Токуо J. Матн. Vol. 33, No. 1, 2010

The Continuity of Distribution-valued Additive Functionals for H_1^β

Tadashi NAKAJIMA

Yamamura Gakuen College

(Communicated by H. Nakada)

Abstract. In [2] and [3], we discuss the existence and the (a, t)-joint continuity of the distribution-valued additive functional $A_T(a:t,\omega) = \int_0^t T(X_s - a)$ for $T \in H_p^\beta$ except for the case of the (a, t)-joint continuity with p = 1. In this paper, we discuss the (a, t)-joint continuity of the distribution-valued additive functional $A_T(a:t,\omega)$ for $T \in H_p^\beta$.

1. Introduction and preliminaries

In this paper, we discuss the (a, t)-joint continuity of the distribution-valued additive functional $A_T(a:t, \omega) = \int_0^t T(X_s - a)$ for $T \in H_1^\beta$ which is the case we did not finish doing in [2] and [3]. The main results are Theorem 9 and 11 whose proof are produced by Lemma 8.

Throughout this paper, we shall use the same notations as those in [2] and [3]. But we notice some notations and remember the results of [2] and [3].

We denote the Fourier transform of $\phi(a)$ by $\hat{\phi}(\lambda)$:

$$\hat{\phi}(\lambda) = \int \phi(x) e^{i\lambda \cdot x} dx$$

and the Fourier inverse transform of $\psi(\lambda)$ by $\mathcal{F}^{-1}(\psi)(a)$:

$$\mathcal{F}^{-1}(\psi)(a) = \frac{1}{(2\pi)^d} \int \psi(\lambda) e^{-i\lambda \cdot a} d\lambda \,,$$

where $x \cdot y$ ($x \in \mathbf{R}^d, y \in \mathbf{R}^d$) denotes the inner product.

Let $T \in S'$. We denote the Fourier transform of T by \hat{T} .

DEFINITION 1. We say that *T* is an element of H_p^{β} $(1 \le p \le \infty, -\infty < \beta < \infty)$ if and only if *T* is an element of S' and the Fourier transform of *T* has a version as a function $\hat{T}(\lambda)$ on \mathbf{R}^d such that

$$\hat{T}(\lambda)(1+|\lambda|^2)^{\frac{\beta}{2}} \in L^p.$$

Received October 30, 2008; revised October 28, 2009

0

Then we set

$$||T||_{H_p^{\beta}} = ||\hat{T}(\lambda)(1+|\lambda|^2)^{\frac{p}{2}}||_{L^p}.$$

We note $\mathcal{F}^{-1}(T)(\lambda) = (2\pi)^{-d} \hat{T}(-\lambda)$ for $T \in H_p^{\beta}$.

Let $\{X_s\}$ be the standard Brownian motion on \mathbb{R}^d or one-dimensional real valued stable process with index α (0 < α < 2) or *d*-dimensional real valued symmetric stable process with index α (0 < α < 2).

We define τ_x and θ_t as follows:

$$\tau_x : X_t(\tau_x \omega) = X_t(\omega) + x$$

and

$$\theta_t: X_s(\theta_t \omega) = X_{t+s}(\omega) \,.$$

We remember preliminary results in [2].

LEMMA 2. Let $T \in \mathcal{D}', \phi \in \mathcal{D}$ and set $T * \phi(x) = \langle T_y, \phi(x-y) \rangle_y$. Then

$$\langle A_T(t,\omega),\phi\rangle = \int_0^t T * \phi(X_s(\omega)) ds$$

is well-defined and we have

$$A_T(t,\omega) \in \mathcal{D}'$$

Lemma 3.

$$\langle A_T(t, \tau_x \omega), \phi \rangle = \langle A_T(t, \omega), \phi(\cdot + x) \rangle$$
$$\langle A_T(s + t, \omega), \phi \rangle = \langle A_T(s, \omega), \phi \rangle + \langle A_T(t, \theta_s \omega), \phi \rangle$$

LEMMA 4. Let T be an element of H_p^{β} . Then $A_T(t, \omega)$ is also an element of H_p^{β} .

Now let ρ_{ε} be the mollifier. We denote

$$A_T^{\varepsilon}(t,\omega) = \langle A_T(t,\omega), \rho_{\varepsilon} \rangle$$

and

$$A_T^{\varepsilon}(a:t,\omega) = A_T^{\varepsilon}(t,\tau_{-a}\omega).$$

We note that

$$\langle A_T^{\varepsilon}(t,\omega),\phi\rangle = \langle A_T(t,\omega),\rho_{\varepsilon}*\phi\rangle$$

Here we emphasize $A_T^{\varepsilon}(a:t,\omega)$ is a usual function of a. We can take ρ_{ε} such that $\rho_{\varepsilon} \to \delta_0$ as $\varepsilon \to 0$ and $\hat{\rho}_{\varepsilon}$ uniformly converges to one in wider sense tending ε to zero and $\|\hat{\rho}_{\varepsilon}\|_{\infty} \leq 1$.

We studied the convergence of distribution-valued additive functional $A_T^{\varepsilon}(a:t,\omega)$ for

 $T \in H_1^\beta$ in [2] and [3], tending ε to zero. We remember their results. First, in the case of *d*-dimensional Brownian motion, we had

THEOREM 5. For $T \in H_1^\beta$

$$\lim_{\varepsilon \to 0} A_T^{\varepsilon}(a:t,\omega) = A_T(a:t,\omega) \quad in \ L^2(dP_x) \,,$$

where we take $\beta \geq -1$.

Second, in the case of one-dimensional stable process with index α whose characteristic function is (7), we had

THEOREM 6. For $T \in H_1^\beta$ $\lim_{\varepsilon \to 0} A_T^\varepsilon(a:t,\omega) = A_T(a:t,\omega) \quad in \ L^2(dP_x) \,,$

where we take $\beta \ge -\alpha/2$ but if $\alpha < 1$ and $\gamma_0 \ne 0$ we take $\beta \ge -1/2$. We notice that γ_0 is a real number in (8).

Last, in the case of d-dimensional symmetric stable process with index α , we had

THEOREM 7. For
$$T \in H_1^\beta$$

$$\lim_{\varepsilon \to 0} A_T^\varepsilon(a:t,\omega) = A_T(a:t,\omega) \quad in \ L^2(dP_x) \,,$$

where we take $\beta \geq -\alpha/2$.

The (a, t)-joint continuity theorem in the case of each is following.

Theorem 9 corresponds to the *d*-dimensional Brownian motion.

Theorem 11 corresponds to the one-dimensional stable process with index α .

Corollary 12 corresponds to the *d*-dimensional symmetric stable process with index α . They will be proved in Section 2.

The following lemma is modified version of the lemma in [2]. This lemma plays important role of proof of the continuity theorems.

LEMMA 8. Let
$$p + q \ge 0$$
 and $p \ge q$. For any $\lambda \in \mathbf{R}^d$,

$$\sup_{\mu \in \mathbf{R}^d} (1 + |\mu|^2)^{-p} (1 + |\mu + \lambda|^2)^{-q} \asymp (1 + |\lambda|^2)^{-q}.$$
(1)

Specially, there exists C > 0 such that

$$\sup_{\mu \in \mathbf{R}^d} (1 + |\mu|^2)^{-p} (1 + |\mu + \lambda|^2)^{-q} \le C (1 + |\lambda|^2)^{-q} \quad \text{for } \lambda \in \mathbf{R}^d.$$
(2)

PROOF. The case of q = 0 is clear. We will consider the case where q is negative and the other case where q is positive.

First, we consider the case where q is negative. By (1) to the -1/q-th power both sides, we have to show that

$$\sup_{\mu \in \mathbf{R}^d} (1 + |\mu|^2)^{p/q} (1 + |\mu + \lambda|^2) \approx 1 + |\lambda|^2,$$
(3)

Moreover, for $p + q \ge 0$ we have $-\frac{p}{q} \ge 1$. Then, (3) is rewritten as

$$\sup_{\mu \in \mathbf{R}^d} \frac{(1 + |\mu + \lambda|^2)}{(1 + |\mu|^2)^m} \asymp 1 + |\lambda|^2 \quad \text{for } m \ge 1 \,.$$

If we take $\mu = 0$,

$$\sup_{\mu \in \mathbf{R}^d} \frac{(1+|\mu+\lambda|^2)}{(1+|\mu|^2)^m} \ge 1+|\lambda|^2 \,.$$

By $m \ge 1$ we get

$$\begin{split} \sup_{\mu \in \mathbf{R}^{d}} \frac{(1 + |\mu + \lambda|^{2})}{(1 + |\mu|^{2})^{m}} \\ &\leq \sup_{\mu \in \mathbf{R}^{d}} \frac{(1 + |\mu + \lambda|^{2})}{1 + |\mu|^{2}} \\ &\leq \sup_{\mu \in \mathbf{R}^{d}} \frac{(1 + 2|\mu|^{2} + 2|\lambda|^{2})}{1 + |\mu|^{2}} \\ &\leq \sup_{\mu \in \mathbf{R}^{d}} \frac{2(1 + |\mu|^{2})(1 + 2|\lambda|^{2})}{1 + |\mu|^{2}} \\ &\leq 2(1 + |\lambda|^{2}) \,. \end{split}$$

Hence we get (1), if q < 0.

Second, we consider the case where q is positive. In a similar way where q is negative, we have to show that

$$\inf_{\mu \in \mathbf{R}^d} (1 + |\mu|^2)^{p/q} (1 + |\mu + \lambda|^2) \asymp 1 + |\lambda|^2.$$

If we take $\mu = 0$,

$$\inf_{\mu \in \mathbf{R}^d} (1 + |\mu|^2)^{p/q} (1 + |\mu + \lambda|^2) \le 1 + |\lambda|^2.$$

Next, since $p/q \ge 1$ we get

$$\begin{split} &\inf_{\mu\in\mathbf{R}^{d}}(1+|\mu|^{2})^{p/q}(1+|\mu+\lambda|^{2})\\ &\geq \inf_{\mu\in\mathbf{R}^{d}}(1+|\mu|^{2})(1+|\mu+\lambda|^{2}) \end{split}$$

$$= \inf_{\mu \in \mathbf{R}^d} \left(1 + \left| \mu - \frac{\lambda}{2} \right|^2 \right) \left(1 + \left| \mu + \frac{\lambda}{2} \right|^2 \right)$$
$$= \inf_{\mu \in \mathbf{R}^d} \left(1 + 2|\mu|^2 + \frac{|\lambda|^2}{2} + \left| \mu - \frac{\lambda}{2} \right|^2 \left| \mu + \frac{\lambda}{2} \right|^2 \right)$$
$$\ge 1 + \frac{|\lambda|^2}{2}.$$

Therefore we get Lemma 8.

2. Continuity theorems

2.1. The case of *d***-dimensional Brownian motion.** Let P_x be the probability measure of the *d*-dimensional standard Brownian motion $\{X_t\}$ starting from *x*. We notice that the characteristic function of X_s is

$$E_x[e^{i\lambda X_s}] = \exp\left\{-\frac{|\lambda|^2}{2}s + i\lambda x\right\}.$$

THEOREM 9. Let $T \in H_1^{\beta}$ where we take $\beta > -1$. Suppose that $\delta = \min(1, \beta + 1)$. Then $A_T(a : t, \omega)$ has (a, t)-jointly continuous modification, which is locally Höldercontinuous with exponent γ , where $0 < \gamma < \delta$.

PROOF. We will estimate

$$\mathbb{E}_{x}[(A_{T}^{\varepsilon}(a:t,\omega)-A_{T}^{\varepsilon}(b:s,\omega))^{2n}]$$

and then we apply Kolmogorov-Čentsov theorem([1, P. 55, Problem 2.9]) to get the joint continuity.

Without loss of generality, for fixed N > 0 we take *t* and *s* such that N > t > s and we suppose that Brownian motion starts from zero and b = 0.

We set

$$\begin{split} & E_0[(A_T^{\varepsilon}(a:t,\omega) - A_T^{\varepsilon}(0:s,\omega))^{2n}] \\ & \leq 2^{2n} |E_0[(A_T^{\varepsilon}(a:t,\omega) - A_T^{\varepsilon}(0:t,\omega))^{2n}]| + 2^{2n} |E_0[(A_T^{\varepsilon}(0:t,\omega) - A_T^{\varepsilon}(0:s,\omega))^{2n}]| \\ & = 2^{2n} |I_a| + 2^{2n} |I_t|, \quad \text{say} \,. \end{split}$$

First we estimate I_a . Using Parseval's equality we get

$$I_{a} = \frac{(2n)!}{(2\pi)^{2nd}} \int d\lambda_{1} \cdots \int d\lambda_{2n} \int_{0}^{t} du_{1} \int_{u_{1}}^{t} du_{2} \cdots \int_{u_{2n-1}}^{t} du_{2n}$$

$$\times \overline{\hat{T}(\lambda_{2n}) \cdots \hat{T}(\lambda_{1}) \hat{\rho_{\varepsilon}}(\lambda_{2n}) \cdots \hat{\rho_{\varepsilon}}(\lambda_{1})}$$

$$\times e^{-\frac{|\lambda_{2n}|^{2}}{2}(u_{2n}-u_{2n-1}) - \frac{|\lambda_{2n}+\lambda_{2n-1}|^{2}}{2}(u_{2n-1}-u_{2n-2}) - \dots - \frac{|\lambda_{2n}+\dots+\lambda_{1}|^{2}}{2}u_{1}}$$

$$\times (e^{i\lambda_{2n}\cdot a}-1)(e^{i\lambda_{2n-1}\cdot a}-1)\cdots (e^{i\lambda_{1}\cdot a}-1).$$

Then we have

$$\begin{split} \|I_{a}\| &\leq \frac{(2n)!}{(2\pi)^{2nd}} (\|T\|_{H_{1}^{\beta}})^{2n} (\|\hat{\rho}_{\varepsilon}\|_{\infty})^{2n} \\ &\times \sup_{\lambda_{1},...,\lambda_{2n}} (1+|\lambda_{1}|^{2})^{-\frac{\beta}{2}} \cdots (1+|\lambda_{2n}|^{2})^{-\frac{\beta}{2}} \\ &\times |e^{i\lambda_{2n}\cdot a} - 1||e^{i\lambda_{2n-1}\cdot a} - 1| \cdots |e^{i\lambda_{1}\cdot a} - 1| \\ &\times \int_{0}^{t} du_{1} \int_{u_{1}}^{t} du_{2} \cdots \int_{u_{2n-1}}^{t} du_{2n} \\ &\times e^{-\frac{|\lambda_{2n}|^{2}}{2}(u_{2n}-u_{2n-1}) - \frac{|\lambda_{2n}+\lambda_{2n-1}|^{2}}{2}(u_{2n-1}-u_{2n-2}) - \cdots - \frac{|\lambda_{2n}+\cdots+\lambda_{1}|^{2}}{2}u_{1}} \,. \end{split}$$

We change the variables λ_i $(1 \le i \le 2n)$ to μ_j $(1 \le j \le 2n)$ as follows:

$$\mu_{2n} = \lambda_{2n}$$

$$\mu_{2n-1} = \lambda_{2n} + \lambda_{2n-1}$$

...

$$\mu_1 = \lambda_{2n} + \lambda_{2n-1} + \dots + \lambda_1.$$

Then we get

$$\begin{aligned} |I_{a}| &\leq \frac{(2n)!}{(2\pi)^{2nd}} (\|T\|_{H_{1}^{\beta}})^{2n} (\|\hat{\rho_{\varepsilon}}\|_{\infty})^{2n} \\ &\times \sup_{\mu_{1},...,\mu_{2n}} (1+|\mu_{1}-\mu_{2}|^{2})^{-\frac{\beta}{2}} \cdots (1+|\mu_{2n-1}-\mu_{2n}|^{2})^{-\frac{\beta}{2}} (1+|\mu_{2n}|^{2})^{-\frac{\beta}{2}} \\ &\times |e^{i\mu_{2n}\cdot a}-1||e^{i(\mu_{2n-1}-\mu_{2n})\cdot a}-1| \cdots |e^{i(\mu_{1}-\mu_{2})\cdot a}-1| \\ &\times \int_{0}^{t} du_{1} \int_{u_{1}}^{t} du_{2} \cdots \int_{u_{2n-1}}^{t} du_{2n} e^{-\frac{|\mu_{2n}|^{2}}{2}(u_{2n}-u_{2n-1})-\cdots -\frac{|\mu_{2}|^{2}}{2}(u_{2}-u_{1})-\frac{|\mu_{1}|^{2}}{2}u_{1}} \end{aligned}$$

Now we notice that for any $k \in \mathbf{C}(Re(k) \ge 0)$

$$\left|\int_0^t e^{-ks} ds\right| \le \frac{C_1}{1+|k|}$$

and for any $1 \ge l_1 > 0$

$$|e^{i\mu \cdot a} - 1| \le C_2 |a|^{l_1} (1 + |\mu|^2)^{\frac{l_1}{2}}, \tag{4}$$

.

where C_1 and C_2 are positive constants.

Then we apply these inequalities to I_a :

$$\begin{aligned} |I_{a}| &\leq \frac{(2n)!K_{1}}{(2\pi)^{2nd}} (||T||_{H_{1}^{\beta}})^{2n} (||\hat{\rho_{\varepsilon}}||_{\infty})^{2n} |a|^{2nl_{1}} \\ &\times \sup_{\mu_{1},\dots,\mu_{2n}} (1+|\mu_{1}-\mu_{2}|^{2})^{-(\frac{\beta}{2}-\frac{l_{1}}{2})} \cdots (1+|\mu_{2n-1}-\mu_{2n}|^{2})^{-(\frac{\beta}{2}-\frac{l_{1}}{2})} \\ &\times (1+|\mu_{1}|^{2})^{-1} \cdots (1+|\mu_{2n-1}|^{2})^{-1} (1+|\mu_{2n}|^{2})^{-1-(\frac{\beta}{2}-\frac{l_{1}}{2})}, \end{aligned}$$

where $K_1 = (C_1 C_2)^{2n}$.

We first estimate the following. We set

$$|I_a^{2n}| = \sup_{\mu_{2n}} (1 + |\mu_{2n-1} - \mu_{2n}|^2)^{-(\frac{\beta}{2} - \frac{l_1}{2})} (1 + |\mu_{2n}|^2)^{-1 - (\frac{\beta}{2} - \frac{l_1}{2})}.$$

Now we apply (2) to this equation. If β satisfies

$$\left(\frac{\beta}{2}-\frac{l_1}{2}\right)+\left(1+\frac{\beta}{2}-\frac{l_1}{2}\right)\geq 0\,,$$

then we get

$$|I_a^{2n}| \le C(1 + |\mu_{2n-1}|^2)^{-(\frac{\beta}{2} - \frac{l_1}{2})}$$

Therefore, by induction, we reach the inequality

$$|I_a| \leq \frac{(2n)! K_1 C^{2n-1}}{(2\pi)^{2nd}} (\|T\|_{H_1^{\beta}})^{2n} (\|\hat{\rho_{\varepsilon}}\|_{\infty})^{2n} |a|^{2nl_1} \sup_{\mu_1} (1+|\mu_1|^2)^{-1-(\frac{\beta}{2}-\frac{l_1}{2})}.$$

For the finiteness of this inequality, we set the following condition:

$$1 + \left(\frac{\beta}{2} - \frac{l_1}{2}\right) \ge 0.$$

Thus we obtain the condition

$$\beta \ge l_1 - 1 \tag{5}$$

and

$$|I_a| \leq K_2 |a|^{2nl_1} (||T||_{H_1^{\beta}})^{2n} (||\hat{\rho_{\varepsilon}}||_{\infty})^{2n},$$

where K_2 is a positive constant and only depends on n.

Next we estimate I_t in a similar way of I_a . But we notice that for any $l_2 > 0$, $k \in C(Re(k) > 0)$ and fixed N > 0, there exists a positive constant C_3 such that

$$\left| \int_0^s e^{-ku} du \right| \le C_3 \left(\frac{s^{l_2}}{1+|k|} \right)^{\frac{1}{l_2+1}} \quad \text{for } s \in [0, N],$$

because it is easy to see that

$$s^{-\frac{l_2}{l_2+1}}(1+|k|)^{\frac{1}{l_2+1}} \left| \int_0^s e^{-ku} du \right|$$

is a bounded function on $(s, |k|) \in [0, N] \times [0, \infty)$. Then we have

$$\begin{aligned} |I_t| &\leq \frac{(2n)!K_3}{(2\pi)^{2nd}} |t-s|^{2n\frac{l_2}{l_2+1}} (||T||_1^{\beta})^{2n} (||\hat{\rho_{\varepsilon}}||_{\infty})^{2n} \\ &\times \sup_{\mu_1,\dots,\mu_{2n}} (1+|\mu_1-\mu_2|^2)^{-\frac{\beta}{2}} \cdots (1+|\mu_{2n-1}-\mu_{2n}|^2)^{-\frac{\beta}{2}} \\ &\times (1+|\mu_1|^2)^{-\frac{1}{l_2+1}} \cdots (1+|\mu_{2n-1}|^2)^{-\frac{1}{l_2+1}} (1+|\mu_{2n}|^2)^{-\frac{\beta}{2}-\frac{1}{l_2+1}} \end{aligned}$$

where $K_3 = C_3^{2n}$.

We apply (2) to the inequality with respect to μ_1, \ldots, μ_{2n} of I_t . Then we obtain the condition

$$\beta \ge -\frac{1}{l_2+1} \tag{6}$$

,

for the finiteness of this integral and

$$|I_t| \leq K_4 |t-s|^{2n \frac{l_2}{l_2+1}} (||T||_{H_1^{\beta}})^{2n} (||\hat{\rho_{\varepsilon}}||_{\infty})^{2n} ,$$

where K_4 is a positive constant and only depends on n, N.

Therefore by (5) and (6) we make l_1 and l_2 satisfy the following equality:

$$-\frac{1}{l_2+1} = l_1 - 1$$

Since l_1 is positive, if β satisfies the condition in Theorem 5, then we obtain

$$|E_0[(A_T^{\varepsilon}(a:t,\omega) - A_T^{\varepsilon}(0:s,\omega))^{2n}]|$$

$$\leq C_{BM}(|a|^{2n\delta} + |t-s|^{2n\delta})(||T||_{H_1^{\beta}})^{2n}(||\hat{\rho_{\varepsilon}}||_{\infty})^{2n\delta})^{2n\delta}$$

where we take δ as follows and $C_{BM} = \max(K_2, K_4)$.

For $\beta > -1$ we take δ as $\beta + 1 \ge \delta$ by (5) or (6).

Thus tending ε to zero, we get (a, t)-joint continuity of $A_T(a : t, \omega)$ by Kolmogorov– Čentsov theorem.

2.2. The case of stable process with index α . Let P_x be the probability measure of the one-dimensional stable process $\{X_s\}$ with index $\alpha(0 < \alpha < 2)$ starting from x. We notice that the characteristic function of X_s is

$$E_x[e^{i\lambda X_s}] = \exp\{-s\psi(\lambda) + i\lambda x\},\tag{7}$$

where $\psi(\lambda)$ is given in the following. For some constants $c > 0, -1 \le \gamma \le 1$ and $\gamma_0 \in \mathbf{R}$, if $\alpha \ne 1$ then

$$\psi(\lambda) = c|\lambda|^{\alpha} \left(1 - i\gamma (sgn\lambda) \tan \frac{\pi}{2} \alpha \right) + i\gamma_0 \lambda \tag{8}$$

and if $\alpha = 1$ then

$$\psi(\lambda) = c|\lambda| \left(1 + i\gamma \frac{2}{\pi} (sgn\lambda) \log|\lambda|\right) + i\gamma_0 \lambda.$$

We remember the following lemma in [3].

LEMMA 10. Let $F = |\int_0^t e^{-\psi(\lambda)s} ds|$. Then we get

$$F \le \frac{C_4}{(1+|\lambda|^2)^{\frac{n}{2}}},\tag{9}$$

where we take $\eta = \alpha$ but if $\alpha < 1$ and $\gamma_0 \neq 0$ then we take $\eta = 1$.

Next we discuss the (a, t)-joint continuity of $A_T(a : t, \omega)$. We get the following in the similar way to the case of Brownian motion.

THEOREM 11. Let $T \in H_1^{\beta}$, where we take $\beta > -\alpha/2$. Suppose that 1. In the case where $\alpha > 1$

$$\delta = \min\left(1, \beta + \frac{\alpha}{2}\right)$$

2. In the case where $\alpha \leq 1$

$$\delta = \min\left(\alpha, \beta + \frac{\alpha}{2}\right).$$

3. In the case where $\alpha < 1$ and $\gamma_0 \neq 0$

$$\delta = \min\left(1, \beta + \frac{1}{2}\right).$$

Then $A_T(a : t, \omega)$ has (a, t)-jointly continuous modification, which is locally Höldercontinuous with exponent γ , where $0 < \gamma < \delta$.

PROOF. Without loss of generality, for fixed N > 0 we take *t* and *s* such that N > t > s and we suppose that the stable process starts from zero and b = 0.

We set

$$\begin{split} &E_0[(A_T^{\varepsilon}(a:t,\omega) - A_T^{\varepsilon}(0:s,\omega))^{2n}] \\ &\leq 2^{2n} |E_0[(A_T^{\varepsilon}(a:t,\omega) - (A_T^{\varepsilon}(0:t,\omega))^{2n}]| + 2^{2n} |E_0[(A_T^{\varepsilon}(0:t,\omega) - (A_T^{\varepsilon}(0:s,\omega))^{2n}]| \\ &= 2^{2n} |I_a| + 2^{2n} |I_t|. \end{split}$$

First we estimate I_a . By the similar calculation of the case of Brownian motion we obtain

$$\begin{split} |I_{a}| &\leq \frac{(2n)!}{(2\pi)^{2n}} (\|T\|_{H_{1}^{\beta}})^{2n} (\|\hat{\rho}_{\varepsilon}\|_{\infty})^{2n} \\ &\times \sup_{\lambda_{1},\dots,\lambda_{2n}} (1+|\lambda_{1}|^{2})^{-\frac{\beta}{2}} \cdots (1+|\lambda_{2n}|^{2})^{-\frac{\beta}{2}} \\ &\times |e^{-i\lambda_{2n}a}-1||e^{-i(\lambda_{2n}+\lambda_{2n-1})a}-1|\cdots |e^{-i(\lambda_{2n}+\dots+\lambda_{1})a}-1| \\ &\times \left|\int_{0}^{t} du_{1} \int_{u_{1}}^{t} du_{2} \cdots \int_{u_{2n-1}}^{t} du_{2n} \\ &\times e^{-\psi(\lambda_{2n})(u_{2n}-u_{2n-1})-\psi(\lambda_{2n}+\lambda_{2n-1})(u_{2n-1}-u_{2n-2})-\dots-\psi(\lambda_{2n}+\dots+\lambda_{1})u_{1}}\right|. \end{split}$$

By the change of variables we have

$$\begin{aligned} |I_{a}| &\leq \frac{(2n)!}{(2\pi)^{2n}} (\|T\|_{H_{1}^{\beta}})^{2n} (\|\hat{\rho}_{\varepsilon}\|_{\infty})^{2n} \\ &\times \sup_{\mu_{1},\dots,\mu_{2n}} (1+|\mu_{1}-\mu_{2}|^{2})^{-\frac{\beta}{2}} \cdots (1+|\mu_{2n-1}-\mu_{2n}|^{2})^{-\frac{\beta}{2}} (1+|\mu_{2n}|^{2})^{-\frac{\beta}{2}} \\ &\times |e^{-i\mu_{2n}a}-1||e^{-i(\mu_{2n-1}-\mu_{2n})a}-1| \cdots |e^{-i(\mu_{1}-\mu_{2})a}-1| \\ &\times \int_{0}^{t} du_{1} \int_{u_{1}}^{t} du_{2} \cdots \int_{u_{2n-1}}^{t} du_{2n} |e^{-\psi(\mu_{2n})(u_{2n}-u_{2n-1})-\cdots-\psi(\mu_{2})(u_{2}-u_{1})-\psi(\mu_{1})u_{1}}| \end{aligned}$$

Then we apply (4) and (9) to I_a :

$$\begin{split} |I_{a}| &\leq K_{5}(\|T\|_{H_{1}^{\beta}})^{2n}(\|\hat{\rho}_{\varepsilon}\|_{\infty})^{2n}|a|^{2nl_{1}} \\ &\times \sup_{\mu_{1},\dots,\mu_{2n}}(1+|\mu_{1}-\mu_{2}|^{2})^{-\frac{\beta}{2}+\frac{l_{1}}{2}}\cdots(1+|\mu_{2n-1}-\mu_{2n}|^{2})^{-\frac{\beta}{2}+\frac{l_{1}}{2}} \\ &\times (1+|\mu_{1}|^{2})^{-\frac{\eta}{2}}\cdots(1+|\mu_{2n-1}|^{2})^{-\frac{\eta}{2}}(1+|\mu_{2n}|^{2})^{-\frac{1}{2}(\eta-l_{1}+\beta)}. \end{split}$$

Now we apply (2) to the above inequality. Then for the finiteness of I_a , we have

$$\left(\frac{\beta-l_1}{2}\right) + \left(\frac{\eta+\beta-l_1}{2}\right) \ge 0.$$

Thus we get

$$\beta > l_1 - \frac{\eta}{2} \tag{10}$$

•

and

$$|I_a| \leq K_6 |a|^{2nl_1} (||T||_{H_1^{\beta}})^{2n} ||\hat{\rho}_{\varepsilon}||_{\infty}^{2n},$$

where K_6 is a positive constant and only depends on n.

Next we estimate I_t in a similar way of I_a . But we notice that for any $l_3 > 0$ and fixed N > 0, there exists a positive constant C_5 such that

$$\left| \int_0^s e^{-\psi(\mu)u} du \right| \le C_5 \left(\frac{s^{l_3}}{(1+|\mu|^2)^{\frac{\eta}{2}}} \right)^{\frac{1}{l_3+1}} \quad \text{for } s \in [0,N] \,.$$

Then we have

$$\begin{aligned} |I_t| &\leq K_7 |t-s|^{2n} \frac{\gamma_2}{I_3+1} (||T||_{H_1^{\beta}})^{2n} (||\hat{\rho}_{\varepsilon}||_{\infty})^{2n} \\ &\times \sup_{\mu_1,\dots,\mu_{2n}} (1+|\mu_1-\mu_2|^2)^{-\frac{\beta}{2}} \cdots (1+|\mu_{2n-1}-\mu_{2n}|^2)^{-\frac{\beta}{2}} \\ &\times (1+|\mu_1|^2)^{-\frac{\eta}{2(l_3+1)}} \cdots (1+|\mu_{2n-1}|^2)^{-\frac{\eta}{2(l_3+1)}} (1+|\mu_{2n}|^2)^{-\frac{\beta}{2}-\frac{\eta}{2(l_3+1)}}. \end{aligned}$$

We apply (2) to the above inequality. Then we have

b

$$\beta \ge -\frac{\eta}{2(l_3+1)} \tag{11}$$

and

$$|I_t| \le K_8 |t-s|^{2n \frac{l_3}{l_3+1}} (||T||_{H_1^{\beta}})^{2n} (||\hat{\rho}_{\varepsilon}||_{\infty})^{2n}$$

where K_8 is a positive constant and only depends on n and N.

Therefore by (10) and (11) we make l_1 and l_3 satisfy the following equality:

$$-\frac{\eta}{2(l_3+1)} = l_1 - \frac{\eta}{2}$$

That is, $l_3 = 2l_1/(\eta - 2l_1)$. Since l_1 is positive, $\beta > -\alpha/2$ and then we get

$$|E_0[(A_T^{\varepsilon}(a:t,\omega) - A_T^{\varepsilon}(0:s,\omega)^{2n}]| \le C_{st}(|a|^{2n\delta} + |t-s|^{2n\delta})(||T||_{H_1^{\beta}})^{2n}(||\hat{\rho}_{\varepsilon}||_{\infty})^{2n},$$
(12)

where we denote l_1 by δ and $C_{st} = \max(K_6, K_8)$.

Therefore we get the condition in the theorem.

Then tending ε to zero, we get (a, t)-jointly continuity of $A_T(a : t, \omega)$ by Kolmogorov– Čentsov theorem.

We can apply the above method to the *d*-dimensional symmetric stable process. Let $\{X_s\}$ be the *d*-dimensional symmetric stable process with index α . That is,

$$E_x[e^{i\lambda\cdot X_s}] = \exp\{-c|\lambda|^{\alpha}s + i\lambda\cdot x\}$$

where c is a positive constant and $x \cdot y (x \in \mathbf{R}, y \in \mathbf{R})$ denotes the inner product.

Noting

$$\int_0^t e^{-c|\lambda|^{\alpha}s} ds \leq \frac{C_5}{(1+|\lambda|^2)^{\frac{\alpha}{2}}}.$$

We have the next corollary.

COROLLARY 12. Let $T \in H_1^{\beta}$, where we take $\beta > -\alpha/2$. Suppose that $\delta = \min(\alpha/2, \beta + \frac{\alpha}{2})$. Then $A_T(a : t, \omega)$ has (a, t)-jointly continuous modification, which is locally Hölder-continuous with exponent γ , where $0 < \gamma < \delta$.

ACKNOWLEDGEMENT. I am very grateful to Professor Sadao Sato for his valuable discussions and precious opinions. I thank the anonymous referee for valuable comments and for improving the presentation of the paper.

References

- I. KARATZAS and S. E. SHREVE, Brownian motion and stochastic calculus (second edition), Springer–Verlag, 1994.
- [2] T. NAKAJIMA, A certain class of distribution-valued additive functionals I –for the case of Brownian motion, J. Math. Kyoto Univ. 40, No. 2 (2000), 293–314.
- [3] T. NAKAJIMA, A certain class of distribution-valued additive functionals II –for the case of stable process, J. Math. Kyoto Univ. 42, No. 3 (2002), 443–463.

Present Address: Division of Human Communication, Yamamura Gakuen College, Ishizaka, Hatoyama-Machi, Hiki-Gun, Saitama, 350–0396 Japan. *e-mail*: nakajima-t@mx2.ttcn.ne.jp