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Abstract. In [2] and [3], we discuss the existence and the (a, t)-joint continuity of the distribution-valued

additive functional AT (a : t, ω) = ∫ t
0 T (Xs − a) for T ∈ Hβp except for the case of the (a, t)-joint continuity with

p = 1. In this paper, we discuss the (a, t)-joint continuity of the distribution-valued additive functional AT (a : t, ω)
for T ∈ Hβ1 .

1. Introduction and preliminaries

In this paper, we discuss the (a, t)-joint continuity of the distribution-valued additive

functionalAT (a : t, ω) = ∫ t
0 T (Xs −a) for T ∈ Hβ

1 which is the case we did not finish doing
in [2] and [3]. The main results are Theorem 9 and 11 whose proof are produced by Lemma
8.

Throughout this paper, we shall use the same notations as those in [2] and [3]. But we
notice some notations and remember the results of [2] and [3].

We denote the Fourier transform of φ(a) by φ̂(λ):

φ̂(λ) =
∫
φ(x)eiλ·xdx

and the Fourier inverse transform of ψ(λ) by F−1(ψ)(a):

F−1(ψ)(a) = 1

(2π)d

∫
ψ(λ)e−iλ·adλ ,

where x · y (x ∈ Rd ,y ∈ Rd) denotes the inner product.

Let T ∈ S ′. We denote the Fourier transform of T by T̂ .

DEFINITION 1. We say that T is an element of Hβ
p (1 ≤ p ≤ ∞, −∞ < β < ∞) if

and only if T is an element of S ′ and the Fourier transform of T has a version as a function

T̂ (λ) on Rd such that

T̂ (λ)(1 + |λ|2) β2 ∈ Lp.
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Then we set

‖T ‖
H
β
p

= ‖T̂ (λ)(1 + |λ|2) β2 ‖Lp .

We note F−1(T )(λ) = (2π)−d T̂ (−λ) for T ∈ Hβ
p .

Let {Xs} be the standard Brownian motion on Rd or one-dimensional real valued stable
process with index α (0 < α < 2) or d-dimensional real valued symmetric stable process
with index α (0 < α < 2).

We define τx and θt as follows:

τx : Xt(τxω) = Xt(ω)+ x

and

θt : Xs(θtω) = Xt+s(ω) .

We remember preliminary results in [2].

LEMMA 2. Let T ∈ D′, φ ∈ D and set T ∗ φ(x) = 〈Ty, φ(x − y)〉y . Then

〈AT (t, ω), φ〉 =
∫ t

0
T ∗ φ(Xs(ω))ds

is well-defined and we have

AT (t, ω) ∈ D′ .

LEMMA 3.

〈AT (t, τxω), φ〉 =〈AT (t, ω), φ(· + x)〉
〈AT (s + t, ω), φ〉 =〈AT (s, ω), φ〉 + 〈AT (t, θsω), φ〉 .

LEMMA 4. Let T be an element of Hβ
p . Then AT (t, ω) is also an element of Hβ

p .

Now let ρε be the mollifier. We denote

AεT (t, ω) = 〈AT (t, ω), ρε〉
and

AεT (a : t, ω) = AεT (t, τ−aω) .

We note that

〈AεT (t, ω), φ〉 = 〈AT (t, ω), ρε ∗ φ〉 .
Here we emphasize AεT (a : t, ω) is a usual function of a. We can take ρε such that ρε → δ0

as ε → 0 and ρ̂ε uniformly converges to one in wider sense tending ε to zero and ‖ρ̂ε‖∞ ≤ 1.
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We studied the convergence of distribution-valued additive functional AεT (a : t, ω) for

T ∈ Hβ
1 in [2] and [3], tending ε to zero. We remember their results.

First, in the case of d-dimensional Brownian motion, we had

THEOREM 5. For T ∈ Hβ

1

lim
ε→0

AεT (a : t, ω) = AT (a : t, ω) in L2(dPx) ,

where we take β ≥ −1.

Second, in the case of one-dimensional stable process with index α whose characteristic
function is (7), we had

THEOREM 6. For T ∈ Hβ
1

lim
ε→0

AεT (a : t, ω) = AT (a : t, ω) in L2(dPx) ,

where we take β ≥ −α/2 but if α < 1 and γ0 �= 0 we take β ≥ −1/2. We notice that γ0 is a
real number in (8).

Last, in the case of d-dimensional symmetric stable process with index α, we had

THEOREM 7. For T ∈ Hβ

1

lim
ε→0

AεT (a : t, ω) = AT (a : t, ω) in L2(dPx) ,

where we take β ≥ −α/2.

The (a, t)-joint continuity theorem in the case of each is following.
Theorem 9 corresponds to the d-dimensional Brownian motion.
Theorem 11 corresponds to the one-dimensional stable process with index α.
Corollary 12 corresponds to the d-dimensional symmetric stable process with index α.
They will be proved in Section 2.
The following lemma is modified version of the lemma in [2]. This lemma plays impor-

tant role of proof of the continuity theorems.

LEMMA 8. Let p + q ≥ 0 and p ≥ q . For any λ ∈ Rd ,

sup
µ∈Rd

(1 + |µ|2)−p(1 + |µ+ λ|2)−q � (1 + |λ|2)−q . (1)

Specially, there exists C > 0 such that

sup
µ∈Rd

(1 + |µ|2)−p(1 + |µ+ λ|2)−q ≤ C(1 + |λ|2)−q for λ ∈ Rd . (2)

PROOF. The case of q = 0 is clear. We will consider the case where q is negative and
the other case where q is positive.
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First, we consider the case where q is negative. By (1) to the −1/q-th power both sides,
we have to show that

sup
µ∈Rd

(1 + |µ|2)p/q(1 + |µ+ λ|2) � 1 + |λ|2 , (3)

Moreover, for p + q ≥ 0 we have −p
q

≥ 1. Then, (3) is rewritten as

sup
µ∈Rd

(1 + |µ+ λ|2)
(1 + |µ|2)m � 1 + |λ|2 for m ≥ 1 .

If we take µ = 0,

sup
µ∈Rd

(1 + |µ+ λ|2)
(1 + |µ|2)m ≥ 1 + |λ|2 .

By m ≥ 1 we get

sup
µ∈Rd

(1 + |µ+ λ|2)
(1 + |µ|2)m

≤ sup
µ∈Rd

(1 + |µ+ λ|2)
1 + |µ|2

≤ sup
µ∈Rd

(1 + 2|µ|2 + 2|λ|2)
1 + |µ|2

≤ sup
µ∈Rd

2(1 + |µ|2)(1 + 2|λ|2)
1 + |µ|2

≤2(1 + |λ|2) .
Hence we get (1), if q < 0.

Second, we consider the case where q is positive. In a similar way where q is negative,
we have to show that

inf
µ∈Rd

(1 + |µ|2)p/q(1 + |µ+ λ|2) � 1 + |λ|2 .

If we take µ = 0,

inf
µ∈Rd

(1 + |µ|2)p/q(1 + |µ+ λ|2) ≤ 1 + |λ|2 .

Next, since p/q ≥ 1 we get

inf
µ∈Rd

(1 + |µ|2)p/q(1 + |µ+ λ|2)

≥ inf
µ∈Rd

(1 + |µ|2)(1 + |µ+ λ|2)
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= inf
µ∈Rd

(
1 +

∣∣∣∣µ− λ

2

∣∣∣∣
2)(

1 +
∣∣∣∣µ+ λ

2

∣∣∣∣
2)

= inf
µ∈Rd

(
1 + 2|µ|2 + |λ|2

2
+

∣∣∣∣µ− λ

2

∣∣∣∣
2 ∣∣∣∣µ+ λ

2

∣∣∣∣
2 )

≥1 + |λ|2
2
.

Therefore we get Lemma 8. �

2. Continuity theorems

2.1. The case of d-dimensional Brownian motion. Let Px be the probability mea-
sure of the d-dimensional standard Brownian motion {Xt } starting from x. We notice that the
characteristic function of Xs is

Ex[eiλXs ] = exp

{
−|λ|2

2
s + iλx

}
.

THEOREM 9. Let T ∈ H
β

1 where we take β > −1. Suppose that δ = min(1, β + 1).
Then AT (a : t, ω) has (a, t)-jointly continuous modification, which is locally Hölder-
continuous with exponent γ , where 0 < γ < δ.

PROOF. We will estimate

Ex[(AεT (a : t, ω)− AεT (b : s, ω))2n]
and then we apply Kolmogorov–Čentsov theorem([1, P. 55, Problem 2.9]) to get the joint
continuity.

Without loss of generality, for fixed N > 0 we take t and s such that N > t > s and we
suppose that Brownian motion starts from zero and b = 0.

We set

E0[(AεT (a : t, ω)− AεT (0 : s, ω))2n]
≤ 22n|E0[(AεT (a : t, ω)− AεT (0 : t, ω))2n]| + 22n|E0[(AεT (0 : t, ω)− AεT (0 : s, ω))2n]|
= 22n|Ia | + 22n|It | , say .

First we estimate Ia . Using Parseval’s equality we get

Ia = (2n)!
(2π)2nd

∫
dλ1 · · ·

∫
dλ2n

∫ t

0
du1

∫ t

u1

du2 · · ·
∫ t

u2n−1

du2n

× T̂ (λ2n) · · · T̂ (λ1)ρ̂ε(λ2n) · · · ρ̂ε(λ1)

× e−
|λ2n |2

2 (u2n−u2n−1)− |λ2n+λ2n−1|2
2 (u2n−1−u2n−2)−···− |λ2n+···+λ1 |2

2 u1
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× (eiλ2n·a − 1)(eiλ2n−1·a − 1) · · · (eiλ1·a − 1) .

Then we have

|Ia | ≤ (2n)!
(2π)2nd

(‖T ‖
H
β
1
)2n(‖ρ̂ε‖∞)2n

× sup
λ1,...,λ2n

(1 + |λ1|2)− β
2 · · · (1 + |λ2n|2)− β

2

× |eiλ2n·a − 1||eiλ2n−1·a − 1| · · · |eiλ1·a − 1|

×
∫ t

0
du1

∫ t

u1

du2 · · ·
∫ t

u2n−1

du2n

× e−
|λ2n|2

2 (u2n−u2n−1)− |λ2n+λ2n−1|2
2 (u2n−1−u2n−2)−···− |λ2n+···+λ1|2

2 u1 .

We change the variables λi (1 ≤ i ≤ 2n) to µj (1 ≤ j ≤ 2n) as follows:

µ2n = λ2n

µ2n−1 = λ2n + λ2n−1

. . .

µ1 = λ2n + λ2n−1 + · · · + λ1 .

Then we get

|Ia | ≤ (2n)!
(2π)2nd

(‖T ‖
H
β
1
)2n(‖ρ̂ε‖∞)2n

× sup
µ1,...,µ2n

(1 + |µ1 − µ2|2)− β
2 · · · (1 + |µ2n−1 − µ2n|2)− β

2 (1 + |µ2n|2)− β
2

× |eiµ2n·a − 1||ei(µ2n−1−µ2n)·a − 1| · · · |ei(µ1−µ2)·a − 1|

×
∫ t

0
du1

∫ t

u1

du2 · · ·
∫ t

u2n−1

du2ne
− |µ2n|2

2 (u2n−u2n−1)−···− |µ2 |2
2 (u2−u1)− |µ1|2

2 u1 .

Now we notice that for any k ∈ C(Re(k) ≥ 0)∣∣∣∣
∫ t

0
e−ksds

∣∣∣∣ ≤ C1

1 + |k|
and for any 1 ≥ l1 > 0

|eiµ·a − 1| ≤ C2|a|l1(1 + |µ|2) l12 , (4)

where C1 and C2 are positive constants.



CONTINUITY OF DISTRIBUTION-VALUED ADDITIVE FUNCTIONALS 189

Then we apply these inequalities to Ia :

|Ia | ≤ (2n)!K1

(2π)2nd
(‖T ‖

H
β

1
)2n(‖ρ̂ε‖∞)2n|a|2nl1

× sup
µ1,...,µ2n

(1 + |µ1 − µ2|2)−( β2 − l1
2 ) · · · (1 + |µ2n−1 − µ2n|2)−( β2 − l1

2 )

× (1 + |µ1|2)−1 · · · (1 + |µ2n−1|2)−1(1 + |µ2n|2)−1−( β2 − l1
2 ) ,

whereK1 = (C1C2)
2n.

We first estimate the following. We set

|I 2n
a | = sup

µ2n

(1 + |µ2n−1 − µ2n|2)−(
β
2 − l1

2 )(1 + |µ2n|2)−1−( β2 − l1
2 ).

Now we apply (2) to this equation. If β satisfies
(
β

2
− l1

2

)
+

(
1 + β

2
− l1

2

)
≥ 0 ,

then we get

|I 2n
a | ≤ C(1 + |µ2n−1|2)−( β2 − l1

2 ).

Therefore, by induction, we reach the inequality

|Ia | ≤ (2n)!K1C
2n−1

(2π)2nd
(‖T ‖

H
β
1
)2n(‖ρ̂ε‖∞)2n|a|2nl1 sup

µ1

(1 + |µ1|2)−1−( β2 − l1
2 ).

For the finiteness of this inequality, we set the following condition:

1 +
(
β

2
− l1

2

)
≥ 0.

Thus we obtain the condition

β ≥l1 − 1 (5)

and

|Ia | ≤K2|a|2nl1(‖T ‖
H
β
1
)2n(‖ρ̂ε‖∞)2n ,

whereK2 is a positive constant and only depends on n.
Next we estimate It in a similar way of Ia . But we notice that for any l2 > 0, k ∈

C(Re(k) > 0) and fixed N > 0, there exists a positive constant C3 such that

∣∣∣∣
∫ s

0
e−kudu

∣∣∣∣ ≤ C3

(
sl2

1 + |k|
) 1
l2+1

for s ∈ [0, N] ,
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because it is easy to see that

s
− l2
l2+1 (1 + |k|) 1

l2+1

∣∣∣∣
∫ s

0
e−kudu

∣∣∣∣
is a bounded function on (s, |k|) ∈ [0, N] × [0,∞). Then we have

|It | ≤ (2n)!K3

(2π)2nd
|t − s|2n

l2
l2+1 (‖T ‖β1 )2n(‖ρ̂ε‖∞)2n

× sup
µ1,...,µ2n

(1 + |µ1 − µ2|2)− β
2 · · · (1 + |µ2n−1 − µ2n|2)− β

2

× (1 + |µ1|2)−
1

l2+1 · · · (1 + |µ2n−1|2)−
1

l2+1 (1 + |µ2n|2)−
β
2 − 1

l2+1 ,

where K3 = C2n
3 .

We apply (2) to the inequality with respect to µ1, . . . , µ2n of It . Then we obtain the
condition

β ≥ − 1

l2 + 1
(6)

for the finiteness of this integral and

|It | ≤K4|t − s|2n
l2
l2+1 (‖T ‖

H
β

1
)2n(‖ρ̂ε‖∞)2n ,

where K4 is a positive constant and only depends on n, N .
Therefore by (5) and (6) we make l1 and l2 satisfy the following equality:

− 1

l2 + 1
= l1 − 1

Since l1 is positive, if β satisfies the condition in Theorem 5, then we obtain

|E0[(AεT (a : t, ω)− AεT (0 : s, ω))2n]|
≤ CBM(|a|2nδ + |t − s|2nδ)(‖T ‖

H
β
1
)2n(‖ρ̂ε‖∞)2n

where we take δ as follows and CBM = max(K2,K4).
For β > −1 we take δ as β + 1 ≥ δ by (5) or (6).
Thus tending ε to zero, we get (a, t)-joint continuity of AT (a : t, ω) by Kolmogorov–

Čentsov theorem. �

2.2. The case of stable process with index α. Let Px be the probability measure of
the one-dimensional stable process {Xs} with index α(0 < α < 2) starting from x. We notice
that the characteristic function of Xs is

Ex[eiλXs ] = exp{−sψ(λ)+ iλx} , (7)
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where ψ(λ) is given in the following. For some constants c > 0, −1 ≤ γ ≤ 1 and γ0 ∈ R, if
α �= 1 then

ψ(λ) = c|λ|α
(

1 − iγ (sgnλ) tan
π

2
α

)
+ iγ0λ (8)

and if α = 1 then

ψ(λ) = c|λ|
(

1 + iγ
2

π
(sgnλ) log |λ|

)
+ iγ0λ .

We remember the following lemma in [3].

LEMMA 10. Let F = | ∫ t0 e−ψ(λ)sds|. Then we get

F ≤ C4

(1 + |λ|2) η2 , (9)

where we take η = α but if α < 1 and γ0 �= 0 then we take η = 1.

Next we discuss the (a, t)-joint continuity of AT (a : t, ω). We get the following in the
similar way to the case of Brownian motion.

THEOREM 11. Let T ∈ Hβ

1 , where we take β > −α/2. Suppose that
1. In the case where α > 1

δ = min

(
1, β + α

2

)

2. In the case where α ≤ 1

δ = min

(
α, β + α

2

)
.

3. In the case where α < 1 and γ0 �= 0

δ = min

(
1, β + 1

2

)
.

Then AT (a : t, ω) has (a, t)-jointly continuous modification, which is locally Hölder-
continuous with exponent γ , where 0 < γ < δ.

PROOF. Without loss of generality, for fixedN > 0 we take t and s such that N > t >

s and we suppose that the stable process starts from zero and b = 0.
We set

E0[(AεT (a : t, ω)− AεT (0 : s, ω))2n]
≤ 22n|E0[(AεT (a : t, ω)− (AεT (0 : t, ω))2n]| + 22n|E0[(AεT (0 : t, ω)− (AεT (0 : s, ω))2n]|
= 22n|Ia | + 22n|It |.
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First we estimate Ia . By the similar calculation of the case of Brownian motion we obtain

|Ia | ≤ (2n)!
(2π)2n

(‖T ‖
H
β
1
)2n(‖ρ̂ε‖∞)2n

× sup
λ1,...,λ2n

(1 + |λ1|2)−
β
2 · · · (1 + |λ2n|2)−

β
2

× |e−iλ2na − 1||e−i(λ2n+λ2n−1)a − 1| · · · |e−i(λ2n+···+λ1)a − 1|

×
∣∣∣∣
∫ t

0
du1

∫ t

u1

du2· · ·
∫ t

u2n−1

du2n

× e−ψ(λ2n)(u2n−u2n−1)−ψ(λ2n+λ2n−1)(u2n−1−u2n−2)−···−ψ(λ2n+···+λ1)u1

∣∣∣∣ .
By the change of variables we have

|Ia| ≤ (2n)!
(2π)2n

(‖T ‖
H
β
1
)2n(‖ρ̂ε‖∞)2n

× sup
µ1,...,µ2n

(1 + |µ1 − µ2|2)− β
2 · · · (1 + |µ2n−1 − µ2n|2)− β

2 (1 + |µ2n|2)− β
2

× |e−iµ2na − 1||e−i(µ2n−1−µ2n)a − 1| · · · |e−i(µ1−µ2)a − 1|

×
∫ t

0
du1

∫ t

u1

du2· · ·
∫ t

u2n−1

du2n|e−ψ(µ2n)(u2n−u2n−1)−···−ψ(µ2)(u2−u1)−ψ(µ1)u1| .

Then we apply (4) and (9) to Ia :

|Ia | ≤K5(‖T ‖
H
β

1
)2n(‖ρ̂ε‖∞)2n|a|2nl1

× sup
µ1,...,µ2n

(1 + |µ1 − µ2|2)−
β
2 + l1

2 · · · (1 + |µ2n−1 − µ2n|2)−
β
2 + l1

2

× (1 + |µ1|2)− η
2 · · · (1 + |µ2n−1|2)− η

2 (1 + |µ2n|2)− 1
2 (η−l1+β) .

Now we apply (2) to the above inequality. Then for the finiteness of Ia , we have
(
β − l1

2

)
+

(
η + β − l1

2

)
≥ 0 .

Thus we get

β >l1 − η

2
(10)

and

|Ia | ≤K6|a|2nl1(‖T ‖
H
β
1
)2n‖ρ̂ε‖2n∞ ,

where K6 is a positive constant and only depends on n.
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Next we estimate It in a similar way of Ia . But we notice that for any l3 > 0 and fixed
N > 0, there exists a positive constant C5 such that

∣∣∣∣
∫ s

0
e−ψ(µ)udu

∣∣∣∣ ≤ C5

(
sl3

(1 + |µ|2) η2
) 1
l3+1

for s ∈ [0, N] .

Then we have

|It | ≤K7|t − s|2n
l3
l3+1 (‖T ‖

H
β

1
)2n(‖ρ̂ε‖∞)2n

× sup
µ1,...,µ2n

(1 + |µ1 − µ2|2)−
β
2 · · · (1 + |µ2n−1 − µ2n|2)−

β
2

× (1 + |µ1|2)−
η

2(l3+1) · · · (1 + |µ2n−1|2)−
η

2(l3+1) (1 + |µ2n|2)−
β
2 − η

2(l3+1) .

We apply (2) to the above inequality. Then we have

β ≥ − η

2(l3 + 1)
(11)

and

|It | ≤K8|t − s|2n
l3
l3+1 (‖T ‖

H
β
1
)2n(‖ρ̂ε‖∞)2n ,

whereK8 is a positive constant and only depends on n and N .
Therefore by (10) and (11) we make l1 and l3 satisfy the following equality:

− η

2(l3 + 1)
= l1 − η

2

That is, l3 = 2l1/(η − 2l1). Since l1 is positive, β > −α/2 and then we get

|E0[(AεT (a : t, ω)− AεT (0 : s, ω)2n]|
≤ Cst (|a|2nδ + |t − s|2nδ)(‖T ‖

H
β

1
)2n(‖ρ̂ε‖∞)2n , (12)

where we denote l1 by δ and Cst = max(K6,K8).
Therefore we get the condition in the theorem.
Then tending ε to zero, we get (a, t)-jointly continuity of AT (a : t, ω) by Kolmogorov–

Čentsov theorem. �

We can apply the above method to the d-dimensional symmetric stable process. Let {Xs}
be the d-dimensional symmetric stable process with index α. That is,

Ex [eiλ·Xs ] = exp{−c|λ|αs + iλ · x} ,
where c is a positive constant and x · y(x ∈ R, y ∈ R) denotes the inner product.
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Noting
∫ t

0
e−c|λ|αsds ≤ C5

(1 + |λ|2) α2 .

We have the next corollary.

COROLLARY 12. Let T ∈ H
β
1 , where we take β > −α/2. Suppose that δ =

min(α/2, β + α
2 ). Then AT (a : t, ω) has (a, t)-jointly continuous modification, which is

locally Hölder-continuous with exponent γ , where 0 < γ < δ.
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