Токуо Ј. Матн. Vol. 7, No. 1, 1984

Non-Expansive Attractors with Specification

Motomasa KOMURO

Tokyo Metropolitan University (Communicated by K. Ogiue)

Introduction

Let $f: Y \to Y$ be a continuous surjection of a compact metric space Y. The inverse limit of f induces a compact metric space \overline{Y} and a homeomorphism \overline{f} of \overline{Y} . $(\overline{Y}, \overline{f})$ is called the natural extension of f. As R. Williams proved in [12], if a 1-dimensional branched manifold Y admits an expanding immersion $g: Y \to Y$, then Y has no endpoints. Moreover $(\overline{Y}, \overline{g})$ is topologically conjugate to an attractor of some Axiom A diffeomorphism. But some attractors, as Hénon's attractors, resemble the natural extension $(\overline{I}, \overline{f})$ of a continuous surjection f of an interval I with endpoints. It is a problem whether there exist any diffeomorphisms which have an attractor topologically conjugate to $(\overline{I}, \overline{f})$.

For the continuous surjection f(x)=1-|2x-1| on the interval I=[0, 1], we show in this paper that there exists a diffeomorphism of the 3-sphere which has an attractor topologically conjugate to $(\overline{I}, \overline{f})$. Furthermore we show that $(\overline{I}, \overline{f})$ satisfies not expansiveness but specification (these properties have been used in papers [1, 2], [3, 4], [5], [8] and [10] on ergodic theory). To realize the attractor in the 3-sphere, our key ingregient is in constructing a fine foliation of a closed 3-ball.

§1. Definitions and results.

Let X=(X, d) be a compact metric space and σ a homeomorphism of X (i.e. from X onto itself). By R, Z and N we denote the set of real numbers, the set of integers and the set of positive integers respectively. (X, σ) is expansive if there exists a $\delta > 0$ such that, for every pair of distinct points $x, y \in X$, there is an $n \in Z$ with $d(\sigma^n x, \sigma^n y) > \delta$. (X, σ) is said to satisfy specification if the following holds; for every $\varepsilon > 0$ there exists an integer $K=K(\varepsilon)>0$ such that, for every $k \ge 1$, for every

Received January 24, 1983 Revised November 14, 1983

k points $x_1, \dots, x_k \in X$, for every integers

 $a_1 \leq b_1 < a_2 \leq b_2 < \cdots < a_k \leq b_k$

with

$$a_{i+1} - b_i \geq K \qquad (1 \leq i \leq k-1)$$

and for every integer p with $p \ge b_k - a_1 + K$, there exists a point $x \in X$ with $\sigma^p x = x$ such that

$$d(\sigma^n x, \sigma^n x_i) < \varepsilon$$
 for $a_i \leq n \leq b_i, 1 \leq i \leq k$.

 (X, σ) is said to be topologically transitive if $\{\sigma^n x : n \in Z\}$ is dense in X for some $x \in X$. If (X, σ) satisfies specification, then it is clearly topologically transitive. Let σ_1 be a homeomorphism of a compact metric space X_1 . (X, σ) and (X_1, σ_1) are said to be topologically conjugate to each other if there exists a homeomorphism φ from X onto X_1 such that $\varphi \circ \sigma = \sigma_1 \circ \varphi$. The topological conjugacy is an equivalent relation under which specification, topological transitivity and expansiveness are preserved.

Let Y = (Y, d) be a compact metric space and $f: Y \to Y$ a continuous surjection. (Y, f) is said to satisfy *positive specification* if it satisfies the condition of specification for $a_1 \ge 0$. We define the metric \overline{d} of the direct product space Y^N by $\overline{d}(\overline{x}, \overline{y}) = \sum_{i=1}^{\infty} 2^{-i} d(x_i, y_i)$ for $\overline{x} = (x_i)_1^{\infty}$ and $\overline{y} = (y_i)_1^{\infty}$ in Y^N . The compact subset X of Y^N is defined by

$$X = \{ \bar{x} \in Y^{N} : f(x_{i+1}) = x_{i}, i \in N \}$$
.

Let $\sigma: X \to X$ be the homeomorphism defined by $\sigma(\bar{x}) = (fx_1, fx_2, fx_3, \cdots) = (fx_1, x_1, x_2, \cdots)$ for $\bar{x} = (x_1, x_2, \cdots) \in X$. (X, σ) is called the natural extension of (Y, f), and it is denoted by $(X, \sigma) = \lim (Y, f)$.

Let g be a diffeomorphism of a compact manifold M. A g-invariant subset Λ of M is said an *attractor* of g if there exists a closed neighborhood W of Λ such that

(i) $g(W) \subset int(W)$,

(ii) $\Lambda = \bigcap_{n \ge 0} g^n(W)$ and

(iii) $g | \Lambda: \Lambda \rightarrow \Lambda$ is topologically transitive.

We denote by (Λ, g) the restriction of (M, g) to an attractor Λ . Our main results are stated in the theorems below:

THEOREM 1. Let I = [1, 0] be a compact interval with the euclidian metric, and $f: I \rightarrow I$ a continuous surjection defined by f(x) = 1 - |2x-1| $(x \in I)$. Let (X, σ) be the natural extension of (I, f). Then the following

NON-EXPANSIVE ATTRACTORS

holds:

(A) (X, σ) is not expansive,

(B) (X, σ) satisfies specification

and

(C) each point of X has a neighborhood which is homeomorphic to the product of a compact interval and a Cantor set.

THEOREM 2. Let (X, σ) be as in Theorem 1. Then there exists a C^1 diffeomorphism g of the 3-sphere S^s which has an attractor Λ such that (Λ, g) is topologically conjugate to (X, σ) .

§2. Proof of Theorem 1.

We denote by d the euclidian metric of I; i.e. d(x, y) = |x-y| for x, $y \in I$.

(I) PROOF OF (A). Let $1/2 > \varepsilon > 0$ be given. For each $i \ge 1$, we put $x_i = 2^{-i}(1-\varepsilon)$ and $y_i = 2^{-i}(1+\varepsilon)$. Then $\overline{x} = (x_1, x_2, \cdots)$ and $\overline{y} = (y_1, y_2, \cdots)$ are distinct points of X, because $x_1 \neq y_1$, $f(x_{i+1}) = x_i$ and $f(y_{i+1}) = y_i$ for each $i \ge 1$. To prove (A), it is enough to show that $d(\sigma^n \overline{x}, \sigma^n \overline{y}) \le \varepsilon$ for every $n \in \mathbb{Z}$. Let $n \in \mathbb{Z}$ be given. If $n \ge 0$, using the fact that $f'(x_1) = f'(y_1)$ for every $i \ge 1$, we have

$$d(\sigma^{n}\bar{x}, \sigma^{n}\bar{y}) = d((f^{n}x_{1}, f^{n-1}x_{1}, \cdots, fx_{1}, x_{1}, x_{2}, \cdots)),$$

$$(f^{n}y_{1}, f^{n-1}y_{1}, \cdots, fy_{1}, y_{1}, y_{2}, \cdots))$$

$$= \sum_{i=1}^{\infty} 2^{-(n+i)} d(x_{i}, y_{i})$$

$$= 2^{-n+1} \sum_{i=1}^{\infty} 2^{-2i}$$

$$= 2^{-n+1} \varepsilon/3 < \varepsilon .$$

If n < 0, we have

$$\overline{d}(\sigma^n \overline{x}, \sigma^n \overline{y}) = \overline{d}((x_{1-n}, x_{2-n}, \cdots), (y_{1-n}, y_{2-n}, \cdots))$$
$$= \sum_{i=1}^{\infty} 2^{-i} d(x_{i-n}, y_{i-n})$$
$$= 2^{n+1} \varepsilon/3 < \varepsilon .$$

Therefore (X, σ) is not expansive.

(II) PROOF OF (B). To prove (B), it is enough to prove the next two propositions.

PROPOSITION 2.1. If (I, f) satisfies positive specification, then

 $(X, \sigma) = \lim (I, f)$ satisfies specification.

PROPOSITION 2.2. (I, f) satisfies positive specification.

PROOF OF PROPOSITION 2.1. Assume that (I, f) satisfies positive specification. Let $\varepsilon > 0$ be given. Choose a positive integer N such that $2^{-N} < \varepsilon/2$. Let $K' = K'(\varepsilon/2) > 0$ be as in the definition of positive specification. Put K = K' + N and take any integer $k \ge 1$. Let $\overline{x}_1, \overline{x}_2, \dots, \overline{x}_k \in X$ be given, as well as integers $a_1 \le b_1 < a_2 \le b_2 < \dots < a_k \le b_k$ and p with $a_{i+1} - b_i \ge K$ $(1 \le i \le k - 1)$ and $p \ge b_k - a_1 + K$. We have to show that there exists a $\overline{y} \in X$ with $\sigma^p \overline{y} = \overline{y}$ such that $\overline{d}(\sigma^n \overline{y}, \sigma^n \overline{x}_i) < \varepsilon$ for every $a_i \le n \le b_i$ and $1 \le i \le k$. To do this we consider two cases separately.

Case (i): $a_1 \ge 0$. For each $1 \le i \le k$, the point \overline{x}_i is expressed by $\overline{x}_i = (x_1^i, x_2^i, \cdots)$ where $x_j^i \in I$ $(j \in N)$. Note that $a_{i+1} - (b_i + N) \ge K'$ $(1 \le i \le k - 1)$ and $p \ge (b_k + N) - a_1 + K'$. Since (I, f) satisfies positive specification, for $x_N^i \in I$ $(1 \le i \le k)$, for $a_1 \le b_1 + N < a_2 \le b_2 + N < \cdots < a_k \le b_k + N$ and for p, there exists $y \in I$ with $f^p y = y$ such that $d(f^n y, f^n x_N^i) < \varepsilon/2$ for every $a_i \le n \le b_i + N$ and $1 \le i \le k$. Define $\overline{y} \in X$ by

$$ar{y} = (f^{N-1}y, f^{N-2}y, \cdots, fy, y, f^{p-1}y, f^{p-2}y, \cdots, fy, y, f^{p-1}y, \cdots)$$

Then \bar{y} satisfies $\sigma^{\nu}\bar{y} = \bar{y}$. For each $1 \leq i \leq k$, since $x_j^i = f(x_{j+1}^i)$ for every $j \in N$, \bar{x}_i is expressed by

$$\bar{x}_i = (f^{N-1}x_N^i, \cdots, fx_N^i, x_N^i, x_{N+1}^i, \cdots) .$$

Since diam (I)=1, we have, for every $a_i \leq n \leq b_i$,

$$\overline{d}(\sigma^{n}\overline{y}, \sigma^{n}\overline{x}_{i}) = \overline{d}((f^{n+N-1}y, \cdots, f^{n+1}y, f^{n}y, f^{n+p-1}y, \cdots), \\ (f^{n+N-1}x_{N}^{i}, \cdots, f^{n+1}x_{N}^{i}, f^{n}x_{N}^{i}, f^{n}x_{N+1}^{i}, \cdots))$$

$$\leq \sum_{j=1}^{N} 2^{-j}d(f^{n+N-j}y, f^{n+N-j}x_{N}^{i}) + \sum_{j=N+1}^{\infty} 2^{-j}$$

$$< \varepsilon/2 + 1/2^{N} < \varepsilon .$$

Case (ii): $a_1 < 0$. Put $\overline{x}'_i = \sigma^{a_1} \overline{x}_i$, $a'_i = a_i - a_1$ and $b'_i = b_i - a_1$ $(1 \le i \le k)$. Note that $a'_{i+1} - (b'_i + N) \ge K'$ and $p \ge (b'_k + N) - a'_1 + K'$. Apply the case (i) to $\overline{x}'_i \in X$ $(1 \le i \le k)$, $0 = a'_1 \le b'_1 + N < a'_2 \le b'_2 + N < \cdots < a'_k \le b'_k + N$ and p. Then we get $\overline{y}' \in X$ with $\sigma^p \overline{y}' = \overline{y}'$ such that $\overline{d}(\sigma^n \overline{y}', \sigma^n \overline{x}'_i) < \varepsilon$ for $a'_i \le n \le b'_i$, $1 \le i \le k$. Put $\overline{y} = \sigma^{-a_1} \overline{y}'$, then this is a required point. Proposition 2.1 is proved.

To prove Proposition 2.2, we prepare two lemmas.

LEMMA 2.3. Let Y be a compact interval and $\xi: Y \rightarrow R$ a continuous

map. Let a closed interval $J \subset \xi(Y)$ be given. Then there exists a closed interval $J' \subset Y$ such that $\xi(J') = J$.

PROOF. Put J=[a, b]. If a=b, the assertion is trivial. Suppose a < b. Then there are $c, d \in Y$ such that $\xi(c)=a$ and $\xi(d)=b$. If c < d, put $q=\inf\{x \in [c, d]: \xi(x)=b\}$ and $p=\sup\{x \in [c, q]: \xi(x)=a\}$. Otherwise, put $p=\sup\{x \in [d, c]: \xi(x)=b\}$ and $q=\inf\{x \in [p, c]: \xi(x)=a\}$. In any case, by the intermediate-value theorem, we have $\xi([p, q])=J$.

For $x \in I$ and $\varepsilon > 0$, define $I(x, \varepsilon) = \{y \in I: d(x, y) \leq \varepsilon\}$.

LEMMA 2.4. Let $\varepsilon > 0$ be given.

(i) For every $x \in I$ and $n \ge 0$, it follows that

$$f^n(I(x, \varepsilon/2^n)) = I(f^n x, \varepsilon)$$

and

 $d(f^i x, f^i y) \leq \varepsilon$ for every $0 \leq i \leq n$ and $y \in I(x, \varepsilon/2^n)$.

(ii) There exists an integer $K = K(\varepsilon) > 0$ such that the following holds: for every $x \in I$, for every closed interval $I' \subset I$ and for every $n \geq K$, there is a closed interval $J \subset I(x, \varepsilon)$ such that $f^n(J) = I'$.

PROOF. By the definition of f, one has $f(I(x, \varepsilon)) = I(fx, 2\varepsilon)$ for every $x \in I$ and every $\varepsilon > 0$ (not necessary $\varepsilon < 1$). Applying this to $I(x, \varepsilon/2^n)$ repeatedly, we get (i). To see (ii), choose K > 0 such that $2^{-\kappa} < \varepsilon$. Then, since $2^{\kappa} \varepsilon \ge 1$, it follows that $f^n(I(x, \varepsilon)) = I(f^n x, 2^n \varepsilon) = I$ for every $x \in I$ and every $n \ge K$. Replacing ε in Lemma 2.3 by f^n , we get (ii).

PROOF OF PROPOSITION 2.2. Let $\varepsilon > 0$ be given. Choose a number ε' with $0 < \varepsilon' < \varepsilon$. Let $k = k(\varepsilon') > 0$ be an integer as in Lemma 2.4 (ii). Take any $k \ge 1$. Let $x_1, \dots, x_k \in X$ be given, as well as integers $0 \le a_1 \le b_1 < a_2 \le b_2 < \dots < a_k \le b_k$ and p with $a_{i+1} - b_i \ge K$ $(1 \le i \le k-1)$ and $p \ge b_k - a_1 + K$. Put $a_{k+1} = p + a_1$.

In order to find an interval $I_1 \subset I \subset (f^{a_1}x_1, \varepsilon')$ such that $f^p(I_1) \supset I_1$, put $I_{k+1} = I(f^{a_1}x_1, \varepsilon')$. Then I_i $(i \leq k)$ is determined recursively as follows. By Lemma 2.4 (ii), there is an interval $J_i \subset I(f^{b_i}x_i, \varepsilon')$ such that $f^{a_i+1-b_i}(J_i) = I_{i+1}$. Since $f^{b_i-a_i}(I(f^{a_i}x_i, \varepsilon'/2^{b_i-a_i})) = I(f^{b_i}x_i, \varepsilon')$ (by Lemma 2.4 (i)), there exists an interval $I_i \subset I(f^{a_i}x_i, \varepsilon'/2^{b_i-a_i})$ such that $f^{b_i-a_i}(I_i) = J_i$ (by Lemma 2.3).

Since $f^{a_{i+1}-a_i}(I_i) = I_{i+1}$ for $1 \le i \le k$, one has $I_{k+1} = f^{a_{k+1}-a_1}(I_1) = f^p(I_1)$. Note that $I_1 \subset I(f^{a_1}x_1, \varepsilon') = I_{k+1}$. By the intermediate-value theorem, theer exists a $y \in I_1$ such that $f^p y = y$. Put $x = f^{p-a_1}y$. Clearly $f^p x = x$ holds.

For every $1 \leq i \leq k$ and $a_i \leq n \leq b_i$, one has $f^n x = f^{n-a_1} y \in f^{n-a_1}(I_1) = f^{n-a_i}(I_i) \subset f^{n-a_i}(I_i) \subset f^{n-a_i}(I_i) \subset I(f^n x_i, \varepsilon')$; i.e., $d(f^n x, f^n x_i) \leq \varepsilon' < \varepsilon$. This means that (I, f) satisfies positive specification. The proof is completed.

(III) PROOF OF (C). Let $\bar{a} = (a_1, a_2, \dots) \in X$ be given. Denote by J_1 the 1/4-closed neighborhood of a_1 in I. If $J \subset I$ is an interval such that diam $(J) \leq 1/2$, then $f^{-2}(J)$ has at least two connected components and the diameter of each connected component of $f^{-2}(J)$ is not greater than $(1/2) \operatorname{diam}(J)$. Hence, for $J_n = f^{-2(n-1)}(J_1)$ $(n \geq 1)$, there exists a homeomorphism $\psi_n: J_n \to I \times F_n$ where F_n is a finite set with card $(F_n) \geq 2^{n-1}$. Put $V_0 = \{\bar{x} \in X: x_1 \in J_1\}$. Clearly V_0 is a neighborhood of \bar{a} , and this is expressed by the inverse limit of the sequence

$$J_1 \leftarrow J_2 \leftarrow J_2 \leftarrow J_3 \leftarrow J_2 \leftarrow J_3 \leftarrow J_2 \cdots$$

Therefore V_0 is homeomorphic to the inverse limit of the sequence

$$I \times F_1 \xleftarrow{\psi_1} I \times F_2 \xleftarrow{\psi_2} I \times F_3 \xleftarrow{\psi_3} \cdots$$

where $\psi_n = \psi_n \circ f^2 \circ \psi_{n+1}^{-1}$ $(n \ge 1)$. This implies that V_0 is homeomorphic to the product of I and a Cantor set. The proof is completed.

§3. Proof of Theorem 2.

Let f(x)=1-|2x-1| as before. Define the continuous map $h:(-1/2, 3/2) \rightarrow R$ by

$$h(x) = \begin{cases} f(x) - (2\pi)^{-1} \sin (2\pi x) & (-1/2 < x \le 1/2) \\ f(x) + (2\pi)^{-1} \sin (2\pi x) & (1/2 < x < 3/2) \\ \end{cases}$$

Clearly h satisfies the following.

- (L.1) (i) h(0)=0, h(1/2)=1 and h(x)=h(1-x) for -1/2 < x < 3/2.
- (ii) h(-x) = -h(x) for -1/2 < x < 1/2.
- (iii) h'(0)=1 and h'(x)>1 for $x \in (-1/2, 1/2)-\{0\}$.
- (iv) $h(x) = x + o(x^2)$.

Here h' denotes the derivative of h, and o(t) means a function such that $o(t)/t \rightarrow 0$ as $t \rightarrow 0$.

Note that the restriction of h to I is a continuous map from I onto itself. Let $(X_k, \sigma_k) = \lim_{\leftarrow} (I, h)$ and $(X, \sigma) = \lim_{\leftarrow} (I, f)$. Clearly Theorem 2 is obtained from the next two propositions.

PROPOSITION 3.1. (X_h, σ_h) is topologically conjugate to (X, σ) .

PROPOSITION 3.2. There exists $g: S^3 \to S^3$, a C¹-diffeomorphism of the 3-sphere which has an attractor Λ such that (Λ, g) is topologically conjugate to (X_h, σ_h) .

(I) PROOF OF PROPOSITION 3.1. We have to show that there exists a homeomorphism φ_0 from X onto X_h such that $\varphi_0 \circ \sigma = \sigma_h \circ \varphi_0$. To do this we need several Lemmas.

Let $T^1 = \mathbb{R}/\mathbb{Z}$ and denote the natural projection by $\pi_0: \mathbb{R} \to T^1$. For each $x \in T^1$ there is a unique $t_x \in [0, 1]$ with $\pi_0(t_x) = x$. Hence the continuous map $p_0: T^1 \to I$ is well defined by $p_0(x) = 1 - |2t_x - 1|$. Consider the continuous map $\overline{\eta}(x) = 2x - (2\pi)^{-1} \sin(2\pi x)$ $(x \in \mathbb{R})$ and denote by $\eta: T^1 \to T^1$ the factor of $\overline{\eta}$ under π_0 . Let ζ denote the endomorphism of T^1 defined by $\zeta(x) = 2x$ $(x \in T^1)$.

(L.2) (i) p_0 is an open map. (ii) $p_0(x) = p_0(-x)$ $(x \in T^1)$. (iii) $p_0 \circ \zeta = f \circ p_0$. (iv) $p_0 \circ \eta = h \circ p_0$. (v) $\overline{\eta}(x) + \overline{\eta}(1-x) = 2$ $(x \in \mathbf{R})$. (vi) For every nonempty open set U in T^1 , there exists an integer N > 0 such that $\eta^N(U) = T^1$.

PROOF. (i)~(v) are easy. (vi) follows from the fact that $\bar{\eta}'(x) > 1$ for every $x \in \mathbf{R} - \mathbf{Z}$.

We denote by $C^{0}(Y)$ the set of all continuous maps from a topological space Y to itself. For each $\alpha \in C^{0}(T^{1})$, we denote by $\overline{\alpha} \in C^{0}(\mathbb{R})$ a lift of α . Then it is well known (P. 64 of [9]) that, for every $x \in \mathbb{R}$ and $n \in \mathbb{Z}$ with $n \neq 0$, the number $(1/n)(\overline{\alpha}(x+n) - \overline{\alpha}(x))$ is an integer, and that this integer is independent of the choice of x and n. Such an integer is called the *degree* of α and denoted by deg (α) . A map $\alpha \in C^{0}(\mathbb{T}^{1})$ is said to be *monotone* if a lift $\overline{\alpha}$ satisfies $\overline{\alpha}(x_{1}) \geq \overline{\alpha}(x_{2})$ for every $x_{1}, x_{2} \in \mathbb{R}$ with $x_{1} \geq x_{2}$ (this definition is obviously independent of the choice of $\overline{\alpha}$).

(L.3) (i) deg $(\zeta) = 2$.

(ii) deg $(\eta) = 2$.

(iii) η is monotone.

PROOF. Obvious.

(L.4) There exists a homeomorphism $\alpha \in C^0(T^1)$ satisfying (i) $\alpha(x) + \alpha(-x) = 0$ $(x \in T^1)$

and

(ii) $\alpha \circ \eta = \zeta \circ \alpha$.

PROOF. Define

 $H = \{ \alpha \in C^{0}(T^{1}): \alpha \text{ is monotone and satisfies } \deg(\alpha) = 1 \}$

and

 $V = \{ \overline{\alpha} \in C^{\circ}(\mathbf{R}) \colon \overline{\alpha} \text{ is a lift of some } \alpha \in H. \quad \overline{\alpha}(x) + \overline{\alpha}(1-x) = 1 \ (x \in \mathbf{R}) \}.$

Since $\alpha \in H$ is degree-one, the metric function D of V is defined by

 $D(\bar{\alpha}, \bar{\beta}) = \max \{ d(\bar{\alpha}(x), \bar{\beta}(x)) \colon x \in [0, 1] \} \quad \text{for} \quad \bar{\alpha}, \bar{\beta} \in V ,$

where d denotes the euclidian metric of R.

We claim that V is a complete metric space. Indeed, if $\{\bar{\alpha}_i\}$ is a Cauchy sequence with respect to D, then $\{\bar{\alpha}_i\}$ uniformly converges to some $\bar{\alpha} \in C^0(\mathbf{R})$. Since a uniform limit of lifts of degree-one maps is itself a lift, $\bar{\alpha}$ is a lift of some $\alpha_0 \in C^0(T^1)$. As $\{\bar{\alpha}_i\} \subset V, \alpha_0$ is monotone and degree-one. Also $\bar{\alpha}$ satisfies $\bar{\alpha}(x) + \bar{\alpha}(1-x) = 1$ $(x \in \mathbf{R})$. Hence $\bar{\alpha}$ belongs to V, i.e. V is complete.

Let $\overline{\zeta}$ be the lift of ζ defined by $\overline{\zeta}(x) = 2x$ $(x \in \mathbb{R})$. Define the map $T: V \to C^{\circ}(\mathbb{R})$ by $T(\overline{\alpha}) = \overline{\zeta}^{-1} \circ \overline{\alpha} \circ \overline{\eta}$. We claim that T is a contraction map on V. Let $\overline{\alpha} \in V$ be given. Since deg $(\eta) = 2$ and deg $(\alpha) = 1$, we have $T(\overline{\alpha})(n+x) - T(\overline{\alpha})(x) = (1/2)(\overline{\alpha}(2n+\overline{\eta}(x)) - \overline{\alpha}\overline{\eta}(x)) = n$ for every $x \in \mathbb{R}$ and $n \in \mathbb{Z}$. So $T(\overline{\alpha})$ is a lift of some $\alpha' \in H$. Using (L.2(v)) and the equation $\overline{\alpha}(x) + \overline{\alpha}(1-x) = 1$, we have

$$T(\overline{\alpha})(x) + T(\overline{\alpha})(1-x) = (1/2)\overline{\alpha}\overline{\eta}(x) + (1/2)\overline{\alpha}(2-\overline{\eta}(x))$$
$$= (1/2)(\overline{\alpha}\overline{\eta}(x) + \overline{\alpha}(1-\overline{\eta}(x)) + 1) = 1 ,$$

so that $T(\overline{\alpha}) \in V$. This means $T(V) \subset V$. For every $\overline{\alpha}, \overline{\beta} \in V$, we have

$$D(T(\overline{\alpha}), T(\overline{\beta})) = \max \{ d(\overline{\zeta}^{-1}\overline{\alpha}\overline{\eta}(x), \overline{\zeta}^{-1}\overline{\beta}\overline{\eta}(x)) \colon x \in [0, 1] \}$$

= (1/2) max $\{ d(\overline{\alpha}(y), \overline{\beta}(y)) \colon y = \overline{\eta}(x) \in [0, 2] \}$
= (1/2) $D(\overline{\alpha}, \overline{\beta})$.

Therefore T is a contraction map on V.

Since V is complete, T has a unique fixed point $\overline{\alpha}$ in V; i.e. $\overline{\alpha} \circ \overline{\eta} = \overline{\zeta} \circ \overline{\alpha}$. Denote by α the factor of $\overline{\alpha}$ under π_0 . It is easy to see that $\alpha \circ \eta = \zeta \circ \alpha$ and $\alpha(x) + \alpha(-x) = 0$ $(x \in T^1)$. To complete the proof of (L.4), it only remains to show that α is one-to-one. Assume that $x \neq y$ and $\alpha(x) = \alpha(y)$ for some $x, y \in T^1$. Then there is a nonempty open interval $U \subset T^1$ with $\alpha(U) = \alpha(x)$, because α is monotone and degree-one. By (L.2(vi)) one has $\eta^N(U) = T^1$ for some N > 0. Hence $T^1 = \alpha \eta^N(U) = \zeta^N \alpha(U) = \zeta^N \alpha(U) = \zeta^N \alpha(x)$, which is a contradiction.

(L.5) There is a homeomorphism $\beta: I \rightarrow I$ such that $\beta \circ h = f \circ \beta$.

PROOF. Let α and p_0 be as in (L.4) and (L.2) respectively. Suppose

 $p_0(x) = p_0(y)$ and $x \neq y$. Then one has x = -y, so that $p_0\alpha(x) = p_0\alpha(-y) = p_0(-\alpha(y)) = p_0\alpha(y)$ by (L.4(i)) and (L.2(ii)). Hence there is a map $\beta: I \to I$ such that $\beta \circ p_0 = p_0 \circ \alpha$. By (L.2(i)), β is continuous. Similarly, since α is a homeomorphism, there is a continuous map $\beta': I \to I$ such that $\beta' \circ p_0 = p_0 \circ \alpha^{-1}$. Then one has $\beta \circ \beta' \circ p_0 = \beta \circ p_0 \circ \alpha^{-1} = p_0 \circ \alpha \circ \alpha^{-1} = p_0$, and also $\beta' \circ \beta \circ p_0 = p_0$. Since p_0 is surjective, we have $\beta \circ \beta' = \beta' \circ \beta = id$; i.e. β is a homeomorphism. By (L.2(iv)), (L.4(ii)) and (L.2(iii)), it follows that $\beta \circ h \circ p_0 = f \circ \beta \circ p_0$. Using $p_0(T^1) = I$, we get $\beta \circ h = f \circ \beta$.

Now we complete the proof of Proposition 3.1. Let β be as in (L.5). Define the continuous map $\varphi_0: X \to I^N$ by $\varphi_0((x_i)_{i \ge 1}) = (\beta^{-1}x_i)_{i \ge 1}$ for $(x_i)_{i \ge 1} \in X$. Since $h(\beta^{-1}x_{i+1}) = \beta^{-1}f(x_{i+1}) = \beta^{-1}(x_i)$ for every $(x_i)_{i \ge 1} \in X$, one has $\varphi_0(X) \subset X_h$. Since $\beta^{-1}: I \to I$ is a homeomorphism, φ_0 is a homeomorphism from X onto X_h . Using the equation $\beta^{-1} \circ f = h \circ \beta^{-1}$, we have

$$\varphi_0 \sigma((x_i)_{i \ge 1}) = (\beta^{-1} f(x_i))_{i \ge 1} = (h \beta^{-1}(x_i))_{i \ge 1} = \sigma_h \varphi_0((x_i)_{i \ge 1})$$

for every $(x_i)_{i\geq 1} \in X$. Therefore (X_h, σ_h) is topologically conjugate to (X, σ) . The proof is completed.

(II) PROOF OF PROPOSITION 3.2. First of all we prepare some notation. Let $\kappa = \sinh^{-1}(2)$ (≈ 1.44). Define

$$M = \{(x, y, z) \in \mathbb{R}^3 : |x| \leq \kappa, y \in [0, \pi], |z| \leq \kappa\}$$

and

$$U_{\scriptscriptstyle 0} \!= \! \bigcup_{u \in \mathcal{U}} \left\{ u \in {oldsymbol{R}}^{\scriptscriptstyle 3} \!\!: d(u, v) \!<\! 1/2
ight\}$$
 ,

where d denotes the enclidian metric of \mathbb{R}^3 . Then there exists a $C^{\infty} - \max \mathcal{P}: U_0 \to \mathbb{R}^3$ such that

$$\Phi(x, y, z) = \begin{cases}
(\sinh (x), -\cos (y) \cosh (z), \sin (y) \sinh (z)) \\
for (x, y, z) \in U_0 \quad \text{with} \quad y \leq \pi/4, \\
(\sin (y) \sinh (x), -\cos (y) \cosh (x), \sinh (z)) \\
for (x, y, z) \in U_0 \quad \text{with} \quad y \geq 3\pi/4
\end{cases}$$

and $\Phi \mid M': M' \rightarrow \Phi(M')$ is a C^{∞} -diffeomorphism, where

$$M' = \{(x, y, z) \in M: \pi/4 \leq y \leq 3\pi/4\}$$
.

Indeed, as such a C^{∞} -map we can choose

$$egin{aligned} arPhi(x,\ y,\ z) = & \chi_{\scriptscriptstyle 0}(y)(\sinh{(x)},\ -\cos{(y)}\cosh{(z)},\ \sin{(y)}\sinh{(z)}) \ &+ & \overline{\chi}_{\scriptscriptstyle 0}(y)(\sin{(y)}\sinh{(x)},\ -\cos{(y)}\cosh{(x)},\ \sinh{(z)}) \end{aligned}$$

where $\chi_0: \mathbb{R} \to \mathbb{R}$ is a monotone decreasing C^{∞} -function such that $\chi_0(y) = 1$ $(y \leq \pi/4)$ and $\chi_0(y) = 0$ $(y \geq 3\pi/4)$, and $\overline{\chi}_0$ is defined by $\overline{\chi}_0(y) = 1 - \chi_0(y)$ $(y \in \mathbb{R})$. As an easy corollary the following holds.

(L.6) (i) Let M(t) $(t \in [0, \pi])$ be the leaf of foliation defined by $M(t) = \{(x, y, z) \in M: y = t\}$, then Φ is one-to-one on $M - (M(0) \cup M(\pi))$.

(ii) Φ is a C^{∞} -local diffeomorphism on $M-(\{(x, 0, 0) \in M(0)\} \cup \{(0, \pi, z) \in M(\pi)\}).$

(iii) There is a number c > 0 such that $d(\Phi(u), \Phi(v)) \leq cd(u, v)$ for every $u, v \in M$.

(iv) $\Phi(x, 0, z) = \Phi(x, 0, -z)$ for $(x, 0, z) \in M(0)$, and

 $\Phi(x, \pi, z) = \Phi(-x, \pi, z)$ for $(x, \pi, z) \in M(\pi)$.

 $(\mathbf{v}) \quad \boldsymbol{\Phi}$ is an open map.

(vi) Put $W = \Phi(M)$ (this is illustrated in Figure 1), then $\Phi(M_0) =$ int (W) where $M_0 = \{(x, y, z) \in M : |x| < \kappa, |z| < \kappa\}$.

(vii) Put $W(t) = \Phi(M(t))$ $(t \in [0, \pi])$. For each $u \in W$ there is a unique $t_u \in [0, \pi]$ with $u \in W(t_u)$. Then the map $p: W \to I$ defined by $p(u) = t_u/\pi$ is continuous.

PROPOSITION 3.3. Let W and $\{W(t): t \in [0, \pi]\}$ be as above. Then there exists a continuous map $g: W \rightarrow W$ which satisfies the following conditions;

(1) let h be a map as in (L.1) and define $h_1: (-\pi/2, 3\pi/2) \rightarrow R$ by $h_1(t) = \pi h(t/\pi)$, then $g(W(t)) \subset W(h_1(t))$ for every $t \in [0, \pi]$,

- (2) $g(W) \subset int(W)$,
- (3) $\max_{t \in [0,\pi]} \operatorname{diam} g^n(W(t)) \to 0 \text{ as } n \to \infty$,
- (4) g is one-to-one,
- (5) g is a C^{∞} -local diffeomorphism on W- $(L_1 \cup L_2)$ where

 $L_1 = \Phi(\{(x, 0, 0) \in M(0)\})$ and $L_2 = \Phi(\{(0, \pi, z) \in M(\pi)\})$,

(6) g is a C¹-local diffeomorphism on $L_1 \cup L_2$,

(7) g is isotopic to the identity map of W.

If Proposition 3.3 holds, then Proposition 3.2 is proved as follows. Let g be the continuous map as in Proposition 3.3. From (4), (5) and (6) it follows that $g: W \to W$ is a C^1 -diffeomorphism. We consider W to be $W \subset \mathbb{R}^3 \subset S^3$. By the isotopy extension theorem (P. 180 of [7]), g is extended to a C^1 -diffeomorphism from S^3 onto itself. Denote the extended diffeomorphism by the same symbol g. Then $\Lambda = \bigcap_{n \ge 0} g^n(W)$ is a ginvariant compact set.

To show that (Λ, g) is topologically conjugate to (X_h, σ_h) , let $p: W \to I$ be the continuous map as in (L.6(vii)). Then one has $h \circ p = p \circ g$ by (1). Since $hpg^{-(i+1)}(u) = pg^{-i}(u)$ for every $u \in \Lambda$ and $i \geq 0$, the continuous map $\varphi: \Lambda \to X_h$ is well defined by $\varphi(u) = (p(u), pg^{-1}(u), pg^{-2}(u), \cdots)$. We claim that φ is one-to-one and onto; i.e. a homeomorphism. Indeed, if $pg^{-i}(u) = pg^{-i}(u')$ for every $i \geq 0$, then there are $t_i \in [0, \pi]$ $(i \geq 0)$ such that $u, u' \in g^i(W(t_i))$. By (3) one has u = u'; i.e. φ is one-to-one. To see $\varphi(\Lambda) = X_h$, let $(y_i)_{i\geq 1} \in X_h$ be given. It is easy to see that $\pi y_i = h_1(\pi y_{i+1})$ for each $i \geq 1$. Hence one has $g^i(W(\pi y_{i+1})) \subset g^{i-1}(W(\pi y_i))$ $(i \geq 1)$ by (1). By (3) there is $u_y \in \Lambda$ with $\{u_y\} = \bigcap_{i\geq 1} g^i(W(\pi y_{i+1}))$. Since $\varphi(u_y) = (pg^{-i+1}(u_y))_{i\geq 1} = (y_i)_{i\geq 1} \in \varphi(A)$, φ is onto. Since $\sigma\varphi(u) = (hpg^{-i+1}(u))_{i\geq 1} = (pg^{-i+2}(u))_{i\geq 1} = \varphi g(u)$ for every $u \in \Lambda$, (Λ, g) is topologically conjugate to (X_h, σ_h) under φ .

 (Λ, g) satisfies specification since so does (X_h, σ_h) (by combining Theorem 1(B) and Proposition 3.1). Obviously (Λ, g) is topologically transitive. Hence Λ is an attractor of g by (2). This prove Proposition 3.2.

It remains only to prove Proposition 3.3.

(III) PROOF OF PROPOSITION 3.3. We must construct a continuous map g satisfying the conditions $(1) \sim (7)$. To do this we define several functions.

(L.7) Let $h_2: \mathbb{R} \to \mathbb{R}$ be a C^{∞} -function such that

- (i) $h_2(-t) = -h_2(t)$ $(t \in \mathbf{R})$, (ii) $h_2(\kappa) = \kappa/3$,
- (iii) $h'_2(0)=1$ and $0 < h'_2(t) < 1$ $(t \neq 0)$,

(iv) $h_2''(t) < 0$ (t>0),

 $(\mathbf{v}) \quad \sqrt{(h_2(t))^2 + (h_2(s))^2} \leq \sqrt{2} h_2(\sqrt{t^2 + s^2} / \sqrt{2}) \quad ((t, s) \in \mathbf{R}^2).$

(As such a function, we can choose $h_2(t) = \lambda \tan^{-1}(t/\lambda)$ where λ is the root of $\tan(\kappa/(3\lambda)) = \kappa/\lambda$ with $0 < \lambda < \pi/2$; $\lambda \approx 0.306$.) Then one obtains

- (vi) $h_2(t) = t + o(t^2)$, (vii) $h_2(t_1) < h_2(t_2)$ $(t_1 < t_2)$,
- (viii) $\lim_{n\to\infty} h_2^n(t) = 0$ $(t \in \mathbf{R})$, (ix) $|h_2(t)| \ge |t|/3$ $(|t| \le \kappa)$,
- $(\mathbf{x}) |h_2(t)-h_2(t')| \leq 2h_2(|t-t'|/2) \ (t, t' \in \mathbf{R}).$

Let h_0 define by $h_0(y) = 2y - (1/2) \sin(2y)$ $(y \in \mathbb{R})$. Recall the map h_1 as in (1). We remark that $h_1(y) = h_0(y)$ on $(-\pi/2, \pi/2]$ and $h_1(y) = 2\pi - h_0(y)$ on $[\pi/2, 3\pi/2)$. Choose a constant $\alpha > 0$ such that $h_0((\pi/2) - \alpha) > 3\pi/4$. Put $M_1 = \bigcup_{t \in [0, \pi/2]} M(t)$ and $M_2 = \bigcup_{t \in [\pi/2, \pi]} M(t)$. We denote by U_i the α -open neighborhood of M_i in \mathbb{R}^3 (i=1, 2). Take a monotone decreasing C^{∞} function $\chi_1: \mathbb{R} \to \mathbb{R}$ such that

$$\chi_1(y) = 1$$
 $(y \leq \pi/4)$ and $\chi_1(y) = 0$ $(y \geq (\pi/2) - \alpha)$,

and a monotone increasing C^{∞} -function $\chi_2: \mathbb{R} \to \mathbb{R}$ such that

$$\chi_2(y) = 0$$
 $(y \leq (\pi/2) + \alpha)$ and $\chi_2(y) = 1$ $(y \geq 3\pi/4)$.

Put $\bar{\chi}_i(y) = 1 - \chi_i(y)$ (i=1, 2). We define two C^{∞} -diffeomorphisms $G_i: U_i \to \mathbb{R}^{\mathfrak{s}}$ (i=1, 2) by

$$G_{1}(x, y, z) = \chi_{1}(y) \left(\frac{x}{3} - \frac{\kappa}{2}, h_{0}(y), h_{2}(z) \right) \\ + \overline{\chi}_{1}(y) \left(\frac{1}{3\sqrt{2}} (x-z) - \frac{\kappa}{2}, h_{0}(y), \frac{1}{3\sqrt{2}} (x+z) \right)$$

and

$$egin{aligned} G_2(x,\,y,\,z) = & \chi_2(y) \Big(rac{z}{3} + rac{\kappa}{2},\,2\pi - h_0(y),\,h_2(x) \Big) \ &+ ar{\chi}_2(y) \Big(rac{1}{3 \sqrt{2}} (z-x) + rac{\kappa}{2},\,2\pi - h_0(y),\,rac{1}{3 \sqrt{2}} (z+x) \Big) \;. \end{aligned}$$

By the definitions of G_i and M_i one has $G_i(M_i) \subset M$ for i=1, 2. Take an open neighborhood $U'_i \subset U_i$ of M_i such that $G_i(U'_i) \subset U_0$ (i=1, 2). We define the map $G: U'_1 \cup U'_2 \to \mathbb{R}^3$ by

$$G = G_1$$
 on $\{(x, y, z) \in U'_1: y \leq \pi/2\}$

and

$$G = G_2$$
 on $\{(x, y, z) \in U'_2: y > \pi/2\}$.

Notice that G is not continuous at $(x, \pi/2, z) \in U'_1 \cap U'_2$. Nevertheless, the composition $\Phi \circ G: U'_1 \cup U'_2 \to \mathbb{R}^3$ is a C^{∞} -map. Because, for $(x, y, z) \in U'_1 \cap U'_2$, taking account of the inequalities

$$|y-(\pi/2)| < lpha$$
, $3\pi/4 < h_0(y) < \pi + rac{1}{2}$ and $3\pi/4 < 2\pi - h_0(y) < \pi + rac{1}{2}$

one can easily verify that the definitions of G_1 , G_2 and Φ imply the relation

$$\begin{split} \varPhi G_1(x, y, z) = \varPhi G_2(x, y, z) = & \left(\sin (h_0(y)) \sinh \left(\frac{1}{3\sqrt{2}} (x-z) - \frac{\kappa}{2} \right) \right) \\ & -\cos (h_0(y)) \cosh \left(\frac{1}{3\sqrt{2}} (x-z) - \frac{\kappa}{2} \right) \right) \sinh \left(\frac{1}{3\sqrt{2}} (x+z) \right) \right) \,. \end{split}$$

(L.8) (i) $G(M(t)) \subset \{(x, h_1(t), z) \in M: |x| < \kappa, |z| < \kappa\}$ for $t \in [0, \pi]$.

(ii) $\Phi \circ G$ is one-to-one on $M - (M(0) \cup M(\pi))$.

(iii) $\Phi \circ G$ is a C^{∞} -local diffeomorphism on

 $M - (\{(x, 0, 0) \in M(0)\} \cup \{(0, \pi, z) \in M(\pi)\})$.

PROOF. (i) follows from $h_1(t) = h_0(t)$ $(t \le \pi/2)$ and $h_1(t) = 2\pi - h_0(t)$ $(t > \pi/2)$. (ii) and (iii) follow immediately from the definitions of Φ and G.

Now we show the existence of a map $g: W \to W$ with $g \circ \Phi = \Phi \circ G$. Suppose that $\Phi(x, y, z) = \Phi(x', y', z')$ and $(x, y, z) \neq (x', y', z')$. By (L.6(i)) we have either x = x', y = y' = 0 and z = z', or x = -x', $y = y' = \pi$ and z = z'. Hence, by (L.6(iv)) and (L.7(i)), we have

$$\Phi G(x, 0, z) = \Phi\left(\frac{x}{3} - \frac{\kappa}{2}, 0, h_2(z)\right) = \Phi\left(\frac{x}{3} - \frac{\kappa}{2}, 0, h_2(-z)\right) = \Phi G(x, 0, -z)$$

Similarly $\Phi G(x, \pi, z) = \Phi G(-x, \pi, z)$ holds. Consequently we have $\Phi G(x, y, z) = \Phi G(x', y', z')$. This implies that there exists a map g such that $g \circ \Phi = \Phi \circ G$. The image g(W) is illustrated in Figure 1.

In order to prove Proposition 3.3, it remains only to show that g is continuous and satisfies the conditions $(1)\sim(7)$.

(L.9) (i) g is continuous.

(ii) g satisfies the conditions $(1) \sim (5)$.

PROOF. (i) follows from (L.6(v)). g satisfies (1) by (L.8(i)), (2) by (L.6(vi)) and (L.8(i)), and (5) by (L.8(iii)). We prove that g satisfies (3). Let $y \in [0, \pi]$ be given. Suppose $y \leq \pi/2$. Then, for every u = (x, y, z)

,

and u' = (x', y, z') in M(y), we have

$$\begin{split} d(G(u), G(u')) &\leq \chi_1(y) \left\| \left(\frac{x - x'}{3}, 0, h_2(z) - h_2(z') \right) \right\| + \bar{\chi}_1(y) \left\| \left(\frac{x - x'}{3}, 0, \frac{z - z'}{3} \right) \right\| \\ &\leq 2 \left\| \left(h_2 \left(\frac{x - x'}{3} \right), 0, h_2 \left(\frac{z - z'}{2} \right) \right) \right\| \quad \text{(by (ix) and (x) in (L.7))} \\ &\leq 2^{3/2} h_2(2^{-3/2} d(u, u')) \qquad \qquad \text{(by (L.7(v)))} . \end{split}$$

Similarly, for $y > \pi/2$, we have $d(G(u), G(u')) \le 2^{8/2} h_2(2^{-3/2} d(u, u'))$ for every $u, u' \in M(y)$. Hence it follows that

$$2^{-3/2} \operatorname{diam} G^{n}(M(y)) \leq h_{2}(2^{-3/2} \operatorname{diam} G^{n-1}(M(y))) \leq \cdots$$
$$\leq h_{2}^{n}(2^{-3/2} \operatorname{diam} M(y)) = h_{2}^{n}(\kappa)$$

for every $y \in [0, \pi]$ and n > 0. From this we get

$$\max_{y \in [0,\pi]} \operatorname{diam} g^{n}(W(y)) = \max_{y \in [0,\pi]} \operatorname{diam} \Phi \circ G^{n}(M(y))$$
$$\leq c \cdot \max_{y \in [0,\pi]} \operatorname{diam} G^{n}(M(y)) \qquad (by \ (L.6(iii)))$$
$$\leq 2^{3/2} ch_{2}^{n}(\kappa) \longrightarrow 0 \ (as \ n \longrightarrow \infty) \qquad (by \ (L.7(viii)));$$

i.e. g satisfies (3).

We prove that g satisfies (4). By (L.6(i)) and (L.8(ii)), g is one-toone on $W-(W(0) \cup W(\pi))$. Let $(r, s, 0), (r', s', 0) \in W(0)$ satisfy g(r, s, 0) =g(r', s', 0). There exist (x, 0, z) and (x', 0, z') in M(0) such that $\Phi(x, 0, z) =$ (r, s, 0) and $\Phi(x', 0, z') = (r', s', 0)$. Since $g \circ \Phi = \Phi \circ G$, we have

$$\left(\sinh\left(\frac{x}{3}-\frac{\kappa}{2}\right), -\cosh\left(h_2(z)\right), 0\right) = \left(\sinh\left(\frac{x'}{3}-\frac{\kappa}{2}\right), -\cosh\left(h_2(z')\right), 0\right).$$

By (L.7(i)) we get eigher x=x' and z=z', or x=x' and z=-z'. In any case, $\Phi(x, 0, z) = \Phi(x', 0, z')$; i.e. (r, s, 0) = (r', s', 0). Hence g is one-to-one on W(0). Similarly it follows that g is one-to-one on $W(\pi)$. Since $g(W-(W(0) \cup W(\pi))) \cap g(W(0) \cup W(\pi)) = \emptyset$, g is one-to-one on W; i.e. g satisfies (4).

(L.10) g satisfies (6) and (7).

PROOF. First we prove that g is a C^1 -local diffeomorphism on L_1 . Let $v_0 = (r_0, -1, 0)$ be a point in L_1 and v = (r, s, t) a point sufficiently near v_0 with $v \neq v_0$. Take a point $u_0 = (x_0, 0, 0)$ such that $\Phi(u_0) = v_0$. There is a point u = (x, y, z) in U_0 such that $\Phi(u) = v$. Since u is also sufficiently near u_0 by (L.6(v)), we may asume that $-\pi/4 \leq y \leq \pi/4$. Then we have

$$(r, s, t) = (\sinh(x), -\cos(y)\cosh(z), \sin(y)\sinh(z))$$

and

$$g(v) = (g_1, g_2, g_3)$$

= $\left(\sin\left(\frac{x}{3} - \frac{\kappa}{2}\right), -\cos(h_1(y))\cosh(h_2(z)), \sin(h_1(y))\sinh(h_2(z))\right)$

Hence

$$\frac{dg_1}{dr} = \frac{dg_1}{dx} / \frac{dr}{dx} \longrightarrow a_0 \qquad (\text{as } x \longrightarrow x_0; \text{ i.e. } r \longrightarrow r_0)$$

where $a_0 = \{ \cosh((x_0/3) - (\kappa/2)) \} / \{ 3 \cosh(x_0) \} > 0.$ Using (L.1(iv)) and (L.7(vi)), we get

$$\lim_{(s,t)\to(-1,0)} \frac{\|(g_2(v), g_3(v)) - (g_2(v_0), g_3(v_0)) - (s+1, t)\|}{\|(s+1, t)\|}$$

=
$$\lim_{(y,z)\to(0,0)} \left[\frac{\{o(z^2)\cos(y) + o(y^2)\cosh(z) + o(y^2)o(z^2)\}^2}{\{\cosh(z) - \cos(y)\}^2} + \frac{\{o(z^2)\sin(y) + o(y^2)\sinh(z) + o(y^2)o(z^2)\}^2}{\{\cosh(z) - \cos(y)\}^2} \right]^{1/2}$$

= 0.

Therefore g is differentiable at $(r_0, -1, 0)$ and one has

$$Dg(r_0, -1, 0) = \begin{bmatrix} a_0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 and $Jg(r_0, -1, 0) = a_0 > 0$.

From an easy calculation it follows that

$$\frac{\partial(g_1, g_2, g_3)}{\partial(r, s, t)} = \frac{\partial(g_1, g_2, g_3)}{\partial(x, y, z)} \cdot \left[\frac{\partial(r, s, t)}{\partial(x, y, z)}\right]^{-1} \longrightarrow \begin{bmatrix} a_0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \quad (\text{as } u \longrightarrow u_0) .$$

This implies that g is a C^1 -local diffeomorphism on L_1 . Similarly we can prove that g is a C^1 -local diffeomorphism on L_2 . Therefore g satisfies (6).

From (4), (5) and (6), g is a C^1 -diffeomorphism from W into \mathbb{R}^3 . Since W is a closed ball in \mathbb{R}^3 and Jg(u) > 0 holds at $u = (r_0, -1, 0) \in W$, g is orientation preserving. Therefore g is isotopic to the identity map (P. 117 of [7]); i.e. g satisfies (7). The proof is completed.

References

- [1] N. AOKI and M. DATEYAMA, The relationship between algebraic number and expansiveness of group automorphisms, to appear in Fund. Math..
- [2] N. AOKI, M. DATEYAMA and M. KOMURO, Solenoidal automorphisms with specifications, Monatsh. Math., 93 (1982), 79-110.
- [3] R. BOWEN, Periodic points and measures for axiom A diffeomorphisms, Trans. Amer. Math. Soc., 154 (1971), 377-397.
- [4] R. BOWEN, Some systems with unique equilibrium state, Math. Systems Theory, 8 (1974), 193-202.
- [5] M. DENKER, C. GRILLENBERGER and K. SIGMUND, Ergodic Theory on Compact Spaces, Lecture Notes in Math., 527, Springer, 1976.
- [6] M. HÉNON, A two-dimensional mapping with a strange attractor, Comm. Math. Phps., 50 (1976), 69-77.
- [7] M. W. HIRSCH, Differential Topology, Graduate Texts in Math., 33, Springer, 1976.
- [8] D. LIND, Ergodic group automorphisms and specification, Lecture Notes Math., 729 (edited by Denker and Jacobs) Ergodic Theory, Springer, 1979, 93-104.
- [9] Z. Nitecki, Differentiable Dynamics, The MIT Press, Cambridge Ma., 1971.
- [10] K. SIGMUND, On dynamical systems with the specification property, Trans. Amer. Math. Soc., 190 (1974), 285-299.
- [11] S. SMALE, Differentiable dynamical systems, Bull. Amer. Math. Soc., 73 (1967), 747-817.
- [12] R. F. WILLIAMS, One-dimensional non-wandering sets, Topology, 6 (1967), 473-487.
- [13] R. F. WILLIAMS, Classification of one-dimensional attractors, Global Analysis, Proceedings of Symposia in Pure Math., 14 (1970), Amer. Math. Soc., Providence, 341-361.

Present Address: DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCES TOKYO METROPOLITAN UNIVERSITY FUKAZAWA, SETAGAYA-KU, TOKYO 158