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Introduction

Let $f:Y\rightarrow Y$ be a continuous surjection of a compact metric space
Y. The inverse limit of $f$ induces a compact metric space $\overline{Y}$ and a
homeomorphism $\overline{f}$ of Y. $(\overline{Y},\overline{f})$ is called the natural extension of $f$. As
R. Williams proved in [12], if a l-dimensional branched manifold $Y$ admits
an expanding immersion $g:Y\rightarrow Y$, then $Y$ has no endpoints. Moreover
$(\overline{Y},\overline{g})$ is topologically conjugate to an attractor of some Axiom $A$ dif-
feomorphism. But some attractors, as H\’enon’s attractors, resemble the
natural extension (I, f) of a continuous surjection $f$ of an interval $I$ with
endpoints. It is a problem whether there exist any diffeomorphisms
which have an attractor topologically conjugate to (I, $\overline{f}$).

For the continuous surjection $f(x)=1-|2x-1|$ on the interval $I=[0,1]$ ,
we show in this paper that there exists a diffeomorphism of the 3-sphere
which has an attractor topologically conjugate to (I, $\overline{f}$). Furthermore
we show that (I, f) satisfies not expansiveness but specification (these
properties have been used in papers $[1, 2]$ , $[3, 4]$ , [5], [8] and [10] on
ergodic theory). To realize the attractor in the 3-sphere, our key
ingregient is in constructing a fine foliation of a closed 3-ball.

\S 1. Definitions and results.

Let $X=(X, d)$ be a compact metric space and $\sigma$ a homeomorphism of
$X$ (i.e. from $X$ onto itself). By $R,$ $Z$ and $N$ we denote the set of real
numbers, the set of integers and the set of positive integers respectively.
(X, $\sigma$) is expansive if there exists a $\delta>0$ such that, for every pair
of distinct points $x,$ $y\in X$, there is an $n\in Z$ with $ d(\sigma^{n}x, \sigma^{n}y)>\delta$ . (X, a)
is said to satisfy specification if the following holds; for every $\epsilon>0$

there exists an integer $K=K(\epsilon)>0$ such that, for every $k\geqq 1$ , for every
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$k$ points $x_{1},$ $\cdots,$
$x_{k}\in X$, for every integers

$a_{1}\leqq b_{1}<a_{2}\leqq b_{2}<\cdots<a_{k}\leqq b_{k}$

with
$a_{i+1}-b_{i}\geqq K$ $(1\leqq i\leqq k-1)$

and for every integer $p$ with $p\geqq b_{k}-a_{1}+K$, there exists a point $x\in X$

with $a^{p}x=x$ such that

$ d(\sigma^{n}x, a^{n}x_{i})<\epsilon$ for $a_{i}\leqq n\leqq b,$ $1\leqq i\leqq k$ .
(X, a) is said to be topologically transitive if $\{a^{n}x:neZ\}$ is dense in $X$

for some $x\in X$. If (X, a) satisfies specification, then it is clearly
topologically transitive. Let $a_{\perp}$ be a homeomorphism of a compact metric
space $X_{1}$ . (X, a) and $(X_{1}, a_{1})$ are said to be topologically conjugate to
each other if there exists a homeomorphism $\varphi$ from $X$ onto $X_{1}$ such
that $\varphi\circ a=a_{1}\circ\varphi$ . The topological conjugacy is an equivalent relation
under which specification, topological transitivity and expansiveness are
preserved.

Let $Y=(Y, d)$ be a compact metric space and $f:Y\rightarrow Y$ a continuous
surjection. $(Y, f)$ is said to satisfy positive specification if it satisfies
the condition of specification for $a_{1}\geqq 0$ . We define the metric $\overline{d}$ of the
direct product space $Y^{N}$ by $\overline{d}(\overline{x},\overline{y})=\sum_{l=1}^{\infty}2^{-}d(x_{i}, y_{i})$ for $\overline{x}=(x_{i})_{1}^{\infty}$ and $\overline{y}=$

$(y_{i})_{1}^{\infty}$ in $Y^{N}$ . The compact subset $X$ of $Y^{N}$ is defined by

$X=\{\overline{x}\in Y^{N}:f(x_{i+1})=x_{i}, i\in N\}$ .
Let $a:X\rightarrow X$ be the homeomorphism defined by $a(\overline{x})=(fx_{1}, fx_{2}, fx_{8}, \cdots)=$

$(fx_{1}, x_{1}, x_{2}, \cdots)$ for $\overline{x}=(x_{1}, x_{2}, \cdots)\in X.$ (X, a) is called the natural exten-
sion of $(Y, f)$ , and it is denoted by (X, $a$) $=\lim(Y, f)$ .

Let $g$ be a diffeomorphism of a compact $manifold\leftarrow M$. A g-invariant
subset $\Lambda$ of $M$ is said an attractor of $g$ if there exists a closed neighbor-
hood $W$ of $\Lambda$ such that

(i) $g(W)\subset int(W)$ ,
(ii) $\Lambda=\bigcap_{n\geq 0}g^{n}(W)$ and
(iii) $ g|\Lambda:\Lambda\rightarrow\Lambda$ is topologically transitive.

We denote by $(\Lambda, g)$ the restriction of $(M, g)$ to an attractor $\Lambda$ . Our
main results are stated in the theorems below:

THEOREM 1. Let $I=[1,0]$ be $a$ eompact interval with the euclidian
metric, and $f:I\rightarrow I$ a continuous surjection defined by $f(x)=1-|2x-1|$
$(x\in I)$ . Let (X, a) be the natural extension of (I, $f$). Then the following
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holds:

(A) (X, a) is not expansive,
(B) (X, $\sigma$) satisfies specification

and
(C) each point of $X$ has a neighborhood which is homeomorphic to

the product of a compact interval and a Cantor set.

THEOREM 2. Let (X, a) be as in Theorem 1. Then there exists a $C^{1}-$

difeomorphism $g$ of the 3-sphere $S^{3}$ which has an attractor $\Lambda$ such that
$(\Lambda, g)$ is topologically conjugate to (X, $a$).

\S 2. Proof of Theorem 1.

We denote by $d$ the euclidian metric of $I$; i.e. $d(x, y)=|x-y|$ for
$x,$ $yeI$.

(I) PROOF OF (A). Let $1/2>\epsilon>0$ be given. For each $i\geqq 1$ , we put
$x_{i}=2^{-i}(1-\epsilon)$ and $y_{i}=2^{-i}(1+\epsilon)$ . Then $\overline{x}=(x_{1}, x_{2}, \cdots)$ and $\overline{y}=(y_{1}, y_{2}, \cdots)$

are distinct points of $X$, because $x_{1}\neq y_{1},$ $f(x_{i+1})=x_{i}$ and $f(y_{i+1})=y_{i}$ for each
$i\geqq 1$ . To prove (A), it is enough to show that $ d(\sigma^{n}\overline{x}, a^{n}\overline{y})\leqq\epsilon$ for every
$n\in Z$. Let neZ be given. If $n\geqq 0$ , using the fact that $f^{i}(x_{1})=f^{i}(y_{1})$

for every $i\geqq 1$ , we have
$\overline{d}(\sigma^{n}\overline{x}, \sigma^{n}\overline{y})=\overline{d}((f^{n}x_{1}, f^{n-1}x_{1}, \cdots, fx_{1}, x_{1}, x_{2}, \cdots)$ ,

$=\sum_{i=1}^{\infty}2^{-(n+i)}d(x_{i}, y_{i})$

$=2^{-n+1}\sum_{i=1}^{\infty}2^{-2i}$

$=2^{-n+1}\epsilon/3<\epsilon$ .
If $n<0$ , we have

$(f^{n}y_{1}, f^{n-1}y_{1}, \cdots, fy_{1}, y_{1}, y_{2}, \cdots))$

$\overline{d}(\sigma^{n}\overline{x}, \sigma^{n}\overline{y})=\overline{d}((x_{1-n}, x_{2-n}, \cdots), (y_{1-n}, y_{2-n}, \cdots))$

$=\sum_{i=1}^{\infty}2^{-i}d(x_{i-n}, y_{i-n})$

$=2^{n+1}\epsilon/3<\epsilon$ .
Therefore (X, a) is not expansive.

(II) PROOF OF (B). To prove (B), it is enough to prove the next
two propositions.

PROPOSITION 2.1. If (I, f) satisfies positive specification, then
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(X, $a$) $=\lim_{\leftarrow}(I, f)$ satisfies specification.

PROPOSITION 2.2. (I, f) satisfies positive specification.

PROOF OF PROPOSITION 2.1. Assume that (I, f) satisfies positive
specification. Let $\epsilon>0$ be given. Choose a positive integer $N$ such that
$2^{-N}<\epsilon/2$ . Let $K’=K^{\prime}(\epsilon/2)>0$ be as in the definition of positive specifica-
tion. Put $K=K’+N$ and take any integer $k\geqq 1$ . Let $\overline{x}_{1},\overline{x}_{2},$ $\cdots,\overline{x}_{k}eX$ be
given, as well as integers $a_{1}\leqq b_{1}<a_{2}\leqq b_{2}<\cdots<a_{k}\leqq b_{k}$ and $p$ with $a_{i+1}-b_{i}\geqq K$

$(1\leqq i\leqq k-1)$ and $p\geqq b_{k}-a_{1}+K$. We have to show that there exists a
$\overline{y}\in X$ with $a^{p}\overline{y}=\overline{y}$ such that $\overline{d}(\sigma^{n}\overline{y}, \sigma^{n}\overline{x}_{l})<\epsilon$ for every $a_{i}\leqq n\leqq b_{i}$ and $ 1\leqq$

$i\leqq k$ . To do this we consider two cases separately.
Case (i): $a_{1}\geqq 0$ . For each $1\leqq i\leqq k$ , the point $\overline{x}_{i}$ is expressed by $\overline{x}_{i}=$

$(x_{1}^{i}, x_{2}^{i}, \cdots)$ where $x_{\dot{f}}\in I(j\in N)$ . Note that $a_{i+1}-(b_{i}+N)\geqq K^{\prime}(1\leqq i\leqq k-1)$

and $p\geqq(b_{k}+N)-a_{1}+K’$ . Since (I, f) satisfies positive specification, for
$x_{N}^{i}\in I(1\leqq i\leqq k)$ , for $a_{1}\leqq b_{1}+N<a_{2}\leqq b_{2}+N<\cdots<a_{k}\leqq b_{k}+N$ and for $p$ , there
exists $y\in I$ with $f^{p}y=y$ such that $d(f^{n}y, f^{n}x_{N}^{\ell})<\epsilon/2$ for every $a_{i}\leqq n\leqq b_{i}+N$

and $1\leqq i\leqq k$ . Define $\overline{y}eX$ by

$\overline{y}=(f^{N-1}y, f^{N-2}y, \cdots, fy, y, f^{p-1}y, f^{p-2}y, \cdots, fy, y, f^{p-1}y, \cdots)$ .
Then $\overline{y}$ satisfies $a^{p}\overline{y}=\overline{y}$ . For each $1\leqq i\leqq k$ , since $x_{\dot{f}}^{\ell}=f(x_{\dot{g}+1}^{\ell})$ for every
$j\in N,\overline{x}_{i}$ is expressed by

$\overline{x}_{i}=(f^{N-1}x_{N}^{i}, \cdots, fx_{N}^{i}, x_{N}^{t}, x_{N+1}^{i}, \cdots)$ .
Since diam $(I)=1$ , we have, for every $a_{i}\leqq n\leqq b_{i}$ ,

$\overline{d}(a^{n}\overline{y}, \sigma^{n}\overline{x}_{i})=\overline{d}((f^{n+N-1}y, \cdots, f^{n+1}y, f^{n}y, f^{n+p-1}y, \cdots)$ ,
$(f^{n+N-1}x_{N}^{i}, \cdots, f^{n+1}x_{N}^{i}, f^{n}x_{N}^{i}, f^{n}x_{N+1}^{i}, \cdots))$

$\leqq\sum_{\dot{s}=1}^{N}2^{-\dot{g}}d(f^{n+N-j}y, f^{n+N-j}x_{N}^{i})+\sum_{j=N+1}^{\infty}2^{-\dot{g}}$

$<\epsilon/2+1/2^{N}<\epsilon$ .
Case (ii): $a_{1}<0$ . Put $\overline{x}_{i}^{\prime}=\sigma^{a_{1}}\overline{x}_{i},$ $a_{\acute{i}}=a_{l}-a_{1}$ and $b_{i}^{\prime}=b_{i}-a_{1}(1\leqq i\leqq k)$ .

Note that $a_{i+1}^{\prime}-(b_{i}^{\prime}+N)\geqq K^{\prime}$ and $p\geqq(b_{k}^{\prime}+N)-a_{1}^{\prime}+K^{\prime}$ . Apply the case (i)

to $\overline{x}_{i}^{\prime}\in X(1\leqq i\leqq k),$ $0=a_{1}^{\prime}\leqq b_{1}^{\prime}+N<a_{2}^{\prime}\leqq b_{2}^{\prime}+N<\cdots<a_{k}^{\prime}\leqq b_{k}^{\prime}+N$ and $p$ . Then
we get $\overline{y}^{\prime}\in X$ with $a^{p}\overline{y}’=\overline{y}$

’ such that $\overline{d}(a^{n}\overline{y}’, a^{n}\overline{x}_{i})<\epsilon$ for $a!\leqq n\leqq b_{i}^{\prime},$ $ 1\leqq$

$i\leqq k$ . Put $\overline{y}=a^{-a_{1}}\overline{y}^{\prime}$ , then this is a required point. Proposition 2.1 is
proved.

To prove Proposition 2.2, we prepare two lemmas.

LEMMA 2.3. Let $Y$ be a compact interval and $\xi:Y\rightarrow R$ a continuous
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map. Let a closed interval $J\subset\xi(Y)$ be given. Then there exists a closed
interval $J’\subset Y$ such that $\xi(J’)=J$.

PROOF. Put $J=[a, b]$ . If $a=b$ , the assertion is trivial. Suppose
$a<b$ . Then there are $c,$ de $Y$ such that $\xi(c)=a$ and $\xi(d)=b$ . If $c<d$ ,
put $q=\inf\{x\in[c, d]:\xi(x)=b\}$ and $p=\sup\{xe[c, q]:\xi(x)=a\}$ . Otherwise, put
$p=\sup\{xe[d, c];\xi(x)=b\}$ and $q=\inf\{x\in[p, c];\xi(x)=a\}$ . In any case, by
the intermediate-value theorem, we have $\xi([p, q])=J$.

For $xe$ $I$ and $\epsilon>0$ , define $I(x, \epsilon)=\{yeI:d(x, y)\leqq\epsilon\}$ .
LEMMA 2.4. Let $\epsilon>0$ be given.
(i) For every $xeI$ and $n\geqq 0$ , it follows that

$f^{n}(I(x, \epsilon/2^{n}))=I(f^{n}x, \epsilon)$

and

$ d(fx, f^{i}y)\leqq\epsilon$ for every $0\leqq i\leqq n$ and $y\in I(x, \epsilon/2^{n})$ .
(ii) There exists an integer $K=K(\epsilon)>0$ such that the following

holds: for every $x\in I$, for every closed interval $I^{\prime}\subset I$ and for every $n\geqq K$,
there is a closed interval $J\subset I(x, \epsilon)$ such that $f^{n}(J)=I’$ .

PROOF. By the definition of $f$, one has $f(I(x, \epsilon))=I(fx, 2\epsilon)$ for every
xeI and every $\epsilon>0$ (not necessary $\epsilon<1$). Applying this to $I(x, \epsilon/2^{n})$

repeatedly, we get (i). To see (ii), choose $K>0$ such that $ 2^{-K}<\epsilon$ . Then,
since $2^{K}\epsilon\geqq 1$ , it follows that $f^{n}(I(x, \epsilon))=I(f^{n}x, 2^{n}\epsilon)=I$ for every $xeI$ and
every $n\geqq K$. Replacing $\xi$ in Lemma 2.3 by $f^{n}$ , we get (ii).

PROOF OF PROPOSITION 2.2. Let $\epsilon>0$ be given. Choose a number
$\epsilon^{\prime}$ with $ 0<\epsilon’<\epsilon$ . Let $k=k(\epsilon’)>0$ be an integer as in Lemma 2.4 (ii).
Take any $k\geqq 1$ . Let $x_{1},$ $\cdots,$ $x_{k}eX$ be given, as well as integers $ 0\leqq a_{1}\leqq$

$b_{1}<a_{2}\leqq b_{2}<\cdots<a_{k}\leqq b_{k}$ and $p$ with $a_{l+1}-b_{i}\geqq K(1\leqq i\leqq k-1)$ and $p\geqq b_{k}-$

$a_{1}+K$. Put $a_{k+1}=p+a_{1}$ .
In order to find an interval $I_{1}\subset I\subset(f^{a_{1}}x_{1}, \epsilon^{\prime})$ such that $f^{p}(I_{1})\supset I_{1}$ , put

$I_{k+1}=I(f^{a_{1}}x_{1}, \epsilon’)$ . Then $I_{i}(i\leqq k)$ is determined recursively as follows. By
Lemma 2.4 (ii), there is an interval $J_{l}\subset I(f^{b_{l}}x_{i}, \epsilon’)$ such that $f^{a_{i}+1^{-b}i}(J_{i})=$

$I_{i+1}$ . Since $f^{b_{i}-a_{i}}(I(f^{a_{i}}x_{i}, \epsilon^{\prime}/2^{b_{i}-a_{i}}))=I(f^{b_{i}}x_{i}, \epsilon)$ (by Lemma 2.4 $(i)$), there
exists an interval $I_{i}\subset I(f^{a_{i}}x_{i}, \epsilon^{\prime}/2^{b_{i}-a_{i}})$ such that $f^{b_{i}-a_{i}}(I_{i})=J_{i}$ (by Lemma
2.3).

Since $f^{a_{i+1}-a_{i}}(I_{i})=I_{i+1}$ for $1\leqq i\leqq k$ , one has $I_{k+1}=f^{a_{k}+1^{-a}1}(I_{1})=f^{p}(I_{1})$ .
Note that $I_{1}\subset I(f^{a_{1}}x_{1}, \epsilon’)=I_{k+1}$ . By the intermediate-value theorem, theer
exists a $y\in I_{1}$ such that $f^{p}y=y$ . Put $x=f^{p-a_{1}}y$ . Clearly $f^{p}x=x$ holds.
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For every $1\leqq i\leqq k$ and $a_{i}\leqq n\leqq b_{t}$ , one has $f^{n}x=f^{n-a_{1}}y\in f^{n-a_{1}}(I_{1})=$

$f^{n-a_{i}}(I_{i})\subset f^{n-a}I(f^{a}x_{i}, \epsilon^{\prime}/2^{b_{i}-a})\subset I(f^{n}x_{i}, \epsilon^{\prime})$ ; i.e., $ d(f^{n}x, f^{n}x_{i})\leqq\epsilon’<\epsilon$ . This
means that (I, f) satisfies positive specification. The proof is completed.

(III) PROOF OF (C). Let $\overline{a}=(a_{1}, a_{2}, \cdots)\in X$ be given. Denote by
$J_{1}$ the 1/4-closed neighborhood of $a_{1}$ in $I$. If $J\subset I$ is an interval such
that diam $(J)\leqq 1/2$ , then $f^{-2}(J)$ has at least two connected components and
the diameter of each connected component of $f^{-2}(J)$ is not greater than
(1/2) diam $(J)$ . Hence, for $J_{n}=f^{-2(n-1)}(J_{1})(n\geqq 1)$ , there exists a homeo-
morphism $\psi_{n}:J_{n}\rightarrow I\times F_{n}$ where $F_{n}$ is a finite set with card $(F_{n})\geqq 2^{n-1}$ .
Put $V_{0}=\{\overline{x}\in X:x_{1}\in J_{1}\}$ . Clearly $V_{0}$ is a neighborhood of $\overline{a}$ , and this is
expressed by the inverse limit of the sequence

$J_{1}\leftarrow J_{2}f^{2}\leftarrow J_{3}f^{2}\leftarrow f^{2}$

Therefore $V_{0}$ is homeomorphic to the inverse limit of the sequence

$I\times F_{1}\leftarrow I\times F_{2}\Psi_{1}\leftarrow I\times F_{s}\Psi_{2}\leftarrow^{\Psi_{3}}$
. . . ,

where $\psi_{n}=\psi_{n}\circ f^{2}\circ\psi_{n+1}^{-1}(n\geqq 1)$ . This implies that $V_{0}$ is homeomorphic to
the product of $I$ and a Cantor set. The proof is completed.

\S 3. Proof of Theorem 2.

Let $f(x)=1-|2x-1|$ as before. Define the continuous map $h:(-1/2$ ,
$3/2)\rightarrow R$ by

$h(x)=\{$
$f(x)-(2\pi)^{-1}\sin(2\pi x)$ $(-1/2<x\leqq 1/2)$

$f(x)+(2\pi)^{-1}$ sin $(2\pi x)$ $(1/2<x<3/2)$ .
Clearly $h$ satisfies the following.

(L.1) (i) $h(O)=0,$ $h(1/2)=1$ and $h(x)=h(1-x)$ for $-1/2<x<3/2$ .
(ii) $h(-x)=-h(x)$ for $-1/2<x<1/2$ .
(iii) $h^{\prime}(O)=1$ and $h’(x)>1$ for $x\in(-1/2,1/2)-\{0\}$ .
(iv) $h(x)=x+o(x^{2})$ .

Here $h$
’ denotes the derivative of $h$ , and $o(t)$ means a function such that

$o(t)/t\rightarrow 0$ as $t\rightarrow 0$ .
Note that the restriction of $h$ to $I$ is a continuous map from $I$ onto

itself. Let $(X_{k}, a_{h})=\lim_{\leftarrow}(I, h)$ and (X, $\sigma$) $=\lim_{\leftarrow}(I, f)$ . Clearly Theorem 2
is obtained from the next two propositions.

PROPOSITION 3.1. $(X_{h}, a_{h})$ is topologically conjugate to (X, $a$).
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PROPOSITION 3.2. There exists $g:S^{S}\rightarrow S^{8}$ , a $C^{1}$-difeomorphism of the
3-sphere which has an attractor $\Lambda$ such that $(\Lambda, g)$ is topologically
conjugate to $(X_{h}, \sigma_{h})$ .

(I) PROOF OF PROPOSITION 3.1. We have to show that there exists
a homeomorphism $\varphi_{0}$ from $X$ onto $X_{h}$ such that $\varphi_{0}\circ\sigma=a_{h}\circ\varphi_{0}$ . To do
this we need several Lemmas.

Let $T^{1}=R/Z$ and denote the natural projection by $\pi_{0}:R\rightarrow T^{1}$ . For
each $x\in T^{1}$ there is a unique $t.e[0,1]$ with $\pi_{0}(t_{x})=x$ . Hence the con-
tinuous map $p_{0}:T^{1}\rightarrow I$ is well defined by $p_{0}(x)=1-|2t_{x}-1|$ . Consider the
continuous map $\overline{\eta}(x)=2x-(2\pi)^{-1}$ sin $(2\pi x)(x\in R)$ and denote by $\eta:T^{1}\rightarrow T^{1}$

the factor of $\overline{\eta}$ under $\pi_{0}$ . Let $\zeta$ denote the endomorphism of $T^{1}$ defined
by $\zeta(x)=2x(xeT^{1})$ .

(L.2) (i) $p_{0}$ is an open map. (ii) $p_{0}(x)=p_{0}(-x)(x\in T^{1})$ . (iii) $p_{0}\circ\zeta=$

$f\circ p_{0}$ . (iv) $p_{0}\circ\eta=h\circ p_{0}$ . (v) $\overline{\eta}(x)+\overline{\eta}(1-x)=2(x\in R)$ . (vi) For every
nonempty open set $U$ in $T^{1}$ , there exists an integer $N>0$ such that
$\eta^{N}(U)=T^{1}$ .

PROOF. $(i)\sim(v)$ are easy. (vi) follows from the fact that $\overline{\eta}’(x)>1$

for every $x\in R-Z$.
We denote by $C^{0}(Y)$ the set of all continuous maps from a topologi-

cal space $Y$ to itself. For each $\alpha\in C^{0}(T^{1})$ , we denote by a $eC^{0}(R)$ a lift
of $\alpha$ . Then it is well known (P. 64 of [9]) that, for every $x\in R$ and
$neZ$ with $n\neq 0$ , the number $(1/n)(\overline{\alpha}(x+n)-\overline{\alpha}(x))$ is an integer, and that
this integer is independent of the choice of $x$ and $n$ . Such an integer
is called the degree of $\alpha$ and denoted by deg $(\alpha)$ . A map $\alpha\in C^{0}(T$ ’ $)$ is
said to be monotone if a lift $\overline{\alpha}$ satisfies $\overline{\alpha}(x_{1})\geqq\overline{\alpha}(x_{2})$ for every $x_{1},$ $x_{2}\in R$

with $x_{1}\geqq x_{2}$ (this definition is obviously independent of the choice of $\overline{\alpha}$).

(L.3) (i) deg $(\zeta)=2$ .
(ii) deg $(\eta)=2$ .
(iii) $\eta$ is monotone.
PROOF. Obvious.

(L.4) There exists a homeomorphism $\alpha\in C^{0}(T^{1})$ satisfying
(i) $\alpha(x)+\alpha(-x)=0(x\in T^{1})$

and
(ii) $\alpha\circ\eta=\zeta\circ\alpha$ .
PROOF. Define

$H=$ {$\alpha\in C^{0}(T^{1}):\alpha$ is monotone and satisfies deg $(\alpha)=1$ }
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and

$V=$ {$\overline{\alpha}eC^{0}(R):\overline{\alpha}$ is a lift of some $\alpha e$ H. $\overline{\alpha}(x)+\overline{\alpha}(1-x)=1(x\in R)$}.

Since $\alpha eH$ is degree-one, the metric function $D$ of $V$ is defined by

$D(\overline{\alpha},\overline{\beta})=\max\{d(\overline{\alpha}(x),\overline{\beta}(x)):x\in[0,1]\}$ for $\overline{\alpha},\overline{\beta}eV$ ,

where $d$ denotes the euclidian metric of $R$ .
We claim that $V$ is a complete metric space. Indeed, if $\{\overline{\alpha}_{i}\}$ is a

Cauchy sequence with respect to $D$ , then $\{\overline{\alpha}_{i}\}$ uniformly converges to
some $\overline{\alpha}\in C^{0}(R)$ . Since a uniform limit of lifts of degree-one maps is
itself a lift, $\overline{\alpha}$ is a lift of some $\alpha_{0}\in C^{0}(T^{1})$ . As $\{\overline{\alpha}_{i}\}\subset V,$

$\alpha_{0}$ is monotone
and degree-one. Also $\overline{\alpha}$ satisfies $\overline{\alpha}(x)+\overline{\alpha}(1-x)=1(x\in R)$ . Hence $\overline{\alpha}$

belongs to $V$, i.e. $V$ is complete.
Let $\overline{\zeta}$ be the lift of $\zeta$ defined by $\overline{\zeta}(x)=2x(xeR)$ . Define the map

$T:V\rightarrow C^{0}(R)$ by $T(\overline{\alpha})=\overline{\zeta}^{-1}\circ\overline{\alpha}\circ\overline{\eta}$. We claim that $T$ is a contraction map
on $V$. Let $\overline{\alpha}eV$ be given. Since deg $(\eta)=2$ and deg $(\alpha)=1$ , we have
$T(\overline{\alpha})(n+x)-T(\overline{\alpha})(x)=(1/2)(\overline{\alpha}(2n+\overline{\eta}(x))-\overline{\alpha}\overline{\eta}(x))=n$ for every $x\in R$ and
$n\in Z$. So $T(\overline{\alpha})$ is a lift of some $\alpha^{\prime}\in H$. Using $(L.2(v))$ and the equation
$\overline{\alpha}(x)+\overline{\alpha}(1-x)=1$ , we have

$T(\overline{\alpha})(x)+T(\overline{\alpha})(1-x)=(1/2)\overline{\alpha}\overline{\eta}(x)+(1/2)\overline{\alpha}(2-\overline{\eta}(x))$

$=(1/2)(\overline{\alpha}\overline{\eta}(x)+\overline{\alpha}(1-\overline{\eta}(x))+1)=1$ ,

so that $T(\overline{\alpha})\in V$. This means $T(V)\subset V$. For every $\overline{\alpha},\overline{\beta}\in V$, we have
$D(T(\overline{\alpha}), T(\overline{\beta}))=\max\{d(\overline{\zeta}^{-J}\overline{\alpha}\overline{\eta}(x), \overline{\zeta}^{-1}\overline{\beta}\overline{\eta}(x)):x\in[0,1]\}$

$=(1/2)$ max $\{d(\overline{\alpha}(y),\overline{\beta}(y)):y=\overline{\eta}(x)\in[0,2]\}$

$=(1/2)D(\overline{\alpha},\overline{\beta})$ .
Therefore $T$ is a contraction map on $V$.

Since $V$ is complete, $T$ has a unique fixed point $\overline{\alpha}$ in $V$; i.e. $\overline{\alpha}\circ\overline{\eta}=$

$\overline{\zeta}\circ\overline{\alpha}$ . Denote by $\alpha$ the factor of $\overline{\alpha}$ under $\pi_{0}$ . It is easy to see that
$\alpha\circ\eta=\zeta\circ\alpha$ and $\alpha(x)+\alpha(-x)=0(x\in T^{1})$ . To complete the proof of (L.4),
it only remains to show that $\alpha$ is one-to-one. Assume that $x\neq y$ and
$\alpha(x)=\alpha(y)$ for some $x,$ $y\in T^{1}$ . Then there is a nonempty open interval
$U\subset T^{1}$ with $\alpha(U)=\alpha(x)$ , because $\alpha$ is monotone and degree-one. By
(L.2(vi)) one has $\eta^{N}(U)=T^{1}$ for some $N>0$ . Hence $T^{1}=\alpha\eta^{N}(U)=\zeta^{N}\alpha(U)=$

$\zeta^{N}\alpha(x)$ , which is a contradiction.

(L.5) There is a homeomorphism $\beta:I\rightarrow I$ such that $\beta\circ h=f\circ\beta$ .
PROOF. Let $\alpha$ and $p_{0}$ be as in (L.4) and (L.2) respectively. Suppose
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$p_{0}(x)=p_{0}(y)$ and $x\neq y$ . Then one has $x=-y$ , so that $p_{0}\alpha(x)=p_{0}\alpha(-y)=$

$p_{0}(-\alpha(y))=p_{0}\alpha(y)$ by $(L.4(i))$ and (L.2(ii)). Hence there is a map $\beta:I\rightarrow I$

such that $\beta\circ p_{0}=p_{0}\circ\alpha$ . By $(L.2(i)),$ $\beta$ is continuous. Similarly, since $\alpha$

is a homeomorphism, there is a continuous map $\beta’:I\rightarrow I$ such that
$\beta^{\prime}\circ p_{0}=p_{0}\circ\alpha^{-1}$ . Then one has $\beta\circ\beta^{\prime}\circ p_{0}=\beta\circ p_{0}\circ\alpha^{-1}=p_{0}\circ\alpha\circ\alpha^{-1}=p_{0}$ , and
also $\beta^{\prime}\circ\beta\circ p_{0}=p_{0}$ . Since $p_{0}$ is surjective, we have $\beta\circ\beta^{\prime}=\beta\circ\beta=id$ ; i.e.
$\beta$ is a homeomorphism. By (L.2(iv)), (L.4(ii)) and (L.2(iii)), it follows
that $\beta\circ h\circ p_{0}=f\circ\beta\circ p_{0}$ . Using $p_{0}(T^{1})=I$, we get $\beta\circ h=f\circ\beta$ .

Now we complete the proof of Proposition 3.1. Let $\beta$ be as in (L.5).

Define the continuous map $\varphi_{0}:X\rightarrow I^{N}$ by $\varphi_{0}((x_{i})_{i\geqq 1})=(\beta^{-1}x_{i})_{l\geqq 1}$ for $(x_{i})_{i\geqq 1}\in X$.
Since $h(\beta^{-1}x_{i+1})=\beta^{-1}f(x_{i+1})=\beta^{-1}(x_{i})$ for every $(x_{i})_{l\geqq 1}\in X$, one has $\varphi_{0}(X)\subset X_{h}$ .
Since $\beta^{-1}:I\rightarrow I$ is a homeomorphism, $\varphi_{0}$ is a homeomorphism from $X$ onto
$X_{h}$ . Using the equation $\beta^{-1}\circ f=h\circ\beta^{-1}$ , we have

$\varphi_{0}a((x_{i})_{i\geqq 1})=(\beta^{-1}f(x_{i}))_{i\geqq 1}=(h\beta^{-1}(x_{i}))_{i\geq 1}=\sigma_{h}\varphi_{0}((x_{i})_{i\geq 1})$

for every $(x_{i})_{i\geqq 1}\in X$. Therefore $(X_{h}, a_{h})$ is topologically conjugate to
(X, $\sigma$). The proof is completed.

(II) PROOF OF PROPOSITION 3.2. First of all we prepare some
notation. Let $\kappa=\sinh^{-1}(2)(\approx 1.44)$ . Define

$M=\{(x, y, z)\in R^{3}:|x|\leqq\kappa, ye[0, \pi], |z|\leqq\kappa\}$

and
$U_{0}=\bigcup_{veM}\{u\in R^{\theta}:d(u, v)<1/2\}$ ,

where $d$ denotes the enclidian metric of $R^{3}$ . Then there exists a
$C^{\infty}$ -map $\Phi:U_{0}\rightarrow R^{3}$ such that

$\Phi(x, y, z)=\left\{\begin{array}{ll}(\sinh(x), -\cos(y) cosh (z), & sin (y) sinh (z))\\for & (x, y, z)\in U_{0} with y\leqq\pi/4 ,\\( \sin(y) sinh (x), -\cos(y) c & sh (x), sinh (z))\end{array}\right.$

for $(x, y, z)\in U_{0}$ with $y\geqq 3\pi/4$ ,

and $\Phi|M^{\prime}:M’\rightarrow\Phi(M’)$ is a $C^{\infty}$-diffeomorphism, where

$M’=\{(x, y, z)\in M:\pi/4\leqq y\leqq 3\pi/4\}$ .
Indeed, as such a $C^{\infty}$-map we can choose

$\Phi(x, y, z)=x_{0}(y)(\sinh(x), -\cos(y)$ cosh $(z)$ , sin $(y)$ sinh $(z))$

$+\overline{\chi}_{0}(y)$ ($\sin(y)$ sinh $(x),$ $-\cos(y)$ cosh $(x)$ , sinh $(z)$ )
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where $x_{0}:R\rightarrow R$ is a monotone decreasing $C^{\infty}$-function such that $\chi_{0}(y)=1$

$(y\leqq\pi/4)$ and $\chi_{0}(y)=0(y\geqq 3\pi/4)$ , and $\overline{\chi}_{0}$ is defined by $\overline{\chi}_{0}(y)=1-\chi_{0}(y)(yeR)$ .
As an easy corollary the following holds.
(L.6) (i) Let $M(t)(t\in[0, \pi])$ be the leaf of foliation defined by

$M(t)=\{(x, y, z)\in M:y=t\}$ , then $\Phi$ is one-to-one on $M-(M(0)\cup M(\pi))$ .
(ii) $\Phi$ is a $C^{\infty}$-local diffeomorphism on $ M-(\{(x, 0,0)\in M(0)\}\cup$

$\{(0, \pi, z)eM(\pi)\})$ .
(iii) There is a number $c>0$ such that $d(\Phi(u), \Phi(v))\leqq cd(u, v)$ for

every $u,$ $v\in M$.
(iv) $\Phi(x, 0, z)=\Phi(x, 0, -z)$ for $(x, 0, z)\in M(O)$ , and

$\Phi(x, \pi, z)=\Phi(-x, \pi, z)$ for $(x, \pi, z)eM(\pi)$ .
(v) $\Phi$ is an open map.
(vi) Put $W=\Phi(M)$ (this is illustrated in Figure 1), then $\Phi(M_{0})=$

int $(W)$ where $M_{0}=\{(x, y, z)\in M:|x|<\kappa, |z|<\kappa\}$ .
(vii) Put $W(t)=\Phi(M(t))(t\in[0, \pi])$ . For each $u\in W$ there is a unique

$t.e[0, \pi]$ with $ueW(t.)$ . Then the map $p:W\rightarrow I$ defined by $ p(u)=t\sqrt{}\pi$

is continuous.

FIGURE 1

PROPOSITION 3.3. Let $W$ and $\{W(t):t\in[0, \pi]\}$ be as above. Then
there exists a continuous map $g:W\rightarrow W$ which satisfies the following
conditions;

(1) let $h$ be a map as in (L.1) and define $h_{1}:(-\pi/2,3\pi/2)\rightarrow R$ by
$h_{1}(t)=\pi h(t/\pi)$ , then $g(W(t))\subset W(h_{1}(t))$ for every $t\in[0, \pi]$ ,
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(2) $g(W)\subset int(W)$ ,
(3) $\max_{te[0,\pi]}$ diam $g^{n}(W(t))\rightarrow 0$ as $ n\rightarrow\infty$ ,
(4) $g$ is one-to-one,
(5) $g$ is a $C^{\infty}$-local difeomorphism on $W-(L_{I}\cup L_{2})$ where

$L_{1}=\Phi(\{(x, 0, O)\in M(O)\})$ and $L_{2}=\Phi(\{(0, \pi, z)\in M(\pi)\})$ ,

(6) $g$ is a $C^{1}$-local difeomorphism on $L_{1}\cup L_{2}$ ,
(7) $g$ is isotopic to the identity map of $W$.
If Proposition 3.3 holds, then Proposition 3.2 is proved as follows.

Let $g$ be the continuous map as in Proposition 3.3. From (4), (5) and
(6) it follows that $g:W\rightarrow W$ is a $C^{1}$-diffeomorphism. We consider $W$ to
be $W\subset R^{8}\subset S^{6}$ . By the isotopy extension theorem (P. 180 of [7]), $g$ is
extended to a $C^{1}$-diffeomorphism from $S^{3}$ onto itself. Denote the extended
diffeomorphism by the same symbol $g$ . Then $\Lambda=\bigcap_{n\geq 0}g^{n}(W)$ is a g-
invariant compact set.

To show that $(\Lambda, g)$ is topologically conjugate to $(X_{h}, a_{h})$ , let $p:W\rightarrow I$

be the continuous map as in (L.6(vii)). Then one has $h\circ p=p\circ g$ by (1).
Since $hpg^{-(i+1)}(u)=pg^{-i}(u)$ for every $ u\in\Lambda$ and $i\geqq 0$ , the continuous map
$\varphi:\Lambda\rightarrow X_{h}$ is well defined by $\varphi(u)=(p(u), pg^{-1}(u),$ $pg^{-2}(u),$ $\cdots$ ). We claim
that $\varphi$ is one-to-one and onto; i.e. a homeomorphism. Indeed, if $pg^{-i}(u)=$

$pg^{-i}(u^{\prime})$ for every $i\geqq 0$ , then there are $t_{l}\in[0, \pi](i\geqq 0)$ such that $u,$ $ u\in$

$g^{i}(W(t_{i}))$ . By (3) one has $u=u^{\prime}$ ; i.e. $\varphi$ is one-to-one. To see $\varphi(\Lambda)=X_{h}$ ,
let $(y_{i})\geq 1\in X_{h}$ be given. It is easy to see that $\pi y_{i}=h_{1}(\pi y_{i+1})$ for each
$i\geqq 1$ . Hence one has $g^{i}(W(\pi y_{\iota+1}))\subset g^{i-1}(W(\pi y_{i}))(i\geqq 1)$ by (1). By (3) there
is $ u_{\nu}\in\Lambda$ with $\{u_{y}\}=\bigcap_{i\geq 1}g^{i}(W(\pi y_{i+1}))$ . Since $\varphi(u_{y})=(pg^{-i+1}(u_{y}))_{i\geq 1}=(y_{i})_{i\geq 1}\in$

$\varphi(\Lambda),$ $\varphi$ Is onto. Since $\sigma\varphi(u)=(hpg^{-i+1}(u))_{i\geq 1}=(pg^{-i+2}(u))_{i\geq 1}=\varphi g(u)$ for
every $u\in\Lambda,$ $(\Lambda, g)$ is topologically conjugate to $(X_{h}, a_{h})$ under $\varphi$ .

$(\Lambda, g)$ satisfies specification since so does $(X_{h}, a_{h})$ (by combining
Theorem 1(B) and Proposition 3.1). Obviously $(\Lambda, g)$ is topologically
transitive. Hence $\Lambda$ is an attractor of $g$ by (2). This prove Proposition
3.2.

It remains only to prove Proposition 3.3.

(III) PROOF OF PROPOSITION 3.3. We must construct a continuous
map $g$ satisfying the conditions (1) $\sim(7)$ . To do this we define several
functions.

(L.7) Let $h_{2}:R\rightarrow R$ be a $C^{\infty}$-function such that
(i) $h_{2}(-t)=-h_{2}(t)(teR)$ , (ii) $h_{2}(\kappa)=\kappa/3$ ,
(iii) $h_{2}^{\prime}(0)=1$ and $0<h_{2}^{\prime}(t)<1(t\neq 0)$ ,
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(iv) $h_{2}^{\prime\prime}(t)<0(t>0)$ ,
(v) $\sqrt{(h_{2}(t))^{2}+(h_{2}(s))^{2}}\leqq\sqrt{2}h_{2}(\sqrt{t^{2}+s^{2}}/\sqrt{2})$ $((t, s)\in R^{2})$ .

(As such a function, we can choose $h_{2}(t)=\lambda\tan^{-1}(t/\lambda)$ where $\lambda$ is the root
of tan $(\kappa/(3\lambda))=\kappa/\lambda$ with $0<\lambda<\pi/2;\lambda\approx 0.306.$ ) Then one obtains

(vi) $h_{2}(t)=t+o(t^{2})$ , (vii) $h_{2}(t_{1})<h_{2}(t_{2})(t_{1}<t_{2})$ ,
(viii) $\lim_{n\rightarrow\infty}h_{2}^{n}(t)=0(t\in R)$ , (ix) $|h_{2}(t)|\geqq|t|/3(|t|\leqq\kappa)$ ,
(x) $|h_{2}(t)-h_{2}(t’)|\leqq 2h_{2}(|t-t^{\prime}|/2)(t, t^{\prime}\in R)$ .
Let $h_{0}$ define by $h_{0}(y)=2y-(1/2)$ sin $(2y)(y\in R)$ . Recall the map $h_{1}$

as in (1). We remark that $h_{1}(y)=h_{0}(y)$ on $(-\pi/2, \pi/2$] and $h_{1}(y)=2\pi-h_{0}(y)$

on $[\pi/2,3\pi/2$). Choose a constant $\alpha>0$ such that $h_{0}((\pi/2)-\alpha)>3\pi/4$ . Put
$M_{1}=\bigcup_{te[0.\pi/2]}M(t)$ and $M_{2}=\bigcup_{t\in[\pi/2,f[]}M(t)$ . We denote by $U$ the $\alpha$-open
neighborhood of $M_{i}$ in $R^{8}(i=1,2)$ . Take a monotone decreasing $C^{\infty}-$

function $x_{1}:R\rightarrow R$ such that

$\chi_{1}(y)=1$ $(y\leqq\pi/4)$ and $\chi_{1}(y)=0$ $(y\geqq(\pi/2)-\alpha)$ ,

and a monotone increasing $C^{\infty}$-function $x_{2};R\rightarrow R$ such that

$\chi_{2}(y)=0$ $(y\leqq(\pi/2)+\alpha)$ and $\chi_{2}(y)=1$ $(y\geqq 3\pi/4)$ .
Put $\overline{\chi}_{i}(y)=1-\chi_{i}(y)(i=1,2)$ . We define two $C^{\infty}$-diffeomorphisms $G_{i}:U\rightarrow R^{8}$

$(i=1,2)$ by

$G_{1}(x, y, z)=x_{1}(y)(\frac{x}{3}-\frac{\kappa}{2},$ $h_{0}(y),$ $h_{2}(z))$

$+\overline{\chi}_{1}(y)(\frac{1}{3\sqrt{2}}(x-z)-\frac{\kappa}{2},$ $h_{0}(y),$ $\frac{1}{3\sqrt{2}}(x+z))$

and

$G_{2}(x, y, z)=x_{2}(y)(\frac{z}{3}+\frac{\kappa}{2},$ $2\pi-h_{0}(y),$ $h_{2}(x))$

$+\overline{\chi}_{2}(y)(\frac{1}{3\sqrt{2}}(z-x)+\frac{\kappa}{2},$ $2\pi-h_{0}(y),$ $\frac{1}{3\sqrt{2}}(z+x))$ .
By the definitions of $G_{i}$ and $M_{i}$ one has $G_{i}(M_{i})\subset M$ for $i=1,2$ . Take an
open neighborhood $U_{i}^{\prime}\subset U_{i}$ of $M_{i}$ such that $G_{t}(U_{i}^{\prime})\subset U_{0}(i=1,2)$ . We
define the map $G:U_{1}^{\prime}\cup U_{2}^{\prime}\rightarrow R^{\epsilon}$ by

$G=G_{1}$ on $\{(x, y, z)\in U_{1}:y\leqq\pi/2\}$

and

$G=G_{2}$ on $\{(x, y, z)\in U_{2}^{\prime}:y>\pi/2\}$ .



NON-EXPANSIVE ATTBACTORS 173

Notice that $G$ is not continuous at $(x, \pi/2, z)\in U_{1}^{\prime}\cap U_{2}^{\prime}$ . Nevertheless, the
composition $\Phi\circ G:U_{1}^{\prime}\cup U_{2}^{\prime}\rightarrow R^{3}$ is a $C^{\infty}$-map. Because, for $(x, y, z)\in$

$U_{1}^{\prime}\cap U_{2}^{\prime}$ , taking account of the inequalities

$|y-(\pi/2)|<\alpha$ , $3\pi/4<h_{0}(y)<\pi+\frac{1}{2}$ and $3\pi/4<2\pi-h_{0}(y)<\pi+\frac{1}{2}$ ,

one can easily verify that the definitions of $G_{1},$ $G_{2}$ and $\Phi$ imply the
relation

$\Phi G_{1}(x, y, z)=\Phi G_{2}(x, y, z)=(\sin(h_{0}(y))$ sinh $(\frac{1}{3\sqrt{2}}(x-z)-\frac{\kappa}{2})$ ,

$-\cos(h_{0}(y))$ cosh $(\frac{1}{3\sqrt{2}}(x-z)-\frac{\kappa}{2})$ , sinh $(\frac{1}{3\sqrt{2}}(x+z)))$ .

(L.8) (i) $G(M(t))\subset\{(x, h_{1}(t), z)\in M:|x|<\kappa, |z|<\kappa\}$ for $t\in[0, \pi]$ .
(ii) $\Phi\circ G$ is one-to-one on $M-(M(O)UM(\pi))$ .
(iii) $\Phi\circ G$ is a $C^{\infty}$-local diffeomorphism on

$M-(\{(x, 0,0)eM(0)\}\cup\{(0, \pi, z)\in M(\pi)\})$ .
PROOF. (i) follows from $h_{1}(t)=h_{0}(t)(t\leqq\pi/2)$ and $h_{1}(t)=2\pi-h_{0}(t)(t>$

$\pi/2)$ . (ii) and (iii) follow immediately from the definitions of $\Phi$ and $G$ .
Now we show the existence of a map $g:W\rightarrow W$ with $g\circ\Phi=\Phi\circ G$ .

Suppose that $\Phi(x, y, z)=\Phi(x^{\prime}, y^{\prime}, z’)$ and $(x, y, z)\neq(x, y’, z^{\prime})$ . By $(L.6(i))$

we have either $x=x’,$ $y=y^{\prime}=0$ and $z=z^{\prime}$ , or $x=-x’,$ $ y=y’=\pi$ and z $=z^{\prime}$ .
Hence, by (L.6(iv)) and $(L.7(i))$ , we have

$\Phi G(x, 0, z)=\Phi(\frac{x}{3}-\frac{\kappa}{2},$ $0,$ $h_{2}(z))=\Phi(\frac{x}{3}-\frac{\kappa}{2},$ $0,$ $h_{2}(-z))=\Phi G(x, 0, -z)$ .

Similarly $\Phi G(x, \pi, z)=\Phi G(-x, \pi, z)$ holds. Consequently we have
$\Phi G(x, y, z)=\Phi G(x^{\prime}, y^{\prime}, z^{\prime})$ . This implies that there exists a map $g$ such
that $g\circ\Phi=\Phi\circ G$ . The image $g(W)$ is illustrated in Figure 1.

In order to prove Proposition 3.3, it remains only to show that $g$

is continuous and satisfies the conditions (1) $\sim(7)$ .
(L.9) (i) $g$ is continuous.
(ii) $g$ satisfies the conditions (1) $\sim(5)$ .
PROOF. (i) follows from $(L.6(v))$ . $g$ satisfies (1) by $(L.8(i)),$ (2) by

(L.6(vi)) and $(L.8(i))$ , and (5) by (L.8(iii)). We prove that $g$ satisfies (3).
Let $ye[0, \pi]$ be given. Suppose $y\leqq\pi/2$ . Then, for every $u=(x, y, z)$
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and $u’=(x^{\prime}, y, z^{\prime})$ in $M(y)$ , we have

$d(G(u), G(u’))\leqq\chi_{1}(y)\Vert(\frac{x-x^{\prime}}{3},$ $0,$ $h_{2}(z)-h_{2}(z^{\prime}))\Vert+\overline{\chi}_{1}(y)\Vert(\frac{x-x^{\prime}}{3},$ $0,$ $\frac{z-z^{\prime}}{3})\Vert$

$\leqq 2\Vert(h_{2}(\frac{x-x^{\prime}}{3}),$ $0,$ $ h_{2}(\frac{z-z^{\prime}}{2}))\Vert$ (by (ix) and (x) in (L.7))

$\leqq 2^{3/2}h_{2}(2^{-3/2}d(u, u^{\prime}))$ (by $(L.7(v))$).

Similarly, for $y>\pi/2$ , we have $d(G(u), G(u’))\leqq 2^{8/2}h_{2}(2^{-8/2}d(u, u^{\prime}))$ for every
$u,$ $u\in M(y)$ . Hence it follows that

$2^{-8/2}$ diam $G^{n}(M(y))\leqq h_{2}$($2^{-8/2}$ diam $G^{n-t}(M(y))$) $\leqq\cdots$

$\leqq h_{2}^{n}$ ($2^{-8/2}$ diam $M(y)$) $=h_{2}^{n}(\kappa)$

for every $y\in[0, \pi]$ and $n>0$ . From this we get

$\max_{ye[0,\pi]}$
diam $g^{n}(W(y))=\max_{\nu\in[0,\pi]}$ diam $\Phi\circ G^{n}(M(y))$

$\leqq c\cdot\max_{ye[0,\pi]}$ diam $G^{n}(M(y))$ (by (L.6(iii)))

$\leqq 2^{8/2}ch_{2}^{n}(\kappa)\rightarrow 0$ (as $ n\rightarrow\infty$ ) (by (L.7(viii)));

i.e. $g$ satisfies (3).
We prove that $g$ satisfies (4). By $(L.6(i))$ and (L.8(ii)), $g$ is one-to-

one on $W-(W(0)\cup W(\pi))$ . Let $(r, s, 0),$ $(\gamma^{\prime}s’, 0)eW(O)$ satisfy $g(r, s, 0)=$
$g(\gamma^{\prime}s^{\prime}, 0)$ . There exist $(x, 0, z)$ and $(x^{\prime}, 0, z^{\prime})$ in $M(O)$ such that $\Phi(x, 0, z)=$

$(r, s, 0)$ and $\Phi(x^{\prime}, 0, z^{\prime})=(\gamma^{\prime}s^{\prime}, 0)$ . Since $g\circ\Phi=\Phi\circ G$ , we have

$(\sinh(\frac{x}{3}-\frac{\kappa}{2}),$ $-\cosh(h_{2}(z)),$ $0)=(\sinh(\frac{x^{\prime}}{3}-\frac{\kappa}{2}),$ $-\cosh(h_{2}(z’)),$ $0)$ .
By $(L.7(i))$ we get eigher $x=x^{\prime}$ and $z=z’$ , or $x=x^{\prime}$ and $z=-z^{\prime}$ . In any
case, $\Phi(x, 0, z)=\Phi(x, 0, z);i.e$ . $(r, s, O)=(r, s, 0)$ . Hence $g$ is one-to-one
on $W(O)$ . Similarly it follows that $g$ is one-to-one on $W(\pi)$ . Since
$g(W-(W(0)\cup W(\pi)))\cap g(W(0)\cup W(\pi))=\emptyset,$ $g$ is one-to-one on $W$; i.e. $g$

satisfies (4).

(L.10) $g$ satisfies (6) and (7).

PROOF. First we prove that $g$ is a $C^{1}$-local diffeomorphism on $L_{1}$ .
Let $v_{0}=(r_{0}, -1,0)$ be a point in $L_{1}$ and $v=(r, s, t)$ a point sufficiently
near $v_{0}$ with $v\neq v_{0}$ . Take a point $u_{0}=(x_{0},0,0)$ such that $\Phi(u_{0})=v_{0}$ . There
is a point $u=(x, y, z)$ in $U_{0}$ such that $\Phi(u)=v$ . Since $u$ is also sufficiently
near $u_{0}$ by $(L.6(v))$ , we may asume that $-\pi/4\leqq y\leqq\pi/4$ . Then we have



NON-EXPANSIVE ATTRACTORS 175

$(r, s, t)=(\sinh(x), -\cos(y)$ cosh $(z)$ , sin $(y)$ sinh $(z))$

and

$g(v)=(g_{1}, g_{2}, g_{8})$

$=(\sin(\frac{x}{3}-\frac{\kappa}{2}),$ $-\cos(h_{1}(y))$ cosh $(h_{2}(z))$ , sin $(h_{1}(y))$ sinh $(h_{2}(z))$).
Hence

$\frac{dg_{1}}{dr}=\frac{dg_{1}}{dx}/\frac{dr}{dx}\rightarrow a_{0}$ (as $x\rightarrow x_{0}$ ; i.e. $r\rightarrow r_{0}$)

where $a_{0}=\{\cosh((x_{0}/3)-(\kappa/2))\}/\{3\cosh(x_{0})\}>0$ . Using (L.l(iv)) and (L.7(vi)),
we get

$\lim_{(\epsilon,t)\rightarrow(-1,0)}\frac{||(g_{2}(v),g_{3}(v))-(g_{2}(v_{0}),g_{8}(v_{0}))-(s+1,t)||}{\Vert(s+1,t)||}$

$=\lim_{(y,x)\rightarrow(0,0)}[\frac{\{o(z^{2})\cos(y)+o(y^{2})\cosh(z)+o(y^{2})o(z^{2})\}^{2}}{\{\cosh(z)-\cos(y)\}^{2}}$

$+\frac{\{o(z^{2})\sin(y)+o(y^{2})\sinh(z)+o(y^{2})o(z^{2})\}^{2}}{\{\cosh(z)-\cos(y)\}^{2}}]^{1/2}$

$=0$ .
Therefore $g$ is differentiable at $(r_{0}, -1,0)$ and one has

$Dg(r_{0}, -1,0)=\left\{\begin{array}{lll}a_{0} & & 0\\0 & 1 & 1\end{array}\right\}$ and $Jg(r_{0}, -1,0)=a_{0}>0$ .

From an easy calculation it follows that

$\frac{\partial(g_{\perp},g_{2},g_{3})}{\partial(r,s,t)}=\frac{\partial(g_{1},g_{2},g_{s})}{\partial(x,y,z)}\cdot[\frac{\partial(r,s,t)}{\partial(x,y,z)}]^{-1}\rightarrow\left\{\begin{array}{lll}a_{0} & & 0\\0 & 1 & 1\end{array}\right\}$ (as $u\rightarrow u_{0}$).

This implies that $g$ is a $C^{1}$-local diffeomorphism on $L_{1}$ . Similarly we can
prove that $g$ is a $C^{1}$-local diffeomorphism on $L_{2}$ . Therefore $g$ satisfies (6).

From (4), (5) and (6), $g$ is a $C^{1}$-diffeomorphism from $W$ into $R^{8}$ .
Since $W$ is a closed ball in $R^{8}$ and $Jg(u)>0$ holds at $u=(r_{0}, -1,0)eW$,
$g$ is orientation preserving. Therefore $g$ is isotopic to the identity map
(P. 117 of [7]); i.e. $g$ satisfies (7). The proof is completed.
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