Non-Expansive Attractors with Specification

Motomasa KOMURO
Tokyo Metropolitan University
(Communicated by K. Ogiue)

Introduction

Let $f: Y \rightarrow Y$ be a continuous surjection of a compact metric space Y. The inverse limit of f induces a compact metric space \bar{Y} and a homeomorphism \bar{f} of $\bar{Y} . \quad(\bar{Y}, \bar{f})$ is called the natural extension of f. As R. Williams proved in [12], if a 1-dimensional branched manifold Y admits an expanding immersion $g: Y \rightarrow Y$, then Y has no endpoints. Moreover (\bar{Y}, \bar{g}) is topologically conjugate to an attractor of some Axiom A diffeomorphism. But some attractors, as Hénon's attractors, resemble the natural extension (\bar{I}, \bar{f}) of a continuous surjection f of an interval I with endpoints. It is a problem whether there exist any diffeomorphisms which have an attractor topologically conjugate to (\bar{I}, \bar{f}).

For the continuous surjection $f(x)=1-|2 x-1|$ on the interval $I=[0,1]$, we show in this paper that there exists a diffeomorphism of the 3 -sphere which has an attractor topologically conjugate to (\bar{I}, \bar{f}). Furthermore we show that (\bar{I}, \bar{f}) satisfies not expansiveness but specification (these properties have been used in papers [1, 2], [3, 4], [5], [8] and [10] on ergodic theory). To realize the attractor in the 3 -sphere, our key ingregient is in constructing a fine foliation of a closed 3-ball.

§1. Definitions and results.

Let $X=(X, d)$ be a compact metric space and σ a homeomorphism of X (i.e. from X onto itself). By $\boldsymbol{R}, \boldsymbol{Z}$ and \boldsymbol{N} we denote the set of real numbers, the set of integers and the set of positive integers respectively. (X, σ) is expansive if there exists a $\delta>0$ such that, for every pair of distinct points $x, y \in X$, there is an $n \in Z$ with $d\left(\sigma^{n} x, \sigma^{n} y\right)>\delta$. (X, σ) is said to satisfy specification if the following holds; for every $\varepsilon>0$ there exists an integer $K=K(\varepsilon)>0$ such that, for every $k \geqq 1$, for every
k points $x_{1}, \cdots, x_{k} \in X$, for every integers

$$
a_{1} \leqq b_{1}<a_{2} \leqq b_{2}<\cdots<a_{k} \leqq b_{k}
$$

with

$$
a_{i+1}-b_{i} \geqq K \quad(1 \leqq i \leqq k-1)
$$

and for every integer p with $p \geqq b_{k}-a_{1}+K$, there exists a point $x \in X$ with $\sigma^{p} x=x$ such that

$$
d\left(\sigma^{n} x, \sigma^{n} x_{i}\right)<\varepsilon \quad \text { for } \quad a_{i} \leqq n \leqq b_{i}, 1 \leqq i \leqq k
$$

(X, σ) is said to be topologically transitive if $\left\{\sigma^{n} x: n \in Z\right\}$ is dense in X for some $x \in X$. If (X, σ) satisfies specification, then it is clearly topologically transitive. Let σ_{1} be a homeomorphism of a compact metric space $X_{1} . \quad(X, \sigma)$ and $\left(X_{1}, \sigma_{1}\right)$ are said to be topologically conjugate to each other if there exists a homeomorphism ρ from X onto X_{1} such that $\varphi \circ \sigma=\sigma_{1} \circ \varphi$. The topological conjugacy is an equivalent relation under which specification, topological transitivity and expansiveness are preserved.

Let $Y=(Y, d)$ be a compact metric space and $f: Y \rightarrow Y$ a continuous surjection. (Y, f) is said to satisfy positive specification if it satisfies the condition of specification for $a_{1} \geqq 0$. We define the metric \bar{d} of the direct product space Y^{N} by $\bar{d}(\bar{x}, \bar{y})=\sum_{i=1}^{\infty} 2^{-t} d\left(x_{i}, y_{i}\right)$ for $\bar{x}=\left(x_{i}\right)_{1}^{\infty}$ and $\bar{y}=$ $\left(y_{i}\right)_{1}^{\infty}$ in Y^{N}. The compact subset X of Y^{N} is defined by

$$
X=\left\{\bar{x} \in Y^{N}: f\left(x_{i+1}\right)=x_{i}, i \in N\right\}
$$

Let $\sigma: X \rightarrow X$ be the homeomorphism defined by $\sigma(\bar{x})=\left(f x_{1}, f x_{2}, f x_{3}, \cdots\right)=$ $\left(f x_{1}, x_{1}, x_{2}, \cdots\right)$ for $\bar{x}=\left(x_{1}, x_{2}, \cdots\right) \in X . \quad(X, \sigma)$ is called the natural extension of (Y, f), and it is denoted by $(X, \sigma)=\lim (Y, f)$.

Let g be a diffeomorphism of a compact manifold M. A g-invariant subset Λ of M is said an attractor of g if there exists a closed neighborhood W of Λ such that
(i) $g(W) \subset \operatorname{int}(W)$,
(ii) $\Lambda=\bigcap_{n \geq 0} g^{n}(W)$ and
(iii) $g \mid \Lambda: \Lambda \rightarrow \Lambda$ is topologically transitive.

We denote by (Λ, g) the restriction of (M, g) to an attractor 1 . Our main results are stated in the theorems below:

Theorem 1. Let $I=[1,0]$ be a compact interval with the euclidian metric, and $f: I \rightarrow I$ a continuous surjection defined by $f(x)=1-|2 x-1|$ $(x \in I)$. Let (X, σ) be the natural extension of (I, f). Then the following
holds:
(A) (X, σ) is not expansive,
(B) (X, σ) satisfies specification and
(C) each point of X has a neighborhood which is homeomorphic to the product of a compact interval and a Cantor set.

Theorem 2. Let (X, σ) be as in Theorem 1. Then there exists a C^{1} diffeomorphism g of the 3-sphere S^{s} which has an attractor 1 such that (Λ, g) is topologically conjugate to (X, σ).

§2. Proof of Theorem 1.

We denote by d the euclidian metric of I; i.e. $d(x, y)=|x-y|$ for $x, y \in I$.
(I) Proof of (A). Let $1 / 2>\varepsilon>0$ be given. For each $i \geqq 1$, we put $x_{i}=2^{-i}(1-\varepsilon)$ and $y_{i}=2^{-i}(1+\varepsilon)$. Then $\bar{x}=\left(x_{1}, x_{2}, \cdots\right)$ and $\bar{y}=\left(y_{1}, y_{2}, \cdots\right)$ are distinct points of X, because $x_{1} \neq y_{1}, f\left(x_{i+1}\right)=x_{i}$ and $f\left(y_{i+1}\right)=y_{i}$ for each $i \geqq 1$. To prove (A), it is enough to show that $d\left(\sigma^{n} \bar{x}, \sigma^{n} \bar{y}\right) \leqq \varepsilon$ for every $n \in \boldsymbol{Z}$. Let $n \in \boldsymbol{Z}$ be given. If $n \geqq 0$, using the fact that $f^{i}\left(x_{1}\right)=f^{i}\left(y_{1}\right)$ for every $i \geqq 1$, we have

$$
\begin{aligned}
\bar{d}\left(\sigma^{n} \bar{x}, \sigma^{n} \bar{y}\right) & =\bar{d}\left(\left(f^{n} x_{1}, f^{n-1} x_{1}, \cdots, f x_{1}, x_{1}, x_{2}, \cdots\right),\right. \\
& \left.\quad\left(f^{n} y_{1}, f^{n-1} y_{1}, \cdots, f y_{1}, y_{1}, y_{2}, \cdots\right)\right) \\
& =\sum_{i=1}^{\infty} 2^{-(n+i)} d\left(x_{i}, y_{i}\right) \\
& =2^{-n+1} \sum_{i=1}^{\infty} 2^{-2 i} \\
& =2^{-n+1} \varepsilon / 3<\varepsilon .
\end{aligned}
$$

If $n<0$, we have

$$
\begin{aligned}
\bar{d}\left(\sigma^{n} \bar{x}, \sigma^{n} \bar{y}\right) & =\bar{d}\left(\left(x_{1-n}, x_{2-n}, \cdots\right),\left(y_{1-n}, y_{2-n}, \cdots\right)\right) \\
& =\sum_{i=1}^{\infty} 2^{-t} d\left(x_{i-n}, y_{i-n}\right) \\
& =2^{n+1} \varepsilon / 3<\varepsilon
\end{aligned}
$$

Therefore (X, σ) is not expansive.
(II) Proof of (B). To prove (B), it is enough to prove the next two propositions.

Proposition 2.1. If (I, f) satisfies positive specification, then
$(X, \sigma)=\lim _{\leftarrow}(I, f)$ satisfies specification.
Proposition 2.2. (I, f) satisfies positive specification.
Proof of Proposition 2.1. Assume that (I, f) satisfies positive specification. Let $\varepsilon>0$ be given. Choose a positive integer N such that $2^{-N}<\varepsilon / 2$. Let $K^{\prime}=K^{\prime}(\varepsilon / 2)>0$ be as in the definition of positive specification. Put $K=K^{\prime}+N$ and take any integer $k \geqq 1$. Let $\bar{x}_{1}, \bar{x}_{2}, \cdots, \bar{x}_{k} \in X$ be given, as well as integers $a_{1} \leqq b_{1}<a_{2} \leqq b_{2}<\cdots<a_{k} \leqq b_{k}$ and p with $a_{i+1}-b_{i} \geqq K$ $(1 \leqq i \leqq k-1)$ and $p \geqq b_{k}-a_{1}+K$. We have to show that there exists a $\bar{y} \in X$ with $\sigma^{p} \bar{y}=\bar{y}$ such that $\bar{d}\left(\sigma^{n} \bar{y}, \sigma^{n} \bar{x}_{i}\right)<\varepsilon$ for every $a_{i} \leqq n \leqq b_{i}$ and $1 \leqq$ $i \leqq k$. To do this we consider two cases separately.

Case (i): $\quad a_{1} \geqq 0$. For each $1 \leqq i \leqq k$, the point \bar{x}_{i} is expressed by $\bar{x}_{i}=$ $\left(x_{1}^{i}, x_{2}^{i}, \cdots\right)$ where $x_{j}^{i} \in I(j \in N)$. Note that $a_{i+1}-\left(b_{i}+N\right) \geqq K^{\prime}(1 \leqq i \leqq k-1)$ and $p \geqq\left(b_{k}+N\right)-a_{1}+K^{\prime}$. Since (I, f) satisfies positive specification, for $x_{N}^{i} \in I(1 \leqq i \leqq k)$, for $a_{1} \leqq b_{1}+N<a_{2} \leqq b_{2}+N<\cdots<a_{k} \leqq b_{k}+N$ and for p, there exists $y \in I$ with $f^{p} y=y$ such that $d\left(f^{n} y, f^{n} x_{N}^{i}\right)<\varepsilon / 2$ for every $a_{i} \leqq n \leqq b_{i}+N$ and $1 \leqq i \leqq k$. Define $\bar{y} \in X$ by

$$
\bar{y}=\left(f^{N-1} y, f^{N-2} y, \cdots, f y, y, f^{p-1} y, f^{p-2} y, \cdots, f y, y, f^{p-1} y, \cdots\right)
$$

Then \bar{y} satisfies $\sigma^{p} \bar{y}=\bar{y}$. For each $1 \leqq i \leqq k$, since $x_{j}^{i}=f\left(x_{j+1}^{i}\right)$ for every $j \in N, \bar{x}_{i}$ is expressed by

$$
\bar{x}_{i}=\left(f^{N-1} x_{N}^{i}, \cdots, f x_{N}^{i}, x_{N}^{i}, x_{N+1}^{i}, \cdots\right) .
$$

Since $\operatorname{diam}(I)=1$, we have, for every $a_{i} \leqq n \leqq b_{i}$,

$$
\begin{aligned}
& \bar{d}\left(\sigma^{n} \bar{y}, \sigma^{n} \bar{x}_{i}\right)= \bar{d}\left(\left(f^{n+N-1} y, \cdots, f^{n+1} y, f^{n} y, f^{n+p-1} y, \cdots\right),\right. \\
&\left.\left(f^{n+N-1} x_{N}^{i}, \cdots, f^{n+1} x_{N}^{i}, f^{n} x_{N}^{i}, f^{n} x_{N+1}^{i}, \cdots\right)\right) \\
& \leqq \sum_{j=1}^{N} 2^{-j} d\left(f^{n+N-j} y, f^{n+N-j} x_{N}^{i}\right)+\sum_{j=N+1}^{\infty} 2^{-j} \\
&<\varepsilon / 2+1 / 2^{N}<\varepsilon .
\end{aligned}
$$

Case (ii): $a_{1}<0$. Put $\bar{x}_{i}^{\prime}=\sigma^{a_{1}} \bar{x}_{i}, a_{i}^{\prime}=a_{i}-a_{1}$ and $b_{i}^{\prime}=b_{i}-a_{1} \quad(1 \leqq i \leqq k)$. Note that $a_{i+1}^{\prime}-\left(b_{i}^{\prime}+N\right) \geqq K^{\prime}$ and $p \geqq\left(b_{k}^{\prime}+N\right)-a_{1}^{\prime}+K^{\prime}$. Apply the case (i) to $\bar{x}_{i}^{\prime} \in X(1 \leqq i \leqq k), 0=a_{1}^{\prime} \leqq b_{1}^{\prime}+N<a_{2}^{\prime} \leqq b_{2}^{\prime}+N<\cdots<a_{k}^{\prime} \leqq b_{k}^{\prime}+N$ and p. Then we get $\bar{y}^{\prime} \in X$ with $\sigma^{p} \bar{y}^{\prime}=\bar{y}^{\prime}$ such that $\bar{d}\left(\sigma^{n} \bar{y}^{\prime}, \sigma^{n} \bar{x}_{i}^{\prime}\right)<\varepsilon$ for $a_{i}^{\prime} \leqq n \leqq b_{i}^{\prime}, 1 \leqq$ $i \leqq k$. Put $\bar{y}=\sigma^{-a_{1}} \bar{y}^{\prime}$, then this is a required point. Proposition 2.1 is proved.

To prove Proposition 2.2, we prepare two lemmas.
Lemma 2.3. Let Y be a compact interval and $\xi: Y \rightarrow \boldsymbol{R}$ a continuous
map. Let a closed interval $J \subset \xi(Y)$ be given. Then there exists a closed interval $J^{\prime} \subset Y$ such that $\xi\left(J^{\prime}\right)=J$.

Proof. Put $J=[a, b]$. If $a=b$, the assertion is trivial. Suppose $a<b$. Then there are $c, d \in Y$ such that $\xi(c)=a$ and $\xi(d)=b$. If $c<d$, put $q=\inf \{x \in[c, d]: \xi(x)=b\}$ and $p=\sup \{x \in[c, q]: \xi(x)=a\}$. Otherwise, put $p=\sup \{x \in[d, c]: \xi(x)=b\}$ and $q=\inf \{x \in[p, c]: \xi(x)=a\}$. In any case, by the intermediate-value theorem, we have $\xi([p, q])=J$.

For $x \in I$ and $\varepsilon>0$, define $I(x, \varepsilon)=\{y \in I: d(x, y) \leqq \varepsilon\}$.
Lemma 2.4. Let $\varepsilon>0$ be given.
(i) For every $x \in I$ and $n \geqq 0$, it follows that

$$
f^{n}\left(I\left(x, \varepsilon / 2^{n}\right)\right)=I\left(f^{n} x, \varepsilon\right)
$$

and

$$
d\left(f^{i} x, f^{i} y\right) \leqq \varepsilon \quad \text { for every } \quad 0 \leqq i \leqq n \quad \text { and } \quad y \in I\left(x, \varepsilon / 2^{n}\right)
$$

(ii) There exists an integer $K=K(\varepsilon)>0$ such that the following holds: for every $x \in I$, for every closed interval $I^{\prime} \subset I$ and for every $n \geqq K$, there is a closed interval $J \subset I(x, \varepsilon)$ such that $f^{n}(J)=I^{\prime}$.

Proof. By the definition of f, one has $f(I(x, \varepsilon))=I(f x, 2 \varepsilon)$ for every $x \in I$ and every $\varepsilon>0$ (not necessary $\varepsilon<1$). Applying this to $I\left(x, \varepsilon / 2^{n}\right)$ repeatedly, we get (i). To see (ii), choose $K>0$ such that $2^{-K}<\varepsilon$. Then, since $2^{K} \varepsilon \geqq 1$, it follows that $f^{n}(I(x, \varepsilon))=I\left(f^{n} x, 2^{n} \varepsilon\right)=I$ for every $x \in I$ and every $n \geqq K$. Replacing ξ in Lemma 2.3 by f^{n}, we get (ii).

Proof of Proposition 2.2. Let $\varepsilon>0$ be given. Choose a number ε^{\prime} with $0<\varepsilon^{\prime}<\varepsilon$. Let $k=k\left(\varepsilon^{\prime}\right)>0$ be an integer as in Lemma 2.4 (ii). Take any $k \geqq 1$. Let $x_{1}, \cdots, x_{k} \in X$ be given, as well as integers $0 \leqq a_{1} \leqq$ $b_{1}<a_{2} \leqq b_{2}<\cdots<a_{k} \leqq b_{k}$ and p with $a_{i+1}-b_{i} \geqq K(1 \leqq i \leqq k-1)$ and $p \geqq b_{k}-$ $a_{1}+K$. Put $a_{k+1}=p+a_{1}$.

In order to find an interval $I_{1} \subset I \subset\left(f^{a_{1}} x_{1}, \varepsilon^{\prime}\right)$ such that $f^{p}\left(I_{1}\right) \supset I_{1}$, put $I_{k+1}=I\left(f^{a_{1}} x_{1}, \varepsilon^{\prime}\right)$. Then $I_{i}(i \leqq k)$ is determined recursively as follows. By Lemma 2.4 (ii), there is an interval $J_{i} \subset I\left(f^{b_{i}} x_{i}, \varepsilon^{\prime}\right)$ such that $f^{a_{i+1}-b_{i}}\left(J_{i}\right)=$ I_{i+1}. Since $f^{b_{i}-a_{i}}\left(I\left(f^{a_{i}} x_{i}, \varepsilon^{\prime} / 2^{b_{i}-a_{i}}\right)\right)=I\left(f^{b_{i}} x_{i}, \varepsilon^{\prime}\right)$ (by Lemma 2.4 (i)), there exists an interval $I_{i} \subset I\left(f^{a_{i}} x_{i}, \varepsilon^{\prime} / 2^{b_{i}-a_{i}}\right)$ such that $f^{b_{i}-a_{i}}\left(I_{i}\right)=J_{i}$ (by Lemma 2.3).

Since $f^{a_{i+1}-a_{i}}\left(I_{i}\right)=I_{i+1}$ for $1 \leqq i \leqq k$, one has $I_{k+1}=f^{a_{k+1}-a_{1}}\left(I_{1}\right)=f^{p}\left(I_{1}\right)$. Note that $I_{1} \subset I\left(f^{a_{1}} x_{1}, \varepsilon^{\prime}\right)=I_{k+1}$. By the intermediate-value theorem, theer exists a $y \in I_{1}$ such that $f^{p} y=y$. Put $x=f^{p-a_{1}} y$. Clearly $f^{p} x=x$ holds.

For every $1 \leqq i \leqq k$ and $a_{i} \leqq n \leqq b_{i}$, one has $f^{n} x=f^{n-a_{1}} y \in f^{n-a_{1}}\left(I_{1}\right)=$ $f^{n-a_{i}}\left(I_{i}\right) \subset f^{n-a_{i}} I\left(f^{a_{i}} x_{i}, \varepsilon^{\prime} / 2^{b_{i}-a_{i}}\right) \subset I\left(f^{n} x_{i}, \varepsilon^{\prime}\right)$; i.e., $d\left(f^{n} x, f^{n} x_{i}\right) \leqq \varepsilon^{\prime}<\varepsilon$. This means that (I, f) satisfies positive specification. The proof is completed.
(III) Proof of (C). Let $\bar{a}=\left(a_{1}, a_{2}, \cdots\right) \in X$ be given. Denote by J_{1} the 1/4-closed neighborhood of a_{1} in I. If $J \subset I$ is an interval such that $\operatorname{diam}(J) \leqq 1 / 2$, then $f^{-2}(J)$ has at least two connected components and the diameter of each connected component of $f^{-2}(J)$ is not greater than $(1 / 2) \operatorname{diam}(J)$. Hence, for $J_{n}=f^{-2(n-1)}\left(J_{1}\right)(n \geqq 1)$, there exists a homeomorphism $\psi_{n}: J_{n} \rightarrow I \times F_{n}$ where F_{n} is a finite set with card $\left(F_{n}\right) \geqq 2^{n-1}$. Put $V_{0}=\left\{\bar{x} \in X: x_{1} \in J_{1}\right\}$. Clearly V_{0} is a neighborhood of \bar{a}, and this is expressed by the inverse limit of the sequence

$$
J_{1} \overleftarrow{f^{2}} J_{2} \longleftarrow \int_{f^{2}} J_{f^{2}} \cdots
$$

Therefore V_{0} is homeomorphic to the inverse limit of the sequence

$$
I \times F_{1}{\overleftarrow{\Psi_{1}}} I \times F_{2} \Psi_{\Psi_{2}} I \times F_{s} \stackrel{\Psi_{3}}{ } \cdots,
$$

where $\psi_{n}=\psi_{n} \circ f^{2} \circ \psi_{n+1}^{-1}(n \geqq 1)$. This implies that V_{0} is homeomorphic to the product of I and a Cantor set. The proof is completed.

§3. Proof of Theorem 2.

Let $f(x)=1-|2 x-1|$ as before. Define the continuous map $h:(-1 / 2$, $3 / 2) \rightarrow R$ by

$$
h(x)= \begin{cases}f(x)-(2 \pi)^{-1} \sin (2 \pi x) & (-1 / 2<x \leqq 1 / 2) \\ f(x)+(2 \pi)^{-1} \sin (2 \pi x) & (1 / 2<x<3 / 2)\end{cases}
$$

Clearly h satisfies the following.
(L.1) (i) $h(0)=0, h(1 / 2)=1$ and $h(x)=h(1-x)$ for $-1 / 2<x<3 / 2$.
(ii) $h(-x)=-h(x)$ for $-1 / 2<x<1 / 2$.
(iii) $h^{\prime}(0)=1$ and $h^{\prime}(x)>1$ for $x \in(-1 / 2,1 / 2)-\{0\}$.
(iv) $h(x)=x+o\left(x^{2}\right)$.

Here h^{\prime} denotes the derivative of h, and $o(t)$ means a function such that $o(t) / t \rightarrow 0$ as $t \rightarrow 0$.

Note that the restriction of h to I is a continuous map from I onto itself. Let $\left(X_{h}, \sigma_{h}\right)=\lim (I, h)$ and $(X, \sigma)=\lim _{\leftarrow}(I, f)$. Clearly Theorem 2 is obtained from the next two propositions.

Proposition 3.1. $\left(X_{h}, \sigma_{h}\right)$ is topologically conjugate to (X, σ).

Proposition 3.2. There exists $g: S^{3} \rightarrow S^{3}$, a C^{1}-diffeomorphism of the 3-sphere which has an attractor Λ such that ($1, g$) is topologically conjugate to $\left(X_{h}, \sigma_{h}\right)$.
(I) Proof of Proposition 3.1. We have to show that there exists a homeomorphism φ_{0} from X onto X_{h} such that $\varphi_{0} \circ \sigma=\sigma_{h} \circ \varphi_{0}$. To do this we need several Lemmas.

Let $T^{1}=\boldsymbol{R} / \boldsymbol{Z}$ and denote the natural projection by $\pi_{0}: R \rightarrow T^{1}$. For each $x \in T^{1}$ there is a unique $t_{x} \in[0,1]$ with $\pi_{0}\left(t_{x}\right)=x$. Hence the continuous map $p_{0}: T^{1} \rightarrow I$ is well defined by $p_{0}(x)=1-\left|2 t_{x}-1\right|$. Consider the continuous map $\bar{\eta}(x)=2 x-(2 \pi)^{-1} \sin (2 \pi x)(x \in R)$ and denote by $\eta: T^{1} \rightarrow T^{1}$ the factor of $\bar{\eta}$ under π_{0}. Let ζ denote the endomorphism of T^{1} defined by $\zeta(x)=2 x\left(x \in T^{1}\right)$.
(L.2) (i) p_{0} is an open map.
(ii) $p_{0}(x)=p_{0}(-x)\left(x \in T^{1}\right)$. (iii) $p_{0} \circ \zeta=$ $f \circ p_{0}$. (iv) $p_{0} \circ \eta=h \circ p_{0}$. (v) $\bar{\eta}(x)+\bar{\eta}(1-x)=2 \quad(x \in \boldsymbol{R})$. (vi) For every nonempty open set U in T^{1}, there exists an integer $N>0$ such that $\eta^{N}(U)=T^{1}$.

Proof. (i) $\sim(\mathrm{v})$ are easy. (vi) follows from the fact that $\bar{\eta}^{\prime}(x)>1$ for every $\boldsymbol{x} \in \boldsymbol{R}-\boldsymbol{Z}$.

We denote by $C^{0}(Y)$ the set of all continuous maps from a topological space Y to itself. For each $\alpha \in C^{0}\left(T^{1}\right)$, we denote by $\bar{\alpha} \in C^{0}(\boldsymbol{R})$ a lift of α. Then it is well known (P. 64 of [9]) that, for every $x \in \boldsymbol{R}$ and $n \in Z$ with $n \neq 0$, the number $(1 / n)(\bar{\alpha}(x+n)-\bar{\alpha}(x))$ is an integer, and that this integer is independent of the choice of x and n. Such an integer is called the degree of α and denoted by $\operatorname{deg}(\alpha)$. A map $\alpha \in C^{0}\left(T^{1}\right)$ is said to be monotone if a lift $\bar{\alpha}$ satisfies $\bar{\alpha}\left(x_{1}\right) \geqq \bar{\alpha}\left(x_{2}\right)$ for every $x_{1}, x_{2} \in \boldsymbol{R}$ with $x_{1} \geqq x_{2}$ (this definition is obviously independent of the choice of $\bar{\alpha}$).
(L.3) (i) $\operatorname{deg}(\zeta)=2$.
(ii) $\operatorname{deg}(\eta)=2$.
(iii) η is monotone.

Proof. Obvious.
(L.4) There exists a homeomorphism $\alpha \in C^{0}\left(T^{1}\right)$ satisfying
(i) $\alpha(x)+\alpha(-x)=0\left(x \in T^{1}\right)$
and
(ii) $\alpha \circ \eta=\zeta \circ \alpha$.

Proof. Define
$H=\left\{\alpha \in C^{0}\left(T^{1}\right): \alpha\right.$ is monotone and satisfies $\left.\operatorname{deg}(\alpha)=1\right\}$
and
$V=\left\{\bar{\alpha} \in C^{0}(R): \bar{\alpha}\right.$ is a lift of some $\left.\alpha \in H . \quad \bar{\alpha}(x)+\bar{\alpha}(1-x)=1(x \in R)\right\}$.
Since $\alpha \in H$ is degree-one, the metric function D of V is defined by

$$
D(\bar{\alpha}, \bar{\beta})=\max \{d(\bar{\alpha}(x), \bar{\beta}(x)): x \in[0,1]\} \quad \text { for } \quad \bar{\alpha}, \bar{\beta} \in V,
$$

where d denotes the euclidian metric of \boldsymbol{R}.
We claim that V is a complete metric space. Indeed, if $\left\{\bar{\alpha}_{i}\right\}$ is a Cauchy sequence with respect to D, then $\left\{\bar{\alpha}_{i}\right\}$ uniformly converges to some $\bar{\alpha} \in C^{0}(\boldsymbol{R})$. Since a uniform limit of lifts of degree-one maps is itself a lift, $\bar{\alpha}$ is a lift of some $\alpha_{0} \in C^{0}\left(T^{1}\right)$. As $\left\{\bar{\alpha}_{i}\right\} \subset V, \alpha_{0}$ is monotone and degree-one. Also $\bar{\alpha}$ satisfies $\bar{\alpha}(x)+\bar{\alpha}(1-x)=1 \quad(x \in \boldsymbol{R})$. Hence $\bar{\alpha}$ belongs to V, i.e. V is complete.

Let $\bar{\zeta}$ be the lift of ζ defined by $\bar{\zeta}(x)=2 x(x \in R)$. Define the map $T: V \rightarrow C^{0}(\boldsymbol{R})$ by $T(\bar{\alpha})=\bar{\zeta}^{-1} \circ \bar{\alpha} \circ \bar{\eta}$. We claim that T is a contraction map on V. Let $\bar{\alpha} \in V$ be given. Since $\operatorname{deg}(\eta)=2$ and $\operatorname{deg}(\alpha)=1$, we have $T(\bar{\alpha})(n+x)-T(\bar{\alpha})(x)=(1 / 2)(\bar{\alpha}(2 n+\bar{\eta}(x))-\bar{\alpha} \bar{\eta}(x))=n \quad$ for every $x \in \boldsymbol{R}$ and $n \in Z$. So $T(\bar{\alpha})$ is a lift of some $\alpha^{\prime} \in H$. Using (L.2(v)) and the equation $\bar{\alpha}(x)+\bar{\alpha}(1-x)=1$, we have

$$
\begin{aligned}
& T(\bar{\alpha})(x)+T(\bar{\alpha})(1-x)=(1 / 2) \bar{\alpha} \bar{\eta}(x)+(1 / 2) \bar{\alpha}(2-\bar{\eta}(x)) \\
& \quad=(1 / 2)(\bar{\alpha} \bar{\eta}(x)+\bar{\alpha}(1-\bar{\eta}(x))+1)=1,
\end{aligned}
$$

so that $T(\bar{\alpha}) \in V$. This means $T(V) \subset V$. For every $\bar{\alpha}, \bar{\beta} \in V$, we have

$$
\begin{aligned}
D(T(\bar{\alpha}), T(\bar{\beta})) & =\max \left\{d\left(\bar{\zeta}^{-1} \bar{\alpha} \bar{\eta}(x), \bar{\zeta}^{-1} \bar{\beta} \bar{\eta}(x)\right): x \in[0,1]\right\} \\
& =(1 / 2) \max \{d(\bar{\alpha}(y), \bar{\beta}(y)): y=\bar{\eta}(x) \in[0,2]\} \\
& =(1 / 2) D(\bar{\alpha}, \bar{\beta}) .
\end{aligned}
$$

Therefore T is a contraction map on V.
Since V is complete, T has a unique fixed point $\bar{\alpha}$ in V; i.e. $\bar{\alpha} \circ \bar{\eta}=$ $\bar{\zeta} \circ \bar{\alpha}$. Denote by α the factor of $\bar{\alpha}$ under π_{0}. It is easy to see that $\alpha \circ \eta=\zeta \circ \alpha$ and $\alpha(x)+\alpha(-x)=0\left(x \in T^{1}\right)$. To complete the proof of (L.4), it only remains to show that α is one-to-one. Assume that $x \neq y$ and $\alpha(x)=\alpha(y)$ for some $x, y \in T^{1}$. Then there is a nonempty open interval $U \subset T^{1}$ with $\alpha(U)=\alpha(x)$, because α is monotone and degree-one. By (L.2(vi)) one has $\eta^{N}(U)=T^{1}$ for some $N>0$. Hence $T^{1}=\alpha \eta^{N}(U)=\zeta^{N} \alpha(U)=$ $\zeta^{N} \alpha(x)$, which is a contradiction.
(L.5) There is a homeomorphism $\beta: I \rightarrow I$ such that $\beta \circ h=f \circ \beta$.

Proof. Let α and p_{0} be as in (L.4) and (L.2) respectively. Suppose
$p_{0}(x)=p_{0}(y)$ and $x \neq y$. Then one has $x=-y$, so that $p_{0} \alpha(x)=p_{0} \alpha(-y)=$ $p_{0}(-\alpha(y))=p_{0} \alpha(y)$ by (L.4(i)) and (L.2(ii)). Hence there is a map β : $I \rightarrow I$ such that $\beta \circ p_{0}=p_{0} \circ \alpha$. By (L.2(i)), β is continuous. Similarly, since α is a homeomorphism, there is a continuous map $\beta^{\prime}: I \rightarrow I$ such that $\beta^{\prime} \circ p_{0}=p_{0} \circ \alpha^{-1}$. Then one has $\beta \circ \beta^{\prime} \circ p_{0}=\beta \circ p_{0} \circ \alpha^{-1}=p_{0} \circ \alpha \circ \alpha^{-1}=p_{0}$, and also $\beta^{\prime} \circ \beta \circ p_{0}=p_{0}$. Since p_{0} is surjective, we have $\beta \circ \beta^{\prime}=\beta^{\prime} \circ \beta=\mathrm{id}$; i.e. β is a homeomorphism. By (L.2(iv)), (L.4(ii)) and (L.2(iii)), it follows that $\beta \circ h \circ p_{0}=f \circ \beta \circ p_{0}$. Using $p_{0}\left(T^{1}\right)=I$, we get $\beta \circ h=f \circ \beta$.

Now we complete the proof of Proposition 3.1. Let β be as in (L.5). Define the continuous map $\varphi_{0}: X \rightarrow I^{N}$ by $\varphi_{0}\left(\left(x_{i}\right)_{i \geq 1}\right)=\left(\beta^{-1} x_{i}\right)_{i \geq 1}$ for $\left(x_{i}\right)_{i \geq 1} \in X$. Since $h\left(\beta^{-1} x_{i+1}\right)=\beta^{-1} f\left(x_{i+1}\right)=\beta^{-1}\left(x_{i}\right)$ for every $\left(x_{i}\right)_{i \geq 1} \in X$, one has $\varphi_{0}(X) \subset X_{h}$. Since $\beta^{-1}: I \rightarrow I$ is a homeomorphism, φ_{0} is a homeomorphism from X onto X_{h}. Using the equation $\beta^{-1} \circ f=h \circ \beta^{-1}$, we have

$$
\varphi_{0} \sigma\left(\left(x_{i}\right)_{i \geq 1}\right)=\left(\beta^{-1} f\left(x_{i}\right)\right)_{i \geq 1}=\left(h \beta^{-1}\left(x_{i}\right)\right)_{i \geq 1}=\sigma_{h} \varphi_{0}\left(\left(x_{i}\right)_{i \geq 1}\right)
$$

for every $\left(x_{i}\right)_{i \geq 1} \in X$. Therefore $\left(X_{h}, \sigma_{h}\right)$ is topologically conjugate to (X, σ). The proof is completed.
(II) Proof of Proposition 3.2. First of all we prepare some notation. Let $\kappa=\sinh ^{-1}(2)(\approx 1.44)$. Define

$$
M=\left\{(x, y, z) \in R^{3}:|x| \leqq \kappa, y \in[0, \pi],|z| \leqq \kappa\right\}
$$

and

$$
U_{0}=\bigcup_{v \in M}\left\{u \in R^{3}: d(u, v)<1 / 2\right\}
$$

where d denotes the enclidian metric of \boldsymbol{R}^{3}. Then there exists a $C^{\infty}-\operatorname{map} \Phi: U_{0} \rightarrow \boldsymbol{R}^{3}$ such that

$$
\Phi(x, y, z)=\left\{\begin{array}{r}
(\sinh (x),-\cos (y) \cosh (z), \sin (y) \sinh (z)) \\
\text { for }(x, y, z) \in U_{0} \text { with } y \leqq \pi / 4 \\
(\sin (y) \sinh (x),-\cos (y) \cosh (x), \sinh (z)) \\
\text { for }(x, y, z) \in U_{0} \text { with } y \geqq 3 \pi / 4
\end{array}\right.
$$

and $\Phi \mid M^{\prime}: M^{\prime} \rightarrow \Phi\left(M^{\prime}\right)$ is a C^{∞}-diffeomorphism, where

$$
M^{\prime}=\{(x, y, z) \in M: \pi / 4 \leqq y \leqq 3 \pi / 4\}
$$

Indeed, as such a C^{∞}-map we can choose

$$
\begin{aligned}
\Phi(x, y, z)= & \chi_{0}(y)(\sinh (x),-\cos (y) \cosh (z), \sin (y) \sinh (z)) \\
& +\bar{\chi}_{0}(y)(\sin (y) \sinh (x),-\cos (y) \cosh (x), \sinh (z))
\end{aligned}
$$

where $\chi_{0}: \boldsymbol{R} \rightarrow \boldsymbol{R}$ is a monotone decreasing C^{∞}-function such that $\chi_{0}(y)=1$ $(y \leqq \pi / 4)$ and $\chi_{0}(y)=0(y \geqq 3 \pi / 4)$, and $\bar{\chi}_{0}$ is defined by $\bar{\chi}_{0}(y)=1-\chi_{0}(y)(y \in R)$.

As an easy corollary the following holds.
(L.6) (i) Let $M(t)(t \in[0, \pi])$ be the leaf of foliation defined by $M(t)=\{(x, y, z) \in M: y=t\}$, then Φ is one-to-one on $M-(M(0) \cup M(\pi))$.
(ii) Φ is a C^{∞}-local diffeomorphism on $M-(\{(x, 0,0) \in M(0)\} \cup$ $\{(0, \pi, z) \in M(\pi)\})$.
(iii) There is a number $c>0$ such that $d(\Phi(u), \Phi(v)) \leqq c d(u, v)$ for every $u, v \in M$.
(iv) $\Phi(x, 0, z)=\Phi(x, 0,-z)$ for $(x, 0, z) \in M(0)$, and

$$
\Phi(x, \pi, z)=\Phi(-x, \pi, z) \quad \text { for } \quad(x, \pi, z) \in M(\pi)
$$

(v) Φ is an open map.
(vi) Put $W=\Phi(M)$ (this is illustrated in Figure 1), then $\Phi\left(M_{0}\right)=$ int (W) where $M_{0}=\{(x, y, z) \in M:|x|<\kappa,|z|<\kappa\}$.
(vii) Put $W(t)=\Phi(M(t))(t \in[0, \pi])$. For each $u \in W$ there is a unique $t_{u} \in[0, \pi]$ with $u \in W\left(t_{u}\right)$. Then the map $p: W \rightarrow I$ defined by $p(u)=t_{*} / \pi$ is continuous.

Figure 1
Proposition 3.3. Let W and $\{W(t): t \in[0, \pi]\}$ be as above. Then there exists a continuous map $g: W \rightarrow W$ which satisfies the following conditions;
(1) let h be a map as in (L.1) and define $h_{1}:(-\pi / 2,3 \pi / 2) \rightarrow \boldsymbol{R}$ by $h_{1}(t)=\pi h(t / \pi)$, then $g(W(t)) \subset W\left(h_{1}(t)\right)$ for every $t \in[0, \pi]$,
(2) $g(W) \subset \operatorname{int}(W)$,
(3) $\max _{t \in[0, \pi]} \operatorname{diam} g^{n}(W(t)) \rightarrow 0$ as $n \rightarrow \infty$,
(4) g is one-to-one,
(5) g is a C^{∞}-local diffeomorphism on W - $\left(L_{1} \cup L_{2}\right)$ where

$$
L_{1}=\Phi(\{(x, 0,0) \in M(0)\}) \quad \text { and } \quad L_{2}=\Phi(\{(0, \pi, z) \in M(\pi)\}),
$$

(6) g is a C^{1}-local diffeomorphism on $L_{1} \cup L_{2}$,
(7) g is isotopic to the identity map of W.

If Proposition 3.3 holds, then Proposition 3.2 is proved as follows. Let g be the continuous map as in Proposition 3.3. From (4), (5) and (6) it follows that $g: W \rightarrow W$ is a C^{1}-diffeomorphism. We consider W to be $W \subset R^{3} \subset S^{3}$. By the isotopy extension theorem (P. 180 of [7]), g is extended to a C^{1}-diffeomorphism from S^{3} onto itself. Denote the extended diffeomorphism by the same symbol g. Then $\Lambda=\cap_{n \geq 0} g^{n}(W)$ is a g invariant compact set.

To show that (Λ, g) is topologically conjugate to (X_{h}, σ_{h}), let $p: W \rightarrow I$ be the continuous map as in (L.6(vii)). Then one has $h \circ p=p \circ g$ by (1). Since $h p g^{-(t+1)}(u)=p g^{-t}(u)$ for every $u \in \Lambda$ and $i \geqq 0$, the continuous map $\varphi: \Lambda \rightarrow X_{h}$ is well defined by $\varphi(u)=\left(p(u), p g^{-1}(u), p g^{-2}(u), \cdots\right)$. We claim that φ is one-to-one and onto; i.e. a homeomorphism. Indeed, if $\mathrm{pg}^{-4}(u)=$ $p^{-t}\left(u^{\prime}\right)$ for every $i \geqq 0$, then there are $t_{i} \in[0, \pi](i \geqq 0)$ such that $u, u^{\prime} \in$ $g^{t}\left(W\left(t_{i}\right)\right)$. By (3) one has $u=u^{\prime}$; i.e. φ is one-to-one. To see $\varphi(\Lambda)=X_{k}$, let $\left(y_{i}\right)_{t \geq 1} \in X_{h}$ be given. It is easy to see that $\pi y_{i}=h_{1}\left(\pi y_{i+1}\right)$ for each $i \geqq 1$. Hence one has $g^{i}\left(W\left(\pi y_{i+1}\right)\right) \subset g^{i-1}\left(W\left(\pi y_{i}\right)\right)(i \geqq 1)$ by (1). By (3) there is $u_{y} \in \Lambda$ with $\left\{u_{y}\right\}=\cap_{i \geq 1} g^{t}\left(W\left(\pi y_{i+1}\right)\right)$. Since $\varphi\left(u_{y}\right)=\left(p g^{-i+1}\left(u_{y}\right)\right)_{i \geq 1}=\left(y_{i}\right)_{i \geq 1} \in$ $\varphi(\Lambda), \varphi$ is onto. Since $\sigma \varphi(u)=\left(h p g^{-i+1}(u)\right)_{t \geq 1}=\left(p g^{-i+2}(u)\right)_{i \geq 1}=\varphi g(u)$ for every $u \in \Lambda,(\Lambda, g)$ is topologically conjugate to (X_{h}, σ_{h}) under φ.
(Λ, g) satisfies specification since so does $\left(X_{h}, \sigma_{h}\right)$ (by combining Theorem 1(B) and Proposition 3.1). Obviously (Λ, g) is topologically transitive. Hence Λ is an attractor of g by (2). This prove Proposition 3.2.

It remains only to prove Proposition 3.3.
(III) Proof of Proposition 3.3. We must construct a continuous map g satisfying the conditions (1) $\sim(7)$. To do this we define several functions.
(L.7) Let $h_{2}: \boldsymbol{R} \rightarrow \boldsymbol{R}$ be a C^{∞}-function such that
(i) $h_{2}(-t)=-h_{2}(t)(t \in \boldsymbol{R})$, (ii) $h_{2}(\kappa)=\kappa / 3$,
(iii) $h_{2}^{\prime}(0)=1$ and $0<h_{2}^{\prime}(t)<1(t \neq 0)$,
(iv) $h_{2}^{\prime \prime}(t)<0(t>0)$,
(v) $\sqrt{\left(h_{2}(t)\right)^{2}+\left(h_{2}(s)\right)^{2}} \leqq \sqrt{2} h_{2}\left(\sqrt{t^{2}+s^{2}} / \sqrt{2}\right) \quad\left((t, s) \in R^{2}\right)$.
(As such a function, we can choose $h_{2}(t)=\lambda \tan ^{-1}(t / \lambda)$ where λ is the root of $\tan (\kappa /(3 \lambda))=\kappa / \lambda$ with $0<\lambda<\pi / 2 ; \lambda \approx 0.306$.) Then one obtains
(vi) $\quad h_{2}(t)=t+o\left(t^{2}\right), \quad($ vii $) \quad h_{2}\left(t_{1}\right)<h_{2}\left(t_{2}\right)\left(t_{1}<t_{2}\right)$,
(viii) $\lim _{n \rightarrow \infty} h_{2}^{n}(t)=0(t \in R)$, (ix) $\quad\left|h_{2}(t)\right| \geqq|t| / 3(|t| \leqq \kappa)$,
(\mathbf{x}) $\quad\left|h_{2}(t)-h_{2}\left(t^{\prime}\right)\right| \leqq 2 h_{2}\left(\left|t-t^{\prime}\right| / 2\right) \quad\left(t, t^{\prime} \in \boldsymbol{R}\right)$.
Let h_{0} define by $h_{0}(y)=2 y-(1 / 2) \sin (2 y)(y \in R)$. Recall the map h_{1} as in (1). We remark that $h_{1}(y)=h_{0}(y)$ on $(-\pi / 2, \pi / 2]$ and $h_{1}(y)=2 \pi-h_{0}(y)$ on $[\pi / 2,3 \pi / 2)$. Choose a constant $\alpha>0$ such that $h_{0}((\pi / 2)-\alpha)>3 \pi / 4$. Put $M_{1}=U_{t \in[0, \pi / 2]} M(t)$ and $M_{2}=U_{t \in[\pi / 2, \pi]} M(t)$. We denote by U_{i} the α-open neighborhood of M_{i} in $\boldsymbol{R}^{3}(i=1,2)$. Take a monotone decreasing C^{∞} function $\chi_{1}: \boldsymbol{R} \rightarrow \boldsymbol{R}$ such that

$$
\chi_{1}(y)=1 \quad(y \leqq \pi / 4) \quad \text { and } \quad \chi_{1}(y)=0 \quad(y \geqq(\pi / 2)-\alpha),
$$

and a monotone increasing C^{∞}-function $\chi_{2}: \boldsymbol{R} \rightarrow \boldsymbol{R}$ such that

$$
\chi_{2}(y)=0 \quad(y \leqq(\pi / 2)+\alpha) \quad \text { and } \quad \chi_{2}(y)=1 \quad(y \geqq 3 \pi / 4) .
$$

Put $\bar{\chi}_{i}(y)=1-\chi_{i}(y)(i=1,2)$. We define two C^{∞}-diffeomorphisms $G_{i}: U_{i} \rightarrow \boldsymbol{R}^{3}$ ($i=1,2$) by

$$
\begin{aligned}
G_{1}(x, y, z)= & \chi_{1}(y)\left(\frac{x}{3}-\frac{\kappa}{2}, h_{0}(y), h_{2}(z)\right) \\
& +\bar{\chi}_{1}(y)\left(\frac{1}{3 \sqrt{2}}(x-z)-\frac{\kappa}{2}, h_{0}(y), \frac{1}{3 \sqrt{2}}(x+z)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
G_{2}(x, y, z)= & \chi_{2}(y)\left(\frac{z}{3}+\frac{\kappa}{2}, 2 \pi-h_{0}(y), h_{2}(x)\right) \\
& +\bar{\chi}_{2}(y)\left(\frac{1}{3 \sqrt{2}}(z-x)+\frac{\kappa}{2}, 2 \pi-h_{0}(y), \frac{1}{3 \sqrt{2}}(z+x)\right) .
\end{aligned}
$$

By the definitions of G_{i} and M_{i} one has $G_{i}\left(M_{i}\right) \subset M$ for $i=1,2$. Take an open neighborhood $U_{i}^{\prime} \subset U_{i}$ of M_{i} such that $G_{i}\left(U_{i}^{\prime}\right) \subset U_{0}(i=1,2)$. We define the $\operatorname{map} G: U_{1}^{\prime} \cup U_{2}^{\prime} \rightarrow R^{3}$ by

$$
G=G_{1} \quad \text { on } \quad\left\{(x, y, z) \in U_{1}^{\prime}: y \leqq \pi / 2\right\}
$$

and

$$
G=G_{2} \quad \text { on } \quad\left\{(x, y, z) \in U_{2}^{\prime}: y>\pi / 2\right\}
$$

Notice that G is not continuous at $(x, \pi / 2, z) \in U_{1}^{\prime} \cap U_{2}^{\prime}$. Nevertheless, the composition $\Phi \circ G: U_{1}^{\prime} \cup U_{2}^{\prime} \rightarrow R^{3}$ is a C^{∞}-map. Because, for $(x, y, z) \in$ $U_{1}^{\prime} \cap U_{2}^{\prime}$, taking account of the inequalities

$$
|y-(\pi / 2)|<\alpha, \quad 3 \pi / 4<h_{0}(y)<\pi+\frac{1}{2} \quad \text { and } \quad 3 \pi / 4<2 \pi-h_{0}(y)<\pi+\frac{1}{2}
$$

one can easily verify that the definitions of G_{1}, G_{2} and Φ imply the relation

$$
\begin{array}{r}
\Phi G_{1}(x, y, z)=\Phi G_{2}(x, y, z)=\left(\sin \left(h_{0}(y)\right) \sinh \left(\frac{1}{3 \sqrt{2}}(x-z)-\frac{\kappa}{2}\right)\right. \\
\left.-\cos \left(h_{0}(y)\right) \cosh \left(\frac{1}{3 \sqrt{2}}(x-z)-\frac{\kappa}{2}\right), \sinh \left(\frac{1}{3 \sqrt{2}}(x+z)\right)\right) .
\end{array}
$$

(L.8) (i) $G(M(t)) \subset\left\{\left(x, h_{1}(t), z\right) \in M:|x|<\kappa,|z|<\kappa\right\}$ for $t \in[0, \pi]$.
(ii) $\Phi \circ G$ is one-to-one on $M-(M(0) \cup M(\pi))$.
(iii) $\Phi \circ G$ is a C^{∞}-local diffeomorphism on

$$
M-(\{(x, 0,0) \in M(0)\} \cup\{(0, \pi, z) \in M(\pi)\})
$$

Proof. (i) follows from $h_{1}(t)=h_{0}(t)(t \leqq \pi / 2)$ and $h_{1}(t)=2 \pi-h_{0}(t)$ ($t>$ $\pi / 2$). (ii) and (iii) follow immediately from the definitions of Φ and G.

Now we show the existence of a map $g: W \rightarrow W$ with $g \circ \Phi=\Phi \circ G$. Suppose that $\Phi(x, y, z)=\Phi\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ and ($\left.x, y, z\right) \neq\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$. By (L.6(i)) we have either $x=x^{\prime}, y=y^{\prime}=0$ and $z=z^{\prime}$, or $x=-x^{\prime}, y=y^{\prime}=\pi$ and $z=z^{\prime}$. Hence, by (L.6(iv)) and (L.7(i)), we have

$$
\Phi G(x, 0, z)=\Phi\left(\frac{x}{3}-\frac{\kappa}{2}, 0, h_{2}(z)\right)=\Phi\left(\frac{x}{3}-\frac{\kappa}{2}, 0, h_{2}(-z)\right)=\Phi G(x, 0,-z)
$$

Similarly $\Phi G(x, \pi, z)=\Phi G(-x, \pi, z)$ holds. Consequently we have $\Phi G(x, y, z)=\Phi G\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$. This implies that there exists a map g such that $g \circ \Phi=\Phi \circ G$. The image $g(W)$ is illustrated in Figure 1.

In order to prove Proposition 3.3, it remains only to show that g is continuous and satisfies the conditions (1)~(7).
(L.9) (i) g is continuous.
(ii) g satisfies the conditions (1) $\sim(5)$.

Proof. (i) follows from (L.6(v)). g satisfies (1) by (L.8(i)), (2) by (L.6(vi)) and (L.8(i)), and (5) by (L.8(iii)). We prove that g satisfies (3). Let $y \in[0, \pi]$ be given. Suppose $y \leqq \pi / 2$. Then, for every $u=(x, y, z)$
and $u^{\prime}=\left(x^{\prime}, y, z^{\prime}\right)$ in $M(y)$, we have

$$
\begin{aligned}
& d\left(G(u), G\left(u^{\prime}\right)\right) \leqq \chi_{1}(y)\left\|\left(\frac{x-x^{\prime}}{3}, 0, h_{2}(z)-h_{2}\left(z^{\prime}\right)\right)\right\|+\bar{\chi}_{1}(y)\left\|\left(\frac{x-x^{\prime}}{3}, 0, \frac{z-z^{\prime}}{3}\right)\right\| \\
& \leqq 2\left\|\left(h_{2}\left(\frac{x-x^{\prime}}{3}\right), 0, h_{2}\left(\frac{z-z^{\prime}}{2}\right)\right)\right\| \quad \text { (by (ix) and (x) in (L.7)) } \\
& \leqq 2^{3 / 2} h_{2}\left(2^{-3 / 2} d\left(u, u^{\prime}\right)\right) \quad \text { (by (L.7(v))) . }
\end{aligned}
$$

Similarly, for $y>\pi / 2$, we have $d\left(G(u), G\left(u^{\prime}\right)\right) \leqq 2^{3 / 2} h_{2}\left(2^{-8 / 2} d\left(u, u^{\prime}\right)\right)$ for every $u, u^{\prime} \in M(y)$. Hence it follows that

$$
\begin{aligned}
& 2^{-3 / 2} \operatorname{diam} G^{n}(M(y)) \leqq h_{2}\left(2^{-8 / 2} \operatorname{diam} G^{n-1}(M(y))\right) \leqq \cdots \\
& \leqq h_{2}^{n}\left(2^{-3 / 2} \operatorname{diam} M(y)\right)=h_{2}^{n}(\kappa)
\end{aligned}
$$

for every $y \in[0, \pi]$ and $n>0$. From this we get

$$
\begin{array}{ll}
\max _{y \in[0, \pi]} & \operatorname{diam} g^{n}(W(y))=\max _{y \in[0, \pi]} \operatorname{diam} \Phi \circ G^{n}(M(y)) \\
& \leqq c \cdot \max _{y \in[0, \pi]} \operatorname{diam} G^{n}(M(y))
\end{array} \quad \text { (by (L.6(iii))) } \quad \begin{array}{ll}
\leqq 2^{3 / 2} c h_{2}^{n}(\kappa) \longrightarrow 0(\text { as } n \longrightarrow \infty) & \text { (by (L.7(viii))); }
\end{array}
$$

i.e. g satisfies (3).

We prove that g satisfies (4). By (L.6(i)) and (L.8(ii)), g is one-toone on $W-(W(0) \cup W(\pi))$. Let $(r, s, 0),\left(r^{\prime}, s^{\prime}, 0\right) \in W(0)$ satisfy $g(r, s, 0)=$ $g\left(r^{\prime}, s^{\prime}, 0\right)$. There exist $(x, 0, z)$ and ($\left.x^{\prime}, 0, z^{\prime}\right)$ in $M(0)$ such that $\Phi(x, 0, z)=$ $(r, s, 0)$ and $\Phi\left(x^{\prime}, 0, z^{\prime}\right)=\left(r^{\prime}, s^{\prime}, 0\right)$. Since $g \circ \Phi=\Phi \circ G$, we have

$$
\left(\sinh \left(\frac{x}{3}-\frac{\kappa}{2}\right),-\cosh \left(h_{2}(z)\right), 0\right)=\left(\sinh \left(\frac{x^{\prime}}{3}-\frac{\kappa}{2}\right),-\cosh \left(h_{2}\left(z^{\prime}\right)\right), 0\right)
$$

By (L.7(i)) we get eigher $x=x^{\prime}$ and $z=z^{\prime}$, or $x=x^{\prime}$ and $z=-z^{\prime}$. In any case, $\Phi(x, 0, z)=\Phi\left(x^{\prime}, 0, z^{\prime}\right)$; i.e. $(r, s, 0)=\left(r^{\prime}, s^{\prime}, 0\right)$. Hence g is one-to-one on $W(0)$. Similarly it follows that g is one-to-one on $W(\pi)$. Since $g(W-(W(0) \cup W(\pi))) \cap g(W(0) \cup W(\pi))=\varnothing, g$ is one-to-one on W; i.e. g satisfies (4).
(L.10) g satisfies (6) and (7).

Proof. First we prove that g is a C^{1}-local diffeomorphism on L_{1}. Let $v_{0}=\left(r_{0},-1,0\right)$ be a point in L_{1} and $v=(r, s, t)$ a point sufficiently near v_{0} with $v \neq v_{0}$. Take a point $u_{0}=\left(x_{0}, 0,0\right)$ such that $\Phi\left(u_{0}\right)=v_{0}$. There is a point $u=(x, y, z)$ in U_{0} such that $\Phi(u)=v$. Since u is also sufficiently near u_{0} by (L. $6(\mathrm{v})$), we may asume that $-\pi / 4 \leqq y \leqq \pi / 4$. Then we have

$$
(r, s, t)=(\sinh (x),-\cos (y) \cosh (z), \sin (y) \sinh (z))
$$

and

$$
\begin{aligned}
g(v) & =\left(g_{1}, g_{2}, g_{8}\right) \\
& =\left(\sin \left(\frac{x}{3}-\frac{\kappa}{2}\right),-\cos \left(h_{1}(y)\right) \cosh \left(h_{2}(z)\right), \sin \left(h_{1}(y)\right) \sinh \left(h_{2}(z)\right)\right) .
\end{aligned}
$$

Hence

$$
\frac{d g_{1}}{d r}=\frac{d g_{1}}{d x} / \frac{d r}{d x} \longrightarrow a_{0} \quad\left(\text { as } x \longrightarrow x_{0} ; \text { i.e. } r \longrightarrow r_{0}\right)
$$

where $a_{0}=\left\{\cosh \left(\left(x_{0} / 3\right)-(\kappa / 2)\right)\right\} /\left\{3 \cosh \left(x_{0}\right)\right\}>0$. Using (L.1(iv)) and (L.7(vi)), we get

$$
\begin{aligned}
\lim _{(s, t) \rightarrow(-1,0)} & \frac{\left\|\left(g_{2}(v), g_{3}(v)\right)-\left(g_{2}\left(v_{0}\right), g_{3}\left(v_{0}\right)\right)-(s+1, t)\right\|}{\|(s+1, t)\|} \\
= & \lim _{(y, z) \rightarrow(0,0)}\left[\frac{\left\{o\left(z^{2}\right) \cos (y)+o\left(y^{2}\right) \cosh (z)+o\left(y^{2}\right) o\left(z^{2}\right)\right\}^{2}}{\{\cosh (z)-\cos (y)\}^{2}}\right. \\
& \left.+\frac{\left\{o\left(z^{2}\right) \sin (y)+o\left(y^{2}\right) \sinh (z)+o\left(y^{2}\right) o\left(z^{2}\right)\right\}^{2}}{\{\cosh (z)-\cos (y)\}^{2}}\right]^{1 / 2} \\
= & 0 .
\end{aligned}
$$

Therefore g is differentiable at ($r_{0},-1,0$) and one has

$$
D g\left(r_{0},-1,0\right)=\left[\begin{array}{lll}
a_{0} & & 0 \\
& 1 & \\
0 & & 1
\end{array}\right] \text { and } J g\left(r_{0},-1,0\right)=a_{0}>0
$$

From an easy calculation it follows that

$$
\frac{\partial\left(g_{1}, g_{2}, g_{3}\right)}{\partial(r, s, t)}=\frac{\partial\left(g_{1}, g_{2}, g_{3}\right)}{\partial(x, y, z)} \cdot\left[\frac{\partial(r, s, t)}{\partial(x, y, z)}\right]^{-1} \longrightarrow\left[\begin{array}{lll}
a_{0} & & 0 \\
& 1 & \\
0 & & 1
\end{array}\right]\left(\text { as } u \longrightarrow u_{0}\right)
$$

This implies that g is a C^{1}-local diffeomorphism on L_{1}. Similarly we can prove that g is a C^{1}-local diffeomorphism on L_{2}. Therefore g satisfies (6).

From (4), (5) and (6), g is a C^{1}-diffeomorphism from W into \boldsymbol{R}^{3}. Since W is a closed ball in R^{3} and $J g(u)>0$ holds at $u=\left(r_{0},-1,0\right) \in W$, g is orientation preserving. Therefore g is isotopic to the identity map (P. 117 of [7]); i.e. g satisfies (7). The proof is completed.

References

[1] N. Aoki and M. Dateyama, The relationship between algebraic number and expansiveness of group automorphisms, to appear in Fund. Math..
[2] N. Aoki, M. Dateyama and M. Komuro, Solenoidal automorphisms with specifications, Monatsh. Math., 93 (1982), 79-110.
[3] R. Bowen, Periodic points and measures for axiom A diffeomorphisms, Trans. Amer. Math. Soc., 154 (1971), 377-397.
[4] R. Bowen, Some systems with unique equilibrium state, Math. Systems Theory, 8 (1974), 193-202.
[5] M. Denker, C. Grillenberger and K. Sigmund, Ergodic Theory on Compact Spaces, Lecture Notes in Math., 527, Springer, 1976.
[6] M. HÉnon, A two-dimensional mapping with a strange attractor, Comm. Math. Phps., 50 (1976), 69-77.
[7] M. W. Hirsch, Differential Topology, Graduate Texts in Math., 33, Springer, 1976.
[8] D. Lind, Ergodic group automorphisms and specification, Lecture Notes Math., 729 (edited by Denker and Jacobs) Ergodic Theory, Springer, 1979, 93-104.
[9] Z. Nitecki, Differentiable Dynamics, The MIT Press, Cambridge Ma., 1971.
[10] K. Sigmund, On dynamical systems with the specification property, Trans. Amer. Math. Soc., 190 (1974), 285-299.
[11] S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc., 73 (1967), 747-817.
[12] R. F. Williams, One-dimensional non-wandering sets, Topology, 6 (1967), 473-487.
[13] R. F. Williams, Classification of one-dimensional attractors, Global Analysis, Proceedings of Symposia in Pure Math., 14 (1970), Amer. Math. Soc., Providence, 341-361.

Present Address:
Department of Mathematics Faculty of Sciences Tokyo Metropolitan University Fukazawa, Setagaya-ku, Tokyo 158

