Bounds for the First Hilbert Coefficients of \mathfrak{m}-primary Ideals

Asuki KOURA and Naoki TANIGUCHI
Otsuma Nakano Junior and Senior High School and Meiji University

(Communicated by K. Ahara)

Abstract

This paper purposes to characterize Noetherian local rings (A, \mathfrak{m}) of positive dimension such that the first Hilbert coefficients of \mathfrak{m}-primary ideals in A range among only finitely many values. Examples are explored to illustrate our theorems.

1. Introduction

Let A be a commutative Noetherian local ring with maximal ideal \mathfrak{m} and $d=\operatorname{dim} A>0$. For each \mathfrak{m}-primary ideal I in A we set

$$
\mathrm{H}_{I}(n)=\ell_{A}\left(A / I^{n+1}\right) \text { for } n \geq 0
$$

and call it the Hilbert function of A with respect to I, where $\ell_{A}\left(A / I^{n+1}\right)$ denotes the length of the A-module A / I^{n+1}. Then there exist integers $\left\{\mathrm{e}_{i}(I)\right\}_{0 \leq i \leq d}$ such that

$$
\mathrm{H}_{I}(n)=\mathrm{e}_{0}(I)\binom{n+d}{d}-\mathrm{e}_{1}(I)\binom{n+d-1}{d-1}+\cdots+(-1)^{d} \mathrm{e}_{d}(I) \quad \text { for all } n \gg 0
$$

The integers $\mathrm{e}_{i}(I)$'s are called the Hilbert coefficients of A with respect to I. These integers describe the complexity of given local rings, and there are a huge number of preceding papers about them, e.g., $[1,2,3,4,5]$. In particular, the integer $\mathrm{e}_{0}(I)>0$ is called the multiplicity of A with respect to I and has been explored very intensively. One of the most spectacular results on the multiplicity theory says that A is a regular local ring if and only if $\mathrm{e}_{0}(\mathfrak{m})=1$, provided A is unmixed. This was proven by P. Samuel [9] in the case where A contains a field of characteristic 0 and then by M. Nagata [7] in the above form. Recall that a local ring A is unmixed, if $\operatorname{dim} \widehat{A}=\operatorname{dim} \widehat{A} / \mathfrak{p}$ for every associated prime ideal \mathfrak{p} of the \mathfrak{m}-adic completion \widehat{A} of A. The Cohen-Macaulayness in A is characterized in terms of $\mathrm{e}_{0}(Q)$ of parameter ideals Q of A. On the other hand, L . Ghezzi and other authors [1] analyzed the boundness of the values $\mathrm{e}_{1}(Q)$ for parameter ideals Q of A and deduced that the local cohomology
modules $\left\{\mathrm{H}_{\mathfrak{m}}^{i}(A)\right\}_{i \neq d}$ are finitely generated, once A is unmixed and the set $\Lambda(A)=\left\{\mathrm{e}_{1}(Q) \mid\right.$ Q is a parameter ideal of $A\}$ is finite.

In the present paper we focus on the first Hilbert coefficients $\mathrm{e}_{1}(I)$ for \mathfrak{m}-primary ideals I of A. Our study dates back to the paper of M. Narita [8], who showed that if A is a CohenMacaulay local ring, then $\mathrm{e}_{1}(I) \geq 0$, and also $\mathrm{e}_{2}(I) \geq 0$ when $d=\operatorname{dim} A \geq 2$. We consider the set

$$
\Delta(A)=\left\{\mathrm{e}_{1}(I) \mid I \text { is an } \mathfrak{m} \text {-primary ideal in } A\right\}
$$

and are interested in the problem of when $\Delta(A)$ is finite. Under the light of Narita's theorem, if A is a Cohen-Macaulay local ring of positive dimension, our problem is equivalent to the question of when the values $\mathrm{e}_{1}(I)$ has a finite upper bound, and Theorem 1.1 below settles the question, showing that such Cohen-Macaulay local rings are exactly of dimension one and analytically unramified, where $\mathrm{H}_{\mathfrak{m}}^{0}(A)$ denotes the 0 -th local cohomology module of A with respect to \mathfrak{m}.

THEOREM 1.1. Let (A, \mathfrak{m}) be a Noetherian local ring with $d=\operatorname{dim} A>0$. Then the following conditions are equivalent.
(1) $\Delta(A)$ is a finite set.
(2) $d=1$ and $A / \mathrm{H}_{\mathfrak{m}}^{0}(A)$ is analytically unramified.

We prove Theorem 1.1 in Section 3. Section 2 is devoted to preliminaries for the proof. Let \bar{A} denote the integral closure of A in the total ring of fractions of A. The key is the following, which we shall prove in Section 2.

THEOREM 1.2. Let (A, \mathfrak{m}) be a Cohen-Macaulay local ring with $\operatorname{dim} A=1$. Then

$$
\sup \Delta(A)=\ell_{A}(\bar{A} / A)
$$

Hence $\Delta(A)$ is a finite set if and only if A is analytically unramified.
For the proof we need particular calculation of $\mathrm{e}_{1}(I)$ in one-dimensional CohenMacaulay local rings, which we explain also in Section 2.

When $A=k\left[\left[t^{a_{1}}, t^{a_{2}}, \ldots, t^{a_{\ell}}\right]\right]$ is the semigroup ring of a numerical semigroup $H=$ $\left\{\sum_{i=1}^{\ell} c_{i} a_{i} \mid c_{i} \in \mathbf{N}\right\}$ over a field k (here t is the indeterminate over k and $0<a_{1}<$ $a_{2}<\cdots<a_{\ell}$ are integers such that $\left.\operatorname{gcd}\left(a_{1}, a_{2}, \ldots, a_{\ell}\right)=1\right)$, the set $\Delta(A)$ is finite and $\Delta(A)=\{0,1, \ldots, \sharp(\mathbf{N} \backslash H)\}$, where \mathbf{N} denotes the set of non-negative integers (Example 4.1). However, despite this result and the fact $\sup \Delta(A)=\ell_{A}(\bar{A} / A)$ in Theorem 1.2, the equality

$$
\Delta(A)=\left\{n \in \mathbf{Z} \mid 0 \leq n \leq \ell_{A}(\bar{A} / A)\right\}
$$

does not necessarily hold true in general. In Section 4 we will explore several concrete examples, including an example for which the equality is not true (Example 4.7).

Unless otherwise specified, throughout this paper let A be a Noetherian local ring with maximal ideal \mathfrak{m} and $d=\operatorname{dim} A>0$. Let $\mathrm{Q}(A)$ denote the total ring of fractions of A. For
each finitely generated A-module M, let $\ell_{A}(M)$ and $\mu_{A}(M)$ denote respectively the length of and the number of elements in a minimal system of generators of M.

2. Proof of Theorem 1.2

In this section let (A, \mathfrak{m}) be a Cohen-Macaulay local ring with $\operatorname{dim} A=1$. Let I be an \mathfrak{m}-primary ideal of A and assume that I contains a parameter ideal $Q=(a)$ as a reduction. Hence there exists an integer $r \geq 0$ such that $I^{r+1}=Q I^{r}$. This assumption is automatically satisfied, when the residue class field A / \mathfrak{m} of A is infinite. We set

$$
\frac{I^{n}}{a^{n}}=\left\{\left.\frac{x}{a^{n}} \right\rvert\, x \in I^{n}\right\} \subseteq \mathrm{Q}(A) \quad \text { for } n \geq 0
$$

and let

$$
B=A\left[\frac{I}{a}\right] \subseteq \mathrm{Q}(A)
$$

where $\mathrm{Q}(A)$ denotes the total ring of fractions of A. Then

$$
B=\bigcup_{n \geq 0} \frac{I^{n}}{a^{n}}=\frac{I^{r}}{a^{r}} \cong I^{r}
$$

as an A-module, because $\frac{I^{n}}{a^{n}}=\frac{I^{r}}{a^{r}}$ if $n \geq r$ as $\frac{I^{n}}{a^{n}} \subseteq \frac{I^{n+1}}{a^{n+1}}$ for all $n \geq 0$. Therefore B is a finitely generated A-module, whence $A \subseteq B \subseteq \bar{A}$, where \bar{A} denotes the integral closure of A in $\mathrm{Q}(A)$. We furthermore have the following.

Lemma 2.1 ([3, Lemma 2.1]).
(1) $\mathrm{e}_{0}(I)=\ell_{A}(A / Q)$.
(2) $\mathrm{e}_{1}(I)=\ell_{A}\left(I^{r} / Q^{r}\right)=\ell_{A}(B / A) \leq \ell_{A}(\bar{A} / A)$.

Conversely, let $A \subseteq B \subseteq \bar{A}$ be an arbitrary intermediate ring and assume that B is a finitely generated A-algebra. We choose a non-zerodivisor $a \in \mathfrak{m}$ of A so that $a B \subsetneq A$ and set $I=a B$. Then I is an \mathfrak{m}-primary ideal of A and $I^{2}=a^{2} B=a I$. Hence $B=A\left[\frac{I}{a}\right]=\frac{I}{a}$, so that we get the following.

Corollary 2.2. $\quad \ell_{A}(B / A)=\mathrm{e}_{1}(I) \in \Delta(A)$.
Let us note the following.
Lemma 2.3. Let (A, \mathfrak{m}) be a Cohen-Macaulay local ring with $\operatorname{dim} A=1$. Then

$$
\sup \Delta(A) \geq \ell_{A}(\bar{A} / A)
$$

Proof. We set $s=\sup \Delta(A)$. Assume $s<\ell_{A}(\bar{A} / A)$ and choose elements $y_{1}, y_{2}, \ldots, y_{\ell}$ of \bar{A} so that $\ell_{A}\left(\left[\sum_{i=1}^{\ell} A y_{i}\right] / A\right)>s$. We consider the ring $B=$
$A\left[y_{1}, y_{2}, \ldots, y_{\ell}\right]$. Then $A \subseteq B \subseteq \bar{A}$ and

$$
s<\ell_{A}\left(\left[\sum_{i=1}^{\ell} A y_{i}\right] / A\right) \leq \ell_{A}(B / A)
$$

which is impossible, as $\ell_{A}(B / A) \in \Delta(A)$ by Corollary 2.2. Hence $s \geq \ell_{A}(\bar{A} / A)$.
The assumption in the following Corollary 2.4 that the field A / \mathfrak{m} is infinite is necessary to assure a given \mathfrak{m}-primary ideal I of A the existence of a reduction generated by a single element. We notice that even if the field A / \mathfrak{m} is finite, the existence is guaranteed when \bar{A} is a discrete valuation ring (see Section 4).

Corollary 2.4. Let (A, \mathfrak{m}) be a Cohen-Macaulay local ring with $\operatorname{dim} A=1$. Suppose that the field A / \mathfrak{m} is infinite. We then have

$$
\Delta(A)=\left\{\ell_{A}(B / A) \mid A \subseteq B \subseteq \bar{A}\right. \text { is an intermediate ring }
$$ which is a module-finite extension of $A\}$

Proof. Let $\Gamma(A)$ denote the set of the right hand side. Let I be an m-primary ideal of A and choose a reduction $Q=(a)$ of I. We put $B=A\left[\frac{I}{a}\right]$. Then B is a module-finite extension of A and Lemma 2.1 (2) shows $\mathrm{e}_{1}(I)=\ell_{A}(B / A)$. Hence $\Delta(A) \subseteq \Gamma(A)$. The reverse inclusion follows from Corollary 2.2.

We finish the proof of Theorem 1.2.
Proof of Theorem 1.2. By Lemma 2.3 it suffices to show sup $\Delta(A) \leq \ell_{A}(\bar{A} / A)$. Enlarging the residue class field A / \mathfrak{m} of A, we may assume that the field A / \mathfrak{m} is infinite. Let I be an \mathfrak{m}-primary ideal of A and choose $a \in I$ so that $a A$ is a reduction of I. Then

$$
\mathrm{e}_{1}(I) \leq \ell_{A}(\bar{A} / A)
$$

by Lemma 2.1 (2). Hence the result.

3. Proof of Theorem 1.1

Let us prove Theorem 1.1. Let (A, \mathfrak{m}) be a Noetherian local ring with $d=\operatorname{dim} A>0$. We begin with the following.

Lemma 3.1. Suppose that $\Delta(A)$ is a finite set. Then $d=1$.
Proof. Let I be an \mathfrak{m}-primary ideal of A. Then for all $k \geq 1$

$$
\mathrm{e}_{0}\left(I^{k}\right)=k^{d} \cdot \mathrm{e}_{0}(I) \quad \text { and } \quad \mathrm{e}_{1}\left(I^{k}\right)=\frac{d-1}{2} \cdot \mathrm{e}_{0}(I) \cdot k^{d}+\frac{2 \mathrm{e}_{1}(I)-\mathrm{e}_{0}(I) \cdot(d-1)}{2} \cdot k^{d-1}
$$

In fact, we have

$$
\begin{equation*}
\ell_{A}\left(A /\left(I^{k}\right)^{n+1}\right)=\mathrm{e}_{0}\left(I^{k}\right)\binom{n+d}{d}-\mathrm{e}_{1}\left(I^{k}\right)\binom{n+d-1}{d-1}+\cdots+(-1)^{d} \mathrm{e}_{d}\left(I^{k}\right) \tag{1}
\end{equation*}
$$

for $n \gg 0$, while
(2) $\ell_{A}\left(A /\left(I^{k}\right)^{n+1}\right)=\ell_{A}\left(A / I^{(k n+k-1)+1}\right)$

$$
\begin{gathered}
=\mathrm{e}_{0}(I)\binom{(k n+k-1)+d}{d}-\mathrm{e}_{1}(I)\binom{(k n+k-1)+d-1}{d-1} \\
+\cdots+(-1)^{d} \mathrm{e}_{d}(I), \\
\left.\binom{k n+k+d-1}{d}=k^{d}\binom{n+d}{d}+a\binom{n+d-1}{d-1}+\text { (lower terms }\right)
\end{gathered}
$$

and

$$
\binom{k n+k+d-2}{d-1}=k^{d-1}\binom{n+d-1}{d-1}+\text { (lower terms) }
$$

where

$$
a=k^{d-1}\left(k+\frac{d-1}{2}\right)-\frac{k^{d}}{2}(d+1) .
$$

Comparing the coefficients of n^{d} in equations (1) and (2), we see

$$
\mathrm{e}_{0}\left(I^{k}\right)=k^{d} \cdot \mathrm{e}_{0}(I)
$$

We similarly have

$$
\begin{aligned}
\mathrm{e}_{1}\left(I^{k}\right) & =-\mathrm{e}_{0}(I) a+\mathrm{e}_{1}(I) k^{d-1} \\
& =-\mathrm{e}_{0}(I)\left(k^{d}+\frac{d-1}{2} k^{d-1}-\frac{d+1}{2} k^{d}\right)+\mathrm{e}_{1}(I) k^{d-1} \quad \text { and } \\
& =\frac{d-1}{2} \cdot \mathrm{e}_{0}(I) \cdot k^{d}+\frac{2 \mathrm{e}_{1}(I)-\mathrm{e}_{0}(I) \cdot(d-1)}{2} \cdot k^{d-1}
\end{aligned}
$$

considering n^{d-1}. Hence $d=1$, if the set $\left\{\mathrm{e}_{1}\left(I^{k}\right) \mid k \geq 1\right\}$ is finite.
Lemma 3.1 and the following estimations finish the proof of Theorem 1.1. Remember that \bar{A} is a finitely generated A-module if and only if the \mathfrak{m}-adic completion \widehat{A} of A is a reduced ring, provided A is a Cohen-Macaulay local ring with $\operatorname{dim} A=1$.

Theorem 3.2. Let (A, \mathfrak{m}) be a Noetherian local ring with $\operatorname{dim} A=1$ and set $B=$ $A / \mathrm{H}_{\mathfrak{m}}^{0}(A)$. Then

$$
\begin{aligned}
\sup \Delta(A) & =\ell_{B}(\bar{B} / B)-\ell_{A}\left(\mathrm{H}_{\mathfrak{m}}^{0}(A)\right) \quad \text { and } \\
\inf \Delta(A) & =-\ell_{A}\left(\mathrm{H}_{\mathfrak{m}}^{0}(A)\right)
\end{aligned}
$$

Proof. We set $W=\mathrm{H}_{\mathfrak{m}}^{0}(A)$. Then $B=A / W$ is a Cohen-Macaulay local ring with
$\operatorname{dim} B=1$. Let I be an \mathfrak{m}-primary ideal of A. We consider the exact sequence

$$
0 \rightarrow W /\left[I^{n+1} \cap W\right] \rightarrow A / I^{n+1} \rightarrow B / I^{n+1} B \rightarrow 0
$$

of A-modules. Then since $I^{n+1} \cap W=(0)$ for all $n \gg 0$,

$$
\begin{aligned}
\ell_{A}\left(A / I^{n+1}\right) & =\ell_{A}\left(B / I^{n+1} B\right)+\ell_{A}(W) \\
& =\mathrm{e}_{0}(I B)\binom{n+1}{1}-\mathrm{e}_{1}(I B)+\ell_{A}(W)
\end{aligned}
$$

Hence

$$
\mathrm{e}_{0}(I)=\mathrm{e}_{0}(I B) \text { and } \mathrm{e}_{1}(I)=\mathrm{e}_{1}(I B)-\ell_{A}(W) \geq-\ell_{A}(W),
$$

because $\mathrm{e}_{1}(I B) \geq 0$ by Lemma 2.1 (2). If I is a parameter ideal of A, then $I B$ is a parameter ideal of B and

$$
\mathrm{e}_{1}(I)=\mathrm{e}_{1}(I B)-\ell_{A}(W)=-\ell_{A}(W) .
$$

Thus from Theorem 1.2 the estimations

$$
\begin{aligned}
\sup \Delta(A) & =\sup \Delta(B)-\ell_{A}(W) \\
& =\ell_{B}(\bar{B} / B)-\ell_{A}(W) \quad \text { and } \\
\inf \Delta(A) & =-\ell_{A}(W)
\end{aligned}
$$

follow, since every $\mathfrak{m} B$-primary ideal J of B has the form $J=I B$ for some \mathfrak{m}-primary ideal I of A.

4. Examples

We explore concrete examples. Let $0<a_{1}<a_{2}<\cdots<a_{\ell}(\ell \geq 1)$ be integers such that $\operatorname{gcd}\left(a_{1}, a_{2}, \ldots, a_{\ell}\right)=1$. Let $\left.V=k[t t]\right]$ be the formal power series ring over a field k. We set $A=k\left[\left[t^{a_{1}}, t^{a_{2}}, \ldots, t^{a_{\ell}}\right]\right]$ and $H=\left\langle\sum_{i=1}^{\ell} c_{i} a_{i} \mid c_{i} \in \mathbf{N}\right\rangle$. Hence A is the semigroup ring of the numerical semigroup H. We have $V=\bar{A}$ and $\ell_{A}(V / A)=\sharp(\mathbf{N} \backslash H)$. Let $c=\mathrm{c}(H)$ be the conductor of H.

Example 4.1. Let $q=\sharp(\mathbf{N} \backslash H)$. Then $\Delta(A)=\{0,1, \ldots, q\}$.
Proof. We may assume $q \geq 1$, whence $c \geq 2$. We write $\mathbf{N} \backslash H=\left\{c_{1}, c_{2}, \ldots, c_{q}\right\}$ with $1=c_{1}<c_{2}<\cdots<c_{q}=c-1$ and set $B_{i}=A\left[t^{c_{i}}, t^{c_{i+1}}, \ldots, t^{c_{q}}\right]$ for each $1 \leq i \leq q$. Then the descending chain $V=B_{1} \supsetneq B_{2} \supsetneq \cdots \supsetneq B_{q} \supsetneq B_{q+1}:=A$ of A-algebras gives rise to a composition series of the A-module V / A, since $\ell_{A}(V / A)=q$. Therefore $\ell_{A}\left(B_{i} / A\right)=q+1-i$ for all $1 \leq i \leq q+1$ and hence, setting $a=t^{c}$ and $I_{i}=a B_{i}(\subsetneq A)$, by Corollary 2.2 we have $\mathrm{e}_{1}\left(I_{i}\right)=q+1-i$. Thus $\Delta(A)=\{0,1, \ldots, q\}$ as asserted.

Because $q=\mathrm{c}(H) / 2$ if H is symmetric (that is $A=k\left[\left[t^{a_{1}}, t^{a_{2}}, \ldots, t^{a_{\ell}}\right]\right]$ is a Gorenstein ring), we readily have the following.

Corollary 4.2. Suppose that H is symmetric. Then $\Delta(A)=\{0,1, \ldots, c(H) / 2\}$.
Corollary 4.3. Let $A=k\left[\left[t^{a}, t^{a+1}, \ldots, t^{2 a-1}\right]\right](a \geq 2)$. Then $\Delta(A)=$ $\{0,1, \ldots, a-1\}$. For the ideal $I=\left(t^{a}, t^{a+1}, \ldots, t^{2 a-2}\right)$ of A, one has

$$
\mathrm{e}_{1}(I)= \begin{cases}\mathrm{r}(A)-1 & (a=2) \\ \mathrm{r}(A) & (a \geq 3)\end{cases}
$$

where $\mathrm{r}(A)=\ell_{A}\left(\operatorname{Ext}_{A}^{1}(A / \mathfrak{m}, A)\right)$ denotes the Cohen-Macaulay type of A.
Proof. See Example 4.1 for the first assertion. Let us check the second one. If $a=2$, then A is a Gorenstein ring and I is a parameter ideal of A, so that $\mathrm{e}_{1}(I)=\mathrm{r}(A)-1(=0)$. Let $a \geq 3$ and put $Q=\left(t^{a}\right)$. Then Q is a reduction of I, since $I V=Q V$. Because $A\left[\frac{I}{t^{a}}\right]=k[[t]]$ and $\mathfrak{m}=t^{a} V$, we get $A: \mathrm{Q}(A) \mathfrak{m}=k[[t]]$. Thus $\mathrm{e}_{1}(I)=\ell_{A}(k[[t]] / A)=$ $\ell_{A}([A: Q(A) \mathfrak{m}] / A)=\mathrm{r}(A)([6$, Bemerkung 1.21]).

REmARK 4.4. In Example $4.3 I$ is a canonical ideal of A ([6]). Therefore the equality $\mathrm{e}_{1}(I)=\mathrm{r}(A)$ shows that if $a \geq 3, A$ is not a Gorenstein ring but an almost Gorenstein ring in the sense of [3, Corollary 3.12].

Let us consider local rings which are not analytically irreducible.
EXAMPLE 4.5. Let (R, \mathfrak{n}) be a regular local ring with $n=\operatorname{dim} R \geq 2$. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a regular system of parameters of S and set $P_{i}=\left(X_{j} \mid 1 \leq j \leq n, j \neq i\right)$ for each $1 \leq i \leq n$. We consider the ring $A=R / \bigcap_{i=1}^{n} P_{i}$. Then A is a one-dimensional Cohen-Macaulay local ring with $\Delta(A)=\{0,1, \ldots, n-1\}$.

Proof. Let x_{i} denote the image of X_{i} in A. We put $\mathfrak{p}_{i}=\left(x_{j} \mid 1 \leq j \leq n, j \neq i\right)$ and $B=\prod_{i=1}^{n}\left(A / \mathfrak{p}_{i}\right)$. Then the homomorphism $\varphi: A \rightarrow B, a \mapsto(\bar{a}, \bar{a}, \ldots, \bar{a})$ is injective and $B=\bar{A}$. Since $\mathfrak{m} B=\mathfrak{m}$ and $\mu_{A}(B)=n, \ell_{A}(B / A)=n-1$. Let $\mathbf{e}_{j}=(0, \ldots, 0, \stackrel{j}{1}, 0, \ldots, 0)$ for $1 \leq j \leq n$ and $\mathbf{e}=\sum_{j=1}^{n} \mathbf{e}_{j}$. Then $B=A \mathbf{e}+\sum_{j=1}^{n-1} A \mathbf{e}_{j}$. We set $B_{i}=A \mathbf{e}+\sum_{j=1}^{i} A \mathbf{e}_{j}$ for each $1 \leq i \leq n-1$. Then since $B_{i}=A\left[\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{i}\right], B_{i}$ is a finitely generated A algebra and $B_{i} \subsetneq B_{i+1}$. Hence $B=B_{n-1} \supsetneq B_{n-2} \supsetneq \cdots \supsetneq B_{1} \supsetneq B_{0}:=A$ gives rise to a composition series of the A-module B / A. Hence $\Delta(A)=\{0,1, \ldots, n-1\}$, as $\ell_{A}\left(B_{i} / A\right)=i$ for all $0 \leq i \leq n-1$.

Let A be a one-dimensional Cohen-Macaulay local ring. If A is not a reduced ring, then the set $\Delta(A)$ must be infinite. Let us note one concrete example.

Example 4.6. Let V be a discrete valuation ring and let $A=V \ltimes V$ denote the idealization of V over V itself. Then $\Delta(A)=\mathbf{N}$.

Proof. Let $K=\mathrm{Q}(V)$. Then $\mathrm{Q}(A)=K \ltimes K$ and $\bar{A}=V \ltimes K$. We set $B_{n}=$ $V \ltimes\left(V \cdot \frac{1}{t^{n}}\right)$ for $n \geq 0$. Then $A \subseteq B_{n} \subseteq \bar{A}$ and

$$
\ell_{A}\left(B_{n} / A\right)=\ell_{V}\left(B_{n} / A\right)
$$

$$
\begin{aligned}
& =\ell_{V}\left(\left[V \oplus\left(V \cdot \frac{1}{t^{n}}\right)\right] /[V \oplus V]\right) \\
& =\ell_{V}\left(V \cdot \frac{1}{t^{n}} / V\right) \\
& =\ell_{V}\left(V / t^{n} V\right) \\
& =n
\end{aligned}
$$

Hence $n \in \Delta(A)$ by Corollary 2.2, so that $\Delta(A)=\mathbf{N}$.
EXAMPLE 4.7. Let $K / k(K \neq k)$ be a finite extension of fields and assume that there is no proper intermediate field between K and k. Let $n=[K: k]$ and choose a k-basis $\left\{\omega_{i}\right\}_{1 \leq i \leq n}$ of K. Let $K[[t]]$ be the formal power series ring over K and set $A=$ $k\left[\left[\omega_{1} t, \omega_{2} t, \ldots, \omega_{n} t\right]\right] \subseteq K[[t]]$. Then $\Delta(A)=\{0, n-1\}$.

Proof. Let $V=K[[t]]$. Then $V=\sum_{i=1}^{n} A \omega_{i}$ and $V=\bar{A}$. Since $t V \subseteq A$, we have $\mathfrak{n}=t V=\mathfrak{m}$, where \mathfrak{m} and \mathfrak{n} stand for the maximal ideals of A and V, respectively. Therefore $\ell_{A}(V / A)=n-1$. Let $A \subseteq B \subseteq V$ be an intermediate ring. Then B is a local ring. Let \mathfrak{m}_{B} denote the maximal ideal of B. We then have $\mathfrak{m}=\mathfrak{m}_{B}=\mathfrak{n}$ since $\mathfrak{m}=\mathfrak{n}$ and therefore, considering the extension of residue class fields $k=A / \mathfrak{n} \subseteq B / \mathfrak{n} \subseteq K=V / \mathfrak{n}$, we get $V=B$ or $B=A$. Since $V=\bar{A}$ is a discrete valuation ring, every \mathfrak{m}-primary ideal of A contains a reduction generated by a single element. Hence $\Delta(A)=\{0, n-1\}$ by Corollary 2.4.

References

[1] L. Ghezzi, S. Goto, J. Hong, K. Ozeki, T. T. Phuong and W. V. Vasconcelos, CohenMacaulayness versus the vanishing of the first Hilbert coefficient of parameter ideals, J. London Math. Soc. 81 (2010), 679-695.
[2] L. Ghezzi, S. Goto, J. Hong, K. Ozeki, T. T. Phuong and W. V. Vasconcelos, The Chern and Euler coefficients of modules, Preprint (2010).
[3] S. Goto, N. Matsuoka and T. T. Phuong, Almost Gorenstein rings, J. Algebra 379 (2013), 355-381.
[4] S. Goto, K. Nishida and K. Ozeki, Sally modules of rank one, Michigan Math. J. 57 (2008), 359-381.
[5] S. Goto, K. Nishida and K. Ozeki, The structure of Sally modules of rank one, Math. Res. Lett. 15 (2008), 881-892.
[6] J. Herzog and E. Kunz, Der kanonische Modul eines. Cohen-Macaulay-Rings, Lecture Notes in Mathematics 238, Springer-Verlag (1971).
[7] M. Nagata, The theory of multiplicity in general local rings, Proceedings of the international symposium on algebraic number theory, Tokyo-Nikko, 1955, 191-226. Science Council of Japan, Tokyo, 1956.
[8] M. Narita, A note on the coefficients of Hilbert characteristic functions in semi-regular local rings, Proc. Cambridge Philos. Soc. 59 (1963), 269-275.
[9] P. SAMUEL, La notion de multiplicité en algèbre et en géométrie algébrique (French), J. Math. Pures Appl. 30 (1951), 159-205.

Present Addresses:
Asuki Koura
Otsuma Nakano Junior and Senior High School,
2-3-7 KAMITAKATA, NAKANO-KU,
TOKYO 164-0002, JAPAN.
e-mail: koura@otsumanakano.ac.jp
NAOKI TANIGUCHI
Department of Mathematics, Graduate Courses, School of Science and Technology, Meiji University,
1-1-1 Higashi-mita, TAMA-KU, KAWASAKI 214-8571, JAPAN.
e-mail: taniguti@math.meiji.ac.jp

