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Abstract. In this paper, we consider a quaternionic representation of a 4-dimensional Kleinian group G with
3 generators f, g, and h, where g and h are simple parabolic, [g, h] = id, and [f, g], [f, h] are order-2 elliptic
elements. We parameterize such f, g and h up to conjugacy and we simulate the shape of the limit set Λ(G) using
computer.

1. Introduction

Let G be a d-dimensional Kleinian group, a discrete subgroup of the orientation pre-
serving isometry group Isom+(Hd) of the d-dimensional hyperbolic space Hd . The set

Λ(G) ⊂ ∂Hd is called the limit set of G, the accumulation point set of any G-orbits in
Hd . The set Ω(G) = ∂Hd \ Λ(G) is called the discontinuity set of G.

In d = 3 case, a 2-generator subgroup G = 〈f, g〉 of PSL2C � Isom+(H3) such that the
commutator [f, g] is parabolic is called a once punctured torus group. When g is parabolic,
the family of once punctured torus groups is called Maskit slice. The limit set of G consists
of infinite number of mutually tangential circles, because such G has a Fuchsian subgroup of
first-kind. In the same way when [f, g] is elliptic and g is parabolic, the limit set also consists
of mutually tangential circles.

In this paper, we discuss 4-dimensional Kleinian groups with 3 generators such that the

limit sets consist of infinite number of mutually tangential spheres in R3 = ∂H4. Suppose

that a 4-dimensional Kleinian group G is generated by 3 elements f, g, h ∈ Isom+(H4) such
that [f, g] and [f, h] are elliptic with simple parabolic g and h. To simplify the problem, we
add algebraic assumptions that [f, g] and [f, h] are order 2, and [g, h] = 1.

From the assumption that g and h are simple parabolic, and [g, h] = 1 , we may set

g =
(

1 1
0 1

)
and h =

(
1 p

0 1

)
∈ Isom+(H4) � Möb+(R̂3) ⊂ GL(2, H)/{±I }, where p

is a complex number. Let f =
(

x y

z w

)
be another generator. We have a parameterization
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theorem as follows.

THEOREM 1.1 (Theorem 3.12). Suppose that G = 〈f, g, h〉 ⊂ Isom+(H4) satisfies
(i) [f, g], [g, h] are order 2 elliptic, (ii) g, h are simple parabolic, and (iii) [g, h] = 1. G is

parameterized up to conjugacy in Möb+(R̂3) as follows:

G(t, p) =
〈(

t (1 − t2)j/
√

2√
2j t∗

)
,

(
1 1
0 1

)
,

(
1 p

0 1

)〉
,

where t = t1 + t2j + t3k, (t1, t2, t3 ∈ R), t∗ = t1 + t2j − t3k is the Clifford transpose of t ,
(see section 2, ) p ∈ C and |p| = 1. Especially, if G is faithful and discrete, then p �∈ R.

In this situation, we show that if p = ±i, p = ±exp(πi/3) or p = ±exp(2πi/3) then a

subgroup H = 〈g, h, f −1gf, f −1hf 〉 is a Kleinian group of first kind. Using this subgroup
H , we show that the limit set Λ(G) consists of infinite number of mutually tangential spheres

in R̂3 as follows.

THEOREM 1.2 (Lemma 3.8, Proposition 3.10, Theorem 3.12). (1) Let H := 〈g, h,

f −1gf, f −1hf 〉. There exists an euclidean sphere P ⊂ R̂3 � ∂H4 such that P is invari-
ant under the action of H .

(2) H is discrete if p = ±i, p = ±exp(πi/3) or p = ±exp(2πi/3). For these p,
Λ(H) = P

(3) For p = ±i, p = ±exp(πi/3) or p = ±exp(2πi/3),

Λ(G) =
⋃

aH∈G/H

aP .

When t ∈ R, p = ±i, there exists a plane Qg ,Qh ⊂ R̂
3 such that Qg (resp. Qh) is

invariant under the action of 〈f, g〉 (resp. 〈f, h〉.) So, when p = ±i (t is general), 〈f, g〉,
and 〈f, h〉 are extensions of some 3-dimensional Kleinian groups. Araki and Ito [6] found a
similar family of groups in a geometrical way. In this paper, we find a family which includes
the Araki-Ito’s family using quaternionic matrices.

This paper is organized as follows. In section 2, we restate a classification theorem of

Isom+(H4) due to [8] in terms of the upper half space model. Here we refer [15]. In section
3, we show Theorem 1.1 and Theorem 1.2. In section 4, we observe computer experiments
and introduce computer graphics of some limit sets.

2. Classification of Isom+(H4) due to [8]

Let H4 be the hyperbolic space of upper half space model, and let R̂3 = R3 ∪ {∞} be
its boundary. It is well-known that an orientation preserving isometry of H4 is obtained from

a Möbius transformation in Möb+(R̂3) by Poincaré expansion. (See [11].) In this section,
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we introduce a presentation of Möb+(R̂3) to quaternionic 2 × 2 matrices, and restate the
classification theorem by Cao, Parker, and Wang in terms of GL2H.

2.1. Quaternion field and Möbius transformation. Let H be the quaternion field.
That is,

H = {x0 + x1i + x2j + x3k | x0, x1, x2, x3 ∈ R} ,

where i2 = j 2 = k2 = ijk = −1. H is a non-commutative field and contains the complex
number field C. As usual, for a quaternion x = x0 + x1i + x2j + x3k ∈ H, we define
conjugate of x by x = x0 − x1i − x2j − x3k. Moreover, we define Clifford transpose by
x∗ = −kxk = x0 + x1i + x2j − x3k.

Let H4 be the upper half space in the quaternionic right projective line P1(H), where

P1(H) is a set of right H lines in H2,

P1(H) :=
{
[x : y] =

(
x

y

)
H

∣∣∣∣
(

x

y

)
∈ H

2 − {0}
}

.

Let SpK(1, 1) be a subgroup of GL2H acting on H4, ∂H4. That is,

H4 = {v0 + v1i + v2j + v3k | v3 > 0 }

�
{
v ∈ P1(H)

∣∣∣∣ t v

(
0 −k

k 0

)
v > 0

}
,

∂H4 = R̂
3 = {v0 + v1i + v2j } ∪ {∞}

�
{
v ∈ P1(H)

∣∣∣∣ t v

(
0 −k

k 0

)
v = 0

}
,

SpK(1, 1) =
{
M ∈ GL2H

∣∣∣∣ tMKM = K, K =
(

0 −k

k 0

)}
.

Here we identify v0 + v1i + v2j + v3k in H4 with v = [v0 + v1i + v2j + v3k : 1] ∈
P1(H). We remark that in P1(H), [u1 : u2] = [u1λ : u2λ] for non-zero λ ∈ H. Using this

identification, we represent Möb+(R̂3) in GL2H as follows.

LEMMA 2.1.

Möb+(R̂3) � SpK(1, 1)
/{±I } .

PROOF. We omit the proof. See [15] for detail. We remark that for M =
(

x y

z w

)
and

u ∈ R̂
3 ⊂ H,

M[u : 1] = [xu + y : zu + w] =
{ [(xu + y)(zu + y)−1 : 1] (zu + w �= 0)

∞ (zu + w = 0)
.
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This gives a quaternionic linear fractional transformation on R̂3. �

LEMMA 2.2 (Properties of SpK(1, 1)). For

(
x y

z w

)
∈ GL2H, the following condi-

tions are equivalent.

(1)

(
x y

z w

)
∈ SpK(1, 1).

(2) xw∗ − yz∗ = w∗x − y∗z = 1, xy∗ = yx∗, zw∗ = wz∗, z∗x = x∗z,w∗y = y∗w.

(3)

(
x y

z w

)−1

=
(

w∗ −y∗
−z∗ x∗

)
.

PROOF. (2) and (3) are equivalent trivially. (1) ⇒ (3). Calculating

t

(
x y

z w

)
K

(
x y

z w

)
= K ,

we have w∗x − y∗z = 1, z∗x = x∗z, and w∗y = y∗w. Hence
(

x y

z w

) (
w∗ −y∗
−z∗ x∗

)
= 1 .

The inverse is trivial. �

As well known in PSL2C, we define 3 types of Möbius transformations of R̂3.

DEFINITION 2.3. Let g ∈ Möb+(R̂3) with g �= id. We define type of g by its action
on H4 as following.

1. g is called elliptic if g has fixed points in H4.

2. g is called parabolic if g does not have fixed points in H4 and it has exactly one

fixed point in R̂3.

3. g is called loxodromic if g does not have fixed points in H4 and it has exactly two

fixed points in R̂3.

NOTE 2.4. If g has more than two fixed points in R̂3, then g is elliptic or identical.

A Classification by the trace of an element of PSL2C � Möb(R̂2) is a well known fact.
Let f ∈ PSL2C be a nontrivial element. If tr(f ) ∈ (−2, 2), then f is elliptic. If tr(f ) = ±2,
then f is parabolic. If tr(f ) /∈ [−2, 2], then f is loxodromic.

Since SL2C ⊂ SpK(1, 1), it is natural that the trace of a matrix is useful for 3-
dimensional Möbius transformations. But H is not commutative, the trace (in a usual way) of

a matrix in SpK(1, 1) is not conjugacy invariant. Only the real part of the trace is conjugacy
invariant.

LEMMA 2.5. Re tr(AB) = Re tr(BA) for A,B ∈ M2H.
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PROOF. For any quaternions x, y ∈ H, Re(xy) = Re(yx). �

We can define (the square of the absolute value of) “imaginary part” of the trace as
following.

LEMMA 2.6. Let

(
a b

c d

)
∈ SpK(1, 1). |Im(a + d∗)|2+4b3c3 is conjugacy invariant,

where b3, c3 is k-part of b, c.

PROOF. For A =
(

a b

c d

)
∈ SpK(1, 1), A + A−1 =

(
a + d∗ b − b∗
c − c∗ a∗ + d

)
∈ M2H. By

Lemma 2.5, Re tr((A + A−1)2) is also conjugacy invariant for A. A direct calculation shows

Re tr((A + A−1)2) = 4((Re tr A)2 − (|Im(a + d∗)|2 + 4b3c3)) .

Since Re tr A is a conjugacy invariant for A, |Im(a + d∗)|2 +4b3c3 is also conjugacy invariant
for A. �

Kido [15] also shows that |Im(a + d∗)|2 + 4b3c3 is conjugacy invariant by calculating
Jacobian of quaternionic function determined by fixed points equation of Möbius transforma-
tions.

2.2. The Classification of Möb+(R̂3) in the unit ball model. Cao, Parker, and Wang
[8] define more precise classification. They give simple-type and compound-type for each 3
type geometrically. They show in [[8], Theorem 1.1] that an equivalent condition of these 6

types in terms of the Poincaré-disk model B4. Here we introduce the geometric definitions
and the equivalent conditions (Proposition 2.9).

DEFINITION 2.7. (1) g is simple elliptic if g is elliptic and conjugate to an element
in SL2R. g is compound elliptic if g is elliptic but not simple.

(2) g is simple parabolic if g is parabolic and conjugate to an element in SL2R. g is
compound parabolic if g is parabolic but not simple.

(3) g is simple loxodromic if g is loxodromic and conjugate to an element in SL2R. g
is compound loxodromic if g is loxodromic but not simple.

We introduce basic properties of the Poincaré-disk model.

PROPOSITION 2.8. (1) Let B4 be the Poincaré-disk model of 4 dimensional hyper-
bolic space. then,

B4 = {v ∈ H | |v| < 1 } =
{
v ∈ P1(H)

∣∣∣∣ t v

(
1 0
0 −1

)
v < 0

}
.

The isometry group of B4 is given by

Isom(B4) �
{
M ∈ GL2H

∣∣∣∣ tMJM = J, J =
(

1 0
0 −1

)}
/{±I } .
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(2) For g =
(

a b

c d

)
in Isom(B4),

(i) g−1 =
(

a −c

−b d

)
.

(ii) |a|2 − |b|2 = 1, |a| = |d|, |b| = |c|.
(iii) ab = cd, ac = bd.

Cao, Parker, and Wang show the following proposition.

PROPOSITION 2.9. Let g =
(

a b

c d

)
∈ Isom(B4).

(1) Case c = b = 0.
(i) If Re(a) = Re(d) then g is simple elliptic,

(ii) if Re(a) �= Re(d) then g is compound elliptic.
(2) Case c �= 0, c = b.

(i) If Re(d)2 < 1 then g is simple elliptic,

(ii) if Re(d)2 = 1 then g is simple parabolic, and

(iii) if Re(d)2 > 1 then g is simple loxodromic.

(3) Case c �= 0, c �= b. Let � = |Im((c−1b − 1)d)|2 − |c−1b − 1|2.
(i) If � < 0 then g is compound elliptic,

(ii) if � = 0 then g is compound parabolic, and

(iii) if � > 0 then g is compound loxodromic.

NOTE 2.10. (1) From (2)(ii) of Proposition 2.8, the case c = 0 and b �= 0 never
happens. The cases (1), (2), and (3) of Proposition 2.9 are all possibilities for g in

Isom(B4).
(2) We have � = |b − c|2 − |Re(a − d)|2. In fact,

� = |Im((c−1b − 1)d)|2 − |c−1b − 1|2

= |(c−1b − 1)d|2 − |Re((c−1b − 1)d)|2 − |c−1b − 1|2

= |c−1b − 1|2(|d|2 − 1) − |Re(c−1bd − d)|2

= |c−1(b − c)|2|c|2 − |Re(c−1ac − d)|2

= |b − c|2 − |Re(a − d)|2 .

In Proposition 2.9, � = 0 for the case (1)(i), the case (2), or the case (3)(ii). � < 0 for
the case (1)(ii). Therefore we have the following corollary.

COROLLARY 2.11. (1) g is compound elliptic if and only if � < 0.
(2) g is compound loxodromic if and only if � > 0.
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If g is simple elliptic, simple parabolic, or simple loxodromic then we call g is simple.
We have the following condition that g is simple.

COROLLARY 2.12. g is simple if and only if � = Re(a − d) = 0.

PROOF. From Proposition 2.9, g is simple (i) if c = 0, Re(a) = Re(d), or (ii) if
c �= 0, b = c. We remark that if c = 0 and Re(a) = Re(d) then � = 0. When b = c, we

have � = 0. ab = cd follows a = cdc−1. Hence Re(a) = Re(d). �

COROLLARY 2.13. If g is simple elliptic then Re(d)2 < 1.

PROOF. It is sufficient to show in case c = 0 and Re(a) = Re(d). From the condition
|a|2 − |c|2 = 1 and c = 0, we have |a| = |d| = 1 and |Re(d)| ≤ 1. If |Re(d)| = 1 then g is
an identity, so Re(d)2 < 1. �

From the above three corollaries, we can restate Proposition 2.9 as follows.

PROPOSITION 2.14. For g =
(

a b

c d

)
∈ Isom(B4) (g �= id ,) let � = |b − c|2 −

|Re(a − d)|2. Then we have
(1) g is simple elliptic if and only if � = Re(a − d) = 0, Re(d)2 < 1.

(2) g is simple parabolic if and only if � = Re(a − d) = 0, Re(d)2 = 1.

(3) g is simple loxodromic if and only if � = Re(a − d) = 0, Re(d)2 > 1.
(4) g is compound elliptic if and only if � < 0.
(5) g is compound parabolic if and only if � = 0, Re(a − d) �= 0.
(6) g is compound loxodromic if and only if � > 0.

2.3. Classification of Möb+(R̂3) in the upper half space model. We have an easy

converting formula between Isom(B4) and Isom(H4) � Möb+(R̂3) as follows.

LEMMA 2.15. (1)

(
1 −k

1 k

) (
0 −k

k 0

) (
1 1
k −k

)
= 2

(
1 0
0 −1

)
.

(2) ξ : Isom(H4) → Isom(B4) :
ξ

(
x y

z w

)
= 1

2

(
1 −k

1 k

) (
x y

z w

) (
1 1
k −k

)
is isomorphism.

PROOF. (1) is obtained by direct calculations. From (1), the relation in Isom(H4) is

transformed to the relation in Isom(B4) (Proposition 2.8, (1)). �

NOTE 2.16.

ξ

(
x y

z w

)
= 1

2

(
x + yk − kz − kwk x − yk − kz + kwk

x + yk + kz + kwk x − yk + kz − kwk

)
.

From this lemma, we can restate Proposition 2.14 in terms of Möb+(R̂3).
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THEOREM 2.17 (Classification of Möb+(R̂3)). For g =
(

x y

z w

)
∈ Möb+(R̂3), let

tr∗(g) = x + w∗. Then the following statements hold.

(1) �(g) = |Im tr∗(g)|2 + 4y3z3, where y3, z3 are k-part of y, z.
(2) For g �= id, the following statements hold.

(a) If g + g−1 is a diagonal matrix with real coefficients, then � = y3 = z3 = 0
and g is simple.

i. g is simple elliptic if and only if |Re tr∗ g| < 2.

ii. g is simple parabolic if and only if |Re tr∗ g| = 2.

iii. g is simple loxodromic if and only if |Re tr∗ g| > 2.

(b) Otherwise, g is compound.
i. g is compound elliptic if and only if � < 0.

ii. g is compound parabolic if and only if � = 0.

iii. g is compound loxodromic if and only if � > 0.

PROOF. Suppose g =
(

x y

z w

)
∈ Möb+(R̂3) is corresponding to

(
a b

c d

)
∈

Isom(B4), then(
a b

c d

)
= 1

2

(
x + yk − kz − kwk x − yk − kz + kwk

x + yk + kz + kwk x − yk + kz − kwk

)
.

Therefore we have formulae for b − c and Re(a − d) as

b − c = 1

2

(
x − yk − kz + kwk − (x + yk + kz + kwk)

)

= Im(x + w∗) + y3 + z3 ,

Re(a − d) = 1

2
Re(x + yk − kz − kwk − (x − yk + kz − kwk))

= z3 − y3 .

Moreover, we have

� = |b − c|2 − |Re(a − d)|2

= |Im(x + w∗) + y3 + z3|2 − |z3 − y3|2

= |Im(x + w∗)|2 + 4y3z3 .

Suppose that g is simple. If � = 0 and y3 = z3 then y3 = z3 = 0.

Next we calculate Re(d)2.

Re(d)2 = 1

2
Re(x − yk + kz − kwk)2

= 1

4
(Re(x + w∗) + y3 − z3)

2 .
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y3 = z3 follows Re(d)2 = 1

4
(Re tr∗ g)2.

This completes the proof of Theorem 2.17. �

The following is an easy corollary.

COROLLARY 2.18. For a nontrivial g =
(

x y

z w

)
∈ Möb+(R̂3), if y3 = 0 or z3 = 0

then g is not compound elliptic.

PROOF. If y3 = 0 or z3 = 0 then � ≥ 0. �

3. Proofs of Theorem 1.1 and Theorem 1.2

Let G′ = 〈α, β, γ | [α, β]2 = [α, γ ]2 = [β, γ ] = 1〉. Consider a faithful representation

ρ from G′ to Möb+(R̂3). Let f = ρ(α), g = ρ(β), and h = ρ(γ ), G = 〈f, g, h〉 and
suppose that g, h are simple parabolic.

As a typical example of G, the case f =
(

t (1 − t2)j/
√

2√
2j t

)
, g =

(
1 1
0 1

)
, and

h =
(

1 i

0 1

)
(t ∈ R, t > 1) is introduced in Araki and Ito’s paper [6].

LEMMA 3.1. Assume that ρ|〈β, γ 〉 is faithful and ρ(〈β, γ 〉) is discrete. The fixed

points of g and h coincide. After taking a conjugate in Möb+(R̂3), we take that g =
(

1 1
0 1

)
,

and h =
(

1 p

0 1

)
, p ∈ C \ R.

PROOF. First, we may take g =
(

1 1
0 1

)
without loss of generality. Put h =

(
h1 h2

h3 h4

)
and solve the equation gh = hg .

(
h1 + h3 h2 + h4

h3 h4

)
=

(
h1 h1 + h2

h3 h3 + h4

)
.

Hence we have h1 = h4, h3 = 0. From the assumption that h is parabolic, fix(h) =
{∞} = fix(g) and h1 = h4 = 1.

From Lemma 2.2, h1h
∗
2 = h2h

∗
1 and the k-part of h2 is 0. Using a conjugation by a

rotation around the real number axis, we may take h =
(

1 p

0 1

)
, where p is a complex

number.



174 KEITA SAKUGAWA

We exclude the case p ∈ R. Because if p is a rational number, g, h has another relation
than [g, h] = 1 and ρ is not faithful. If p is an irrational number then the orbit of the origin is
not discrete on the real axis. Therefore p ∈ C \ R. �

Next, we solve the equation [f, g]2 = [f, h]2 = 1.

LEMMA 3.2. For M =
(

x y

z w

)
∈ Möb+(R̂3), the trace will be denoted by

tr∗(M) = x + w∗. Suppose that M is nontrivial and simple. M is an order-2 element if
and only if tr∗(M) = 0.

PROOF. M2 = id follows M = M−1. There are 2 cases, M = ±M−1.

(case 1)

(
x y

z w

)
=

(
w∗ −y∗
−z∗ x∗

)

Comparing entries, we have w = x∗, y = y3k, and z = z3k for real numbers y3, z3.

From Theorem 2.17, y3 = z3 = 0 and hence y = z = 0. But this means x2 = 1 because of
xw∗ − yz∗ = 1. This contradicts the condition that M is nontrivial.

(case 2)

(
x y

z w

)
=

(−w∗ y∗
z∗ −x∗

)

Comparing entries, we have x = −w∗ and tr∗(M) = 0.
Conversely, suppose that M is simple (especially, y3 = z3 = 0) and tr∗(M) = x +w∗ =

0. Using xw∗ − yz∗ = 1, we obtain
(

x y

z w

)2

=
(

x2 + yz x(y − y∗)
(z − z∗)x w2 + zy

)

=
(−xw∗ + yz∗ 2xy3k

2z3xk (−w∗x + z∗y)∗
)

=
(−1 0

0 −1

)
. �

NOTE 3.3. In Lemma 3.2, the assumption that M is simple is essential. There are
many counter-examples if M is compound. For example, the trace of

(
0 cos(π/n) + k sin(π/n)

− cos(π/n) − k sin(π/n) 0

)

is zero but this is compound elliptic and the order is n. The trace of

(
k k

0 k

)
is also zero, but

this is compound parabolic.

We show that [f, g] and [f, h] are simple elliptic.
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LEMMA 3.4. (1) For f =
(

x y

z w

)
, g =

(
1 1
0 1

)
, and h =

(
1 p

0 1

)
∈

Möb+(R̂3), where p ∈ C\R, traces of commutators are tr∗(g−1f −1gf ) = z∗z+2
and tr∗(h−1f −1hf ) = pz∗pz + 2.

(2) [f, g] and [f, h] are simple elliptic.

PROOF. (1) We show the second formula directly. The first formula is obtained by
substitution p = 1 into the second one.

h−1f −1hf =
(

1 + w∗pz + pz∗pz w∗pw − p + pz∗pw

−z∗pz 1 − z∗pw

)
,

tr∗(h−1f −1hf ) = (1 + w∗pz + pz∗pz) + (1 − z∗pw)∗ = pz∗pz + 2 .

Because (−z∗pz)∗ = −z∗pz, the k-part of the (2, 1)-entry is zero. From Corollary 2.18,
[f, h] and [f, g] are not compound elliptic but simple elliptic. �

From Lemma 3.2 and Lemma 3.4, the condition [f, g]2 = [f, h]2 = id is equivalent to
z∗z + 2 = pz∗pz + 2 = 0. Solving this equation, we have the following.

LEMMA 3.5. {
z∗z + 2 = 0
pz∗pz + 2 = 0

if and only if

{
z = ±√

2j

|p| = 1

PROOF. Suppose that z = z0 + z1i + z2j + z3k ∈ H, and p = p0 + p1i ∈ C, where
z0, z1, z2, z3, p0, p1 ∈ R, and p1 �= 0.

z∗z + 2 = (z0 + z1i + z2j − z3k)(z0 + z1i + z2j + z3k) + 2

= z2
0 − z2

1 − z2
2 + z2

3 + 2 + 2(−z0z1 + z2z3)i − 2(z0z2 + z1z3)j

= 0 ,

and we have

z2
0 − z2

1 − z2
2 + z2

3 + 2 = 0 , (3.1)

z0z1 − z2z3 = 0 , (3.2)

z0z2 + z1z3 = 0 . (3.3)

Calculating (3.2)×z1+(3.3)×z2 and (3.3)×z2−(3.2)×z1, we obtain

z0(z
2
1 + z2

2) = 0 ,

z3(z
2
1 + z2

2) = 0 .

If z2
1 + z2

2 = 0 then it contradicts (3.1). Hence

z0 = z3 = 0 . (3.4)
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Using (3.1), we obtain

z2
1 + z2

2 = 2 . (3.5)

Next we calculate pz∗pz + 2, remarking that z∗ = z from (3.4).

pz∗pz + 2 = (pz)2 + 2

= (−z1p1 + z1p0i + z2p0j + z2p1k)2 + 2

= (z1p1)
2 − (z1p0)

2 − (z2p0)
2 − (z2p1)

2

+ 2 − 2z1p1(z1p0i + z2p0j + z2p1k)

= −2p2
0 + (2z2

1 − 2)p2
1 + 2 − 2z1p1(z1p0i + z2p0j + z2p1k)

= 0 .

Hence

p2
0 + (1 − z2

1)p
2
1 − 1 = 0 , (3.6)

p0z1
2 = 0 , (3.7)

p0z1z2 = 0 ,

z1z2 = 0 . (3.8)

we have z1 = 0 or z2 = 0 by (3.8).

(i) Case z1 = 0. From (3.5), z = ±√
2j . From (3.6), p0

2 + p1
2 = 1, that is, |p| = 1.

(ii) Case z2 = 0. From (3.5), z2
1 = 2 �= 0. From (3.7), p0 = 0. But from (3.6),

p2
1 = −1. This is a contradiction.

We obtain z = ±√
2j and |p| = 1. This completes the proof. �

NOTE 3.6. We suppose that z = √
2j . (An arbitrary element in Möb+(R̂3) has an

ambiguity of the multiplication by ±I .)

Here we put off the proof of Theorem 1.1, we show Theorem 1.2 first. We consider a sphere

in R̂3 such that it is a part of Λ(G). Clearly any plane in R3 parallel to C ⊂ R3 is invariant
under the action of 〈g, h〉.

LEMMA 3.7. Let H be 〈g, h, f −1gf, f −1hf 〉. Then the sphere

P := {f −1(∞) + v
∣∣v ∈ C} ∪ {∞} ⊂ R̂

3

is H -invariant.

PROOF. Clearly g and h preserve P . We check that f −1hf preserves P . For f −1gf ,

we can show it easily after showing on f −1hf , substituting p = 1 in the calculation on

f −1hf . We have f −1(∞) = −w∗(z∗)−1 and

f −1hf (−w∗(z∗)−1) = f −1h(∞) = f −1(∞) = −w∗(z∗)−1 .
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We identify u =
(

u

1

)
with [u : 1] ∈ P1(H). For any −w∗(z∗)−1 + v ∈ P

f −1hf

(−w∗(z∗)−1 + v

1

)
=

(−w∗(z∗)−1

1

)
+ f −1hf

(
v

0

)

=
(−w∗(z∗)−1 + (1 + w∗pz)v

1 − z∗pzv

)

=
(

(−w∗(z∗)−1 + (1 + w∗pz)v)(1 − z∗pzv)−1

1

)
.

Here, ( − w∗(z∗)−1 + (1 + w∗pz)v
)
(1 − z∗pzv)−1

= ( − w∗(z∗)−1(1 − z∗pzv) + v
)
(1 − z∗pzv)−1

= −w∗(z∗)−1 + v(1 − z∗pzv)−1 .

From Lemma 3.4, pz∗pz = −2. z∗pz = −2/p ∈ C and hence v(1 − z∗pzv)−1 ∈ C.
f −1(∞) + v(1 − z∗pzv)−1 is contained in P . �

The action of the subgroup H on P � {v ∈ C} ∪ {∞} = Ĉ is the following. (We remark

z = √
2j .)

g : v �→ v + 1

h : v �→ v + p

f −1gf : v �→ v(1 − √
2 j

√
2 jv)−1 = v(1 + 2v)−1

f −1hf : v �→ v(1 − √
2 jp

√
2 jv)−1 = v(1 + 2pv)−1

These transformations are Möbius transformations and we represent H into PSL2C as

H = H(p) =
〈(

1 1
0 1

)
,

(
1 p

0 1

)
,

(
1 0
2 1

)
,

(
1 0

2p 1

)〉
⊂ PSL2C .

LEMMA 3.8. H(±i),H(±ω) and H(±ω2) are discrete in PSL2C, where ω =
−1 + √

3

2
.

PROOF. When p is ±i, ±ω or ±ω2, Z + pZ is closed with respect to summation
and multiplication. Any entries of any elements in H(p) are in Z + pZ. Hence H(p) is
discrete. �

Next, we determine the shape of the limit set Λ(G) for ±i,±ω, or ±ω2. From H(p) =
H(−p) and H(ω) = H(ω2), it is sufficient to show in case of p = i or ω.
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PROPOSITION 3.9. Λ(H) = P in case of p = i or ω.

In the case p = i, H(p) is a finite index subgroup of Picard group PSL2(Z + iZ).
Therefore, it is clear that Λ(H) = P . In the case p = ω, we show the following.

LEMMA 3.10. H3/H(ω) has finite volume, hence H(ω) is a Kleinian group of first
kind and Λ(H(ω)) = P .

PROOF. Let D1,D2,D3,D4 be domains as follows.

D1 =
{
(z, t) ∈ H3, z ∈ C

∣∣∣∣ −1

2
≤ Re(z) ≤ 1

2

}
,

D2 =
{
(z, t) ∈ H3, z ∈ C | −1 ≤ zω + zω ≤ 1, −1 ≤ zω + z ω ≤ 1

}
,

D3 =
{
(z, t) ∈ H3, z ∈ C

∣∣∣∣ |z − 1

2
|2 + t2 ≥ 1/4, |z + 1

2
|2 + t2 ≥ 1

4

}
,

D4 =
{
(z, t) ∈ H3, z ∈ C

∣∣∣∣ |z − ω

2
|2 + t2 ≥ 1/4, |z + ω

2
|2 + t2 ≥ 1

4

}
.

D1 ∩D2 is a fundamental domain of 〈g, h〉. D3 is a fundamental domain of 〈f −1gf 〉. D4 is a
fundamental domain of 〈f −1hf 〉. Since a fundamental domain of H(ω) is D1∩D2 ∩D3 ∩D4,
H3/H(ω) has finite volume. �

Therefore, in case of p = ±i, ±ω or ±ω2, we have the conclusion.

THEOREM 3.11. In case p is ±i, ±ω or ±ω2, if G is Kleinian,

Λ(G) =
⋃

aH∈G/H

aP .

PROOF. For any coset aH ∈ G/H , we have Λ(aHa−1) = aP , aP ⊂ Λ(G) and

hence
⋃

aH∈G/H aP ⊂ Λ(G). On the other hand,
⋃

aH∈G/H aP is closed and G-invariant.

Hence Λ(G) ⊂ ⋃
aH∈G/H aP . �

We complete the proof of Theorem 1.2.
We resume the proof Theorem 1.1. Consider a parameterization of G up to conjugacy.

Let f =
(

x y

z w

)
and z = √

2j . (from Lemma 3.5.) We can determine y uniquely from

x,w, using xw∗ − yz∗ = 1. Thus we will parameterize x and w.

From z∗x = x∗z, zw∗ = wz∗, and z = √
2j , we have jx = x∗j , jw = w∗j . Hence

the i-parts of x and w are zero.
We may take x = w∗ by a conjugation. In fact, let u be a quaternion such that u = u∗ and

let U =
(

1 u

0 1

)
∈ Möb+(R̂3). Since U is a translation on R̂3, U−1gU = g, U−1hU = h.
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By a calculation,

U−1f U =
(

x − √
2uj ∗√

2j w + √
2ju

)
.

If we put u = (w∗ − x)j

2
√

2
then u = u∗ and x − √

2uj = (w + √
2ju)∗. Hence we have

the following theorem.

THEOREM 3.12. G = 〈f, g, h〉 is parameterized up to conjugacy by (t, p). In fact,

G(t, p) =
〈(

t (1 − t2)j/
√

2√
2j t∗

)
,

(
1 1
0 1

)
,

(
1 p

0 1

)〉
,

where t = t1 + t2j + t3k, (t1, t2, t3 ∈ R), p ∈ C \ R, and |p| = 1.

For any t and p, representation may not be faithful or discrete.

LEMMA 3.13. Let p be i or ω. If t ∈ R and |t| ≥ 1 then G is discrete.

PROOF. Suppose p = i. Let t be a real number such that |t| ≥ 1. Let C1 and C2 be

two spheres such that their centers are ± tj√
2

and the radii are both
1√
2

. f maps the interior

of C1 to the exterior of C2. Let F be the intersection of the exterior of C1, C2 (that is, the part
with the infinity point,) and a regular prism with a square section with length 1 edges and with
center in the j -axis. All of dihedral angles of F are π/2 or π/4. F is a fundamental domain

of G by Poincaré’s theorem. Hence G is discrete in R̂3. In the similar way, if p = ω, using a
regular hexagonal prism instead of a square prism, we can obtain the same conclusion. �

Let M be the parameter space of discrete G. In [7], Araki and Ito make computer
graphics of M for p = i.

4. Computer simulation of the limit set

The author developed software Norio [22], where we are allowed to see computer graph-

ics of
⋃

aH∈G/H aP for given p ∈ C (|p| = 1) and t = t1 + t2i + t3j ∈ R3. Figure 1, 2,

3, and 4 are the pictures of the simulation for some parameters. The following pictures are
given by POV-Ray (Mac OS version) [21]. In one picture, we draw about 1, 000, 000 spheres
of aP , (aH ∈ G/H .)

We try the software for many parameters and we have the following observation.

OBSERVATION 4.1. 1. If p �= ±i, p �= ±ω or p �= ±ω2 then
⋃

aH∈G/H

aP = R
3 .
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2. If p = ω, the parameter space M is three dimensional and has a fractal boundary.

FIGURE 1. p = i, t = 2.8, see from the view
direction of the fixed point of f

FIGURE 2. p = ω, t = 2.8, see from the view
direction of the fixed point of f

FIGURE 3. p = ω, t = 1.95 + 0.15j + 0.15k FIGURE 4. p = i, t = 1.93 + 0.05j
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