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Introduction

Let 2 be a bounded open domain of R", n=2, with boundary 42 of
class C?% I'; a relatively open subset, of 62, and I',=902—1I",. We consider
the variational integral

F(u): =§gf(x, u, Du)dx ,

for a function wu: 2— RY, where Du=(0u"/02"):1zizy 15052 and f&, u, £):
O2XRY"X R — R is a Carathéodory function; i.e. measurable in x for each
(u, &) € R" X R*¥, and continuous in (u, &) for almost every ¢ Q.

In this paper we consider the following variational problem with
mixed boundary condition:

Find a minimizing function uw: 2— R¥ of F(u) which maps I,
(*) into some hyperplane JI:={ve R":v**'=...=9"=0} and has
prescribed Dirichlet data ¢ on I',, where ¢(I',NI,)CZX.
(See [1] for the mixed boundary problem for harmonic maps.)
In the paper [4], M. Giaquinta and E. Giusti prove interior regularity
of minima of variational integrals (see also [5]). On boundary regularity

for Dirichlet problem a result due to J. Jost and M. Meier [8] is known.
In this paper we investigate the behavior of the solution of (*) near I,.

§1. L*-estimate for the gradient.
We suppose that the function f satisfies the growth condition:

1.1) algl"—k=f(z, u, =blE|"+K ,
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in 2x R¥x R*M, for some m=2, k=0 and b=>a>0.

For convenience we define the following funection class:

Ver=V"Q, I)
={ve H"™(R, R); v=0 on I, v(I')c2X}.

Then the problem (*) can be rewritten in the following way:
Find a function « € H*™(2, R”¥) such that

u=¢ on Iy,

w(l)cZ,

F(u)ZF(u+v) for every ve V™.

**)

THEOREM 1.1. Let f satisfy (1.1) and let uw € H*™(2, R") be a solution
of (**). Then there exists an exponent p>m such that u € H-?(2, RY).
Moreover for every «,€R2UI, R<dist(x, I'y), writing g . gdx=
/D) SD gdx the following inequarity holds:

1/ 1/m
(g (1+|Du[)"dx) ’gq(g (1+|Du|)"‘dx> ,
BRlz(xo)ﬂg BR(Zo)n.Q
C, being a constant depending only on a, b, k&, N, m and n.

PrROOF. Let z,€eQUTI,, O0<R<dist(x, I'). For convenience we
extend functions v and Du to the whole R* in such a way that they
are zero outside 2, and we write By for Bj(x,).

Let us treat two cases, 1) dist (x,, I",)>3R/4 and 2) dist (x,, ') <3R/4
separately.

Case 1. Let dist (x,, I',))>3R/4. Then dist (x,, 02)>3R/4, and hence

we can proceed as in the proof of Theorem 4.1. of [4], and get for I=
mn/(m+n)

12 S . @ Dubdz < § L+ IDu[)’dx)M

B3Rr/4

_5_71(4/3)"'”/'( S , 0+ |Du1)ldx)"'" :

Case 2. Let dist (x,, I',))<3R/4, and 0<t<r<R, and 7 be a C~-func-
tion with suppncB,, 0=7=<1, n=1 on B, |Dyp=2/(r—t). Put ui=
S w'dx and

Br

. {uﬁ for 1<i=<s,
“*Zlo  for s+1=i=N.
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If we put v=u—n(u—7%z), then u—v e V™, and hence from the minimality
of v and (1.1) we get

lDul”'dm+(——2—t>m Lr ju— sl +|Br} .

Lr IDu]”‘dxg'Yz{S

r—Bt
By the hole-filling method (cf. [6]) we obtain
S 1Du]”‘dx§7s{R"”S [u—z‘cRI’”deBRl}.
Brj2 BR

Since dist (x,, I';))<8R/4, we can use the Sobolev-Poincaré inequality for
u—uay to get

1.3) gBm(l—l—lDul)"‘dxg'n(SBR(I—i-IDuI)’dx)M, z=(mmfn).

From (1.2) and (1.3) we get for all x,e QU T, 0<R<dist (2, Iy)

1+ Dupde<( g a+ lpu|)'dm)'"” ,

% BR/z(Zo) r (2o

where Y=max {7,, (4/3)™*"7,}.
Theorem 1.1 now follows from Proposition 5.1 of [6].

§2. Quadratic functionals.

In this section we shall prove some regularity results for minima of
quadratic functional

(2.1) F(u): =SQ g_‘, Az, uw)D u'Dyuide , A*P= Abe |

We assume that the coefficients A% are bounded continuous functions in
2% RY and satisfy the condition

(2.2) A", weas2NEF  VEER",  A>0.

Moreover we assume that there exists a continuous, increasing, concave
function w: Rt — R* satisfying w(0)=0, w(t)<M, and

(2.3) |A“(x, u)— A%y, v)| = w(e—y[+|u—2[) .

THEOREM 2.1. Under the same hypotheses as above, let u € H"*(2, R”)
be a solution of (**). Then there exists a relatively open subset 2,cQU T,
such that we C"*(2,, R™) for some ac(0,1). Moreover
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(QUT)—2,= {x e QUT,: lim inf B S |Du|2dx>e.,} ,
R—0

Bp(=)NQ
where & 18 a positive constant independent of u.

PROOF. On account of Theorem 5.1 of [4], we have only to
investigate the behavior of % in a neighborhood of I',. Let z,erl,
R<(1/2) dist (x,, I';) and choose coordinates such that x,=0, I',N B,x(x,)C
{xre R": x"=0}. .

We use the following notations: for xzeR", x,=(x., ---, x%)=
(', +--, "', —2") and

_ u(x) if zeQ,
u(x)= .
u(x,) if xeB,jp0)—2,
1 if 1=<a,B8=n-1,
o¥={—-1 if a=n or B=n and a#A,
1 if a=g=n,
A0, ug) if zeQ,

A (x)=

O'apAaﬂ(O, uR) if xE B2R - AQ

where uR=S udx. Let ve HY*(B0)NR2, R¥) be a solution of the

problem PRE
{ S A0, u )Dw'Dpp'dzr=0  for all ye V'
BR(OINQ
u—veV,
where

V'={ve H*(Br(0)NR2, R"): v=0 on dB(0)N 2, v(62N B)C3}.
Then for 1<7<s, 7* are solutions problems
|, 3“@DaDde=0  for all e H¥(B,0)),
{'D"R—?Tb‘ € H;*(B:(0)) ,
and for s+1=<7<N, v* are solutions of the problems

{S A0, u) D' Dyds=0  for all fe H(BaN D),
Bp
v=u* on oBNR, v'=0 on o2NB;,
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where B,= By(0).
For #‘, 1=i<s, using Theorem of De Giorgi-Nash, we obtain for
some R € (O, 1)
p n—2+28
2.4) S [D'c?‘lzdng(—) S \DoPdz,  for all o<R,
Bp R Br

and therefore

2.5) S |Dv*|2dm_s_cs(ﬁ)”'“” X |Dvd .
B,NQ R BpNQ
For v, s+1<7<N, we have
12 O " 12
(2.6) Lm ID'vjdng(R) LRM | Do das

(cf. [2]). .
From (2.5) and (2.6), we obtain

@.7) S . |Dv|2dxgc,,(%)""”” SBBM \Doldz

B,N
for some g€ (0, 1).
Putting w=u—v, we have we V’, hence
[, 340, un Do Dywtda=0.
Bpnoi=1

Thus we have

§ ﬁ‘. A0, up)Dw'Dyw'dx

BpNQi=1

=S S A*(0, u) D' Dyw'da

BpN@2i=1

= S i [A*5(0, ug) — A*(x, w)]D,(u+v)*Dyw'de

BpN2i=1

+ S ﬁ‘, [A~*(x, v) — A*¥(x, w)]D, v Dyvidx

BpNf2 i=1

+S ﬁ A (x, u)Dau‘Dpu‘dx—S ﬁ‘, Az, v)D ' Dyvida .

BpN2i=1 BpNf2 i=1

 Since % minimizes F and u—v e V’, the sum of the last two terms is
non-negative. Thus we get

(2.8) SB m)IDw]de
R
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al,

R

mp»[IDuI2+ | Do X [@(R?+ |u—uzl) + o(R+|u—v[)ldx .

Using the inequality (2.7) and Theorem 1.1, we can proceed as the proof
of Theorem 5.1 of [4], and from (2.8) we get

S (1+ |Dul)dz
Bpﬂ.a

2.9) <C, [(%)"_2+”+w(R2+CyRZ-" S y IDqux)l—m]

Bp
X S (1+|DupP)dz ,
Banﬂ

for every 0<p<R<2R<dist (0, I). By a well known lemma (cf. [3] p.
18) it now follows that for any a (0, 8) there exist positive numbers

&, and R, with the following property: Put O(z,, 'r)='r""s | Du|*d.

By(z) N2

For z,e I, if ®(x,, r)<¢, for some r<min {dist (x,, 1), R}, then
2a
(2.10) D (z,, p)éCssl(%) for every p<r .

For an interior point x, we get by [4], the following: If &(x,, r)=e¢,
for some r<min {R,, dist (x,, 02)}, then

2.11) D(x,, 0)<Cod(a,, r)(%)z" for every p<r.

Now we want to prove the following result: There exists a positive
constant ¢, such that if 2,€eQUI,;, and O(x, r)=e for some 7,<
min {R,, dist (x,, I';)}, then

(2.12) o(x,, p)§Cm<r£)m for every o<r,.
0

The assertion of Theorem 2.1 follows from (2.12) together with the
integral characterization of Holder continuous functions due to Campanato

and Morrey (cf. [2]).
To prove (2.12), we follow the argument due to [8]: Let

(2.13) §&=0""", ,
where 0<1/8 is determined in such a way that

(2.14) o 4r G L1 .



BOUNDARY REGULARITY 153

It is sufficient to prove (2.12) for p<or,. Therefore we restrict ourselves
to the case that that p<or,. Suppose that &(z,, r,)<e, and choose x, € I',
with d:=dist (x,, I') =2, — 2. |

Case 1. If d>or,>p, then (2.11) can be applied with r=o7,.
Therefore

, _l(l 2a
O (x,, P)écsﬁ(,ro) .
Case 2. If or,=d then B,(x,)C B,(%,)C B, (%) C B, (x,) and therefore
D(xy, 70/2) S 2"*P(2y, 1) <&
If or,>p=d/2, we apply (2.10) and arrive at

O(a, P)SE 0, 40)S4Ct (L)

T
Now let or,=d=2p. Using (2.10) with r=7»,/2, we get

D(x,, d/2) =4"*D(2,, 2d) 4" *Cse, i—d)m <4"*Ce,(40)* <, .

0

Hence we can apply (2.11) with »=d/2 and obtain

D, p)§4n—2cscgel(ﬁ)2“<3£)“gcmsl(ﬂ)z“ :

7o 7
Thus we get (2.12) for all case.

REMARK. To apply the integral characterization of Holder continuous
functions the following consideration is necessary: Let x,€eQUJI, and
assume that o(x,, r)<e¢, for some 7,<min {R,, dist (x;, I",)}. Because of
the continuity of &(x, r,) with respect to x, there exists a number 6>0,
with 0 +7,<min {R,, dist (x,, I',)} such that &(x, r,)<¢, for every « € B;(x,)N
(QUTI,). From (2.12) we get

(2.15) | Dultde < %{_pn—2+2a

SBp(x) na

for all xe B;(x)N(RUTI,) and all o<7r,.

§3. Differentiable coeflicient case.

In this section we treat the case that the coefficients A*(x, u) are
differentiable, so that every bounded minimum u is a solution of Euler
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equation,

N
3.1) S S A%z, w) Do Dyy'da = —LS S A%,(x, w) D Dyutytda
2i=1 2 JoigihsN
for every r€ VN L=(2) (V™ is defined in section 1.), where A*,(x, u)=
0A¥(x, w)/ou*.
As usual we suppose that

(8.2) |A%(x,w)|=M,  A%(x, u)é.Ls=MEP, A>0 for all zeR".
Then we get the following theorem corresponding to Theorem 5.1 of [4].
THEOREM 3.1. Assume that

(3.3) _ Ll > A (z, w)DutDut <0 | Duf?
2 15i,hsN
with N*<\. Then every bounded solution of the mixed boundary value

problem (**) 1s Holder continuous in QU I,.

PROOF. On account of Theorem 2.1, it is sufficient to show that
for every x,€ QUI, we have

3.4) o S \Duf'de<e, ,
B, (z) N2

for some 0>0. Since it is known in [4] that this is the case for z,¢ 2,
we only have to treat the case that z,e I,.

Let R<(1/2) dist (x,, I'), 7 € Hy*(B,r(,)), 7=0. Taking 4=7nu in (3.1)
we get

1

2 —_— af 2
(3.5) A SBWW 9|Dufdes —- A*D, [u|:D;ndz

SBgR(mo)ﬂD

+x*§ 7| Dultdz .

Bgyp(zg) na

Choose coordinate such that x,=0 and I',N B,z(x,)=I,N B,z(0)C
{x e R*: 2"=0}, and define z,, % and o* as in the section 2. Let

A (x, v) if zeQ,

Az, v)=
@, v) {a“"A“"(x*, v)  if zeBglr)—0.

Then from (3.5), the function z:=M*2R)—|u|’, where M(t): =sup,, |4], is
a non-negative supersolution of an elliptic operator, i.e.
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S Az, @)D 2Ddw=0
Byp(0)

for all 7 e Cs°(B(0)), 7=0 and 2=0. Therefore from the weak Harnack
inequality, we get

(3.6) R‘"S 2dx=C,, inf z .
Byp(0) Bp(®)
Now let we H{*(B,z(0)) be a solution of the equation
3.7 S | Zaﬁ(x,»a)pawpwdx:ze—zg  ydz,
Byr(0) Byp(0)

for all € H*(B,(0)). Taking r=wz we obtain

2A*D wDywdx=R™* S wzdr

By Bor

3.8) lg Zaﬁpawzz)ﬁzdwg
2 Jayp

where B,.=B,z(0), A**=A(x, #). It follows from (3.7) and the boundary
condition wl;5,,=0, that w is a non-negative weak solution of D (A**Dyw)=
—1/R*<0. By the maximum principle we have w>0 in the interior of
B, and hence, by the weak Harnack inequality, we have w=a,>0 in
B;. Moreover we have w=a, in B,;. «, and a, are constants independent

of R.
Now let p=w?, from (3.8) and boundedness of w, we get

S A*DD;zdx<C,R* S zdx ,
B

Bar

which, together with (38.5) and (3.6), implies

\Duf'dz=—C,, S A®D, |ul*D;ndx

Byp(0)NQ

=) |

Br(ONQ

<C, S A**DzDmdw

Bop(0)

(3.9) <C,R™ S oda

Byp(0)

<C,R"* inf 2
BRp©®

=C,R**[M*2R)—M*(R)] .

On the other hand we have

(3.10) ki:‘.o [M*(2'7*R)— M*(27*R)| = M*(2R) =sup |u[*,
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and inequalities (3.9) and (3.10) imply (3.4) with p=2"*R for some k>0.
This completes the proof.

Combining Theorem 3.1. with the results of [4] and [8], we get
regularity for minima of the solution of (**) for any point of 2—
(onr s

THEOREM 3.2. Let 2 be a bounded domain in R*, n=2 with boundary
02 of class C?, I'y a relatively open subset of 02, and I'y=02—1I,. Let

Flu):= Sg 2 A%z, WD Datde , A=Ak,

be a quadratic functional, where A*(x, u) are differentiable and satisfy
(8.2) and (3.3). Assume that Dirichlet boundary condition ¢ of (**) is
in class H**(2, RY), p>mn. Then any bounded solution of (**) is in class
C**(@—T,NT,) for some a€(0,1).
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