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Abstract

We show that every Lie algebra is equipped with a natural (1, 1)-variant tensor field,
the “canonical endomorphism field”, determined by the Lie structure, and satisfying a
certain Nijenhuis bracket condition. This observation may be considered as complemen-
tary to the Kirillov-Kostant-Souriau theorem on symplectic geometry of coadjoint orbits.
We show its relevance for classical mechanics, in particular for Lax equations. We show
that the space of Lax vector fields is closed under Lie bracket and we introduce a new
bracket for vector fields on a Lie algebra. This bracket defines a new Lie structure on the
space of vector fields.

2000 MSC: 17B08, 53C15, 53C80, 70G45, 70G60, 70H03, 70H05

Notation. We will distinguish between purely algebraic and differential products by using
two types of brackets:

[[ , ]]: Lie algebra product,

[ , ]: Lie commutator of vector fields, Schouten bracket, Nijenhuis bracket.

The summation convention over repeated indices is adopted throughout the paper.

1 Introduction

It is well known that the underlying dual space L∗ of a Lie algebra L possesses—as a
manifold—a canonical Poisson structure in terms of a smooth bivector field Ω ∈ ∧2TL∗,
which satisfies the Jacobi condition [Ω,Ω] = 0 and, when restricted to coadjoint orbits, is
nondegenerate and therefore invertible into a symplectic structure [12, 16, 17]. The existence
of these symplectic sheets is the content of the Kirillov-Kostant-Souriau theorem ([3, 9, 15]).

In this paper, we present an overlooked fact that the Lie algebra L itself also possesses—as
a manifold—a natural differential-geometric object, namely, a (1, 1)-type tensor field A ∈
T (1,1)L that we will call the canonical endomorphism field on L. The principal geometric
property of A is that it is proportional to its own Nijenhuis derivative (Theorem 2.1).

We discuss the relevance of this object for dynamical systems. It turns out that what
Hamilton equations are for the dual space L∗, Lax equations are for L. The principal property
of A assures that the space of “Lax vector fields” is closed under the Lie commutator and,
moreover, it allows one to introduce a new bracket of vector fields on L, which is the analog
for Lax equations of the Poisson bracket on Hamiltonian vector fields.
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2 The canonical endomorphism field on a Lie algebra

Customarily, one defines a Lie algebra as a linear space L with a product L×L 7→ L denoted
[[v, w]] (double bracket). The product is bilinear, skew-symmetric (i), and satisfies the Jacobi
identity (ii):

(i) [[v, w]] = −[[w, v]],

(ii)
[[
v, [[w, z]]

]]
+
[[
w, [[z, x]]

]]
+
[[
x, [[w, z]]

]]
= 0,

In a basis {ei}, the commutator can be represented via “structure constants”:[[
ei, ej

]]
= ckijek. (2.1)

Here, we will rather follow [10] and define a Lie algebra as a pair {L, c}, where c is a (1, 2)-type
tensor that in the above basis is

c =
1
2
ckijε

i ∧ εj ⊗ ek, (2.2)

where {εi} is the dual basis. The algebra product becomes a secondary, derived, concept:
[[v, w]] = (v ∧ w) c = iwivc. Similarly, the adjoint action of v ∈ L is defined simply as a
(1,1)-tensor adv = v c in L. Of course, from the structural point of view both definitions
are equivalent, {L, c} ≡ {L, [[·, ·]]}.

The point of the present paper is to look at the space L as a flat manifold and consider
various differential-geometric objects on it (we will assume that L is real and finite dimen-
sional). The linear structure of this manifold allows one to prolong any tensor T in L to the
(“constant”) tensor field T̃ on the manifold L. In particular, the manifold L is equipped with
a constant (1, 2)-type tensor field λ = c̃:

λ =
1
2
ckijdx

i ∧ dxj ⊗ ∂k, (2.3)

where {xi} are coordinates on L associated with the basis {ei}, and where we denote ∂i ≡
∂/∂xi. The manifold L is also equipped with a natural vector field, the Liouville vector field,
which in a linear coordinate system, is

J = xi∂i. (2.4)

Here is our basic observation.

Theorem 2.1. The manifold of the Lie algebra L possesses a natural field of endomorphisms
(i.e., a (1,1)-variant tensor field) A ∈ T (1,1)L defined by

A = J λ. (2.5)

Its Nijenhuis derivative [A,A] is a vector-valued biform as follows:

[A,A] = −2λ A. (2.6)

Moreover, A acts on the adjoint orbits on L.
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We will call A the canonical endomorphism field on L. In the coordinate description, A
and its Nijenhuis derivative are

A = xickijdx
j ⊗ ∂k, [A,A] = −xkcikpc

p
ab

(
dxa ∧ dxb

)
⊗ ∂i. (2.7)

The endomorphism field A may be viewed as a family of local transformations that at point
x ∈ L can be represented by matrix Ak

j (x) = xickij .
Before we give its proof, let us restate the theorem in more standard terms. The natural

isomorphism of a tangent space at any x ∈ L with the space L itself will be denoted by
µx : TxL→ L. Then, Theorem 2.1 states that every Lie algebra L possesses, as a manifold, a
unique natural tensor field A ∈ T (1,1)L, which at point x ∈ L is defined as an endomorphism
taking a tangent vector v ∈ TxL to

Ax(v) =
(
µ−1

x ◦ adx ◦ µx

)
(v), (2.8)

or, in a somewhat sloppy notation, A(v) = [[x, v]]. Its Nijenhuis derivative [A,A] is a vector-
valued biform, the evaluation of which equals for any v, w ∈ TL:

[A,A](v, w) = −2A
(
[[v, w]]

)
= −2

(
[[Av, w]] + [[v,Aw]]

)
(2.9)

at point x ∈ L, the dependence of which was suppressed in the notation.

Remark 2.2. The canonical endomorphism field A is defined for an arbitrary algebra and its
differential-geometric properties, including the Nijenhuis bracket [A,A], will reflect the type
of this algebra. In the present paper, we restrict to Lie algebras, where the Jacobi identity
implies particularly pleasant consequences.

The above theorem may be viewed as a counterpart of the KKS theorem: the essence
of which is that the dual space L∗ is equipped with a bivector field Ω = xkc

k
ij∂

i ∧ ∂j (in
our language Ω = J λ). Instead of the Nijenhuis bracket, we have the Schouten bracket
[Ω,Ω]Sch = 0. Thus, Ω defines a Poisson structure, which, moreover, restricts to the coadjoint
orbits, on which its inverse ω defines a symplectic structure, ω = 0. Section 8 summarizes
these parallels.

3 Lie algebra in pictures

Tensor calculus gains much transparency when expressed in graphical language.

Basic Glyphs. Here are the basic glyphs corresponding to various tensors:

s v α A g T

Scalar Vector 1-form Endomorphism Scalar product (3,2)-variant tensor

where s is a scalar, v is a vector, α is a covector, A is an endomorphism, and g is a metric
or biform. The links with arrows and links with circles represent the contravariant
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and the covariant attributes of a tensor, respectively. You may think of them as contravari-
ant/covariant (upper/lower) indices in some basis description. Scalars have none.

The “in” and “out” links may go at any direction. Turning and weaving in space do not
have any meaning (unlike in some other conventions). For instance,

this representation T is as good as this T

The links may leave the box at any position, but the order of the point of departure is fixed:
the contravariant indices are ordered clockwise, while the covariant indices counterclockwise.
Links may cross without any meaning implied.

Glyphs may be composed into pictograms that represent terms resulting by manipula-
tion with tensors. The tensor contractions are obtained by joining “ins” with “outs”. Here
are some basic cases.

Evaluation. Here is the evaluation of a covector on a form:

〈α, v〉 ≡ α(v) =

v

α

or simply

v

α

Scalar product. The scalar product of two vectors is a scalar g(v,w), but if only one
vector is contracted with g, then the result is a one form:

g(v,w) =

g

v w

∼=

g

v w

g(v, ·) ≡ v g =

g

v

Endomorphism. A acting on a vector v or covector α results in a vector or covector,
respectively:

v → Av =
A

v

α→ A∗α =
A

α

Trace may be represented by connecting “in” with “out” in a pictogram; if A,B,C ∈
EndL are endomorphisms of some linear space L, then we have

TrA = A , TrAB = A B , TrABC = A B C

The notable property of trace of a composition of endomorphisms, namely, its invariance
under cyclic permutation of the entries, TrA1 ◦ · · · ◦ Ak−1 ◦ Ak = TrA2 ◦ · · · ◦ Ak ◦ A1,
becomes in graphical language verifiable with a simplicity of a mantra on a japa mala.



Canonical endomorphism field on a Lie algebra 5

Lie algebra in pictures. An algebra is defined by a (1,2)-variant tensor c, as shown below
on the left. Also a product and adjoint representation is shown as follows:

Alg structure = c [[v, w]] = c

v w

adv = c

v

If a single algebra is considered, the letter “c” will be suppressed.
In the case of a Lie algebra, besides skew-symmetry we have the Jacobi identity, which

may be written in this way:

a b

=

a b

−

b a (3.1)

The labels a and b are only to discern between different entries.
Perhaps the simplest derived object is a characteristic one-form χ ∈ L∗ the value of which

on a vector v ∈ L is χ(v) = −Tr adv. Its pictograph is

χ =

(This one-form vanishes for semisimple algebras.)
The Killing form is defined as an inner product K(v, w) = Tr advadw. In the diagrammatic

script, it is easy to define the corresponding 2-covariant tensor K:

K =

Every Lie algebra possesses a skew-symmetric exterior Lie 3-form ω that for any triple
v, w, z ∈ L takes value ω(v, w, z) = Tr ad[[v,w]] adz. Using diagrammatic script, we may “draw”
the form ω directly—here it is, simplified with the use of Jacobi identity (3.1):

ω =

a b

=

a b

−

b a

where a and b are merely labels to distinguish the covariant entries. If we use the symbol ∧
or “alt” inside a loop to denote the signed sum over all permutations of entries of a tensor
(skewsymmetrization), then the Lie 3-covariant form is

ω ≡ 1
3

alt
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4 Differential geometry on a Lie algebra

Let us now look at the differential geometry of Lie algebra viewed as a manifold. In the
diagrammatic language, the objects of Theorem 2.1 are

Definition: A =

J

Theorem:
1
2

[A,A] =

J

Since the contraction with J introduces dependence on poisition (coordinates x), we will use
rather notation that will be easier perceptually. Thus, for instance,

A =

J

≡

x

Every element (vector) v ∈ L defines a “constant” vector field ṽ ∈ XL on manifold L
obtained by parallel transport; in coordinates, if v = viei then ṽ = vi∂i. The canonical
endomorphism field A on manifold L applied to such fields defines a representation of Lie
algebra L in terms of vector fields on L, namely, with every algebra element v ∈ L, we
associate a vector field:

Xv = Aṽ = xivjckij∂k =

x v

(4.1)

Proposition 4.1. The map v → Xv defines a homomorphism {L, [[·, ·]]} → {XL, [·, ·]} (the
infinitesimal representation of L in terms of XL):[

Xv, Xw

]
= X[[v,w]] (4.2)

If the center of L is trivial, the map presents a monomorphism.

Proof. The proposition readily follows from the Jacobi identity.

Corollary 4.2. The following are convenient formulae:

(i) [Xv, w̃] = [̃[v, w]],

(ii) [[ṽ, w̃]] = [̃[v, w]],
(iii) [ṽ, w̃] = 0.

The image of A spans at every point a subspace of the tangent space of L, defining in
this way a distribution:

D = ImA = span
{
Xv | v ∈ L

}
. (4.3)
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The integral manifolds of this distribution coincide with the adjoint orbits determined by
the action of a Lie group on Lie algebra. Note, however, that we may define “adjoint orbits”
without reference to the Lie group simply as the integral manifolds O of D, satisfying TO =
D.

Now we prove the theorem.

Proof of Theorem 2.1. Recall that the Nijenhuis bracket [K,K] of a vector-valued one-
form (endomorphism field) K with itself is a vector-valued biform that, evaluated on two
fields X and Y , takes the value according to

1
2

[K,K](X,Y ) = [KX,KY ]−K[KX,Y ]−K[X,KY ] +K2[X,Y ], (4.4)

(see, e.g., [13]). Evaluating (half of) the Nijenhuis bracket [A,A] on two constant vector
fields ṽ and w̃ and using formulae of Propositions 4.1 and 4.2, one gets the following:

1
2

[A,A](ṽ, w̃) =
[
Xv, Xw

]
−A

([
Xv, w̃

])
−A

([
ṽ, Xw

])
+ 0

= X[[v,w]] −X[[v,w]] −X[[v,w]] = −X[[v,w]].

In particular, substitution of X = ∂a and Y = ∂b leads to the coordinate formula (2.7). Now,
let us show that A can be restricted to orbits, that is, A(TxO) ⊂ TxO for each point x ∈ O.
First, rewrite (2.8) for X ∈ TxL:

A(X) = µ−1
x

(
[[x, µx(X)]]

)
.

Vector of the vector field Xv at point x ∈ L can be expressed as follows:

Xv(x) = A(v) = µ−1
x

(
[[x, v]]

)
.

Thus,

A
(
Xv

)
= µ−1

x

([[
x, µx

(
Xv

)]])
= µ−1

x

([[
x, [[x, v]]

]])
= X[[x,v]] ∈ TxO,

which was to be proven.

Example 4.3. Consider the 2-dimensional solvable algebra defined by [[e1, e2]] = e2. Then,

A = x1dx2 ⊗ ∂2, [A,A] = −2x1

(
dx1 ∧ dx2

)
⊗ ∂2.

The adjoint orbits are lines parallel to e2, and the canonical endomorphism—when restricted
to any of them—becomes a dilation.

Example 4.4. The Lie algebra of 3-dimensional rotations, so3, is defined by relations
[[ei, ej ]] = εijkek. Thus,

A = x1

(
dx2 ⊗ ∂3 − dx3 ⊗ ∂2

)
+ (cyclic terms),

[A,A] = dx1 ∧ dx2 ⊗
(
x1∂2 − x2∂1

)
+ (cyclic terms).

The orbits are spheres defined by the Killing form. On the unit sphere, tensor A forms an
almost complex structure, A ◦ A = − id.
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Remark 4.5. In general endomorphism field A is not integrable. The integrable cases, where
the Nijenhuis bracket (2.6) vanishes, include two-step nilpotent algebras such as algebras of
type H [7, 8]. Note that for vector fields of infinitesimal representation, the biform (2.6) takes
at any point x a vector-value:

[A,A]
(
Xv, Xw

)
= µ−1

x ◦
[[
x,
[[
[[x, v]], [[x, v]]

]]]]
. (4.5)

Thus, A restricted to an orbit O ⊂ L is (locally) integrable if [[x, [[[[x, v]], [[x, v]]]]]] = 0 for every
x ∈ O and every v, w ∈ L. This is true for so(n), n ≤ 4 and for nilpotent algebras of the
upper-triangular n× n matrices, n ≤ 5.

5 Other basic properties of the endomorphism field

The fundamental property of the canonical endomorphism field (Theorem 2.1) is

[A,A] = −2λ A.

Other basic properties of the geometry of a Lie algebra are summarized below.

Corollary 5.1. The endomorphism field on a Lie algebra satisfies

(i) £JA = A,
(ii) J A = 0,

(iii) ImA
∣∣
O
∼= Im ad2

x,

(iv) KerA
∣∣
O
∼= Ker adx ∩ Im adx.

where O denotes an orbit through x.

Here is a property analogous to the coadjoint representation preserving the Kirillov-
Poisson structure on the dual Lie algebra.

Proposition 5.2. The endomorphism A is preserved by the action of the adjoint represen-
tation:

£Xv
A = 0 ∀v ∈ L. (5.1)

Proof. Use Leibniz rule to show that (£Xv
A)(w)=0 for every w: (£Xv

A)(w) = £Xv
(A(w))−

A£Xv
w = £Xv

Xw −A[[v, w]] = X[[v,w]] −X[[v,w]] = 0.

Proposition 5.3. The endomorphism field on a Lie algebra satisfies

(i) Tr(A ◦ A) = K(J, J),
(ii) Tr(A) = χ(J),

(iii) K(Av, w) = −K(v,Aw).

where the objects are as follows: K is the Killing form defined for two vectors as K(v, w) =
Tr adv ◦ adw. When evaluated for (J, J), it becomes a quadratic scalar function K(J, J) =
xaxbckaic

i
bk. Similarly, χ ∈ L∗ is a characteristic form on L defined χ(v) = Tr adv. Prop-

erty (iii) states that the endomorphism A is skew-symmetric with respect to the Killing
(possibly degenerated) scalar product.
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The endomorphism defines for every k = 1, 2, . . . , a scalar function of the power trace:

Ik = TrAk = Tr
(

adx ◦ · · · ◦ adx

)
, (5.2)

that will be called Casimir polynomials on L. In the diagrammatical language, they are

I1 =

x

I2 =

x x

I3 =

x x x

I4 =

x x x x

etc. Clearly, the second invariant is a quadratic function related to Killing form and will be
denoted κ = I2 = K(J, J) = κ, but the third is obviously not related to the Lie 3-form.

Corollary 5.4. Differentials of the trace functions are among the annihilators of A:

A dIk = 0. (5.3)

6 The endomorphism field and dynamical systems

Since the dual Lie algebra L∗ with its Poisson structure has deep connections with classical
mechanics, namely, with Hamiltonian formalism, one may expect that so does a Lie algebra
with its endomorphism field A. The candidate coming to mind first is Lagrangian mechanics,
as suggested by this chain of correspondences:

KKS theorem −→ symplectic −→ Hamilton
(Lie coalgebras) geometry equations

Theorem 2.1 −→ endomorphic −→ ?
(Lie algebras) geometry

Duality between tangent bundle TQ over a manifold M , which possesses enough structure so
that any (“regular”) function L on TQ defines a dynamical system via Lagrange equations,
and the cotangent bundle T ∗M , with its own symplectic structure ω granting a Hamiltonian
formalism induced by the Hamiltonian H, suggests that the question mark in the above
diagram of analogies should be replaced by some sort of Lagrange formalism. This guess
may be supported by the fact that the Lagrange formalism is actually based on the natural
endomorphism field on the tangent fiber bundle (see Appendix B).

Yet, it seems that the most direct formalism at the question mark seems—much
generalized—Lax equations of motion.

Although Lax equations are typically defined as matrix equations, the endomorphism A
allows one to geometrize it in a new way. In the next sections, we will discuss “Lax vector
fields” on a Lie algebra and will push the analogy with symplectic geometry to see how far
it goes.

We show that, quite pleasantly, “Lax vector fields” form a closed subalgebra under vector
field commutator. We will also define a new “Poisson bracket” in the space of vector fields
on Lie algebra, and prove a homomorphism between Lie algebra of vector fields with this
bracket with the standard Lie algebra of vector field.
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7 The algebra of Lax vector fields

Let us start with a general construction. By analogy to symplectic geometry dealing with
manifolds equipped with symplectic structure, {M,ω}, we may consider a pair {M,A}, where
manifold M is equipped with a structure defined by a field of endomorphisms—(1, 1)-variant
tensor field on M . Exploring further the analogy, we may study dynamical systems described
by vector fields that are defined by their “potentials”—other vector fields. Thus, instead of
Hamilton equations, we have a map:

XM −→ XM : B −→ XB = B A ≡ AB. (7.1)

This contrasts with symplectic geometry, where the potentials of dynamical systems are
differential forms, namely, differentials of Hamiltonians. It would be natural to require that
the set of all such dynamical systems, XAM = {AY | Y ∈ XM}, be closed under the Lie
bracket of vector fields. This way it would form a subalgebra of {XM, [·, ·]}. The final demand
would be to have a well-defined product of vector fields (potentials), such that the map (7.1)
is a homomorphism of the corresponding algebras.

One may ask why one would want to replace one vector field by another: one gain may
be that in the new form some integrals of motion may be found more easily.

In this section, we show that a Lie algebra with the endomorphism field defined in the pre-
vious sections forms such a system. In particular, it is equipped with a bracket for potentials
that we define below.

Consider the underlying linear space L of a Lie algebra {L, [[, ]]} as a manifold. Any smooth
vector field B can be viewed as a generator (or “potential”) of a dynamical system defined
by vector field XB defined

XB = AB. (7.2)

The integral curves of XB satisfy the Lax equations, which in a somewhat imprecise way are
expressed as follows:

ẋ(t) =
[
x,Bx

]
,

where the x on the left side is understood as a point in L, while the x inside the bracket on
the right side is understood as a vector in L. More accurately,

ċ(t) =
[
Jc(t), Bc(t)

]
= A ◦ B ◦ c(t).

Definition 7.1. Vector fields on a Lie algebra L of form (7.2) will be called Lax vector
fields generated by B or Lax dynamical systems. In the diagrammatic representation, the
Lax vector field is

XB = B A =

x B

(7.3)

The space of Lax vector fields will be denoted by XAL = A(XL) ⊂ XL.

A simple and a well-known fact is the existence of Casimir invariants.
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Corollary 7.2. The dynamical system defined by a Lax vector field (7.2) leaves Casimir
polynomials Ik invariant, XBIk = 0, for any B ∈ XL.

Proof (graphical). We show the reasoning for I2 = K(J, J) (quadratic polynomials defined
by Killing form):

XBI2 = (XB ⊗ J) I2 = 2×

x

x B

=
2
3

Bx

alt

x

= 0,

where first we used Jacobi identity (3.1) and then skewsymmetry of the resulting ω. The
right side vanishes as ω has two identical entries, x. The argument for the other Casimir
invariants is similar.

The geometric meaning of the fundamental Nijenhuis property of the endomorphism field
becomes clear in the current context. Namely, it implies that the space of Lax vector fields
XAL is closed under the commutator of vector fields [XAL,XAL] ⊂ XAL. A new bracket of
vector fields is implied.

Theorem 7.3. The space of Lax vector field forms a subalgebra of the algebra of smooth
vector fields, XAL < XL. In particular, if XB and XC are two (global) Lax vector fields,
then their commutator is a Lax vector field with potential:

{B,C} =: −[[B,C]] +
[
XB, C

]
+
[
B,XC

]
−X[B,C], (7.4)

so that there is an homomorphism between the Lax vector fields with the regular vector field
commutator and all vector fields with { , } product:[

XB, XC

]
= X{B,C}. (7.5)

Proof. This follows from the fact that [A,A] is proportional to A. Rewrite the definition of
the Nijenhuis bracket (4.4) for A and use Theorem 2.1:[

XB, XC

]
= [AB,AC] =

1
2

[A,A](B,C) +A[AB,C] +A[B,AC]−A2[B,C]

= −A[[B,C]] +A
[
XB, C

]
+A

[
B,XC

]
−AX[B,C]

= A
(
− [[B,C]] +

[
XB, C

]
+
[
B,XC

]
−X[B,C]

)
,

(7.6)

where in the last part, we see that the endomorphism field A may be “factored out” thanks
to Theorem 2.1. Thus the commutator is of the form (7.2), the formulas in the theorem
follow.

Proposition 7.4. The bracket (7.4) can be calculated by the following formula:

{A,B} = [[A,B]] +XAB −XBA︸ ︷︷ ︸
(A,B)

, (7.7)

where XAB = xiAjckij∂kB
p∂p.
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Notice that although the two right-most terms are defined in coordinates, their difference
has a coordinate-free meaning, as it can be defined by XAB −XBA = {A,B} − [[A,B]].

The bracket { , } turns the space of vector fields on L into a Lie algebra and can be
viewed as a “differential deformation” of the Lie algebra bracket [[ , ]]. Due to its involved
nature, it may be rather surprising that it defines a Lie algebra. The Jacobi identity is not a
direct consequence and results by intertwined interaction of the Jacobi identities of the Lie
algebra L and of the Lie algebra of vector fields.

Remark 7.5. For two constant vector fields ṽ and w̃ that extend vectors v, w ∈ L, it is
{ṽ, w̃} = [̃[v, w]]. Thus the bracket formula (7.5) reduces in this case to the infinitesimal
representation [Xv, Xw] = X[[v,w]].

Theorem 7.6. The pair {XL, {·, ·}} forms a Lie algebra, that is, the bracket (7.4, 7.8) of
vector fields satisfies the following properties:

(i) (linearity),
(ii) {A,B} = −{B,A} (skewsymmetry),

(iii)
{
A, {B,C}

}
+
{
B, {C,A}

}
+ {C, {A,B}} = 0 (Jacobi identity).

(7.8)

Proof. If X,Y ∈ XL are two vector fields, then we denote X . Y = Xi(∂iY
j)∂j a vector

field calculated in linear coordinate system. Thus, formula (7.7) can be written as follows:

{A,B} = [[A,B]] + (A,B),

where

(A,B) = XA . B −XB . A.

Now, using the formula XA = [[x,A]], we get{
{A,B}, C

}
=
{

[[A,B]] + (A,B), C
}

= [[[[A,B]], C]]︸ ︷︷ ︸
(a)

+ [[(A,B), C]]︸ ︷︷ ︸
(b)

+ ([[A,B]], C)︸ ︷︷ ︸
(c)

+ ((A,B), C)︸ ︷︷ ︸
(d)

= [[[[A,B]], C]]︸ ︷︷ ︸
(0)

(a)

+ [[[[x,A]] . B,C]]︸ ︷︷ ︸
(1)

− [[[[x,B]] . A,C]]︸ ︷︷ ︸
(2)

(b)

+ [[x, [[A,B]]]] . C︸ ︷︷ ︸
(5)

− [[[[x,C]] . A,B]]︸ ︷︷ ︸
(1)

− [[A, [[x,C]] . B]]︸ ︷︷ ︸
(2)

(c)

+ [[x, [[x,A]] . B]] . C︸ ︷︷ ︸
(3)

− [[[[x,C]], A]] . B︸ ︷︷ ︸
(5)

− [[x, [[x,C]] . A]] . B︸ ︷︷ ︸
(3)

(d)

− [[x, [[x,B]] . A]] . C︸ ︷︷ ︸
(4)

+ [[[[x,C]], B]] . A︸ ︷︷ ︸
(5)

+ [[x, [[x,C]] . B]] . A︸ ︷︷ ︸
(4)

, (d)

(∗)

where the letters (a), (b), (c), and (d) are used to indicate the origin of terms in the second
part of the equation. The sum{

{A,B}, C
}

+
{
{B,C}, A

}
+
{
{C,A}, B

}
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contains every term of equation (∗) in each of the three cyclic permutations of A, B, and C.
The sum of such terms marked by any of the numbers (1) to (4) vanishes due to opposite
signs. The group of terms marked by (0) and terms marked by (5) both vanish, each due to
the Jacobi identity of the Lie algebra product.

Corollary 7.7. There is a Lie algebra homomorphism {XL, {·, ·}} → {XA, [·, ·]} between Lie
algebra of vector fields on L with bracket defined by (7.4) and the Lie algebra vector fields on
L restricted to Lax vector fields.

By analogy to Hamiltonian formalism of classical mechanics, we have a property that may
be viewed as a counterpart of Poisson theorem.

Corollary 7.8 (“à la Poisson”). If vector fields B and C are Lax potentials of symmetries
of a dynamical system, then {B,C} is a Lax potential of a symmetry as well.

Proof. Use the Jacobi identity for vector fields:

[XB, [XC , X]︸ ︷︷ ︸
0

] + [X, [XB, XC ]︸ ︷︷ ︸
X{B,C}

] + [XC , [X,XB]︸ ︷︷ ︸
0

] = 0,

hence the claim: £X{B,C}
X = 0.

Basic examples. What can be used as a Lax potential? The simplest are constant vector
fields, in which case the homomorphism reduces to Proposition 4.1 (see Remark 7.5). Also,
a Lax vector field may be “reused” as a potential for a new Lax vector field. The following
formulas for bracket {·, ·} may be useful for such dynamical systems:

{v, w} = [[v, w]]
{
Xv, w

}
= X[[v,w]]

{
Xv, Xw

}
= XA[[v,w]] −

[[
Xv, Xw

]]
,

where v and w are understood as constant vector fields (the tilde is suppressed for simplicity).
Another class consists of Lax vector fields generated from linear vector fields on L. Euler’s

equations of the motion a rigid body belong to this category. Here is their—somewhat näıve—
generalization to arbitrary Lie algebra: let R ∈ EndL be a matrix describing the tensor of
inertia. If vector field J R̃ is used as a “potential”, the resulting Lax vector field X =
A(J R̃) describes the dynamical system of “rotating body”. In the case of the Lie algebra
of 3-dimensional orthogonal group L = so(3,R) with the standard coordinates (x, y, z) and
for a diagonal matrix R = diag(a, b, c), we get the standard Euler’s equations:

X = (b− a)xy∂z + (c− b)yz∂x + (a− c)zx∂y,

(or ẋ = (c− b)zy, etc.). A more accurate description will be given in a subsequent paper.

8 Analogies and dualities

The analogies between differential geometry (calculus) on a Lie algebra and on a Lie coalgebra
are shown in the following table. Note that the Lie algebra structure c is a (1,2)-variant tensor
on the Lie algebra L, but it is a (2,1)-variant tensor on the dual space L∗. This results in
quite different calculus on both spaces treated as manifolds.
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Lie algebra as manifold L Lie coalgebra L∗ as a manifold

Coordinates {xi} {xi}
Constant structure tensor
...in coordinates

λ = c̃ = 1
2
ckij∂k ⊗ dxi ∧ dxj λ′ = c̃ = 1

2
ckijdxk ⊗ ∂i ∧ ∂j

Jacobi vector field J = xi∂
i J ′ = xi∂i

Primary differential object
...in coordinates

A = J λ = 1
2
ckijx

i∂k ⊗ dxj

(endomorphism field)
Ω = J ′ λ′ = 1

2
ckijxk∂

i ∧ ∂j

(Poisson structure)

Basic rule (consequence of
Jacobi identity)

[A,A] = −2A λ [Ω,Ω] = 0

“A potential” B ∈ XL (vector field) H ∈ FL (function)

...generates dynamical system XB = B A ≡ AB (Lax equations) XH = dH Ω (Hamilton equations)

Table 1. ∂i ≡ ∂/∂xi, ∂i ≡ ∂/∂xi. Tilde ∼ denotes extension of tensors to tensor fields on L and on
L∗, defined by the affine structure on linear spaces.

On L∗ as a manifold, λ is (2, 1) variant. In pictures, the canonical Poisson structure on
L∗ and Hamiltonian mechanics may be illustrated as follows:

λ′ = Ω = J ′ λ′ =

x

XH = dH Ω =

dH

x

9 Remark on Lagrange equations

While the cotangent bundle T ∗Q over a manifold Q possesses a canonical differential biform
ω ∈ Λ2Q defining symplectic structure, the tangent bundle TQ possesses a canonical (1,1)-
variant tensor field S ∈ T (1,1)TQ defining an endomorphism field (endomorphisms of T (TQ)
and T ∗(TQ)). In the natural coordinates (xi, vi) on TQ, this tensor can be expressed as
S = ∂

∂vi⊗dxi (sum over i). Its basic property is KerS = ImS (implying nilpotence S ◦ S = 0).
If L is a function on TQ (a Lagrangian), then one defines a biform ω = d ◦ S ◦ dL, which
for a “regular” Lagrangian is nondegenerate and therefore forms a symplectic structure. It
is easy to see that Lagrange equations may be written as follows:

£X(S ◦ dL) = dL.

The existence of S and its role in Lagrangian mechanics were noticed rather late [11]; they
replace a rather awkward notion of “vertical derivative” that were employed previously to
geometrize Euler-Lagrange equations [1].

In a series of papers [4, 5], a notion of almost tangent structure on a differential manifold
M has been introduced, as a tensor S ∈ T 1

1 M that satisfies

(i) KerS = ImS (=⇒ S ◦ S = 0),
(ii) [S, S] = 0,

(9.1)

where the second condition (ii) is a generalization of the Schouten-Nijenhuis bracket to
“vector-valued differential forms” (see, e.g, [17, 18]), which assures (local) integrability of
the distribution KerS. As a result, one obtains all of the structures of the tangent bundle
(KerS gives the fibering) except distinguishing the zero-section.
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A Lie algebra may provide an example of a generalized version of such an Euler-Lagrange
structure, in which the above conditions (9.1) are relaxed.

Hamilton −→ cotangent bundle −→ symplectic −→ KKS theorem
equations T ∗Q geometry (Lie coalgebras)

Lagrange −→ tangent bundle −→ endomorphic −→ Theorem 2.1
equations TQ geometry (Lie algebras)

Whether such potential relationship between Lie algebras and generalized Lagrangian
formalism would be fruitful is an interesting question in the context of geometric quantization
and representation theory known for coadjoint orbits in the Lie coalgebras.
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