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FACTORIZATION THEOREM
FOR PROJECTIVE VARIETIES

WITH FINITE QUOTIENT SINGULARITIES

Yi Hu

Abstract

In this paper, we prove that any two birational projective vari-
eties with finite quotient singularities can be realized as two geo-
metric GIT quotients of a non-singular projective variety by a
reductive algebraic group. Then, by applying the theory of Varia-
tion of Geometric Invariant Theory Quotients ([3]), we show that
they are related by a sequence of GIT wall-crossing flips.

1. Statements of results

In this paper, we will assume that the ground field is C.

Theorem 1.1. Let φ : X → Y be a birational morphism between
two projective varieties with at worst finite quotient singularities. Then
there is a smooth polarized projective (GLn ×C∗)-variety (M,L) such
that

1) L is a very ample line bundle and admits two (general) lineariza-
tions L1 and L2 with M ss(L1) = M s(L1) and M ss(L2) = M s(L2).

2) The geometric quotient M s(L1)/(GLn ×C∗) is isomorphic to X
and the geometric quotient M s(L2)/(GLn ×C∗) is isomorphic to
Y .

3) The two linearizations L1 and L2 differ only by characters of the
C∗-factor, and L1 and L2 underly the same linearization of the
GLn-factor. Let L be this underlying GLn-linearization. Then,
we have M ss(L) = M s(L).

As a consequence, we obtain

Theorem 1.2. Let X and Y be two birational projective varieties
with at worst finite quotient singularities. Then, Y can be obtained from
X by a sequence of GIT weighted blowups and weighted blowdowns.
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The factorization theorem for smooth projective varieties was proved
by Wlodarczyk and Abramovich–Karu–Matsuki–Wlodarczyka a few
years ago ([1], [12], [13]). Hu and Keel, in [7], gave a short proof by
interpreting it as VGIT wall-crossing flips of C∗-action. My attention to
varieties with finite quotient singularities was brought out by Yongbin
Ruan. The proof here uses the same idea of [7] coupled with a key
suggestion of Dan Abramovich which changed the route of my original
approach. Only the first paragraph of Section 2 uses a construction
of [7] which we reproduce for completeness. The rest is independent.
Theorem 1.1 reinforces the philosophy that began in [6]: Birational
geometry of Q-factorial projective varieties is a special case of VGIT.

2. Proof of Theorem 1.1

By the construction of [7] (cf. Section 2 of [6]), there is a polarized
C∗-projective normal variety (Z,L) such that L admits two (general)
linearizations L1 and L2 such that

1) Zss(L1) = Zs(L1) and Zss(L2) = Zs(L2).
2) C∗ acts freely on Zs(L1) ∪ Zs(L2).
3) The geometric quotient Zs(L1)/C∗ is isomorphic to X and the

geometric quotient Zs(L2)/C∗ is isomorphic to Y .
The construction of Z is short, so we reproduce it here briefly. Choose

an ample cartier divisor D on Y . Then, there is an effective divisor E
on X whose support is exceptional such that φ∗D = A + E with A
ample on X. Let C be the image of the injection N2 → N1(X) given
by (a, b) → aA + bE. The edge generated by φ∗D divides C into two
chambers: the subcone C1 generated by A and φ∗D, and the subcone
C2 generated by φ∗D and E. The ring R = ⊕(a,b)∈N2H0(X,aA + bE)
is finitely generated and is acted upon by (C∗)2 with weights (a, b) on
H0(X,aA+bE). Let Z = Proj(R) with R graded by total degree (a+b).
Then, a subtorus C∗ of (C∗)2 complementary to the diagonal subgroup
∆ acts naturally on Z. The very ample line bundle L = OZ(1) has two
linearizations L1 and L2 descended from two interior integral points in
the chambers C1 and C2, respectively. One verifies (1), (2) by algebra,
and (3) by algebra and the projection formula.

Now, since C∗ acts freely on Zs(L1)∪Zs(L2), we deduce that Zs(L1)∪
Zs(L2) has at worse finite quotient singularities. By Corollary 2.20
and Remark 2.11 of [4], there is a smooth GLn-algebraic space U such
that the geometric quotient π : U → U/GLn exists and is isomorphic
to Zs(L1) ∪ Zs(L2) for some n > 0. Since Zs(L1) ∪ Zs(L2) is quasi-
projective, we see that so is U . In fact, since Zs(L1)∪Zs(L2) admits a
C∗-action, all of the above statements can be made C∗-equivariant. In
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other words, U admits a GLn ×C∗ action and a very ample line bundle
LU = π∗(Lk|Zs(L1)∪Zs(L2)) (for some fixed sufficiently large k) with two
(GLn ×C∗)-linearizations LU,1 and LU,2 such that

1) U ss(LU,1) = U s(LU,1) and U ss(LU,2) = U s(LU,2).
2) The geometric quotient U s(LU,1)/(GLn ×C∗) is isomorphic to X

and the geometric quotient U s(LU,2)/(GLn ×C∗) is isomorphic to
Y . Moreover,

3) the two linearizations LU,1 and LU,2 differ only by characters of
the C∗ factor.

Since we assume that LU is very ample, we have an (GLn ×C∗)-
equivariant embedding of U in a projective space such that the pullback
of O(1) is LU . Let U be the compactification of U which is the closure
of U in the projective space. Let LU be the pullback of O(1) to U . This
extends LU and in fact extends the two linearizations LU,1 and LU,2 to
LU,1 and LU,2, respectively, such that

U
ss(LU,1) = U

s(LU,1) = U ss(LU,1) = U s(LU,1)

and
U

ss(LU,2) = U
s(LU,2) = U ss(LU,2) = U s(LU,2).

It follows that the geometric quotient U
s(LU,1)/(GLn ×C∗) is isomor-

phic to X and the geometric quotient U
s(LU,2)/(GLn ×C∗) is isomor-

phic to Y .
Resolving the singularities of U , (GLn ×C∗)-equivariantly, we will ob-

tain a smooth projective variety M . Notice that U
s(LU,1)∪U

s(LU,2) =
U s(LU,1) ∪ U s(LU,2) ⊂ U is smooth, hence we can arrange the resolu-
tion so that it does not affect this open subset. Let f : M → U be
the resolution morphism and Q be any relative ample line bundle over
M . Then, by the relative GIT (Theorem 3.11 of [5]), there is a positive
integer m0 such that for any fixed integer m ≥ m0, we obtain a very
ample line bundle over M , L = f∗Lm

U
⊗ Q, with two linearizations L1

and L2 such that
1) M ss(L1) = M s(L1) = f−1(U s(LU,1)) and M ss(L2) = M s(L2) =

f−1(U s(LU,2)).
2) The geometric quotient M s (L1) / (GLn ×C∗) is isomorphic to

U
s(LU,1)/(GLn ×C∗) which is isomorphic to X, and, the geometric

quotient M s(L2)/(GLn×C∗) is isomorphic to U
s(LU,2)/(GLn×C∗)

which is isomorphic to Y .
Finally, we note from the construction that the two linearizations L1

and L2 differ only by characters of the C∗-factor, and L1 and L2 underly
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the same linearization of the GLn-factor. Let L be this underlying GLn-
linearization. It may happen that Mss(L) �= M s(L). But if this is the
case, we can then apply the method of Kirwan’s canonical desingular-
ization ([9]), but we need to blow up (GLn ×C∗)-equivarianly instead of
just GLn-equivariantly. More precisely, if Mss(L) �= M s(L), then there
exists a reductive subgroup R of GLn of dimension at least 1 such that

M ss
R (L) := {m ∈ M ss(L) : m is fixed by R}

is not empty. Now, because the action of C∗ and the action of GLn

commute, using the Hilbert–Mumford numerical criterion (or by ma-
nipulating invariant sections, or by other direct arguments), we can
check that

C∗M ss(L) = M ss(L),

in particular,
C∗M ss

R (L) = M ss
R (L).

Hence, we have

(GLn ×C∗)M ss
R = GLn M ss

R ⊂ M \ M s(L).

Therefore, we can resolve the singularities of the closure of the union
of GLn M ss

R in M for all R with the maximal r = dim R and blow M
up along the proper transform of this closure. Repeating this process
at most r times gives us a desired non-singular (GLn ×C∗)-variety with
GLn-semistable locus coincides with the GLn-stable locus (see pages
157–158 of [10]). Obviously, Kirwan’s process will not affect the open
subset M ss(L1) ∪ M ss(L2) = M s(L1) ∪ M s(L2) ⊂ M s(L). Hence, this
will allow us to assume that M ss(L) = M s(L).

This completes the proof of Theorem 1.1.
The proof implies the following.

Corollary 2.1. Let φ : X → Y be a birational morphism between
two projective varieties with at worst finite quotient singularities. Then,
there is a polarized projective C∗-variety (M,L) with at worst finite quo-
tient singularities such that X and Y are isomorphic to two geometric
GIT quotients of (M,L) by C∗.

3. Proof of Theorem 1.2

Let φ : X −→ Y be the birational map. By passing to the (partial)
desingularization of the graph of φ, we may assume that φ is a birational
morphism. This reduces to the case of Theorem 1.1.

We will then try to apply the proof of Theorem 4.2.7 of [3] (see also
[11]). Unlike the torus case for which Theorem 4.2.7 applies almost
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automatically, here, because (GLn ×C∗) involves a non-Abelian group,
the validity of Theorem 4.2.7 must be verified.

From the last section, the two linearizations L1 and L2 differ only
by characters of the C∗-factor, and L1 and L2 underly the same lin-
earization of the GLn-factor. We denote this common GLn-linearized
line bundle by L. For any character χ of the C∗ factor, let Lχ be the
corresponding (GLn ×C∗)-linearization. Note that Lχ also underlies the
GLn-linearization L. From the constructions of the compactification U
and the resolution M , we know that M ss(L) = M s(L). In particu-
lar, GLn acts with only finite isotropy subgroups on Mss(L) = M s(L).
Now, to go from L1 to L2, we will (only) vary the characters of the
C∗-factor, and we will encounter a “wall” when a character χ gives
M ss(Lχ) \ M s(Lχ) �= ∅. In such a case, since M ss(Lχ) ⊂ M ss(L) =
M s(L) which implies that GLn operates on M ss(Lχ) with only finite
isotropy subgroups, the only isotropy subgroups of (GLn ×C∗) of pos-
itive dimensions have to come from the factor C∗, and hence, we con-
clude that such isotropy subgroups of (GLn ×C∗) on M ss(Lχ) have to
be one-dimensional (possibly disconnected) diagonalizable subgroups.
This verifies the condition of Theorem 4.2.7 of [3] and hence, its proof
goes through without changes (Theorem 4.2.7 of [3] assumes that the
isotropy subgroup corresponding to a wall is a one-dimensional (possibly
disconnected) diagonalizable group. The main theorems of [11] assume
that the isotropy subgroup is C∗ (see his Hypothesis (4.4), p. 708)).

4. GIT on projective varieties with finite quotient
singularites

The proof in Section 2 can be modified slightly to imply the following.

Theorem 4.1. Assume that a reductive algebraic group G acts on
a polarized projective variety (X,L) with at worst finite quotient singu-
larities. Then, there exists a smooth polarized projective variety (M,L)
which is acted upon by (G × GLn) for some n > 0 such that for any
linearization Lχ on X, there is a corresponding linearization Lχ on M
such that M ss(Lχ)//(G×GLn) is isomorphic to Xss(Lχ)//G. Moreover,
if Xss(Lχ) = Xs(Lχ), then M ss(Lχ) = M s(Lχ).

This is to say that all GIT quotients of the singular (X,L) (L is fixed)
by G can be realized as GIT quotients of the smooth (M,L) by G×GLn.
In general, this realization is a strict inclusion as (M,L) may have more
GIT quotients than those coming from (X,L).

When the underlying line bundle L is changed, the compatification
U is also changed, so will M . Nevertheless, it is possible to have a sim-
ilar construction to include a finitely many different underlying ample



550 YI HU

line bundles. However, Theorem 4.1 should suffice in most practical
problems because: (1) in most natural quotient and moduli problems,
one only needs to vary linearizations of a fixed ample line bundle; (2)
Variation of the underlying line bundle often behaves so badly that the
condition of Theorem 4.2.7 of [3] cannot be verified.
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