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Introduction

Let G be an arbitrary group and F'G be the group algebra of G over
a field F. Let M be an FG-module and M*=Hom, (M, F') be the con-
tragredient module of M, that is, G operates on M* by the following
operation

(¥)(m)=(yg™ ") (m)=+(g7'm) for geG, yeM* and meM.

We write F'G* for the contragredient module of the left regular
module r,F'G. Then it is well known that in case G is finite FG=FG*
as F'G-module, but F'G is not isomorphic to F'G* in general when G is
infinite. Hence we expect that in order to generalize the representation
theory of finite groups to the representation theory of infinite groups
it is more natural to study the structure of the contragredient module
FG*.

In this note we will show the structure of Hom; (FG®ysx,Ls,, (FGQrx,
L,))*) by embedding FGQry,L, and (FGQrx L,)* into FFG*, where H, is
a subgroup of G and L, is a one-dimensional FH,-module (=1, 2) (see
Theorem 2.2). Though the proof is fairly elementary, as far as the
author knows, Theorem 2.2 is a most generalized intertwining number
theorem for abstract groups, which includes [2, Theorem (1.3)].

Now let G be a group with a BN-pair and W be the Weyl group of
G, i.e., W=N/BNN. Let L be the trivial one-dimensional module of

FB. Then as it was shown in [2] in most cases
dimF HomFG (FG®FBL, FG®FBL) =1

when G is infinite. However in case of a infinite BN-pair G, the dimension
of the Hecke algebra
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Homz; (FGQyrsL, FGQrsL) is equal to |W|,

the cardinal number of W, and Hecke algebras play a very important role
for the study of both ordinary and modular representation theories of
G (see, e.g., [C. W. Curtis, Bull. Amer. Math. Soc. N.S., 1, (1979), 721-
757] and [N.B. Tinberg, J. Algebra 61, (1979), 508-526, and Canad. J.
Math., 32, (1980), 714-733]). In Example 2.3 we show that when |W| is
finite we have

dim, Hom;; (FGQrsL, (FGRrsL)*)=|W |,

which suggests us that the space Homz; (FFGQyrszL, (FGRrsL)*) seems to
be a reasonable generalization of the Hecke algebra of a finite BN-pair.
In Section 1 we show how to embed FGQru,L, and (FFGQrx,L,)* into
FG* (see Propositions 1.2 and 1.8). In Section 2 we prove the theorem,
which is followed by the example.
Finally the author would like to thank Professor T. Yokonuma for
several useful discussions on this subject.

§1. Preliminaries.

Let G be an arbitrary group and F be a field. We write FG for
the group algebra of G over F. Let M be an FG-module and M*=
Hom, (M, F'). Then M* becomes a left FFG-module, which is called the
contragredient module of M, under the following operation given by

(@) (m)=(yg™ ) (m)=+(g"'m) for geG, yecM* and meM.

Assume H be a subgroup of G and FH be the group algebra of H over
F. Let L be a left FH-module and G= U, z,H (disjoint union). Then
we have FGRrzL=>.. Pr.QL (direct sum), and every element of
FG®yryL can be expressed uniquely in the form >, «,&!,, where [, € L.
Hence if we take a pair (3. £nbm, ¥) from FG X L*, where >, x,b,€ FG=
S Bx,. FH (direct sum), we can assign the element @ € (FG®y,L)* which
takes an element =3, £,R!.€ FGRrzL to P(x)=3n bayp)l.). It is
easily checked that there exists an F'-linear map 7 of FGQRrzL* into
(FGRrxL)* which makes the following diagram commutative.

FGQraL?

O X

FGxL* (FGQrrL)*
w (O
(ag-l wmbmr "l") ' P
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Thus we have the following proposition.

PROPOSITION 1.1 (See [1, Theorem (43.9)]). Let FG, L and 7 etc. be
as before, then

0 FGQRpuL* — (FGQruL)*
18 an injective FG-homomorphism.

Now let FFG* be the contragredient module of ,F'G. We write
g*e FG* for the F-linear map of F'G into F, where g€ G, which takes
g tol and ¢’ to 0 for all ¢’ G—{g}. Then the map

¢: FG =— FG*
(4] L
g — g*

is an injective FG-homomorphism and essentially same as the above
embedding 7. By this embedding ¢ we consider F'G as an F'G-submodule
of FG*. In case G is a finite group, we have ¢: FG=FG*. However
when G is infinite, ¢ is not surjective.

Let H be a subgroup of G and ¢ FH*, then we define an exten-
sion ¥ € FG* of 4 to be the F-linear map which takes h€ H to +(h) and
- geG—H to 0. Then we can embed FH* into FG* by the following
FH-homomorphism

o: FH* =— FG*
w v
Yo 4
Thus we always assume FH* be an FH-module of FFG* and use the

same notation +r for +r and (). Suppose A: H—F'* is a linear character
of H into F*=F—{0}, then

A H— F*
(O] (O]
hi——A(h)™
is also a linear character of H into F*. We write X for A~'. Since

Ne FH* and h-X=)&)X, FHX is a one dimensional FH-module with F-
basis {X} which affords the linear character .

PROPOSITION 1.2. Let G be a group and H be a subgroup of G. Let
X be the set of all linear characters of H into F*, where F is a field
and F*=F—{0}.

(i) Let ne X, then there exists a mnatural FG-isomorphism of
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FGQxFHX onto FGX which takes Coea ts QN to (Z,e6t,0)N, where
(Eaea tﬂg)eFG° ~

(ii) Let M be the FG-submodule of FG* generated by {\|\€ X}, then
we have M=3,.xDFGX\ (direct sum).

PrROOF. (i) Let G=U,z,H (disjoint union). Since FGRpzFHX
has an F-basis {r,®X} and FGX has an F-basis {x.\}, one can easily
verify that the map is an F'G-isomorphism.

(ii) Since FG\ has an F-basis {x,\} where G=U,z,H (disjoint
union), it is enough to prove that

S tWz )+ -+ tPx,N,) =0

implies 3, t@z \=--- =3, &'z, =0 for any elements 3, t®z, X, ---,
S t@z.N, from FGX,, --- and FGX, respectively, where X, X,, « - -, X, are
arbitrary finite number of elements from {}\|\»e X}.

Since

(Xt A A+ - o+ 2 DLW N) B gh) = TR (R + - -+ +EDR () =0

for any «,,€ {r,} and he H and {X|ne X} is linearly independent over
F in FG* (see, for example, S. Lang’s Algebra, p. 209, Addison-Wesley),
tR =t =---=tP=0 for any m. Thus we have proved the proposition.

Q.E.D.

PROPOSITION 1.3. Let G, H, » and \ be as in Proposition 1.2. Let
G = U, 2. H (disjoint union). Since x. N takes the value 0 outside of the
coset x,H, for any scalar c.€ F we can also define an element 3, ¢,z N
of FG* to be

(2, CaltnX)(@mh)=caN(h) where he H and L' € {Xm} -

We write 27 for the set of all such elements 3, c,x.N. Then

(i) 2 18 an FG-submodule of FG*, and

(ii) (FGN)* is isomorphic to 2 by the following FG-isomorphism
f: (FGAN*— 27 which takes @ € (FGN)* to f(P)=m P@ )T N

PROOF. (i) Let he H, then (x,\)(@.h)=%\(h) for all z,. Assume
r¢x,H, then 3w ¢ H and we have (x,)\)(x)=0. Thus it is reasonable
to define 3, ¢, x .\ € FG* to be

(S Cn®mX)(@mh)=cnN(h) where he H and w, € {x,}.
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Let g€ G, then the map
gZI:-{me} B {me}
w w
.H — g0, H
is a bijection of the set of all left cosets of H in G into itself. Since

there exists a unique «, H ¢ {x,H} such that g~'«, H=«x, H for any x, H,

we have R .
g(Eml CnLmA)(Xmh) = (F;. Cn A0, h)

=cpMh,) for some h,e H
such that g~'x,.-h=2x,h,. Assume gx, =z,h’ for somefh'c H, then we have
(S M E ) (@ ) = CmMRIN(R)
Since g, =% hhi', we have ¢, Mh)N(R) =cpMIhT)NR) =M (he™) = Cp N ho).
Hence . R
I3 Cau) =2 CuMR)Tm N € 27,

and 2 is an FG-submodule of FG*.
(ii) It is clear that f is a well-defined F-linear map, which is bijec-

tive. From (i) we have
9f(®) =g(§. P(LWN)L N =% P@nMMA )TN
wherege G, 972, H=x,H and g%, ,=x,-h’ (b’ € H). On the other hand since
F@P)=3, P07 0w M A =3, Pt N T A= 3] P@p MM )T R

we have shown that f(gp)=gf(®) for any e (FG)* and ge G. Hence f
is an F'G-isomorphism. Q.E.D.

§ 2. The structure of Homy; (FGQrxL*, (FGRrxzl)*).

Let G be a group, H a subgroup of G and F a field. In Section 1
we have shown that there exists an embedding of FG®;,L* into
(FGQRQrrL)* (see Proposition 1.1). In general if we take G to be an
infinite group, FIGR xL* and (FGXRryzL)* are not isomorphic to each
other. In this section we will show the structure of Hom (FGR,,L*,
(FGQrxL)*) when L is of one dimension.

Now let H, be a subgroup of G and FH,; be the group algebra of
H, over F' (i=1,2). Let \;: H,—F* be a linear character of H, into
F*=F—{0}, where i=1, 2. Thus we have \,e FH* and h\,=)\,(h)\, for
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all he H, (1=1,2). Let Y,=FGX, (i=1,2), G=U, v, H, (disjoint) and
G=U, ¥.H, (disjoint), then Y, has an F-basis {x.\,} and Y, has an F-
basis {y,\,} (see Proposition 1.2). As in Proposition 1.3 we write 2/, for
the set {3, ¢,¥.\,} where c,, are arbitrary elements of F.

We shall use following notation, for z, y€ G:

y=c'yx , H=2"'Hzx , H®=HNH, and

A HE —  F
w w
h P 7\:1(£Eh$—1) .

We also write H,® for H,NHS, where Hif=x"'H,x. Let G=U,.; D,
where the D,, are the distinet (H,, H,)-double cosets H,xH, in G, and
let J— I be the set of indices 7 such that for some x€ D;, A=\, on H,*.
It can be easily checked that if Af=X, on H,? for some xze D,;, then
A=\, on H for all x€ D;.

Suppose xe€ G and H,= U, H”h, (disjoint), then we have HuxH,=
U, Hyxh, (disjoint) and also H,x'H,= U, h;'2*H, (disjoint) (see [2, Lem-
ma (1.2)]).

ProprosiTION 2.1 (Cf. [2, Theorem (1.3)]). Let G, H,, \,, Y, and J
etc. be as before. Let g;€ D;' be a fixed representative of each double
coset D;' (jeJ). Let

H,=UHYi"h, (disjoint) .
We always assume that one of {h,}, that 18, h,, is 1 and also one of {x.,}
is 1. Then
(i) Since H,9;H,= U,h;'g;H, (disjoint) and GO U; H,g,;H, (disjoint),

we can assume {¥,}D{h:'g;} and define an element 3, M(h)h;'g; N, of #,
as in Proposition 1.3, to be

(S No(h )R N) (Ritgh) =No(hy)Ni(R)  where he H, and
(S N )RR (@)=0 if x¢Djt.
(ii) Let A;(%) = M(R)RTIG N, then
A Y, — 2,
w/\ w A
Ay — LA ;(N,)

18 a well defined FG-homomorphism for each je< J.
(iii) {A,};e; are linearly independent in Homg, (Y,, 2).
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PROOF. (i) From the definition of 2,={3c.¥.\} where ¢,c F,
it is straightforwards.

(ii) It is clear that A; is a well-defined F-linear map. Let geG
and assume g@,\,=2, hX,=\,(h)T,\, Where gx,=x,h¢cr,H, for some
he H,., Then we have

A (g2 =Ny(R)@ A5 (Ns)

Now we shall show gA;(x.X.) = A;(gx. ;). Since h*H,=H,= U, h—*h;*H 7"
(disjoint), there exists 'r,eHI‘”a’ such that A 'h;'=h;'r, for each s.
Hence gA;(@nk:)=g%nA;(\)=2nhA4;R). Let x¢D;’, then h~'z ¢ D' and
we have A\, (h)A; RN (@) =0= hA,(?»z)(x) Assume h;'g;h€ Hy9;H,=D;j'=
U, h;'g;H, where h,c€ H,, then we have

No(B) A ;(Ro) (B o) = MR Moy R (R)
and

RA;(R)(hig she) = A;(N) (R hi g ko) = A ;(No) (hir'r g ho) = A (K,) (hiig 783 Ro)
—“>"2(h )7\'1("'23}2/0) )"z(h )Xl(ho)(xl(’r ’)) 1= 2(h ))\, (ho)(xg-l("'x))—l
=N ) N (o) No (7 = Ny (B )X (o)

Therefore we have hA;(X,) =\,(h)A;X,) and thus
gA;(x N) =A, (g2 N,) for all geG and x,X,,

that is, A; is a well defined F'G-homomorphism for each je J.

(iii) Suppose Siiest;A;=0, where t;€ F' and almost all ¢;, are zero,
then >}, t;A; (xz)(h‘lg,oh) tiNa(hy Y.(h)=0 for any j,eJ and h;'g;he< D7
Hence t;=0 for all jeJ and {4,},., are linearly independent. Q.E.D.

Since A;(X,) =3, M(h)hi'g; N, € 7, and A;(X\,) vanishes outside of the
coset Dj', for any scalar c;€ F we can define an element (3;.;c;4 )(7»2)
of z/, to be

(5, es40(0 =3 (S erlhhi'o R

Since %, is an FG-module we can define (3;.;c;4,)(@.x:) to be
Ln(Sies ¢;A;)(N,) € 7, for each x,. From (ii) of Proposition 1.3 we have

(3, AN @) =2a( S, 04 = T, (3L e0a(RIRT'I )
= g‘, (Z’I cjkz(ha)xmh;lgjil) .

We also define (ZieJ chj)(Zm tmxmxg) to be Zm tm(ZjechAj)(mmxz)
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where almost all ¢,.,€ F' are zero.

THEOREM 2.2. Let G, H, M\, Y,, A; (jeJ) and Z, etc. be as before.

(i) Let #={jeJ||D;j'/H,|< >} and E=Homg; (Y, Y)), then E is
an F-subspace of Homy, (Y,, 2,) and {A;|j€ _Z} forms an F-basis for E.

(ii) For any scalars {c;e F|je J}, Djesc;A; (see above) i8 a well
defined F'G-homomorphism of Y, into 2.

(iii) Let f be an arbitrary element of Homg, (Y, 2,), then there
exists unique scalar c;€ F for each je€ J such that

f=2.¢cA;.
jeJ

PrROOF. (i) Since Y,c%,, E is an F-subspace of Homg, (Y,, Z2).
From [2, Theorem (1.3)] it is clear that {A4;|je _#} forms an F-basis
for E.

(ii) We have defined (S;e;0;4,)(N,) to be 3je; (S, eha(R)Rig;N)
and (3e; ¢;A)@N) to be z.(Sjesc;A;)N,) (see above). Since {z,\.}
forms an F-basis for Y,, > ., c;A; is a well defined F-linear map of Y,
into 2. Now let ge G and z,€ {x,}, and assume gx,=,h € . H, for
some z,, € {,} and he H,. Then

(35 ¢ 4)(G8aR) = (S, 014D @ash %) =Na(W)m( 3, ¢ AR -

Since 9(Xses ¢;4,)@ar) =gTn(Ties 6A) M) =T p (S jes ¢;4,) M), We only
have to show h(3 ey €;A;)(N) =Np(B) (S jes ¢;A;)(N.). Let x ¢ D' forany je J,
then since h~'x ¢ D;* for any je€ J, either, we have h{(C}c; c,-A,-)(Xz)}(x)=
Cies e Mr)RTg R (B 2) =0=2,(W){(Z;es ¢;4;) X)) w). In case ze D;?
for some jeJ, then since h~'x also belongs to D;'=H,g,H,, we have

Rr{( JZ” ¢;A) R} @) =c;4,;(R)(h ) =¢;{h A ;X)) ()
=¢;A4;(AR) (@) = ¢ M)A, (R) (@) = Na()( 2 c;A5)(Ro)(&) -

Hence 3);.;c;A; is a well defined FG-homomorphism.

(iii) Let take a fixed representative g, from each (H, H,)-double
coset D;' (ieI) such that {g.}ic;D{g;};es. Let H,= U, H¥ "r, (disjoint)
for each i€ I, then we have H,g H = U,r;'9.H, (disjoint) and we can
take an F-basis of Y, to be U,.;{r;'g\,| H,= U, H¥ r, (disjoint)}. We
always assume that one of {r,}, that is, », is 1.

Let f be an arbitrary element of Homg, (Y, Z,), then we have
f(')22)=2,,,£ cq,i'rq‘lgﬁl, where ¢, € F' and almost all {¢, ;} are not necessarily
zero. Since f(hX,)=N\,(h)f(X,) for any he H,, we have h 3, .c, 7’0 =
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I cq,ih'rq_lgixl =Ny(h) g, cq,i’rq_lgii‘\'l =2l cq,zxz(h)'rq—lgti}\- Since thgtfo
H,9.H, = Ug hr'g.H = U r7'9.H,, we have Zq Cq, BT G N =Ny (R) Zq Cq,iT7 OiM
for any he H,, where icI. Let », € {r}, then we have

AN o)
Z,,' Cq,iTeeT7 Iih = Ny(7y,) ; Co TGN -

Thus c¢,,.=N\y(7y)e,,, . for any r, € {r,}, and we have
f(xz) =Z > cq...,i)“z(’rq),rq_lgiil-:z Caunt (; 7‘*2(””.;)7';]91’):1) .
i q i

Let he H,, then there exists h,e Hi%" such that hr;'=r;'h, because
hH,=H,= U, r;'H/7" (disjoint). Thus we have

Ca,i ;. Ao(r)hr7ig N =c,, No(h) ; (P )rTig N =C,, s ; No(r )T RGNy
=04, 3 M) i(hy) N, = ¢, pY A1) 7tg N (hg)oR,
q

=cq*,i2q NN (R ig N, , for any iel.

Hence we have
thik2(1'q))\,i”i_1(hq) = cq*,i)"z(h))“z(rq’) = cq*,ikz(h)xé(hqrqh_’) = cq.,ix’z(hq))"z('rq) .

Therefore for any h,c H" if we take h=r;'hyr, (¢ H,) for some ¢ and
q', hr;*=rzh, and Cau,iMT (hy) =Cgu Ny(ho). Hence Ce:#0 only when A=),
on H¥", Thus we have

F)= 3 eaiE M7 08) =(F, ea A () -

Since 3¢, ¢,,,;A; is an FG-homomorphism from (ii), we have f =>Dljes Cqu il ;.
It is clear that the scalars {c,,;|j€ J} are uniquely determined by f-
Q.E.D.

EXAMPLE 2.3. Let G be a group with a BN-pair, that is, G has
subgroups B and N such that

(i) G is generated by B and N, and BN N is normal in N;

(ii) let W=N/BNN, then there exists a subset S of W which
generates W and every element of S is of order 2;

(iii) oBwc BwBU BowB for any o€ S and we W;

(iv) oBoZB for any oc S.

It is well known that G has a Bruhat decomposition

(a) G=U,.w BwB

(b) BwB=Bw'B=w=w' for any w, w'e W.
Let ¢ be a trivial linear character of B into F*, then in case |W|, the
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cardinal number of W, is finite, we have
dim, Homq (FGe, (FG)*)=|W | .

Hence the space Homg, (FGe, (FiGo)*) seems to be a reasonable generali-
zation of the Hecke algebra Homg, (FGe, FGe) of finite BN-pair G, because
in most cases dim, Hom,,; (FG¢, FG¢)=1 when G is infinite (see [2, Theo-
rem (2.1)]).
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