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Introduction

We consider the mixed problem for hyperbolic equation of second
order in domains {(, =, ¥)|t>0, >0, y>0} and {(¢, =, ¥, 2)|t>0, >0,
y>0,2>0)}. In [4], Kupka and Osher treated the mixed problem for
wave equation with zero initial data in a multi-dimensional corner
{(t 2y, - -+, 2)E>0, 2,>0 (k=1,---,m)}. Also, in [1], Kojima and Taniguchi
considered the mixed problem for wave equation in a domain {(¢, =, ¥)[t>0,
x>0, y>0}, got the semi-group estimate and proved the existence of the
classical solution. At that time, boundary operators had constant coef-
ficients. The purpose of this paper is to generalize the results in [1]
and [4].

When we treat the mixed problem for hyperbolic equation in a
domain with smooth boundaries, we can prove the existence of the
classical solution using the energy inequality and functional analysis.
But, for the mixed problem in a domain with edges and corners, it seems
that we can not yet show the existence of the classical solution by use
of the energy inequality and functional analysis. Improving the method
in [1], we get the energy inequality and prove the existence of the
classical solution for the mixed problem in domains {(t, x, ¥)|t>0, >0,
y>0} and {G, 2, ¥, 2)|t>0, >0, y>0, 2>0}. The method used in [1] to
obtain the energy inequality was that we transformed the mixed problem
for wave equation into the one for symmetric hyperbolic system of first
order under the boundary condition which was positive definite on one
face of the boundary and non-negative on another one. We treated
2% 2 or 3x8 hyperbolic system of first order for wave equation in [1].
To use the above method and consider the mixed problem for wave
equation with any lower order term of variable coefficients and further
a boundary operator of variable coefficients, we concern with Nx N(N=4)
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symmetric hyperbolic system. And this improvement enables us to get
a simple proof of Miyatake’s result [6] for the mixed problem for hyper-
bolic equation of second order with variable coefficients in a domain
with smooth boundary. When, =2 or 3, we treat the mixed problem
with non-zero initial data, which was considered by Kupka and Osher
[4] for wave equation with zero initial data. Then, to obtain the energy
inequality, we concern with Nx N(N=4) symmetric hyperbolic system
with non-negative boundary condition.

In §1, we explain the notation. In §2, we state problems and
results. In §3, we treat the mixed problem for symmetric hyperbolic
system in a domain with a corner. In §4, we obtain the energy in-
equality. In §5 and §6, we prove the existence of the classical solution.

The author would like to thank Professors H. Sunouchi and K. Kojima
for their valuable advices.

§1. Notation.

R"(C"): n-dimensional real (complex) Euclidean space.
Rt : the set {(z, y)| x>0, y e R*}.
((,)) : the inner product in C¥.
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the space of functions which are obtained by the completion of
Cr[(R})"] with the norm || % ||m,u -
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Ai&=§z(#2+52)¢0/2%x .
A5L=Ty ()G,

§|2. Statement of problems and results.

We consider mixed problems
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Functions p, q, r,8,b,b,¢, ¢, ¢, d,,d,,d; and d, are smooth complex
valued functions and are constant outside a compact set in (R.)® or
(R.)* except b, b, ¢, and ¢,, and same conditions hold for b, b, ¢, and
¢, in {(t, ¥)|t=0, y=—6} or {(t, x)|t=0, x=—60} where 6 is a small
positive constant. Also, functions p, p,, -+, »,, @, 8 and v are smooth
complex valued functions and are constant outside a compact set in (R.)*
or (RL).
We assume following conditions for the problem (I):

__1 = G, 0)
bl(ty O)_bg(t, 0) 1 cl(ty 0) bz(t’ O)
©.1 ~4:(, 0)
00

Here d,(t, 0)+0 for any tc R. or there is a positive constant é such that
d,t, y)=d,(t, x)=0 for any z,y€[0,5] where 6 is a positive constant

independent of te R:.
The quadratic equation

(C.2) (e,(t, ) +1)2*+2b,(¢, y)z+c.(t, y)—1=0

has roots in the domain 2,={z€C||z|<1} if they are different and in 2,
if they are equal where (¢, ¥) €{(¢, ¥)|t=0, y=—6).
The quadratic equation

(C.3) (co(t, ) +bu(t, 2))2*+22+cy(¢, ) —by(t, x)=0

has roots in the domain 2,={z € C|Re 2<0} if they are different and in

!52 if they are equal where (¢, x) € {(¢, x)|t=0, = —6).
The quadratic equation '
(C.9) (ei(t, 0)+1)22+2b,(t, 0)z4c,(t, 0)—1=0

has no roots z=+=:.
We impose on the problem (II) the following condition:

(C.5) Re ¢(t, ¥)=0 .
REMARK 1. See [1] and [5] for conditions (C.2)-(C.5).

DEFINITION 1. Let p, g, 7, 8, b,, b,, ¢, and ¢, be complex constants in (I).
(i) We say that {f, g, u.,, u,} satisfies the compatibility condition
of order %k in the region G,(G;) if the following (C,) holds
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(€ B{(f, e, w) =3, (B (Da, Dy)us)0, 9)
=(Drg)0, %) (m=1,2, -+, k)
where
;2’::6 B{(D,, D,)Dju=Dr{B«(D,, D,, D,)u}
Una ={(DIF)O, 2, y)—(DIL—D ) (6=0,1,2, --)
and

{G1={y|y_2_0}
G,={ylyeR'}.

(ii) We say that {f, g, u, u,} satisfies the compatibility condition
of order k in the region G4(G,) if the following (C;) holds,

(@) B(f, t, w) =3, (B3 (Ds, D), 0)
— (DPig)@ 0) (m=1,2, -+, B)
where
g)BZ(?;)(Dz’ D,)Diu=Dr~{ByD,, D,, D,)u}
Ui ={(DLN)O, z, y)—(DiL—Di*Hu} (i=0,1,2, --)
and

G,={x| =0}
G,={x|xecR'}.

(iii) We say that {g, g,} satisfies the compatibility condition (D,)
(k=1, 3, 5) if the following condition holds:

(Dx) l1<t; 0)=b,- lz(t’ 0)
(-Ds) b,- lZzz(t; 0) = lltt(t’ 0)— llw(t, 0)
+al1(t9 0)_‘B;f1(t’ 0’ 0)
and
(9 _& .Y
(Dy) by anees(ty 0)= (23 ay2+“> L(t, 0)

—B;(fltt —ﬂyv+ﬁzz+aﬁ)(ty Oy 0)
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where
j'1=e—(1/2)(pt—qz—rv)f(t’ 37, y) , l1=e—(1/2)(pt—rﬂ)gl(t, y)
_ —qz 1 1 1
L=e P0Gt 2), a=——2p'+ 20+ ri—s
and

d P P 1. b c
B=24+p9 9 (q_1,_b__ ¢ )
=t Yoy ‘at+( 1T IT T TP

DEFINITION 2. (i) We say that {f, g,, u,, %} has the property (E,):

(&) {f, 91, %o, uy} satisﬁesNthe (Cy in G,
and as a extension {f, g, i, #,} which satisfies the (C,)
in G, and has the same regularity as {f, g,, u,, u,}.

(ii) We say that {f, g,, u,, u,} has the property (&.):

(&) {/, 92 uo, w,} satisfies the (C;) in G,
and has a extension {f, §,, %, #,} which satisfies the (Cu)
in G, and has the same regularity as { Sy G2y U, ).

We state our results,

THEOREM 1. Assume conditions (C.1)-(C.4). Let u be the solution
of the problem (I) which belongs to 523, [(R.)"].

Then, there exist positive comstants C and L, such that the following
inequality holds for any te R: and any L= M.

RV OT [ ATA
1 k 2 k 2
B () W, () ), )
= C (%@t 1 f
+7];"<Ay.2#g1><2’,p.t + ':‘—«A:lal,zﬂgz))g.ﬂ,t} .

THEOREM 2. Let p,q, 7,8, b, b, ¢, ¢, d, and d, be complex constants
and assume conditions (C.1)-(C.4). Let (f, g,, g, %, u,) belongs to C[(RL)Y] x
[CZL(RY)I) and suppose that the Jollowing condition (a) or (B) holds,

(@) (£, 95 %o, w)) has the property (By), (f, g, o, u,) satisfies the (Ce) inm
{x|2=0} and conditions (D)), (D,) and (D,) hold.
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(B)  (f, 92 o, uy) has the property (E:), (f, g1, %o, %,) satisfies the (Co) in
{y|y=0} and conditions (D,), (Ds) and (D;) hold.

Then, there i8 a wunique classical solution u e 5% [(RY)'] of the
problem (I) which satisfies (2.1).

REMARK 2. For the existence of the solution, we treated the case
where p=q=r=s8=d,=d,=0, and b,=(1/b,) and ¢,=c,/b, are real constants
in [1].

THEOREM 3. Assume the condition (C.5). Let v be the solution of
the problem (II) which belongs to 57 . [(RY)]. '

Then, there exist positive constants C and t, such that the following
inequality holds for any te€ R and any p=4,

(2.2) N+ el v |1E e
2 1 2
=<C {0+ Al | -

THEOREM 4. Let p,q, 7,8, ¢, d, and d, be complex constants and
assume the condition (C.5). Let (h, v, v;) belongs to CF[(RY)]X
[Cs (R |

Then, there is a unique classical solution v € 525 [(R.)'] of the problem
(II) which satisfies (2.2).

THEOREM 5. Let w be the solution of the problem (III) which belongs
to 54, (R} ‘

Then, there exist positive constants C and p, such that the following
inequality holds for any te€ R, and any p#=t%

(2.3) @I+ 2ellw L,
1
<C {1 w1 ut 211 s} -
<C{llw@ I+l e}

THEOREM 6. Let p,, Dy, Ds, Ds, Ps, @, 8 and Y be complex constants, and
(k, wo, w,) belongs to CT[(RY)*]x[CT[(RL)]I

Then, there is a wunique classical solution w €S54, [(R})] of the
problem (III) which satisfies (2.3).

REMARK 3. In [4], Kupka and Osher obtained the energy inequality
weaker than (2.2) and (2.3).
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§3. Mixed problem for symmetric hyperbolic system of first order.

We consider the mixed problem
aaij AaU BaU+K(t z, WU+ F (&, x, y)
) U, z, y)= Uo(w, Y)

PU|5=0=(III’ P)Ulz=o=G1(t, y)
QUIy-—o=(Iz,; QT*U|,-,=G,(t, )
@, =, y) € (R})®

where U=%U,, ---, Uy), A and B are Nx N constant Hermite matrices,
det(AB)+0, A has distinct eigenvalues and has the form

A; 0
A‘(o A,,)

a, 0 Ay 41 0
A= - |0, A= )>0
0 a; 0 Ay

1

K, Pand @ are respectively Nx N, 1, x (N—1,) and [, x (N—1,) smooth complex

matrices, and are constant outside a compact set (R.)?, R, x R* and (R.),
and T is a smooth unitary matrix such that B,=7T*BT is diagonal.
We assume the following condition for the problem (3.1):

(C.6) ((AU, U))=0 for all UecKer P(t,y) (all (¢, y)eRixR‘)
((BU, U)=C(U, U)) for all UcKerQ(t, x) (all (¢, ) e (R.L)?)
where C is a positive constant.
We extend K to the region {(¢, z, ¥)|t=0, x=0, y<0} as smooth

functions. When we set U(t, x, y)=0(t<0 or y<0), by the Laplace-
Fourier transform of (8.1) with respeect to (¢, y), we have

(3.1)

fl g =Mz, ))U— A" KU~ A-F
2 A 5

8-2) +A7'BU(z, 2, 0)— A7 Uy, ) (>0)

-ﬁ] Iz=0= A1

where

M(z, 9)=A"(zI—i7B), t=p+1i0, £>0,0€ R*,
Oz, =, 0)= S“’ et ULt z, 0)dt
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and
U,(x, 7))=Sm e v Uy, ¥)dy -

From now, we treat the estimate of the solution U on thé boundary
{¢, 0, ¥)|t=0, y=0} in the two regions

D,={(z,n)||17|=d|zl} and D,={(z, D||7|=2/5|7l}

where 7 and 7 are dual variables of ¢t and y, 6, is a sufficiently small
positive constant.
Firstly, we consider the mixed problem

OW _ A OW oW | gt o o)W

ot o0x oy
(3.3) W0, x, y)=Uz, ¥)
Ple—o=0

&, =, y) e(RL)*X R .

For Uz, y) € L*(R. X R"), we have the solution W of the problem (3.3)
which satisfies the following energy inequality

NWB,a+ 2] WIS e+ AT W B e

3.4) =C|I1 U113,

for any teR. and any p=pg, where C and g, are positive constants.
By the Laplace-Fourier transform of (3.8) with respect to (¢, ¥), we obtain

dW At 3 -1 77
d =M(z, %) W—A"KW—A"'U(x, ) (x>0)

PWI,,=0=0 .

We set V=U-W.
Secondly, we consider the boundary value problem

(3.5)

dx

df}__ {7 17} -1 -1 5

3.6 {———M(z', 7 V— A" KV—A"F+A"BU, z,0) (x>0)
’ P A

PV|w=o=G1

in D,={(z, 9)||n|=<d,|z]}. Then, we can diagonalize M(z, ) in D, by
conditions for A and D,, and each eigenvalue A\ (i=1, ---, N) of M(z, 7)
in D, satisfies the inequality
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3.7) szlRextlg-g- (i=1, .-, N)

where C is a positive constant. By the above facts and the integration
of (3.6) from zero to infinity in z for fixed (r, ) e D,, we get

¥z, 0, DI : ., 10, @, 0 P
(3.8) s {S [lV(z' z, PP+ | Kvip+1YE 2 OF e + P ]dx

where C is a positive constant.
Thirdly, we consider the problem (8. 2) in D,={(z, )| |7|=(2/8,)I7l}.
Then, we obtain

l_:ﬂ_gzu Il <Cilnl

3.9 !
(3.9) L _o
e
where C, and C, are positive constants. Also, we have
d U Mz, )
3.10 — e i
#10 dzx (1/#’+v‘)+1/;:’+77‘

_ATKU AP A~BU | an0,
1/#2+772 -l/#2+772 l/#2+02 -l/p2+n2

By (3.9), (8.10) and integration in z, we get

3.11 Ms TGe+ 1K
(3.11) Dl sc (| Tior+1E0
IU(T xz, 0)[? + IUo(x, 77)|2 _l__l;lﬁlz :ldx}
A RE

for fixed (z, ) € D, where C is a positive constant. Using (3.4), (3.8),
(3.11) and U=V + W, we have

LEMMA 3.1. Assume the condition (C.6). Let U be the solution of
the problem (3.1) which belongs to 2. J(R.)].
Then, there exist positive constants C and p, such that

B12) AU SO N Tt AT o+ U st I

(any p=p) .
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THEOREM 3.2. Assume the condition (C.6). Let U be the solution of
the problem (8.1) which belongs to 577 . I(R.)].

Then, there exist positive constants C and p, such that the following
inequality holds for any te€ R and any p=,

(3.18) U@kt £ Ul s+ BCATED Uy (U
SOOIt N F et LGt (G
7

Proor.
d —ut —put
(3.14) —Eﬁ-(é U®), e U())

= —2p(e~"U, e U)
+(e*(AU,+BU,+KU+F), e*U)
4 (e U, ¢~*(AU,+BU,+KU+FY))
< —Ct(e U, e T) +%<e-#'F, o F)
—[Ae~*U, e~ U]—[[Be~"U, e~ U]]

where C, and C, are positive constants. By the same method in [7] and
the condition (C.6), we have

(3.15) [Ae~#U, e~ U= —opl4; e U, A7 e U],

~ PGy, £ G
and | |
(3.16) [Be~#U, e U] =C,[e U, e U] —Cyle "G, e™*'G,]

where ¢ is a sufficiently small positive constant. By (3.12), (3.14), (3.15),
(3.16) and the property of hyperbolic equation, we get Theorem 3.2.
Q.E.D.

§ 4. Reduction to symmetric hyperbolic system and the energy
inequality.

Firstly, we treat the case where problems (I), (II) and (III) have
complex constant coefficients. We set D={zeC]||z[<1, Re2=0, 2+ *i}.
We consider the following condition:

(C.7) The quadratic equation

(4.1} (e+1)2*42bz+(c—1)=0
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has two different roots in D or has the double root in D.

We remark that the condition (C.7) is equivalent to (C.2)-(C.4) under
(C.1) and b=b, b, c=¢,, ¢, d, and d, are complex constants.

We choose 2, and 2, in the following ways:
Case (I). The equation (4.1) has two roots in D.

We determine 2z, and 2, the solution of the equation

(4.2) V1-é(c+1)2*+2bz+1V1—e(c—1)=0

where ¢ is a sufficiently small positive constant. Then, we have

4.5 z,2,eD, z+#z
. 2 +2z2,=— 2b , z1z2=£_':_1_ .
V'1—¢&(c+1) c+1

Case (II). The condition (C.7) holds and the Case (I) does not hold.
We determine 2, and 2, the solution of the equation (4.1). Then, we
have

(4.4) 2, #2,, zx+zz=-—;—ﬁ%. zlz,=£-ﬁ.

Also, z, and z, satisfy any one of the following cases:

(1) lal=lal=1
(ii) |z|=1, =z,eD
(4.5) {(iii) Rez,=0, z,eD
(iv) Rez,=Rez,=0
(V) |z|=1, Rez=0.

LEMMA 4.1. Assume conditions (C.1)~(C.4). Then, the problem (I) is
transformed into the following problem:

faaltf AaU B
U, «, 1/)= o(a:, u)
PUl--—o:"Gl(t Y)

QU|,-0=Gy(t, ) (¢, 2, y) €(R,)

+(D +E)U+F(@t, x, y)
(4.6)

A

where A,, B, and D, are 6x6 constant matrices of the following forms
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-1
1 0
1—]z,)
1 2
A= + |2,
—1
1
\ O 1_|zzl7
1+|2,)"
0 vie —Et
€ V142 O \
V142
g €, __2V1—¢ p..
p_|VITRF VIFRE  T+laF
0 VI
¢ V142,
i@ 0 £%
0 V1t|z
e £Z, _2V1—¢® Rez,
| Vitlz) Vit 1+af
0 — S [ —
B V142, \
0 __mi_ 0
8 V147
m mz, 28 Imz-i
o VIt VITEE 1+lzf o
1— m
0 s Vit 2
_ 0 . mz,
0 s V1+t|z,
m mz_ 28 mg,.i
Vit vVitlar 1+zf

E, i3 a 6 X6 constant matriz,
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1 2 00 00
P‘“Q‘—(o 0 0 1 2 o)
F=Xf, 2./, 0, f, 2.1, 0)
2 _ 2b,
et 1 g, PR g
G1= ’ G2=
¢,+1 ! c+1 :

and €=0 for the Case (II).

PROOF. We choose 2, and 2, as roots of the quadratic equation

4.7 V'1—¢¥c,+1)2*+ 2b,2+1"1T—¢*(c,—1)=0
or
(4.8) (e, +1)z*+2b,2+(¢;—1)=

for the Case (I) or Case (II) respectively. We set

Uy — Uy + 21(1/1:?'“1 —Buw)
2 (u,+u,) +V'1—6u,+ Lu
_[V1+]z(eu,+mu)
N ue—u, + 2,0 T=cu, + Bu)
2 U+ u,) +1V'1—6u, — Bu
V142 (cu, +mu)

(4.9) U=

SS888S

where m is a complex constant and

2d,

(4.10) BT DG

Then, we get easily

oU _ ,aU
m‘Aa

and by (4.3), (4.4), (4.7), (4.8), (4.9) and (4.10), we obtain

+BaU+(D1+E1)U+F

1
(4.11) PU=Q, U= 1_'_l(cl'u, u,—blu,—dlu)(l) .

Therefore, we have Lemma 4.1. Q.E.D.
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REMARK 4. The equation wu,=u,, +u,,—(m*+8)u is transformed
into the equation U,=A,U,+B,U,+D,U.

LEMMA 4.2. Assume conditions (C.1)-(C.4).
(i) Suppose that the Case (I) holds.
Then, we have

{((Al U, U)=zC(U, U)) for all UeKer P,

(4.12) (B,U, U)=C(U, U)) for all UeKer@Q,

where C i3 a positive constant.
(ii) Suppose that the Case (II) holds.
Then, we obtain

{((A1 U, U)=0 -~ for all UeKer P,
(B, U, U))=C(U, U)) for all UeKer@,
for the Case (II)-(i) and (ii),

(AT, U)=C|U, U)) for all UeKer P,
(B U, U)=0 for all UeKer@,

for the Casé AD)-(iii) and @{iv),

(A, U, U)=C(V, V) for all UeKer P,
(BU, U)=C(W, W) for all UeKer@,

for the Case (II)-(v) respectively where V=" v, U,0,0,0,0), W=*0,0,0,
U, U, 0) and C i3 a positive constant.

(4.13)

(4.14) {

(4.15) {

PrROOF. By direct calculations, we can easily obtain Lemma 4.2.l
LEMMA 4.3. Let uec %4, J(RY)']. Then, we have

iml‘u(t)l 18,6+ Cupel| et 13, e = O Cott||%e[5, e

(4.16) )3, = Ot 16,1, | % 15,1,0)

Qs e = Copt(l] 2w][5, e+ [0 [13,,0)
where C, C, and C; are positive conslants.
ProOF. See [1:§5].
Now, we treat the problem (II) with constant coefficients.

LEMMA 4.4. Assume the condition (C.5). Then, the problem (II) is
transformed into the following problem:
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oV a2V BV \ DV HG, 3, y)

ot ox oy
V(0, z, y)= Vi(x, )
12.Vl.e=0
Qz V|v=o=0

@, , y) e (RL)®

(4.17)

where A,, B, and D, are 4x4 constant matrices,

e 1
7 0
0 1
1
1 o
[0 0 &
o o Lo
B,= Ve
11
A1 o o
2 1732
o o o 1

H=*h, h, 0, 0)
— c—1 =
P.=(1,223,0,0), €.=(0,0,1,0

and

(4.18) {((A»z V, V)20  for all VeKer'P,

((B,V, V)=0 SJor all VeKerlQ, .

PROOF. We set

Vi v, — (v, +dy)
Vel (vt (v +dw)
Vil WV Z2@,+dw)
V., v

(4.19) V=

Then, by direct calculations, we have Lemma 4.4.

We consider the problem (III) with constant coefficients.

Q.E.D.
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LEMMA 4.5. The problem (III) is transformed into the following
problem:

(AW _ 4 W g W ¢, OW | b W+K(t, =, v, 2)
ot ox oy 0z
W, =, y, 2)= W=, ¥, ?)
(4.20) 1Ps Wlazo=0
Qszvsozo
Ra W|s=o=0

\ (¢, 2, v, 2 e (R

where Ag, By, C; and D, are TXT constant matrices

-1 ‘
L0
| 0o
A3= "'"1
| 1
0 0
1
1
0 0 —
3 \
1
0 0 ——
V' 2 O
1 1 0
vV'2 V2
B,= 0 0 .]-/-1.2= 0
o o0 L. o
Ve
0 1 1
—~— 0 0
Ve V2
0 0 0 1
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0 —i 0
ﬂ 0 0 O\
0 0 0
Co= 0 i 00
—i 00 0
0 0000
\ 0001}

K=k, k, 0,k k, 0, 0)
-1 00 0100
2l )

0 00O 0
B ( -1 0 0 1 00 O>
*\ 0100 —10 0
and
((AsW, W)=0  for all WeKer P,
(4.21) {((B8 W, W))=0 Jor all WeKerQ,
(C.Ww, W))=0 Jor all WeKerR,.

PROOF. We set

W, 'w,—(w,+aw)-—i(w,+7w)

W, w;+(w, +aw)+ i(w, +7w)
W, V2 (w,+ Bw)
(4.22) W=| W, |=| w.—(w,+ aw)+i(w,+7w)
W, w,+ (w, + aw)—i(w, +vYw)
W, V' 2 (w,+ Bw)
l w; ‘ \ w ‘
Then, by direct calculations, we have Lemma 4.5. Q.E.D.

Secondly, we treat the case where problems (I), (II) and (III) have
variable coefficients.

PROOF OF THEOREM 3. Each element of D, in (4.17) is smooth and
has bounded derivatives. By the integration and Lemma 4.4, we get
Theorem 3. Q.E.D.
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PROOF OF THEOREM 5. By Lemma 4.5 and the same as the above
method, we obtain Theorem 5. Q.E.D.

PROOF OF THEOREM 1. We consider a partition of unity on (R.)
which is locally finite sum. It is sufficient to consider a neighborhood
of (¢, 0, 0), because on other components of a partition of unity, we use
results for Cauchy problem or the mixed problem in the half space to
obtain the energy inequality. Therefore, from now on, we treat the
problem (I) where (¢, z, y¥) belongs to a neighborhood of (¢, 0, 0) for fixed
t(t,=0). We choose p(z) as
1 [2[=e

oR)= {0 2| =2,

and p(z) € C* where ¢, is a positive constant. We set

o(t, x, y)=p(4(t—1,))- p(4x)- o(4y)
and

w(t, x, y)=0(, x, y)-u(t, =, y) .
Then, we have for the problem (I)
L{w]=0-f+[L, clu
w(0, x, Y)=wy(x, ¥), w0, , y)=w(x, ¥)
(4'23) JBl[w]|z=0=a'gl+[B19 a]ulz=0
By[w]ly=o=0"g:+[B,, o]uly=
(¢, x, y) e (RL) .
By conditions (C.1)-(C.4), we get
b.(t, 0)==0, b,(t, 0)5=0, ¢, (¢t 0)%0

and
d,(t, 0)0 or d,(t 0)=0.
Then, we set
( b.(t, ¥)
b(t = 2
& & V=3, b, @

cu(t, Yeut, x)
cy(t, 0)b.(¢, x)

_.d1(t; 'y)dz(ty x)
& 5 V)=F & 0t @)

(4.24)

AL

c(t, x, y)=

I
=)
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where (2, z, ) belongs to a neighborhood U={(t, x, )| [t —t,| <3¢, lz| <3¢,
ly|<3e,}. We have

bt, 0, =b.6,)  blt, 7, )= tl =

3 _Ci(t, 2)
(4.25) », c(t’ 0, y)—-—cl(t, y) C(t, @, 0)_b2(t, x)

— — (¢, 2)
\d(ty Oy y)_dl(t, 'y) d(t: z, 0)_m .

We choose 2(t, , ¥) and 2z(¢, «, ¥) in following ways:
Case (I). The equation

(c(ty, 0, 0)+1)2%+2b(2,, 0, 0)2+c(t,, 0, 0)—1=0
has two roots in the interior of D={z € C||2|<1,Rez=<0, 25 +1).

Then, we determine z,(¢, 2, y) and 2,(¢, ¢, y) the solutions of the
equation

(4.26) V'I—=é%c(t, o, y)+1)2*+2b(t, @, y)z+1'1— e¥(c(t, =, y)—1)=0

where ¢ is a sufficiently small positive constant. We have (4.8) for smooth
functions 2,(¢, z, ) and 2,(¢, x, y) where (¢, z, y) e U.
Case (II). Case (I) does not hold.

Then, we determine 2z(¢, x, ¥) and 2,(¢, x, y) the solutions of the
equation

(4.27) (c(t, =, y)+1)2*+2b(¢, x, y)z+c(t, x, y)—1=0.

We obtain (4.4) for smooth functions z(t, z, ) and z,(t, ¢, y) where
¢, = y)eU.

We can extend z(¢, 2, ¥) and 2,(t, «, ¥) to the region {(¢, z, ¥)|t=0,
(x, ¥) € R*} which have the following property:

(1) They are constant outside a compact set in R. x R®.
(2) They are in D={z¢€C||z|<1, Re 2<0} for any

@, =, y) €{@t, «, Y[t —t,| =26, [x|=2¢, |y|=2¢,} .
We set

= _2d(¢, =, YP2(E—1,))-p(2x)-0(2y)
5.2 = .
( 8) B [O(t, x; y)+1](zl(t’ x’ y)_z2(ty 97, y))

Using the resultsin §3, Lemma 4.1, 4.2, 4.3, the fact that the principal



MIXED PROBLEM 203

part of the equation (4.6) for the Case (II) has a special form (¢=0), a
partition of unity, (4.2) and the theory of pseudo-differential operators
[2] and [3], we get Theorem 1. Q.E.D.

§ 5. The existence of the solution I.

In this chapter, we shall prove Theorem 2 and 4.
Firstly, we treat Theorem 2. We set

(51) w = we'Pt—I=—TV/2

where p, ¢ and r are complex constant coefficients of the operator L in

(€52

LEMMA 5.1. The problem (I) is transformed into the following

2 2 2

w(0, , y)=e' "t uy(x, y)= W,

w,(0, , ¥) =e“”’+’"”’[u1(w, y)—%p'uo (=, :e/)]= W,

(5.2) { w2
w —p—(Pt—r¥) /2y —
1[’w]| +51 oy Oy +ew| =e 9,.=k,
' aw 1l ow_ ¢ ow —(pt—
B et Bl ol —e Pt 2g
: oy b 0w b ot +b1 ¢ 9=

(t, z, y) € (RL)

\

where a= —p*/4+q*/4+1r*/4—s and e=d,—q/2—(b,/2)r —(c,/2)D.

Proor. By (5.1) and direct calculations, we can get Lemma 5.1.
Q.E.D.

LEMMA 5.2. Let p,q, 7,8, by, b, ¢, ¢, d; and d, be complex constants
and assume conditions (C.1)-(C.4). Let w be the solution of the problem
(5.2) which belongs to 57 [(R.)"].

Then, there exist positive constants C and p, such that the following
inequality holds for any te€ R and any KL=l

(5.3) Hw@[5,u+ ellwl[3,4.¢

+pz{<A, ,:"Z(ax) W>5_,,“+<<A?'F2(_‘ w>> m
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1
C (O == 1§ A
<Gl a2 1A

I+ LAY s |

PrROOF. By the same method in [1: §5], we have Lemma 5.2.
Q.E.D.

Proor OF THEOREM 2. By Lemma 5.1, we have only to prove
Theorem 2 for the problem (5.2) under the condition (a) without loss
of generality. We solve the problem

Ljw,]= f{l
w,(0, z, y)= Wo y Wi(0, z, y)= I71'71
(5.4) Blw]= E

(t, =, ¥y) € (R,)*X R*
where 7 is a extended function in the domain {®, =, »)|t=0, 2=0, y <0}
or {(z, )|#=0, y<0} by the assumption. Then, we have the solution w,
of the problem (5.4) which belongs to G (R <X R]. We set
(5.5) ki =e= "1 2g.(t, 4)— ByJw,]l,=, -
Then, by the assumption, we have a extended function £, of k¥ in the

domain {(¢, x)|t=0, x<0} which is an odd function in 2 and belongs to
S [(RL)X RY]. Let k, be

Ezo(t, x) = (Po*lzz)(t, x)
where
1
o) = { Cexp [—m] (Jz|<1)
0 (l#]=1)
S"_" o(@)dz=1

C is a positive constant and p,(x)=(1/6)p(x/6).
We consider the problem



MIXED PROBLEM 205

L[w,]=0
wes(0, 2, )=0, w0, 2, ¥)=0
B;[ww]‘vw = Ezo
(t, xz, y e R XR'XRY .
Then, we obtain the solution w,, of the problem (5.6) which belongs to

2. R X R*x R.] and Bj[wy]|.-o=0. Using Lemma 5.2 and w=w,+ W,
we have Theorem 2. Q.E.D.

(5.6)

Secondly, we treat Theorem 4. We set
(5.7 =g P "I 2y

where p, ¢ and r are complex constant coefficients of the operator L in
In).

LEMMA 5.3. The problem (II) is tramsformed into the following
!Ll[w] — hl — g~ (Pt—az—rN 2]

w(o, x’ y) e V0=e(qau+rﬂ‘)/2,v0

(0, 7, )= Vi=ew ] o,— Lpu, |

(5.8) - ow _ ow 1 e _
Bi[w] ,=o*3;“03§+(ds‘?1’7p)w o=

’ _aw ___1_ —

B4[’N)] ”=0-— —a—y- <d4 > 7’) w im0 =0

(&, %, y) € (RL).

Proor. By (5.7) and direct calculations, we can get Lemma 5.3.
Q.E.D.

PROOF OF THEOREM 4. By the condition, we extend hl, V, and V,
to the regions {(¢, , ¥)It=0, x<0, y=0} and {(z, ¥)|x <0, y=0} respectively
by followings

~ (b, %, ¥) (x=0)
v {h(t, —z,y) (x<0)
= (Vix, ) (x=0)
o {Vo<—x, y)  (x<0)
and
Vo= {Vl(w, ) (x=0)
U V(—x, ) (@<0).
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Now, we consider the problem

(LI[WB]-:ﬁl

wy(0, z, )=V, wy(0, 2, )=V,
5.9
&9 |Bilwdl,i= 220+ g | _ =0

¢,z y)e R.XR'XR,

where B=d,—(1/2)r. By the assumption, we have the solution w, € C>
[(I?L)XRIX(R'L)] of the problem (5.9) and w, has a compact support in
the domain R.xR:, for fixed #(=0). And we obtain wy(t, x, ¥y)=w,(t,
—z, ¥). Therefore, we have

(5'10) ws:(t; O’ y)=0 .

Next, we set

A =
(5.11) 2w g T AW _ =m(t, )
where a=d;—(1/2)qg—(¢c,/2)p and we define
(5-12) n(t’ y)—': ‘B'm(t’ y)—m,(t, y) .

Then, by w,,(t, 0, y), we get
M(t, 0)= —'ca'wst(to 0’ 0)_aws(t, 0’ 0)
(5.13) 5
m, 0)=[—c,52+a]w,,(t, 0,0).
Therefore, we have
(5.14) n(t, 0)= — B[ —c,wy(t, 0, 0)+aw,(t, 0, 0)]
0
+[c,-a—t-—a:|w3,(t, 0, 0)
=c,3at—[w,,(t, 0, 0)-+ Buw(t, 0, 0)]
—alws,(t, 0, 0)+ Bw,(t, 0, 0)]=0

and

(5.15) N,y(t, 0)= — B( a— cs'a%')wsn - (a - caa%)wwn
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= — ﬂ( a— 035%')(7«03“ — Wiy + awS)

- (a - ca%)(wsvu — Wsyzs T aw,,)

(e =) (B) ~(2) +e] it 5 0

where Wiyylo=oty=0) = Wats — Wags + AWl s=0(y=0) and Wiyyyla=oty=0) = Waytt — Wayas +
OWsy|o=oy=0)» BY the same method, we can get

(5.16) Nyyyy(ts 0)=0 .
We extend n(¢, ¥) to the region {(£, ¥)[t=0, y<0} by the following

n(t, ¥) (y=0)
—n(t, —y) (¥<0).

Then, we have #€Ci, and % has a compact support in R, for fixed
t(=0). And we consider the problem

L1[w4] =0 :
w, (0, z, ¥)=0, w0,z ¥)=0

n(t, y)= {

(6.17)
Bi[w,] c=0=%%—cs@al'v't‘+ aw, . =0
(¢, x, v e(RLYXR.

Then, we have the solution w, of the problem (5.17) which belongs to
5%.[(R})’] and has a compact support in the region R., xR, for fixed
t(=0). Also, we have w(¢, z, 0)=0.

We solve the equation

(5.18) Oy 4 gy =w,
oy

for L*(R%,) space. Then, we have the solution
(5.19) wy=e Y Sye"'w(t, x, 8)ds .

We set
w=W3+w5 .

By the above construction, we obtain the solution of the problem (5.8)
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which satisfies Theorem 4. Q.E.D.

§6. The existence of the solution II.

In this chapter, we shall prove Theorem 6.
We set

(6.1) W =1 e'POt—P1Z— DY —Pg2)/2
where p,, p,, . and p, are constant coefficients of the operator M in (III).

LEMMA 6.1. The problem (III) is transformed into the following

Y4 2
M [v]= g;’ g:’ g: g ~tav=k(t, , y, 2)
(0, , ¥, 2)=W,, v0, z, y, 2)= W,
B, =%"’- +aw| =0
=0 =0
(6.2) (
6['v]l ——+ Biv =0
y=0
Bl[v] | _—+m[ =0
\ @, x, ¥, 2)e(RL)
where
m —_ e(p;c+p2v+p3¢)/2wo , W1 — e(P1¢+P2v+PaZ)/2[:w1 __;-_powo]
a1=a—%p1 ’ B1=B”‘%p2
and
T=7"— '%’ps .

ProOF. By (6.1) and direct calculations, we can obtain Lemma 6.1.
Q.E.D.

We consider the mixed problem
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Mx[u] = E1
w0, , ¥, 2)=W,, w0, w,y,2)=W,
(6.3) 1 Bi[u)ls=0=0

Be[u}ly==0
\ (¢, 2,9, 2)e(R)XR.

where
~ k(t, =, ¥, 2) (2=0)
k _—
&, %9, 2) {kx(t, %, 4, —2) (2<0)
=2 Wo(x; y; Z) » (ng)
Wil v, 2)= {Wo<x, v, —7) (2<0)
and

Wz, v, 2) (2=20)
Wiz, vy, —2) (2<0).
THEOREM 6.2. Let (f, w,, wy) be CF[(RL)]x [CoI(RLYIP-

Then, we have the smooth solution u of the problem (6.3) which
satisfies

Wiz, y, 2)= {

u’(t’ %, Y, z)—_—u(t’ x Y, -—2)

and has a compact support in (2, ¥y, 2) | for fixed t(=0). Also, u(t, x, ¥, 2)
18 zero in a meighborhood of (0, z, y, 0).

PROOF. By the same method in Proof of Theorem 4 in §5 and
properties of dates, we have Theorem 6.2. Q.E.D.

Let u be the sblﬁtion of the problem (6.3). We set

(6.4) U, + 7 Ul =e=m(, x, ¥)
and define.
(9 9 |
(6.5) n(t, 2, 1)=— (2t )5+ )ity 2, 9) -
By u.(t, z, ¥, 0)=0, we get
(9 9 L5
(6.6) n(t, &, )= = 2 +a1)< 2 +3%)f°(t' z, 9, 0) .

Then, we have
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6.7) n(t, 0, y)= —71(%+ ,31)-[(3‘3;+a,)u] =0
6.8) Rus(t, O, y)_—71(3—+51)( 3 +a, ).,
="7‘(aa +,31)( +a1)(u,,—u,,——u..+au)

= (5o (F) -(5) - () +]

AGgra)e] =0
and by the same method
(6'9) nzzzz(t’ 0, y)=0 .
Also, we obtain | |
(6.10) n(t, z, 0)=mn,,(t, z, 0)=mn,,,,(t, z, 0)=

Now, we treat the mixed problem

(M,[v]=0
v0, z, 9, 2)=0, 2,0,z y,2)=0

(6.11) ) 4
. B7[v]l,=o=’ﬂ(t, 97, y)
(t, 2, y) e Ry X (R X R,
where ]
n(t, x, y) (x=0, y=0)
>
6.12) A, @, y)= —n(t, —x, ¥) (<0, y=0)

—n(, x, —Y) (=0, y<0)
nt, —x, —y) (€<0, y<0).

Then, we have the solution ve%_,.[R X (RY) X R.] of the problem (6.11)
which satisfies

(6.13) | ¥(t, 0, y, 2)="2(t, x, 0, é)=o

and has a compact support in (z, y, 2) for fixed £(=0).
We solve the equatlon

(6.14) (——+a1)(——-+ﬁl)w1—v
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for L*(R',x R,) space. Then, we get the solution

(6.15) w,=e 18P Sm S”e"‘"“ﬂ’v(t, r, 8, 2)drds .

=

The function w, satisfies

w0, z, ¥, 2)=w,(0, z, ¥, 2)=0

0 _
(55 e |, _=0
(6.16) 1/ 0
(527—}-,81)@01 =0
0 _
(‘a—'z‘+71)w1 z=0— ’"7u(t, %, Y, O)
and .
(6.17) M,[w,]=0.
We set w=u-+w,. By the above construction, we obtain the solution
of the problem (III). Q.E.D.
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