimeographed notes, University of Bonn.
[8] M. Menn, Singular manifolds, J. Differential Geometry 5 (1971) 523-542.
Massachusetts Institute of Technology \& Rutgers University
Boston College

