FACTORIZATION THEOREM FOR PROJECTIVE VARIETIES WITH FINITE QUOTIENT SINGULARITIES

Yi Hu

Abstract

In this paper, we prove that any two birational projective varieties with finite quotient singularities can be realized as two geometric GIT quotients of a non-singular projective variety by a reductive algebraic group. Then, by applying the theory of Variation of Geometric Invariant Theory Quotients ([3]), we show that they are related by a sequence of GIT wall-crossing flips.

1. Statements of results

In this paper, we will assume that the ground field is \mathbb{C}.
Theorem 1.1. Let $\phi: X \rightarrow Y$ be a birational morphism between two projective varieties with at worst finite quotient singularities. Then there is a smooth polarized projective $\left(\mathrm{GL}_{n} \times \mathbb{C}^{*}\right)$-variety (M, \mathcal{L}) such that

1) \mathcal{L} is a very ample line bundle and admits two (general) linearizations \mathcal{L}_{1} and \mathcal{L}_{2} with $M^{s s}\left(\mathcal{L}_{1}\right)=M^{s}\left(\mathcal{L}_{1}\right)$ and $M^{s s}\left(\mathcal{L}_{2}\right)=M^{s}\left(\mathcal{L}_{2}\right)$.
2) The geometric quotient $M^{s}\left(\mathcal{L}_{1}\right) /\left(\mathrm{GL}_{n} \times \mathbb{C}^{*}\right)$ is isomorphic to X and the geometric quotient $M^{s}\left(\mathcal{L}_{2}\right) /\left(\mathrm{GL}_{n} \times \mathbb{C}^{*}\right)$ is isomorphic to Y.
3) The two linearizations \mathcal{L}_{1} and \mathcal{L}_{2} differ only by characters of the \mathbb{C}^{*}-factor, and \mathcal{L}_{1} and \mathcal{L}_{2} underly the same linearization of the GL_{n}-factor. Let $\underline{\mathcal{L}}$ be this underlying GL_{n}-linearization. Then, we have $M^{s s}(\underline{\mathcal{L}})=M^{s}(\underline{\mathcal{L}})$.

As a consequence, we obtain
Theorem 1.2. Let X and Y be two birational projective varieties with at worst finite quotient singularities. Then, Y can be obtained from X by a sequence of GIT weighted blowups and weighted blowdowns.

Received 04/25/2004.

The factorization theorem for smooth projective varieties was proved by Wlodarczyk and Abramovich-Karu-Matsuki-Wlodarczyka a few years ago (interpreting it as VGIT wall-crossing flips of \mathbb{C}^{*}-action. My attention to varieties with finite quotient singularities was brought out by Yongbin Ruan. The proof here uses the same idea of [i] coupled with a key suggestion of Dan Abramovich which changed the route of my original approach. Only the first paragraph of Section 2 uses a construction of $[$ Theorem in in reinforces the philosophy that began in [佰]: Birational geometry of \mathbb{Q}-factorial projective varieties is a special case of VGIT.

2. Proof of Theorem

By the construction of $[\bar{i}]$ (cf. Section 2 of $[\overline{6}]$), there is a polarized \mathbb{C}^{*}-projective normal variety (Z, L) such that L admits two (general) linearizations L_{1} and L_{2} such that

1) $Z^{s s}\left(L_{1}\right)=Z^{s}\left(L_{1}\right)$ and $Z^{s s}\left(L_{2}\right)=Z^{s}\left(L_{2}\right)$.
2) \mathbb{C}^{*} acts freely on $Z^{s}\left(L_{1}\right) \cup Z^{s}\left(L_{2}\right)$.
3) The geometric quotient $Z^{s}\left(L_{1}\right) / \mathbb{C}^{*}$ is isomorphic to X and the geometric quotient $Z^{s}\left(L_{2}\right) / \mathbb{C}^{*}$ is isomorphic to Y.
The construction of Z is short, so we reproduce it here briefly. Choose an ample cartier divisor D on Y. Then, there is an effective divisor E on X whose support is exceptional such that $\phi^{*} D=A+E$ with A ample on X. Let C be the image of the injection $\mathbb{N}^{2} \rightarrow N^{1}(X)$ given by $(a, b) \rightarrow a A+b E$. The edge generated by $\phi^{*} D$ divides C into two chambers: the subcone C_{1} generated by A and $\phi^{*} D$, and the subcone C_{2} generated by $\phi^{*} D$ and E. The ring $R=\oplus_{(a, b) \in \mathbb{N}^{2}} H^{0}(X, a A+b E)$ is finitely generated and is acted upon by $\left(\mathbb{C}^{*}\right)^{2}$ with weights (a, b) on $H^{0}(X, a A+b E)$. Let $Z=\operatorname{Proj}(R)$ with R graded by total degree $(a+b)$. Then, a subtorus \mathbb{C}^{*} of $\left(\mathbb{C}^{*}\right)^{2}$ complementary to the diagonal subgroup Δ acts naturally on Z. The very ample line bundle $L=\mathcal{O}_{Z}(1)$ has two linearizations L_{1} and L_{2} descended from two interior integral points in the chambers C_{1} and C_{2}, respectively. One verifies (1), (2) by algebra, and (3) by algebra and the projection formula.

Now, since \mathbb{C}^{*} acts freely on $Z^{s}\left(L_{1}\right) \cup Z^{s}\left(L_{2}\right)$, we deduce that $Z^{s}\left(L_{1}\right) \cup$ $Z^{s}\left(L_{2}\right)$ has at worse finite quotient singularities. By Corollary 2.20 and Remark 2.11 of $\left[\overline{4}\right.$, there is a smooth GL_{n}-algebraic space U such that the geometric quotient $\pi: U \rightarrow U / \mathrm{GL}_{n}$ exists and is isomorphic to $Z^{s}\left(L_{1}\right) \cup Z^{s}\left(L_{2}\right)$ for some $n>0$. Since $Z^{s}\left(L_{1}\right) \cup Z^{s}\left(L_{2}\right)$ is quasiprojective, we see that so is U. In fact, since $Z^{s}\left(L_{1}\right) \cup Z^{s}\left(L_{2}\right)$ admits a \mathbb{C}^{*}-action, all of the above statements can be made \mathbb{C}^{*}-equivariant. In
other words, U admits a $\mathrm{GL}_{n} \times \mathbb{C}^{*}$ action and a very ample line bundle $L_{U}=\pi^{*}\left(\left.L^{k}\right|_{Z^{s}\left(L_{1}\right) \cup Z^{s}\left(L_{2}\right)}\right)$ (for some fixed sufficiently large k) with two ($\mathrm{GL}_{n} \times \mathbb{C}^{*}$)-linearizations $L_{U, 1}$ and $L_{U, 2}$ such that

1) $U^{s s}\left(L_{U, 1}\right)=U^{s}\left(L_{U, 1}\right)$ and $U^{s s}\left(L_{U, 2}\right)=U^{s}\left(L_{U, 2}\right)$.
2) The geometric quotient $U^{s}\left(L_{U, 1}\right) /\left(\mathrm{GL}_{n} \times \mathbb{C}^{*}\right)$ is isomorphic to X and the geometric quotient $U^{s}\left(L_{U, 2}\right) /\left(\mathrm{GL}_{n} \times \mathbb{C}^{*}\right)$ is isomorphic to Y. Moreover,
3) the two linearizations $L_{U, 1}$ and $L_{U, 2}$ differ only by characters of the \mathbb{C}^{*} factor.
Since we assume that L_{U} is very ample, we have an $\left(\mathrm{GL}_{n} \times \mathbb{C}^{*}\right)$ equivariant embedding of U in a projective space such that the pullback of $\mathcal{O}(1)$ is L_{U}. Let \bar{U} be the compactification of U which is the closure of U in the projective space. Let $L_{\bar{U}}$ be the pullback of $\mathcal{O}(1)$ to \bar{U}. This extends L_{U} and in fact extends the two linearizations $L_{U, 1}$ and $L_{U, 2}$ to $L_{\bar{U}, 1}$ and $L_{\bar{U}, 2}$, respectively, such that

$$
\bar{U}^{s s}\left(L_{\bar{U}, 1}\right)=\bar{U}^{s}\left(L_{\bar{U}, 1}\right)=U^{s s}\left(L_{U, 1}\right)=U^{s}\left(L_{U, 1}\right)
$$

and

$$
\bar{U}^{s s}\left(L_{\bar{U}, 2}\right)=\bar{U}^{s}\left(L_{\bar{U}, 2}\right)=U^{s s}\left(L_{U, 2}\right)=U^{s}\left(L_{U, 2}\right)
$$

It follows that the geometric quotient $\bar{U}^{s}\left(L_{\bar{U}, 1}\right) /\left(\mathrm{GL}_{n} \times \mathbb{C}^{*}\right)$ is isomorphic to X and the geometric quotient $\bar{U}^{s}\left(L_{\bar{U}, 2}\right) /\left(\mathrm{GL}_{n} \times \mathbb{C}^{*}\right)$ is isomorphic to Y.

Resolving the singularities of $\bar{U},\left(\mathrm{GL}_{n} \times \mathbb{C}^{*}\right)$-equivariantly, we will obtain a smooth projective variety M. Notice that $\bar{U}^{s}\left(L_{\bar{U}, 1}\right) \cup \bar{U}^{s}\left(L_{\bar{U}, 2}\right)=$ $U^{s}\left(L_{U, 1}\right) \cup U^{s}\left(L_{U, 2}\right) \subset U$ is smooth, hence we can arrange the resolution so that it does not affect this open subset. Let $f: M \rightarrow \bar{U}$ be the resolution morphism and Q be any relative ample line bundle over M. Then, by the relative GIT (Theorem 3.11 of $[5 \mathbf{5} \mathbf{4}$), there is a positive integer m_{0} such that for any fixed integer $m \geq m_{0}$, we obtain a very ample line bundle over $M, \mathcal{L}=f^{*} L \frac{m}{\bar{U}} \otimes Q$, with two linearizations \mathcal{L}_{1} and \mathcal{L}_{2} such that

1) $M^{s s}\left(\mathcal{L}_{1}\right)=M^{s}\left(\mathcal{L}_{1}\right)=f^{-1}\left(\bar{U}^{s}\left(L_{\bar{U}, 1}\right)\right)$ and $M^{s s}\left(\mathcal{L}_{2}\right)=M^{s}\left(\mathcal{L}_{2}\right)=$ $f^{-1}\left(\bar{U}^{s}\left(L_{\bar{U}, 2}\right)\right)$.
2) The geometric quotient $M^{s}\left(\mathcal{L}_{1}\right) /\left(\mathrm{GL}_{n} \times \mathbb{C}^{*}\right)$ is isomorphic to $\bar{U}^{s}\left(L_{\bar{U}, 1}\right) /\left(\mathrm{GL}_{n} \times \mathbb{C}^{*}\right)$ which is isomorphic to X, and, the geometric quotient $M^{s}\left(\mathcal{L}_{2}\right) /\left(\mathrm{GL}_{n} \times \mathbb{C}^{*}\right)$ is isomorphic to $\bar{U}^{s}\left(L_{\bar{U}, 2}\right) /\left(\mathrm{GL}_{n} \times \mathbb{C}^{*}\right)$ which is isomorphic to Y.
Finally, we note from the construction that the two linearizations \mathcal{L}_{1} and \mathcal{L}_{2} differ only by characters of the \mathbb{C}^{*}-factor, and \mathcal{L}_{1} and \mathcal{L}_{2} underly
the same linearization of the GL_{n}-factor. Let $\underline{\mathcal{L}}$ be this underlying GL_{n} linearization. It may happen that $M^{s s}(\underline{\mathcal{L}}) \neq M^{s}(\underline{\mathcal{L}})$. But if this is the case, we can then apply the method of Kirwan's canonical desingularization ($\left.\mathbf{a l n}_{\mathbf{9}}^{\mathbf{i}}\right)$, but we need to blow up $\left(\mathrm{GL}_{n} \times \mathbb{C}^{*}\right)$-equivarianly instead of just GL_{n}-equivariantly. More precisely, if $M^{s s}(\underline{\mathcal{L}}) \neq M^{s}(\underline{\mathcal{L}})$, then there exists a reductive subgroup R of $G L_{n}$ of dimension at least 1 such that

$$
M_{R}^{s s}(\underline{\mathcal{L}}):=\left\{m \in M^{s s}(\underline{\mathcal{L}}): m \text { is fixed by } R\right\}
$$

is not empty. Now, because the action of \mathbb{C}^{*} and the action of GL_{n} commute, using the Hilbert-Mumford numerical criterion (or by manipulating invariant sections, or by other direct arguments), we can check that

$$
\mathbb{C}^{*} M^{s s}(\underline{\mathcal{L}})=M^{s s}(\underline{\mathcal{L}}),
$$

in particular,

$$
\mathbb{C}^{*} M_{R}^{s s}(\underline{\mathcal{L}})=M_{R}^{S_{s}^{s}}(\underline{\mathcal{L}}) .
$$

Hence, we have

$$
\left(\mathrm{GL}_{n} \times \mathbb{C}^{*}\right) M_{R}^{s s}=\mathrm{GL}_{n} M_{R}^{s s} \subset M \backslash M^{s}(\underline{\mathcal{L}}) .
$$

Therefore, we can resolve the singularities of the closure of the union of $\mathrm{GL}_{n} M_{R}^{s s}$ in M for all R with the maximal $r=\operatorname{dim} R$ and blow M up along the proper transform of this closure. Repeating this process at most r times gives us a desired non-singular $\left(\mathrm{GL}_{n} \times \mathbb{C}^{*}\right)$-variety with GL_{n}-semistable locus coincides with the GL_{n}-stable locus (see pages $157-158$ of $\left[\begin{array}{l}1-1 \\ \mathbf{0} \\ \mathbf{1}\end{array}\right)$. Obviously, Kirwan's process will not affect the open subset $M^{s s}\left(\overline{\mathcal{L}_{1}}\right) \cup M^{s s}\left(\mathcal{L}_{2}\right)=M^{s}\left(\mathcal{L}_{1}\right) \cup M^{s}\left(\mathcal{L}_{2}\right) \subset M^{s}(\underline{\mathcal{L}})$. Hence, this will allow us to assume that $M^{s s}(\underline{\mathcal{L}})=M^{s}(\underline{\mathcal{L}})$.

This completes the proof of Theorem
The proof implies the following.
Corollary 2.1. Let $\phi: X \rightarrow Y$ be a birational morphism between two projective varieties with at worst finite quotient singularities. Then, there is a polarized projective \mathbb{C}^{*}-variety $(\underline{M}, \underline{L})$ with at worst finite quotient singularities such that X and Y are isomorphic to two geometric GIT quotients of $(\underline{M}, \underline{L})$ by \mathbb{C}^{*}.

3. Proof of Theorem

Let $\phi: X \longrightarrow Y$ be the birational map. By passing to the (partial) desingularization of the graph of ϕ, we may assume that ϕ is a birational morphism. This reduces to the case of Theorem ind

We will then try to apply the proof of Theorem 4.2 .7 of [ibe also [1]in]). Unlike the torus case for which Theorem 4.2.7 applies almost
automatically, here, because $\left(\mathrm{GL}_{n} \times \mathbb{C}^{*}\right)$ involves a non-Abelian group, the validity of Theorem 4.2.7 must be verified.

From the last section, the two linearizations \mathcal{L}_{1} and \mathcal{L}_{2} differ only by characters of the \mathbb{C}^{*}-factor, and \mathcal{L}_{1} and \mathcal{L}_{2} underly the same linearization of the GL_{n}-factor. We denote this common GL_{n}-linearized line bundle by $\underline{\mathcal{L}}$. For any character χ of the \mathbb{C}^{*} factor, let \mathcal{L}_{χ} be the corresponding $\left(\mathrm{GL}_{n} \times \mathbb{C}^{*}\right)$-linearization. Note that \mathcal{L}_{χ} also underlies the GL_{n}-linearization $\underline{\mathcal{L}}$. From the constructions of the compactification \bar{U} and the resolution M, we know that $M^{s s}(\underline{\mathcal{L}})=M^{s}(\underline{\mathcal{L}})$. In particular, GL_{n} acts with only finite isotropy subgroups on $M^{s s}(\underline{\mathcal{L}})=M^{s}(\underline{\mathcal{L}})$. Now, to go from \mathcal{L}_{1} to \mathcal{L}_{2}, we will (only) vary the characters of the \mathbb{C}^{*}-factor, and we will encounter a "wall" when a character χ gives $M^{s s}\left(\mathcal{L}_{\chi}\right) \backslash M^{s}\left(\mathcal{L}_{\chi}\right) \neq \emptyset$. In such a case, since $M^{s s}\left(\mathcal{L}_{\chi}\right) \subset M^{s s}(\underline{\mathcal{L}})=$ $M^{s}(\underline{\mathcal{L}})$ which implies that GL_{n} operates on $M^{s s}\left(\mathcal{L}_{\chi}\right)$ with only finite isotropy subgroups, the only isotropy subgroups of $\left(\mathrm{GL}_{n} \times \mathbb{C}^{*}\right)$ of positive dimensions have to come from the factor \mathbb{C}^{*}, and hence, we conclude that such isotropy subgroups of $\left(\mathrm{GL}_{n} \times \mathbb{C}^{*}\right)$ on $M^{s s}\left(\mathcal{L}_{\chi}\right)$ have to be one-dimensional (possibly disconnected) diagonalizable subgroups. This verifies the condition of Theorem 4.2.7 of [$\mathbf{3}]$] and hence, its proof goes through without changes (Theorem 4.2.7 of [3] assumes that the isotropy subgroup corresponding to a wall is a one-dimensional (possibly disconnected) diagonalizable group. The main theorems of [1] assume that the isotropy subgroup is \mathbb{C}^{*} (see his Hypothesis (4.4), p. 708)).

4. GIT on projective varieties with finite quotient singularites

The proof in Section 2 can be modified slightly to imply the following.
Theorem 4.1. Assume that a reductive algebraic group G acts on a polarized projective variety (X, L) with at worst finite quotient singularities. Then, there exists a smooth polarized projective variety (M, \mathcal{L}) which is acted upon by $\left(G \times \mathrm{GL}_{n}\right)$ for some $n>0$ such that for any linearization L_{χ} on X, there is a corresponding linearization \mathcal{L}_{χ} on M such that $M^{s s}\left(\mathcal{L}_{\chi}\right) / /\left(G \times \mathrm{GL}_{n}\right)$ is isomorphic to $X^{s s}\left(L_{\chi}\right) / / G$. Moreover, if $X^{s s}\left(L_{\chi}\right)=X^{s}\left(L_{\chi}\right)$, then $M^{s s}\left(\mathcal{L}_{\chi}\right)=M^{s}\left(\mathcal{L}_{\chi}\right)$.

This is to say that all GIT quotients of the $\operatorname{singular}(X, L)(L$ is fixed $)$ by G can be realized as GIT quotients of the $\operatorname{smooth}(M, L)$ by $G \times G L_{n}$. In general, this realization is a strict inclusion as (M, \mathcal{L}) may have more GIT quotients than those coming from (X, L).

When the underlying line bundle L is changed, the compatification \bar{U} is also changed, so will M. Nevertheless, it is possible to have a similar construction to include a finitely many different underlying ample
line bundles. However, Theorem $\overline{4} 1 \mathbf{1}$ in should suffice in most practical problems because: (1) in most natural quotient and moduli problems, one only needs to vary linearizations of a fixed ample line bundle; (2) Variation of the underlying line bundle often behaves so badly that the condition of Theorem 4.2.7 of [3] cannot be verified.

5. Acknowledgments

I thank Yongbin Ruan for asking me about the factorization problem of projective orbifolds in the summer of 2002 when I visited Hong Kong University of Science and Technology. I sincerely thank Dan Abramovich for suggesting to me to use the results of Edidin-Hassett-Kresch-Vistoli ([4i4) and the results of Kirwan (of [4] and have had the paper with me since it appeared in the ArXiv, but I did not realize that it can be applied to this problem until I met Dan in the Spring of 2004.

References

[1] D. Abramovich, K. Karu, K. Matsuki \& J Wlodarczyk, Torification and Factorization of Birational_Maps, J. Amer. Math. Soc. 15(3) (2002) 531-572, MR 1896232, Zbl 1032.14003:
[2] S.D. Cutkosky, Strong Toroidalization of Birational Morphisms of 3-Folds, math.AG/0412497.
[3] I. Dolgachev \& Y. Hu, Variation of Geometric Invariant Theory, with an appendix by Nicolas Ressayr. Publ. Math. IHES 78 (1998) 1-56, MR '1659282, Zbl 1001.14018
[4] D. Edidin, B. Hassett, A. Kresch \& A. Vistoli, Brauer_Groups and Quotient Stacks, Amer. J. Math. 123(4) (2001) 761-777, MR 1244577, Zbl 1036.14001:
[5] Y. Hu, Relative geometric invariant theory and universal moduli spaces, Internat. J. Math. 7(2) (1996) 151-181, MR 1382720, Zbl 0889.14005!
[6] Y. Hu \& S. Keel, Mori dream spaces and GIT, Dedicated to William Fulton on the occasion of his 60th birthday, Michigan Math. J. 48 (2000) 331-348, MR 1786494.
[7] Y. Hu \& S. Keel, A GIT proof of Wtodarczyk's weighted factorization theorem, math.AG/9904146.
[8] K. Karu, Local strong factorization of toric birational maps, J. Algebraic Geom. $14(1)(2005) 165-175$, MR 2092130
[9] F. Kirwan, Partial desingularisations of quotients of non-singular varieties and their Betti numbers, Ann. of Math. (2) 122(1) (1985) 41-85, MR 0799252, Zbl 0592.14011
[10] D. Mumford, J. Fogarty, \& F. Kirwan, Geometric Invariant Theory, Third Edition. Springer-Verlag, Berlin, New York, 1994, MR 1304906, Zbl 0797.14004.
[11] M. Thaddeus, Geometric Invariant Theory and Flips, Journal of the AMS 9 (1996) 691-723, MR 1333296 Zbl 0874.14042.
[12] J. Wlodarczyk, Birational cobordisms and factorization of birational maps, J. Algebraic Geom. 9(3) (2000) 425-449, MR 1752010, Zbl 1010.14002
[13] J. Wlodarczyk, Toroidal varieties and_the weak factorization theorem, Invent. Math. 154(2) (2003) 223-331, MR 2013783 .
[14] J. Wlodarczyk, Decomposition of birational toric maps in blow-ups , 8 blowdowns, Trans. Amer. Math. Soc. 349 (1) (1997) 373-411, MR 1370654ı

Department of Mathematics
University of Arizona
Tucson, AZ 85721
Center for Combinatorics, LPMC
Nankai University
Tianjin 300071
China

