The Continuity of Distribution-valued Additive Functionals for H_{1}^{β}

Tadashi NAKAJIMA

Yamamura Gakuen College
(Communicated by H. Nakada)

Abstract

In [2] and [3], we discuss the existence and the (a, t)-joint continuity of the distribution-valued additive functional $A_{T}(a: t, \omega)=\int_{0}^{t} T\left(X_{s}-a\right)$ for $T \in H_{p}^{\beta}$ except for the case of the (a, t)-joint continuity with $p=1$. In this paper, we discuss the (a, t)-joint continuity of the distribution-valued additive functional $A_{T}(a: t, \omega)$ for $T \in H_{1}^{\beta}$.

1. Introduction and preliminaries

In this paper, we discuss the (a, t)-joint continuity of the distribution-valued additive functional $A_{T}(a: t, \omega)=\int_{0}^{t} T\left(X_{s}-a\right)$ for $T \in H_{1}^{\beta}$ which is the case we did not finish doing in [2] and [3]. The main results are Theorem 9 and 11 whose proof are produced by Lemma 8.

Throughout this paper, we shall use the same notations as those in [2] and [3]. But we notice some notations and remember the results of [2] and [3].

We denote the Fourier transform of $\phi(a)$ by $\hat{\phi}(\lambda)$:

$$
\hat{\phi}(\lambda)=\int \phi(x) e^{i \lambda \cdot x} d x
$$

and the Fourier inverse transform of $\psi(\lambda)$ by $\mathcal{F}^{-1}(\psi)(a)$:

$$
\mathcal{F}^{-1}(\psi)(a)=\frac{1}{(2 \pi)^{d}} \int \psi(\lambda) e^{-i \lambda \cdot a} d \lambda
$$

where $x \cdot y\left(x \in \mathbf{R}^{d}, y \in \mathbf{R}^{d}\right)$ denotes the inner product.
Let $T \in \mathcal{S}^{\prime}$. We denote the Fourier transform of T by \hat{T}.
Definition 1. We say that T is an element of $H_{p}^{\beta}(1 \leq p \leq \infty,-\infty<\beta<\infty)$ if and only if T is an element of \mathcal{S}^{\prime} and the Fourier transform of T has a version as a function $\hat{T}(\lambda)$ on \mathbf{R}^{d} such that

$$
\hat{T}(\lambda)\left(1+|\lambda|^{2}\right)^{\frac{\beta}{2}} \in L^{p} .
$$

Received October 30, 2008; revised October 28, 2009

Then we set

$$
\|T\|_{H_{p}^{\beta}}=\left\|\hat{T}(\lambda)\left(1+|\lambda|^{2}\right)^{\frac{\beta}{2}}\right\|_{L^{p}} .
$$

We note $\mathcal{F}^{-1}(T)(\lambda)=(2 \pi)^{-d} \hat{T}(-\lambda)$ for $T \in H_{p}^{\beta}$.
Let $\left\{X_{s}\right\}$ be the standard Brownian motion on \mathbf{R}^{d} or one-dimensional real valued stable process with index $\alpha(0<\alpha<2)$ or d-dimensional real valued symmetric stable process with index $\alpha(0<\alpha<2)$.

We define τ_{x} and θ_{t} as follows:

$$
\tau_{x}: X_{t}\left(\tau_{x} \omega\right)=X_{t}(\omega)+x
$$

and

$$
\theta_{t}: X_{s}\left(\theta_{t} \omega\right)=X_{t+s}(\omega)
$$

We remember preliminary results in [2].
Lemma 2. Let $T \in \mathcal{D}^{\prime}, \phi \in \mathcal{D}$ and set $T * \phi(x)=\left\langle T_{y}, \phi(x-y)\right\rangle_{y}$. Then

$$
\left\langle A_{T}(t, \omega), \phi\right\rangle=\int_{0}^{t} T * \phi\left(X_{s}(\omega)\right) d s
$$

is well-defined and we have

$$
A_{T}(t, \omega) \in \mathcal{D}^{\prime}
$$

Lemma 3.

$$
\begin{aligned}
\left\langle A_{T}\left(t, \tau_{x} \omega\right), \phi\right\rangle & =\left\langle A_{T}(t, \omega), \phi(\cdot+x)\right\rangle \\
\left\langle A_{T}(s+t, \omega), \phi\right\rangle & =\left\langle A_{T}(s, \omega), \phi\right\rangle+\left\langle A_{T}\left(t, \theta_{s} \omega\right), \phi\right\rangle .
\end{aligned}
$$

Lemma 4. Let T be an element of H_{p}^{β}. Then $A_{T}(t, \omega)$ is also an element of H_{p}^{β}.
Now let ρ_{ε} be the mollifier. We denote

$$
A_{T}^{\varepsilon}(t, \omega)=\left\langle A_{T}(t, \omega), \rho_{\varepsilon}\right\rangle
$$

and

$$
A_{T}^{\varepsilon}(a: t, \omega)=A_{T}^{\varepsilon}\left(t, \tau_{-a} \omega\right)
$$

We note that

$$
\left\langle A_{T}^{\varepsilon}(t, \omega), \phi\right\rangle=\left\langle A_{T}(t, \omega), \rho_{\varepsilon} * \phi\right\rangle
$$

Here we emphasize $A_{T}^{\varepsilon}(a: t, \omega)$ is a usual function of a. We can take ρ_{ε} such that $\rho_{\varepsilon} \rightarrow \delta_{0}$ as $\varepsilon \rightarrow 0$ and $\hat{\rho}_{\varepsilon}$ uniformly converges to one in wider sense tending ε to zero and $\left\|\hat{\rho}_{\varepsilon}\right\|_{\infty} \leq 1$.

We studied the convergence of distribution-valued additive functional $A_{T}^{\varepsilon}(a: t, \omega)$ for $T \in H_{1}^{\beta}$ in [2] and [3], tending ε to zero. We remember their results.

First, in the case of d-dimensional Brownian motion, we had
THEOREM 5. For $T \in H_{1}^{\beta}$

$$
\lim _{\varepsilon \rightarrow 0} A_{T}^{\varepsilon}(a: t, \omega)=A_{T}(a: t, \omega) \quad \text { in } L^{2}\left(d P_{x}\right)
$$

where we take $\beta \geq-1$.
Second, in the case of one-dimensional stable process with index α whose characteristic function is (7), we had

THEOREM 6. For $T \in H_{1}^{\beta}$

$$
\lim _{\varepsilon \rightarrow 0} A_{T}^{\varepsilon}(a: t, \omega)=A_{T}(a: t, \omega) \quad \text { in } L^{2}\left(d P_{x}\right)
$$

where we take $\beta \geq-\alpha / 2$ but if $\alpha<1$ and $\gamma_{0} \neq 0$ we take $\beta \geq-1 / 2$. We notice that γ_{0} is a real number in (8).

Last, in the case of d-dimensional symmetric stable process with index α, we had
Theorem 7. For $T \in H_{1}^{\beta}$

$$
\lim _{\varepsilon \rightarrow 0} A_{T}^{\varepsilon}(a: t, \omega)=A_{T}(a: t, \omega) \quad \text { in } L^{2}\left(d P_{x}\right)
$$

where we take $\beta \geq-\alpha / 2$.
The (a, t)-joint continuity theorem in the case of each is following.
Theorem 9 corresponds to the d-dimensional Brownian motion.
Theorem 11 corresponds to the one-dimensional stable process with index α.
Corollary 12 corresponds to the d-dimensional symmetric stable process with index α.
They will be proved in Section 2.
The following lemma is modified version of the lemma in [2]. This lemma plays important role of proof of the continuity theorems.

Lemma 8. Let $p+q \geq 0$ and $p \geq q$. For any $\lambda \in \mathbf{R}^{d}$,

$$
\begin{equation*}
\sup _{\mu \in \mathbf{R}^{d}}\left(1+|\mu|^{2}\right)^{-p}\left(1+|\mu+\lambda|^{2}\right)^{-q} \asymp\left(1+|\lambda|^{2}\right)^{-q} . \tag{1}
\end{equation*}
$$

Specially, there exists $C>0$ such that

$$
\begin{equation*}
\sup _{\mu \in \mathbf{R}^{d}}\left(1+|\mu|^{2}\right)^{-p}\left(1+|\mu+\lambda|^{2}\right)^{-q} \leq C\left(1+|\lambda|^{2}\right)^{-q} \quad \text { for } \lambda \in \mathbf{R}^{d} . \tag{2}
\end{equation*}
$$

Proof. The case of $q=0$ is clear. We will consider the case where q is negative and the other case where q is positive.

First, we consider the case where q is negative. By (1) to the $-1 / q$-th power both sides, we have to show that

$$
\begin{equation*}
\sup _{\mu \in \mathbf{R}^{d}}\left(1+|\mu|^{2}\right)^{p / q}\left(1+|\mu+\lambda|^{2}\right) \asymp 1+|\lambda|^{2}, \tag{3}
\end{equation*}
$$

Moreover, for $p+q \geq 0$ we have $-\frac{p}{q} \geq 1$. Then, (3) is rewritten as

$$
\sup _{\mu \in \mathbf{R}^{d}} \frac{\left(1+|\mu+\lambda|^{2}\right)}{\left(1+|\mu|^{2}\right)^{m}} \asymp 1+|\lambda|^{2} \quad \text { for } m \geq 1
$$

If we take $\mu=0$,

$$
\sup _{\mu \in \mathbf{R}^{d}} \frac{\left(1+|\mu+\lambda|^{2}\right)}{\left(1+|\mu|^{2}\right)^{m}} \geq 1+|\lambda|^{2}
$$

By $m \geq 1$ we get

$$
\begin{aligned}
& \sup _{\mu \in \mathbf{R}^{d}} \frac{\left(1+|\mu+\lambda|^{2}\right)}{\left(1+|\mu|^{2}\right)^{m}} \\
\leq & \sup _{\mu \in \mathbf{R}^{d}} \frac{\left(1+|\mu+\lambda|^{2}\right)}{1+|\mu|^{2}} \\
\leq & \sup _{\mu \in \mathbf{R}^{d}} \frac{\left(1+2|\mu|^{2}+2|\lambda|^{2}\right)}{1+|\mu|^{2}} \\
\leq & \sup _{\mu \in \mathbf{R}^{d}} \frac{2\left(1+|\mu|^{2}\right)\left(1+2|\lambda|^{2}\right)}{1+|\mu|^{2}} \\
\leq & 2\left(1+|\lambda|^{2}\right) .
\end{aligned}
$$

Hence we get (1), if $q<0$.
Second, we consider the case where q is positive. In a similar way where q is negative, we have to show that

$$
\inf _{\mu \in \mathbf{R}^{d}}\left(1+|\mu|^{2}\right)^{p / q}\left(1+|\mu+\lambda|^{2}\right) \asymp 1+|\lambda|^{2} .
$$

If we take $\mu=0$,

$$
\inf _{\mu \in \mathbf{R}^{d}}\left(1+|\mu|^{2}\right)^{p / q}\left(1+|\mu+\lambda|^{2}\right) \leq 1+|\lambda|^{2}
$$

Next, since $p / q \geq 1$ we get

$$
\begin{aligned}
& \inf _{\mu \in \mathbf{R}^{d}}\left(1+|\mu|^{2}\right)^{p / q}\left(1+|\mu+\lambda|^{2}\right) \\
\geq & \inf _{\mu \in \mathbf{R}^{d}}\left(1+|\mu|^{2}\right)\left(1+|\mu+\lambda|^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\inf _{\mu \in \mathbf{R}^{d}}\left(1+\left|\mu-\frac{\lambda}{2}\right|^{2}\right)\left(1+\left|\mu+\frac{\lambda}{2}\right|^{2}\right) \\
& =\inf _{\mu \in \mathbf{R}^{d}}\left(1+2|\mu|^{2}+\frac{|\lambda|^{2}}{2}+\left|\mu-\frac{\lambda}{2}\right|^{2}\left|\mu+\frac{\lambda}{2}\right|^{2}\right) \\
& \geq 1+\frac{|\lambda|^{2}}{2}
\end{aligned}
$$

Therefore we get Lemma 8.

2. Continuity theorems

2.1. The case of d-dimensional Brownian motion. Let P_{x} be the probability measure of the d-dimensional standard Brownian motion $\left\{X_{t}\right\}$ starting from x. We notice that the characteristic function of X_{s} is

$$
E_{x}\left[e^{i \lambda X_{s}}\right]=\exp \left\{-\frac{|\lambda|^{2}}{2} s+i \lambda x\right\} .
$$

THEOREM 9. Let $T \in H_{1}^{\beta}$ where we take $\beta>-1$. Suppose that $\delta=\min (1, \beta+1)$. Then $A_{T}(a: t, \omega)$ has (a, t)-jointly continuous modification, which is locally Höldercontinuous with exponent γ, where $0<\gamma<\delta$.

Proof. We will estimate

$$
E_{x}\left[\left(A_{T}^{\varepsilon}(a: t, \omega)-A_{T}^{\varepsilon}(b: s, \omega)\right)^{2 n}\right]
$$

and then we apply Kolmogorov-Čentsov theorem([1, P. 55, Problem 2.9]) to get the joint continuity.

Without loss of generality, for fixed $N>0$ we take t and s such that $N>t>s$ and we suppose that Brownian motion starts from zero and $b=0$.

We set

$$
\begin{aligned}
E_{0} & {\left[\left(A_{T}^{\varepsilon}(a: t, \omega)-A_{T}^{\varepsilon}(0: s, \omega)\right)^{2 n}\right] } \\
& \leq 2^{2 n}\left|E_{0}\left[\left(A_{T}^{\varepsilon}(a: t, \omega)-A_{T}^{\varepsilon}(0: t, \omega)\right)^{2 n}\right]\right|+2^{2 n}\left|E_{0}\left[\left(A_{T}^{\varepsilon}(0: t, \omega)-A_{T}^{\varepsilon}(0: s, \omega)\right)^{2 n}\right]\right| \\
& =2^{2 n}\left|I_{a}\right|+2^{2 n}\left|I_{t}\right|, \quad \text { say }
\end{aligned}
$$

First we estimate I_{a}. Using Parseval's equality we get

$$
\begin{aligned}
I_{a}= & \frac{(2 n)!}{(2 \pi)^{2 n d}} \int d \lambda_{1} \cdots \int d \lambda_{2 n} \int_{0}^{t} d u_{1} \int_{u_{1}}^{t} d u_{2} \cdots \int_{u_{2 n-1}}^{t} d u_{2 n} \\
& \times \overline{\hat{T}}\left(\lambda_{2 n}\right) \cdots \hat{T}\left(\lambda_{1}\right) \hat{\rho}_{\varepsilon}\left(\lambda_{2 n}\right) \cdots \hat{\rho}_{\varepsilon}\left(\lambda_{1}\right) \\
& \times e^{-\frac{\left|\lambda_{2 n}\right|^{2}}{2}\left(u_{2 n}-u_{2 n-1}\right)-\frac{\left|\lambda_{2 n}+\lambda_{2 n-1}\right|^{2}}{2}\left(u_{2 n-1}-u_{2 n-2}\right)-\cdots-\frac{\left|\lambda_{2 n}+\cdots+\lambda_{1}\right|^{2}}{2} u_{1}}
\end{aligned}
$$

$$
\times \overline{\left(e^{i \lambda_{2 n} \cdot a}-1\right)\left(e^{i \lambda_{2 n-1} \cdot a}-1\right) \cdots\left(e^{i \lambda_{1} \cdot a}-1\right)} .
$$

Then we have

$$
\begin{aligned}
\left|I_{a}\right| \leq & \frac{(2 n)!}{(2 \pi)^{2 n d}}\left(\|T\|_{H_{1}^{\beta}}\right)^{2 n}\left(\left\|\hat{\rho}_{\varepsilon}\right\|_{\infty}\right)^{2 n} \\
& \quad \times \sup _{\lambda_{1}, \ldots, \lambda_{2 n}}\left(1+\left|\lambda_{1}\right|^{2}\right)^{-\frac{\beta}{2}} \cdots\left(1+\left|\lambda_{2 n}\right|^{2}\right)^{-\frac{\beta}{2}} \\
& \quad \times\left|e^{i \lambda_{2 n} \cdot a}-1 \| e^{i \lambda_{2 n-1} \cdot a}-1\right| \cdots\left|e^{i \lambda_{1} \cdot a}-1\right| \\
\quad & \times \int_{0}^{t} d u_{1} \int_{u_{1}}^{t} d u_{2} \cdots \int_{u_{2 n-1}}^{t} d u_{2 n} \\
& \quad \times e^{-\frac{\left|\lambda_{2 n}\right|^{2}}{2}\left(u_{2 n}-u_{2 n-1}\right)-\frac{\left|\lambda_{2 n}+\lambda_{2 n-1}\right|^{2}}{2}\left(u_{2 n-1}-u_{2 n-2}\right)-\cdots-\frac{\left|\lambda_{2 n}+\cdots+\lambda_{1}\right|^{2}}{2} u_{1}} .
\end{aligned}
$$

We change the variables $\lambda_{i}(1 \leq i \leq 2 n)$ to $\mu_{j}(1 \leq j \leq 2 n)$ as follows:

$$
\begin{aligned}
\mu_{2 n} & =\lambda_{2 n} \\
\mu_{2 n-1} & =\lambda_{2 n}+\lambda_{2 n-1} \\
& \cdots \\
\mu_{1} & =\lambda_{2 n}+\lambda_{2 n-1}+\cdots+\lambda_{1} .
\end{aligned}
$$

Then we get

$$
\begin{aligned}
\left|I_{a}\right| \leq & \frac{(2 n)!}{(2 \pi)^{2 n d}}\left(\|T\|_{H_{1}^{\beta}}\right)^{2 n}\left(\left\|\hat{\rho}_{\varepsilon}\right\|_{\infty}\right)^{2 n} \\
& \quad \times \sup _{\mu_{1}, \ldots, \mu_{2 n}}\left(1+\left|\mu_{1}-\mu_{2}\right|^{2}\right)^{-\frac{\beta}{2}} \cdots\left(1+\left|\mu_{2 n-1}-\mu_{2 n}\right|^{2}\right)^{-\frac{\beta}{2}}\left(1+\left|\mu_{2 n}\right|^{2}\right)^{-\frac{\beta}{2}} \\
& \quad \times\left|e^{i \mu_{2 n} \cdot a}-1 \| e^{i\left(\mu_{2 n-1}-\mu_{2 n}\right) \cdot a}-1\right| \cdots\left|e^{i\left(\mu_{1}-\mu_{2}\right) \cdot a}-1\right| \\
& \quad \times \int_{0}^{t} d u_{1} \int_{u_{1}}^{t} d u_{2} \cdots \int_{u_{2 n-1}}^{t} d u_{2 n} e^{-\frac{\left|\mu_{2 n}\right|^{2}}{2}\left(u_{2 n}-u_{2 n-1}\right)-\cdots-\frac{\left|\mu_{2}\right|^{2}}{2}\left(u_{2}-u_{1}\right)-\frac{\left|\mu_{1}\right|^{2}}{2} u_{1}} .
\end{aligned}
$$

Now we notice that for any $k \in \mathbf{C}(\operatorname{Re}(k) \geq 0)$

$$
\left|\int_{0}^{t} e^{-k s} d s\right| \leq \frac{C_{1}}{1+|k|}
$$

and for any $1 \geq l_{1}>0$

$$
\begin{equation*}
\left|e^{i \mu \cdot a}-1\right| \leq C_{2}|a|^{l_{1}}\left(1+|\mu|^{2}\right)^{\frac{l_{1}}{2}}, \tag{4}
\end{equation*}
$$

where C_{1} and C_{2} are positive constants.

Then we apply these inequalities to I_{a} :

$$
\begin{aligned}
\left|I_{a}\right| \leq & \frac{(2 n)!K_{1}}{(2 \pi)^{2 n d}}\left(\|T\|_{H_{1}^{\beta}}\right)^{2 n}\left(\left\|\hat{\rho}_{\varepsilon}\right\| \infty\right)^{2 n}|a|^{2 n l_{1}} \\
& \quad \times \sup _{\mu_{1}, \ldots, \mu_{2 n}}\left(1+\left|\mu_{1}-\mu_{2}\right|^{2}\right)^{-\left(\frac{\beta}{2}-\frac{l_{1}}{2}\right)} \cdots\left(1+\left|\mu_{2 n-1}-\mu_{2 n}\right|^{2}\right)^{-\left(\frac{\beta}{2}-\frac{l_{1}}{2}\right)} \\
& \quad \times\left(1+\left|\mu_{1}\right|^{2}\right)^{-1} \cdots\left(1+\left|\mu_{2 n-1}\right|^{2}\right)^{-1}\left(1+\left|\mu_{2 n}\right|^{2}\right)^{-1-\left(\frac{\beta}{2}-\frac{l_{1}}{2}\right)},
\end{aligned}
$$

where $K_{1}=\left(C_{1} C_{2}\right)^{2 n}$.
We first estimate the following. We set

$$
\left|I_{a}^{2 n}\right|=\sup _{\mu_{2 n}}\left(1+\left|\mu_{2 n-1}-\mu_{2 n}\right|^{2}\right)^{-\left(\frac{\beta}{2}-\frac{l_{1}}{2}\right)}\left(1+\left|\mu_{2 n}\right|^{2}\right)^{-1-\left(\frac{\beta}{2}-\frac{l_{1}}{2}\right)} .
$$

Now we apply (2) to this equation. If β satisfies

$$
\left(\frac{\beta}{2}-\frac{l_{1}}{2}\right)+\left(1+\frac{\beta}{2}-\frac{l_{1}}{2}\right) \geq 0,
$$

then we get

$$
\left|I_{a}^{2 n}\right| \leq C\left(1+\left|\mu_{2 n-1}\right|^{2}\right)^{-\left(\frac{\beta}{2}-\frac{l_{1}}{2}\right)} .
$$

Therefore, by induction, we reach the inequality

$$
\left|I_{a}\right| \leq \frac{(2 n)!K_{1} C^{2 n-1}}{(2 \pi)^{2 n d}}\left(\|T\|_{H_{1}^{\beta}}\right)^{2 n}\left(\left\|\hat{\rho}_{\varepsilon}\right\| \infty\right)^{2 n}|a|^{2 n l_{1}} \sup _{\mu_{1}}\left(1+\left|\mu_{1}\right|^{2}\right)^{-1-\left(\frac{\beta}{2}-\frac{l_{1}}{2}\right)} .
$$

For the finiteness of this inequality, we set the following condition:

$$
1+\left(\frac{\beta}{2}-\frac{l_{1}}{2}\right) \geq 0
$$

Thus we obtain the condition

$$
\begin{equation*}
\beta \geq l_{1}-1 \tag{5}
\end{equation*}
$$

and

$$
\left|I_{a}\right| \leq K_{2}|a|^{2 n l_{1}}\left(\|T\|_{H_{1}^{\beta}}\right)^{2 n}\left(\left\|\hat{\rho}_{\varepsilon}\right\|_{\infty}\right)^{2 n},
$$

where K_{2} is a positive constant and only depends on n.
Next we estimate I_{t} in a similar way of I_{a}. But we notice that for any $l_{2}>0, k \in$ $\mathbf{C}(\operatorname{Re}(k)>0)$ and fixed $N>0$, there exists a positive constant C_{3} such that

$$
\left|\int_{0}^{s} e^{-k u} d u\right| \leq C_{3}\left(\frac{s^{l_{2}}}{1+|k|}\right)^{\frac{1}{l_{2}+1}} \quad \text { for } s \in[0, N]
$$

because it is easy to see that

$$
s^{-\frac{l_{2}}{l_{2}+1}}(1+|k|)^{\frac{1}{l_{2}+1}}\left|\int_{0}^{s} e^{-k u} d u\right|
$$

is a bounded function on $(s,|k|) \in[0, N] \times[0, \infty)$. Then we have

$$
\begin{aligned}
& \left|I_{t}\right| \leq \frac{(2 n)!K_{3}}{(2 \pi)^{2 n d}|t-s|^{2 n} \frac{l_{2}}{l_{2}+1}}\left(\|T\|_{1}^{\beta}\right)^{2 n}\left(\left\|\hat{\rho}_{\varepsilon}\right\| \infty\right)^{2 n} \\
& \quad \times \sup _{\mu_{1}, \ldots, \mu_{2 n}}\left(1+\left|\mu_{1}-\mu_{2}\right|^{2}\right)^{-\frac{\beta}{2}} \cdots\left(1+\left|\mu_{2 n-1}-\mu_{2 n}\right|^{2}\right)^{-\frac{\beta}{2}} \\
& \\
& \quad \times\left(1+\left|\mu_{1}\right|^{2}\right)^{-\frac{1}{l_{2}+1}} \cdots\left(1+\left|\mu_{2 n-1}\right|^{2}\right)^{-\frac{1}{l_{2}+1}}\left(1+\left|\mu_{2 n}\right|^{2}\right)^{-\frac{\beta}{2}-\frac{1}{l_{2}+1}}
\end{aligned}
$$

where $K_{3}=C_{3}^{2 n}$.
We apply (2) to the inequality with respect to $\mu_{1}, \ldots, \mu_{2 n}$ of I_{t}. Then we obtain the condition

$$
\begin{equation*}
\beta \geq-\frac{1}{l_{2}+1} \tag{6}
\end{equation*}
$$

for the finiteness of this integral and

$$
\left|I_{t}\right| \leq K_{4}|t-s|^{2 n \frac{l_{2}}{l_{2}+1}}\left(\|T\|_{H_{1}^{\beta}}\right)^{2 n}\left(\left\|\hat{\rho}_{\varepsilon}\right\|_{\infty}\right)^{2 n}
$$

where K_{4} is a positive constant and only depends on n, N.
Therefore by (5) and (6) we make l_{1} and l_{2} satisfy the following equality:

$$
-\frac{1}{l_{2}+1}=l_{1}-1
$$

Since l_{1} is positive, if β satisfies the condition in Theorem 5, then we obtain

$$
\begin{aligned}
& \left|E_{0}\left[\left(A_{T}^{\varepsilon}(a: t, \omega)-A_{T}^{\varepsilon}(0: s, \omega)\right)^{2 n}\right]\right| \\
& \quad \leq C_{B M}\left(|a|^{2 n \delta}+|t-s|^{2 n \delta}\right)\left(\|T\|_{H_{1}^{\beta}}\right)^{2 n}\left(\left\|\hat{\rho}_{\varepsilon}\right\|_{\infty}\right)^{2 n}
\end{aligned}
$$

where we take δ as follows and $C_{B M}=\max \left(K_{2}, K_{4}\right)$.
For $\beta>-1$ we take δ as $\beta+1 \geq \delta$ by (5) or (6).
Thus tending ε to zero, we get (a, t)-joint continuity of $A_{T}(a: t, \omega)$ by KolmogorovČentsov theorem.
2.2. The case of stable process with index α. Let P_{x} be the probability measure of the one-dimensional stable process $\left\{X_{s}\right\}$ with index $\alpha(0<\alpha<2)$ starting from x. We notice that the characteristic function of X_{s} is

$$
\begin{equation*}
E_{x}\left[e^{i \lambda X_{s}}\right]=\exp \{-s \psi(\lambda)+i \lambda x\} \tag{7}
\end{equation*}
$$

where $\psi(\lambda)$ is given in the following. For some constants $c>0,-1 \leq \gamma \leq 1$ and $\gamma_{0} \in \mathbf{R}$, if $\alpha \neq 1$ then

$$
\begin{equation*}
\psi(\lambda)=c|\lambda|^{\alpha}\left(1-i \gamma(\operatorname{sgn} \lambda) \tan \frac{\pi}{2} \alpha\right)+i \gamma_{0} \lambda \tag{8}
\end{equation*}
$$

and if $\alpha=1$ then

$$
\psi(\lambda)=c|\lambda|\left(1+i \gamma \frac{2}{\pi}(\operatorname{sgn} \lambda) \log |\lambda|\right)+i \gamma_{0} \lambda .
$$

We remember the following lemma in [3].
Lemma 10. Let $F=\left|\int_{0}^{t} e^{-\psi(\lambda) s} d s\right|$. Then we get

$$
\begin{equation*}
F \leq \frac{C_{4}}{\left(1+|\lambda|^{2}\right)^{\frac{n}{2}}}, \tag{9}
\end{equation*}
$$

where we take $\eta=\alpha$ but if $\alpha<1$ and $\gamma_{0} \neq 0$ then we take $\eta=1$.
Next we discuss the (a, t)-joint continuity of $A_{T}(a: t, \omega)$. We get the following in the similar way to the case of Brownian motion.

ThEOREM 11. Let $T \in H_{1}^{\beta}$, where we take $\beta>-\alpha / 2$. Suppose that

1. In the case where $\alpha>1$

$$
\delta=\min \left(1, \beta+\frac{\alpha}{2}\right)
$$

2. In the case where $\alpha \leq 1$

$$
\delta=\min \left(\alpha, \beta+\frac{\alpha}{2}\right)
$$

3. In the case where $\alpha<1$ and $\gamma_{0} \neq 0$

$$
\delta=\min \left(1, \beta+\frac{1}{2}\right) .
$$

Then $A_{T}(a: t, \omega)$ has (a, t)-jointly continuous modification, which is locally Höldercontinuous with exponent γ, where $0<\gamma<\delta$.

Proof. Without loss of generality, for fixed $N>0$ we take t and s such that $N>t>$ s and we suppose that the stable process starts from zero and $b=0$.

We set

$$
\begin{aligned}
E_{0} & {\left[\left(A_{T}^{\varepsilon}(a: t, \omega)-A_{T}^{\varepsilon}(0: s, \omega)\right)^{2 n}\right] } \\
& \leq 2^{2 n} \mid E_{0}\left[(A _ { T } ^ { \varepsilon } (a : t , \omega) - (A _ { T } ^ { \varepsilon } (0 : t , \omega)) ^ { 2 n }] | + 2 ^ { 2 n } | E _ { 0 } \left[\left(A_{T}^{\varepsilon}(0: t, \omega)-\left(A_{T}^{\varepsilon}(0: s, \omega)\right)^{2 n}\right] \mid\right.\right. \\
& =2^{2 n}\left|I_{a}\right|+2^{2 n}\left|I_{t}\right|
\end{aligned}
$$

First we estimate I_{a}. By the similar calculation of the case of Brownian motion we obtain

$$
\begin{aligned}
&\left|I_{a}\right| \leq \frac{(2 n)!}{(2 \pi)^{2 n}}\left(\|T\|_{H_{1}^{\beta}}\right)^{2 n}\left(\left\|\hat{\rho}_{\varepsilon}\right\|_{\infty}\right)^{2 n} \\
& \times \sup _{\lambda_{1}, \ldots, \lambda_{2 n}}\left(1+\left|\lambda_{1}\right|^{2}\right)^{-\frac{\beta}{2}} \cdots\left(1+\left|\lambda_{2 n}\right|^{2}\right)^{-\frac{\beta}{2}} \\
& \times\left|e^{-i \lambda_{2 n} a}-1\right|\left|e^{-i\left(\lambda_{2 n}+\lambda_{2 n-1}\right) a}-1\right| \cdots\left|e^{-i\left(\lambda_{2 n}+\cdots+\lambda_{1}\right) a}-1\right| \\
& \quad \times \mid \int_{0}^{t} d u_{1} \int_{u_{1}}^{t} d u_{2} \cdots \int_{u_{2 n-1}}^{t} d u_{2 n} \\
& \quad \times e^{-\psi\left(\lambda_{2 n}\right)\left(u_{2 n}-u_{2 n-1}\right)-\psi\left(\lambda_{2 n}+\lambda_{2 n-1}\right)\left(u_{2 n-1}-u_{2 n-2}\right)-\cdots-\psi\left(\lambda_{2 n}+\cdots+\lambda_{1}\right) u_{1}} \mid
\end{aligned}
$$

By the change of variables we have

$$
\begin{aligned}
\left|I_{a}\right| \leq & \frac{(2 n)!}{(2 \pi)^{2 n}}\left(\|T\|_{H_{1}^{\beta}}\right)^{2 n}\left(\left\|\hat{\rho}_{\varepsilon}\right\| \infty\right)^{2 n} \\
& \times \sup _{\mu_{1}, \ldots, \mu_{2 n}}\left(1+\left|\mu_{1}-\mu_{2}\right|^{2}\right)^{-\frac{\beta}{2}} \cdots\left(1+\left|\mu_{2 n-1}-\mu_{2 n}\right|^{2}\right)^{-\frac{\beta}{2}}\left(1+\left|\mu_{2 n}\right|^{2}\right)^{-\frac{\beta}{2}} \\
& \times\left|e^{-i \mu_{2 n} a}-1\right|\left|e^{-i\left(\mu_{2 n-1}-\mu_{2 n}\right) a}-1\right| \cdots\left|e^{-i\left(\mu_{1}-\mu_{2}\right) a}-1\right| \\
& \quad \times \int_{0}^{t} d u_{1} \int_{u_{1}}^{t} d u_{2} \cdots \int_{u_{2 n-1}}^{t} d u_{2 n}\left|e^{-\psi\left(\mu_{2 n}\right)\left(u_{2 n}-u_{2 n-1}\right)-\cdots-\psi\left(\mu_{2}\right)\left(u_{2}-u_{1}\right)-\psi\left(\mu_{1}\right) u_{1}}\right| .
\end{aligned}
$$

Then we apply (4) and (9) to I_{a} :

$$
\begin{aligned}
\left|I_{a}\right| \leq & K_{5}\left(\|T\|_{H_{1}^{\beta}}\right)^{2 n}\left(\left\|\hat{\rho}_{\varepsilon}\right\|_{\infty}\right)^{2 n}|a|^{2 n l_{1}} \\
& \times \sup _{\mu_{1}, \ldots, \mu_{2 n}}\left(1+\left|\mu_{1}-\mu_{2}\right|^{2}\right)^{-\frac{\beta}{2}+\frac{l_{1}}{2}} \cdots\left(1+\left|\mu_{2 n-1}-\mu_{2 n}\right|^{2}\right)^{-\frac{\beta}{2}+\frac{l_{1}}{2}} \\
& \times\left(1+\left|\mu_{1}\right|^{2}\right)^{-\frac{\eta}{2}} \cdots\left(1+\left|\mu_{2 n-1}\right|^{2}\right)^{-\frac{\eta}{2}}\left(1+\left|\mu_{2 n}\right|^{2}\right)^{-\frac{1}{2}\left(\eta-l_{1}+\beta\right)} .
\end{aligned}
$$

Now we apply (2) to the above inequality. Then for the finiteness of I_{a}, we have

$$
\left(\frac{\beta-l_{1}}{2}\right)+\left(\frac{\eta+\beta-l_{1}}{2}\right) \geq 0
$$

Thus we get

$$
\begin{equation*}
\beta>l_{1}-\frac{\eta}{2} \tag{10}
\end{equation*}
$$

and

$$
\left|I_{a}\right| \leq K_{6}|a|^{2 n l_{1}}\left(\|T\|_{H_{1}^{\beta}}\right)^{2 n}\left\|\hat{\rho}_{\varepsilon}\right\|_{\infty}^{2 n}
$$

where K_{6} is a positive constant and only depends on n.

Next we estimate I_{t} in a similar way of I_{a}. But we notice that for any $l_{3}>0$ and fixed $N>0$, there exists a positive constant C_{5} such that

$$
\left|\int_{0}^{s} e^{-\psi(\mu) u} d u\right| \leq C_{5}\left(\frac{s^{l_{3}}}{\left(1+|\mu|^{2}\right)^{\frac{\eta}{2}}}\right)^{\frac{1}{l_{3}+1}} \quad \text { for } s \in[0, N]
$$

Then we have

$$
\begin{aligned}
\left|I_{t}\right| \leq & K_{7}|t-s|^{2 n \frac{l_{3}}{3_{3}+1}}\left(\|T\|_{H_{1}^{\beta}}\right)^{2 n}\left(\left\|\hat{\rho}_{\varepsilon}\right\|_{\infty}\right)^{2 n} \\
& \times \sup _{\mu_{1}, \ldots, \mu_{2 n}}\left(1+\left|\mu_{1}-\mu_{2}\right|^{2}\right)^{-\frac{\beta}{2}} \cdots\left(1+\left|\mu_{2 n-1}-\mu_{2 n}\right|^{2}\right)^{-\frac{\beta}{2}} \\
& \times\left(1+\left|\mu_{1}\right|^{2}\right)^{-\frac{\eta}{2\left(l_{3}+1\right)} \cdots\left(1+\left|\mu_{2 n-1}\right|^{2}\right)^{-\frac{\eta}{2\left(l_{3}+1\right)}}\left(1+\left|\mu_{2 n}\right|^{2}\right)^{-\frac{\beta}{2}-\frac{\eta}{2\left(l_{3}+1\right)}}} .
\end{aligned}
$$

We apply (2) to the above inequality. Then we have

$$
\begin{equation*}
\beta \geq-\frac{\eta}{2\left(l_{3}+1\right)} \tag{11}
\end{equation*}
$$

and

$$
\left|I_{t}\right| \leq K_{8}|t-s|^{2 n \frac{l_{3}}{3+1}}\left(\|T\|_{H_{1}^{\beta}}\right)^{2 n}\left(\left\|\hat{\rho}_{\varepsilon}\right\|_{\infty}\right)^{2 n}
$$

where K_{8} is a positive constant and only depends on n and N.
Therefore by (10) and (11) we make l_{1} and l_{3} satisfy the following equality:

$$
-\frac{\eta}{2\left(l_{3}+1\right)}=l_{1}-\frac{\eta}{2}
$$

That is, $l_{3}=2 l_{1} /\left(\eta-2 l_{1}\right)$. Since l_{1} is positive, $\beta>-\alpha / 2$ and then we get

$$
\begin{align*}
& \mid E_{0}\left[\left(A_{T}^{\varepsilon}(a: t, \omega)-A_{T}^{\varepsilon}(0: s, \omega)^{2 n}\right] \mid\right. \\
& \quad \leq C_{s t}\left(|a|^{2 n \delta}+|t-s|^{2 n \delta}\right)\left(\|T\|_{H_{1}^{\beta}}\right)^{2 n}\left(\left\|\hat{\rho}_{\varepsilon}\right\|_{\infty}\right)^{2 n} \tag{12}
\end{align*}
$$

where we denote l_{1} by δ and $C_{s t}=\max \left(K_{6}, K_{8}\right)$.
Therefore we get the condition in the theorem.
Then tending ε to zero, we get (a, t)-jointly continuity of $A_{T}(a: t, \omega)$ by KolmogorovČentsov theorem.

We can apply the above method to the d-dimensional symmetric stable process. Let $\left\{X_{s}\right\}$ be the d-dimensional symmetric stable process with index α. That is,

$$
E_{x}\left[e^{i \lambda \cdot X_{s}}\right]=\exp \left\{-c|\lambda|^{\alpha} s+i \lambda \cdot x\right\}
$$

where c is a positive constant and $x \cdot y(x \in \mathbf{R}, y \in \mathbf{R})$ denotes the inner product.

Noting

$$
\int_{0}^{t} e^{-c|\lambda|^{\alpha} s} d s \leq \frac{C_{5}}{\left(1+|\lambda|^{2}\right)^{\frac{\alpha}{2}}}
$$

We have the next corollary.
Corollary 12. Let $T \in H_{1}^{\beta}$, where we take $\beta>-\alpha / 2$. Suppose that $\delta=$ $\min \left(\alpha / 2, \beta+\frac{\alpha}{2}\right)$. Then $A_{T}(a: t, \omega)$ has (a, t)-jointly continuous modification, which is locally Hölder-continuous with exponent γ, where $0<\gamma<\delta$.

Acknowledgement. I am very grateful to Professor Sadao Sato for his valuable discussions and precious opinions. I thank the anonymous referee for valuable comments and for improving the presentation of the paper.

References

[1] I. Karatzas and S. E. Shreve, Brownian motion and stochastic calculus (second edition), Springer-Verlag, 1994.
[2] T. NAKAJIMA, A certain class of distribution-valued additive functionals I -for the case of Brownian motion, J. Math. Kyoto Univ. 40, No. 2 (2000), 293-314.
[3] T. NAKAJIMA, A certain class of distribution-valued additive functionals II -for the case of stable process, J. Math. Kyoto Univ. 42, No. 3 (2002), 443-463.

Present Address:
Division of Human Communication,
Yamamura Gakuen College,
Ishizaka, Hatoyama-Machi, Hiki-Gun, Saitama, 350-0396 Japan.
e-mail: nakajima-t@mx2.ttcn.ne.jp

