Boundary Regularity for Minima of Certain Variational Integrals

Atsushi TACHIKAWA

Keio University
(Communicated by T. Saito)

Introduction

Let Ω be a bounded open domain of \mathbb{R}^n , $n \geq 2$, with boundary $\partial \Omega$ of class C^2 , Γ_1 a relatively open subset, of $\partial \Omega$, and $\Gamma_0 = \partial \Omega - \Gamma_1$. We consider the variational integral

$$F(u) := \int_{\mathcal{Q}} f(x, u, Du) dx ,$$

for a function $u: \Omega \to \mathbb{R}^N$, where $Du = (\partial u^i/\partial x^\alpha)_{1 \le i \le N, 1 \le \alpha \le n}$, and $f(x, u, \xi)$: $\Omega \times \mathbb{R}^N \times \mathbb{R}^{nN} \to \mathbb{R}$ is a Carathéodory function; i.e. measurable in x for each $(u, \xi) \in \mathbb{R}^N \times \mathbb{R}^{nN}$, and continuous in (u, ξ) for almost every $x \in \Omega$.

In this paper we consider the following variational problem with mixed boundary condition:

(*) $\begin{cases} \text{Find a minimizing function } u \colon \varOmega \to R^N \text{ of } F(u) \text{ which maps } \Gamma_1 \\ \text{into some hyperplane } \varSigma \colon = \{v \in R^N \colon v^{s+1} = \dots = v^N = 0\} \text{ and has } \\ \text{prescribed Dirichlet data } \phi \text{ on } \Gamma_0, \text{ where } \phi(\Gamma_0 \cap \overline{\Gamma}_1) \subset \varSigma. \end{cases}$

(See [1] for the mixed boundary problem for harmonic maps.)

In the paper [4], M. Giaquinta and E. Giusti prove interior regularity of minima of variational integrals (see also [5]). On boundary regularity for Dirichlet problem a result due to J. Jost and M. Meier [8] is known.

In this paper we investigate the behavior of the solution of (*) near Γ_1 .

§1. L^p -estimate for the gradient.

We suppose that the function f satisfies the growth condition:

(1.1)
$$a |\xi|^m - k \leq f(x, u, \xi) \leq b |\xi|^m + k$$
,

in $\Omega \times \mathbb{R}^N \times \mathbb{R}^{nN}$, for some $m \ge 2$, $k \ge 0$ and $b \ge a > 0$. For convenience we define the following function class:

$$V^{\mathtt{m}} = V^{\mathtt{m}}(\Omega, \Gamma_{\mathtt{l}})$$

 $=\{v\in H^{1,m}(\Omega, \mathbf{R}); v=0 \text{ on } \Gamma_0, v(\Gamma_1)\subset\Sigma\}$.

Then the problem (*) can be rewritten in the following way:

$$(**) \begin{cases} \text{Find a function } u \in H^{1,m}(\Omega, \mathbb{R}^N) \text{ such that} \\ u = \phi \text{ on } \Gamma_0, \\ u(\Gamma_1) \subset \Sigma, \\ F(u) \leq F(u+v) \text{ for every } v \in V^m. \end{cases}$$

THEOREM 1.1. Let f satisfy (1.1) and let $u \in H^{1,m}(\Omega, \mathbb{R}^N)$ be a solution of (**). Then there exists an exponent p > m such that $u \in H^{1,p}(\Omega, \mathbb{R}^N)$. Moreover for every $x_0 \in \Omega \cup \Gamma_1$, $R < \operatorname{dist}(x_0, \Gamma_0)$, writing $\int_D g dx = (1/|D|) \int_{\mathbb{R}} g dx$ the following inequarity holds:

$$\Big(\int_{B_R/2(x_0)\cap\Omega}(1+|Du|)^pdx\Big)^{\!1/p}\!\leq\!C_1\!\Big(\int_{B_R(x_0)\cap\Omega}(1+|Du|)^mdx\Big)^{\!1/m}$$
 ,

 C_1 being a constant depending only on a, b, k, N, m and n.

PROOF. Let $x_0 \in \Omega \cup \Gamma_1$, $0 < R < \text{dist}(x_0, \Gamma_0)$. For convenience we extend functions u and Du to the whole R^n in such a way that they are zero outside Ω , and we write B_R for $B_R(x_0)$.

Let us treat two cases, 1) dist $(x_0, \Gamma_1) > 3R/4$ and 2) dist $(x_0, \Gamma_1) \le 3R/4$ separately.

Case 1. Let dist $(x_0, \Gamma_1) > 3R/4$. Then dist $(x_0, \partial \Omega) > 3R/4$, and hence we can proceed as in the proof of Theorem 4.1. of [4], and get for l = mn/(m+n)

(1.2)
$$\int_{B_{R/2}} (1+|Du|)^m dx \leq \gamma_1 \left(\int_{B_{3R/4}} (1+|Du|)^l dx \right)^{m/l}$$
$$\leq \gamma_1 (4/3)^{mn/l} \left(\int_{B_R} (1+|Du|)^l dx \right)^{m/l} .$$

Case 2. Let dist $(x_0, \Gamma_1) \leq 3R/4$, and 0 < t < r < R, and η be a C^{∞} -function with supp $\eta \subset B_r$, $0 \leq \eta \leq 1$, $\eta = 1$ on B_t , $|D\eta| \leq 2/(r-t)$. Put $u_R^t = \int_{B_R} u^t dx$ and

$$ar{u}_{\scriptscriptstyle R}^i = egin{cases} u_{\scriptscriptstyle R}^i & \quad ext{for} \quad 1 \leq i \leq s \; , \ 0 & \quad ext{for} \quad s+1 \leq i \leq N \; . \end{cases}$$

If we put $v=u-\eta(u-\overline{u}_R)$, then $u-v\in V^m$, and hence from the minimality of u and (1.1) we get

$$\int_{B_r} |Du|^{m} dx \leq \Upsilon_2 \Big\{ \! \int_{B_r - B_t} |Du|^{m} dx + \Big(\frac{2}{r-t} \Big)^{m} \int_{B_r} |u - \overline{u}_R|^{m} dx + |Br| \Big\} \ .$$

By the hole-filling method (cf. [6]) we obtain

$$\int_{B_R/2} |Du|^{\mathbf{m}} dx \! \leq \! \gamma_{\mathbf{8}} \Big\{ \! R^{-\mathbf{m}} \int_{B_R} |u \! - \! \bar{u}_{\scriptscriptstyle R}|^{\mathbf{m}} dx \! + \! |B_{\scriptscriptstyle R}| \! \Big\} \ .$$

Since dist $(x_0, \Gamma_1) \leq 3R/4$, we can use the Sobolev-Poincarè inequality for $u - \overline{u}_R$ to get

$$(1.3) \qquad \int_{B_{R/2}} (1+|Du|)^m dx \leq \gamma_4 \left(\int_{B_R} (1+|Du|)^l dx \right)^{m/l}, \qquad l = \frac{mn}{(m+n)}.$$

From (1.2) and (1.3) we get for all $x_0 \in \Omega \cup \Gamma_1$, $0 < R < \text{dist}(x_0, \Gamma_0)$

$$\int_{B_{R/2}(x_0)} (1+|Du|)^{m} dx \leq \gamma \Big(\int_{B_{R}(x_0)} (1+|Du|)^{l} dx \Big)^{m/l} ,$$

where $\gamma = \max \{ \gamma_4, (4/3)^{mn/l} \gamma_1 \}$.

Theorem 1.1 now follows from Proposition 5.1 of [6].

§2. Quadratic functionals.

In this section we shall prove some regularity results for minima of quadratic functional

(2.1)
$$F(u) := \int_{\Omega} \sum_{i=1}^{N} A^{\alpha\beta}(x, u) D_{\alpha} u^{i} D_{\beta} u^{i} dx , \qquad A^{\alpha\beta} = A^{\beta\alpha} .$$

We assume that the coefficients $A^{\alpha\beta}$ are bounded continuous functions in $\Omega \times \mathbb{R}^N$ and satisfy the condition

$$(2.2) A^{\alpha\beta}(x, u)\xi_{\alpha}\xi_{\beta} {\geq} \lambda |\xi|^2 \forall \xi \in \mathbf{R}^n , \lambda {>} 0.$$

Moreover we assume that there exists a continuous, increasing, concave function $\omega: \mathbb{R}^+ \to \mathbb{R}^+$ satisfying $\omega(0) = 0$, $\omega(t) \leq M$, and

(2.3)
$$|A^{\alpha\beta}(x, u) - A^{\alpha\beta}(y, v)| \leq \omega(|x - y|^2 + |u - v|^2) .$$

THEOREM 2.1. Under the same hypotheses as above, let $u \in H^{1,2}(\Omega, \mathbb{R}^N)$ be a solution of (**). Then there exists a relatively open subset $\Omega_0 \subset \Omega \cup \Gamma_1$ such that $u \in C^{0,\alpha}(\Omega_0, \mathbb{R}^N)$ for some $\alpha \in (0, 1)$. Moreover

$$(\mathcal{Q}\cup arGamma_{\scriptscriptstyle 1})\!-\!\mathcal{Q}_{\scriptscriptstyle 0}\!=\!\left\{\!x\in\mathcal{Q}\cuparGamma_{\scriptscriptstyle 1}\!:\liminf_{R o 0}R^{2-n}\int_{B_R(x)\cap\mathcal{Q}}|Du|^2dx\!>\!arepsilon_{\scriptscriptstyle 0}\!
ight\}$$
 ,

where ε_0 is a positive constant independent of u.

PROOF. On account of Theorem 5.1 of [4], we have only to investigate the behavior of u in a neighborhood of Γ_1 . Let $x_0 \in \Gamma_1$, $R < (1/2) \operatorname{dist}(x_0, \Gamma_0)$ and choose coordinates such that $x_0 = 0$, $\Gamma_1 \cap B_{2R}(x_0) \subset \{x \in \mathbb{R}^n : x^n = 0\}$.

We use the following notations: for $x \in \mathbb{R}^n$, $x_* = (x_*^1, \dots, x_*^n) = (x_*^1, \dots, x_*^{n-1}, -x_*^n)$ and

$$\begin{split} \bar{u}(x) &= \begin{cases} u(x) & \text{if} \quad x \in \Omega \ , \\ u(x_*) & \text{if} \quad x \in B_{2R}(0) - \Omega \ , \end{cases} \\ \sigma^{\alpha\beta} &= \begin{cases} 1 & \text{if} \quad 1 \leq \alpha, \ \beta \leq n-1 \ , \\ -1 & \text{if} \quad \alpha = n \quad \text{or} \quad \beta = n \quad \text{and} \quad \alpha \neq \beta \ , \\ 1 & \text{if} \quad \alpha = \beta = n \ , \end{cases} \\ \bar{A}^{\alpha\beta}(x) &= \begin{cases} A^{\alpha\beta}(0, u_R) & \text{if} \quad x \in \Omega \ , \\ \sigma^{\alpha\beta}A^{\alpha\beta}(0, u_R) & \text{if} \quad x \in B_{2R} - \Omega \end{cases} \end{split}$$

where $u_R = \int_{B_R(0)} u dx$. Let $v \in H^{1,2}(B_B(0) \cap \Omega, \mathbb{R}^N)$ be a solution of the problem

$$\begin{cases} \int_{B_R(0)\cap\Omega} A^{\alpha\beta}(0, u_R) D_{\alpha} v^{i} D_{\beta} \psi^{i} dx = 0 & \text{for all} \quad \psi \in V' \\ u - v \in V' \end{cases},$$

where

$$V' = \{ v \in H^{1,2}(B_R(0) \cap \Omega, R^N) : v = 0 \text{ on } \partial B_R(0) \cap \Omega, v(\partial \Omega \cap B_R) \subset \Sigma \}$$
.

Then for $1 \le i \le s$, \overline{v}^i are solutions problems

$$egin{cases} \int_{B_R} ar{A}^{lphaeta}(x) D_lpha ar{v}^i D_eta \psi dx = 0 & ext{for all} \quad \psi \in H^{\scriptscriptstyle 1,2}_0(B_R(0)) \;, \ ar{v}^i - ar{u}^i \in H^{\scriptscriptstyle 1,2}_0(B_R(0)) \;, \end{cases}$$

and for $s+1 \le i \le N$, v^i are solutions of the problems

$$\begin{cases} \int_{R_R\cap\varOmega} A^{\alpha\beta}(0,\,u_{\scriptscriptstyle R}) D_\alpha v^i D_\beta \psi dx = 0 & \text{for all} \quad \psi \in H^{\scriptscriptstyle 1,2}_0(B_{\scriptscriptstyle R}\cap\varOmega) \ , \\ v^i \!=\! u^i \quad \text{on} \quad \partial B_{\scriptscriptstyle R}\cap\varOmega, \ v^i \!=\! 0 & \text{on} \quad \partial\varOmega\cap B_{\scriptscriptstyle R} \ , \end{cases}$$

where $B_R = B_R(0)$.

For \bar{v}^i , $1 \le i \le s$, using Theorem of De Giorgi-Nash, we obtain for some $\beta \in (0, 1)$

$$(2.4) \qquad \int_{B_{\rho}} |D\bar{v}^{i}|^{2} dx \leq C_{2} \left(\frac{\rho}{R}\right)^{n-2+2\beta} \int_{B_{R}} |D\bar{v}^{i}|^{2} dx \; , \qquad \text{for all} \quad \rho \leq R \; ,$$

and therefore

$$(2.5) \qquad \int_{B_{\rho}\cap\Omega} |Dv^{i}|^{2} dx \leq C_{3} \left(\frac{\rho}{R}\right)^{n-2+2\beta} \int_{B_{R}\cap\Omega} |Dv^{i}|^{2} dx.$$

For v^i , $s+1 \le i \le N$, we have

$$(2.6) \qquad \int_{B_{\rho}\cap\Omega} |Dv^{i}|^{2} dx \leq C_{4} \left(\frac{\rho}{R}\right)^{n} \int_{B_{R}\cap\Omega} |Dv^{i}|^{2} dx$$

(cf. [2]).

From (2.5) and (2.6), we obtain

$$(2.7) \qquad \int_{B_{\varrho}\cap\varOmega} |Dv|^2 dx \leq C_{\mathfrak{d}} \left(\frac{\rho}{R}\right)^{n-2+2\beta} \int_{B_{R}\cap\varOmega} |Dv|^2 dx ,$$

for some $\beta \in (0, 1)$.

Putting w=u-v, we have $w \in V'$, hence

$$\int_{B_R \cap \mathcal{Q}} \sum_{i=1}^N A^{\alpha\beta}(0, u_R) D_{\alpha} v^i D_{\beta} w^i dx = 0.$$

Thus we have

$$\begin{split} \int_{B_R\cap\mathcal{Q}} \sum_{i=1}^N A^{\alpha\beta}(0,\,u_R) D_\alpha w^i D_\beta w^i dx \\ &= \int_{B_R\cap\mathcal{Q}} \sum_{i=1}^N A^{\alpha\beta}(0,\,u_R) D_\alpha u^i D_\beta w^i dx \\ &= \int_{B_R\cap\mathcal{Q}} \sum_{i=1}^N \left[A^{\alpha\beta}(0,\,u_R) - A^{\alpha\beta}(x,\,u) \right] D_\alpha (u+v)^i D_\beta w^i dx \\ &+ \int_{B_R\cap\mathcal{Q}} \sum_{i=1}^N \left[A^{\alpha\beta}(x,\,v) - A^{\alpha\beta}(x,\,u) \right] D_\alpha v^i D_\beta v^i dx \\ &+ \int_{B_R\cap\mathcal{Q}} \sum_{i=1}^N A^{\alpha\beta}(x,\,u) D_\alpha u^i D_\beta u^i dx - \int_{B_R\cap\mathcal{Q}} \sum_{i=1}^N A^{\alpha\beta}(x,\,v) D_\alpha v^i D_\beta v^i dx \ . \end{split}$$

Since u minimizes F and $u-v \in V'$, the sum of the last two terms is non-negative. Thus we get

$$(2.8) \qquad \int_{B_B \cap \mathcal{Q}} |Dw|^2 \mathrm{dx}$$

$$\leq C_5 \int_{B_R \cap \Omega} [|Du|^2 + |Dv|^2] \times [\omega(R^2 + |u - u_R|^2) + \omega(R^2 + |u - v|^2)] dx.$$

Using the inequality (2.7) and Theorem 1.1, we can proceed as the proof of Theorem 5.1 of [4], and from (2.8) we get

(2.9)
$$\int_{B_{\rho}\cap\Omega} (1+|Du|^{2})dx$$

$$\leq C_{6} \left[\left(\frac{\rho}{R} \right)^{n-2+2\beta} + \omega \left(R^{2} + C_{7}R^{2-n} \int_{B_{R}\cap\Omega} |Du|^{2}dx \right)^{1-2/p} \right]$$

$$\times \int_{B_{2R}\cap\Omega} (1+|Du|^{2})dx ,$$

for every $0<\rho< R< 2R< {\rm dist}\,(0,\,\Gamma_0)$. By a well known lemma (cf. [3] p. 18) it now follows that for any $\alpha\in(0,\,\beta)$ there exist positive numbers ε_1 and R_0 with the following property: Put $\Phi(x_0,\,r)=r^{2-n}\int_{B_r(x_0)\cap D}|Du|^2dx$. For $x_0\in\Gamma_1$ if $\Phi(x_0,\,r)\leq \varepsilon_1$ for some $r<\min\{{\rm dist}\,(x_0,\,\Gamma_0),\,R_0\}$, then

(2.10)
$$\Phi(x_0, \rho) \leq C_8 \varepsilon_1 \left(\frac{\rho}{r}\right)^{2\alpha}$$
 for every $\rho < r$.

For an interior point x_1 we get by [4], the following: If $\Phi(x_1, r) \leq \varepsilon_1$ for some $r < \min \{R_0, \operatorname{dist}(x_1, \partial \Omega)\}$, then

(2.11)
$$\Phi(x_1, \rho) \leq C_9 \Phi(x_1, r) \left(\frac{\rho}{r}\right)^{2\alpha} \quad \text{for every} \quad \rho < r.$$

Now we want to prove the following result: There exists a positive constant ε_0 such that if $x_1 \in \Omega \cup \Gamma_1$, and $\Phi(x_1, r_0) \leq \varepsilon_0$ for some $r_0 < \min \{R_0, \operatorname{dist}(x_1, \Gamma_0)\}$, then

The assertion of Theorem 2.1 follows from (2.12) together with the integral characterization of Hölder continuous functions due to Campanato and Morrey (cf. [2]).

To prove (2.12), we follow the argument due to [8]: Let

$$\varepsilon_0 = \sigma^{n-2} \varepsilon_1 ,$$

where $\sigma < 1/8$ is determined in such a way that

$$\sigma^{2\alpha}4^{n-2+2\alpha}C_8<1.$$

It is sufficient to prove (2.12) for $\rho < \sigma r_0$. Therefore we restrict ourselves to the case that that $\rho < \sigma r_0$. Suppose that $\Phi(x_1, r_0) < \varepsilon_0$ and choose $x_0 \in \Gamma_1$ with $d := \operatorname{dist}(x_1, \Gamma_1) = |x_1 - x_0|$.

Case 1. If $d>\sigma r_0>\rho$, then (2.11) can be applied with $r=\sigma r_0$. Therefore

$$\Phi(x_0, \rho) \leq C_9' \varepsilon_1 \left(\frac{\rho}{r_0}\right)^{2\alpha}$$
.

Case 2. If $\sigma r_0 \ge d$ then $B_d(x_1) \subset B_{2d}(x_0) \subset B_{r_0/2}(x_0) \subset B_{r_0}(x_1)$ and therefore $\Phi(x_0, r_0/2) \le 2^{n-2} \Phi(x_1, r_0) < \varepsilon_1$.

If $\sigma r_0 > \rho \ge d/2$, we apply (2.10) and arrive at

$$\Phi(x_1, \rho) \leq 4^{n-2}\Phi(x_0, 4\rho) \leq 4^{n-2}C_8\varepsilon_1\left(\frac{8\rho}{r_0}\right)^{2\alpha}.$$

Now let $\sigma r_0 \ge d \ge 2\rho$. Using (2.10) with $r = r_0/2$, we get

$$\Phi(x_1, d/2) \leq 4^{n-2} \Phi(x_0, 2d) \leq 4^{n-2} C_8 \varepsilon_1 \left(\frac{4d}{r_0}\right)^{2\alpha} \leq 4^{n-2} C_8 \varepsilon_1 (4\sigma)^{2\alpha} \leq \varepsilon_1.$$

Hence we can apply (2.11) with r=d/2 and obtain

$$\Phi(x_1, \rho) \leq 4^{n-2} C_8 C_9 \varepsilon_1 \left(\frac{4d}{r_0}\right)^{2\alpha} \left(\frac{2\rho}{d}\right)^{2\alpha} \leq C_{10} \varepsilon_1 \left(\frac{\rho}{r_0}\right)^{2\alpha}.$$

Thus we get (2.12) for all case.

REMARK. To apply the integral characterization of Hölder continuous functions the following consideration is necessary: Let $x_1 \in \Omega \cup \Gamma_1$ and assume that $\Phi(x_1, r_0) \leq \varepsilon_0$ for some $r_0 < \min\{R_0, \operatorname{dist}(x_1, \Gamma_0)\}$. Because of the continuity of $\Phi(x, r_0)$ with respect to x, there exists a number $\delta > 0$, with $\delta + r_0 < \min\{R_0, \operatorname{dist}(x_1, \Gamma_0)\}$ such that $\Phi(x, r_0) < \varepsilon_0$ for every $x \in B_{\delta}(x_1) \cap (\Omega \cup \Gamma_1)$. From (2.12) we get

(2.15)
$$\int_{B_{\alpha}(x) \cap \Omega} |Du|^2 dx \leq \frac{C_{11}}{r_0^2} \rho^{n-2+2\alpha}$$

for all $x \in B_{\delta}(x_1) \cap (\Omega \cup \Gamma_1)$ and all $\rho < r_0$.

§3. Differentiable coefficient case.

In this section we treat the case that the coefficients $A^{\alpha\beta}(x, u)$ are differentiable, so that every bounded minimum u is a solution of Euler

equation,

$$(3.1) \qquad \int_{a} \sum_{i=1}^{N} A^{\alpha\beta}(x, u) D_{\alpha} u^{i} D_{\beta} \psi^{i} dx = -\frac{1}{2} \int_{a} \sum_{1 \leq i, h \leq N} A^{\alpha\beta}_{h}(x, u) D_{\alpha} u^{i} D_{\beta} u^{i} \psi^{h} dx$$

for every $\psi \in V^2 \cap L^{\infty}(\Omega)$ (V^m is defined in section 1.), where $A^{\alpha\beta}_{h}(x, u) = \partial A^{\alpha\beta}(x, u)/\partial u^h$.

As usual we suppose that

$$(3.2) \qquad |A^{\alpha\beta}(x, u)| \leq M \;, \qquad A^{\alpha\beta}(x, u) \xi_{\alpha} \xi_{\beta} \geq \lambda |\xi|^2 \;, \qquad \lambda > 0 \quad \text{for all} \quad \xi \in \mathbf{R}^n \;.$$

Then we get the following theorem corresponding to Theorem 5.1 of [4].

THEOREM 3.1. Assume that

$$(3.3) -\frac{1}{2} \sum_{1 \leq i, h \leq N} u^h A^{\alpha \beta}_{h}(x, u) D_{\alpha} u^i D_{\beta} u^i \leq \lambda^* |Du|^2$$

with $\lambda^* < \lambda$. Then every bounded solution of the mixed boundary value problem (**) is Hölder continuous in $\Omega \cup \Gamma_1$.

PROOF. On account of Theorem 2.1, it is sufficient to show that for every $x_0 \in \Omega \cup \Gamma_1$ we have

$$\rho^{\scriptscriptstyle 2-n} \int_{B_{\rho}(x_0) \cap \mathcal{Q}} |Du|^{\scriptscriptstyle 2} dx \leq \varepsilon_{\scriptscriptstyle 0} ,$$

for some $\rho > 0$. Since it is known in [4] that this is the case for $x_0 \in \Omega$, we only have to treat the case that $x_0 \in \Gamma_1$.

Let R < (1/2) dist (x_0, Γ_0) , $\eta \in H_0^{1,2}(B_{2R}(x_0))$, $\eta \ge 0$. Taking $\psi = \eta u$ in (3.1) we get

(3.5)
$$\lambda \int_{B_{2R}(x_0) \cap \Omega} \eta |Du|^2 dx \leq -\frac{1}{2} \int_{B_{2R}(x_0) \cap \Omega} A^{\alpha\beta} D_{\alpha} |u|^2 D_{\beta} \eta dx$$

$$+ \lambda^* \int_{B_{2R}(x_0) \cap \Omega} \eta |Du|^2 dx .$$

Choose coordinate such that $x_0=0$ and $\Gamma_1 \cap B_{2R}(x_0) = \Gamma_1 \cap B_{2R}(0) \subset \{x \in \mathbf{R}^n \colon x^n=0\}$, and define x_* , \overline{u} and $\sigma^{\alpha\beta}$ as in the section 2. Let

$$ar{A}^{lphaeta}(x,\,v) = egin{cases} A^{lphaeta}(x,\,v) & ext{if} & x \in arOmega \ \sigma^{lphaeta}A^{lphaeta}(x_*,\,v) & ext{if} & x \in B_{\scriptscriptstyle 2R}(x_{\scriptscriptstyle 0}) - arOmega \ \end{cases}.$$

Then from (3.5), the function $z:=M^2(2R)-|\bar{u}|^2$, where $M(t):=\sup_{B_t}|\bar{u}|$, is a non-negative supersolution of an elliptic operator, i.e.

$$\int_{B_{2R}(0)} \bar{A}^{lphaeta}(x, \, ar{u}) D_{lpha} z D_{eta} \eta dx \geq 0$$

for all $\eta \in C_0^{\infty}(B_{2R}(0))$, $\eta \geq 0$ and $z \geq 0$. Therefore from the weak Harnack inequality, we get

(3.6)
$$R^{-n} \int_{B_{2R}(0)} z dx \leq C_{12} \inf_{B_{R}(0)} z.$$

Now let $w \in H_0^{1,2}(B_{2R}(0))$ be a solution of the equation

(3.7)
$$\int_{B_{2R}(0)} \, \overline{A}^{\alpha\beta}(x,\,\overline{u}) D_{\alpha} w D_{\beta} \psi dx = R^{-2} \int_{B_{2R}(0)} \, \psi dx \; ,$$

for all $\psi \in H_0^{1,2}(B_{2R}(0))$. Taking $\psi = wz$ we obtain

$$(3.8) \qquad \frac{1}{2} \int_{B_{2R}} \bar{A}^{\alpha\beta} D_{\alpha} w^{2} D_{\beta} z dx + \int_{B_{2R}} z \bar{A}^{\alpha\beta} D_{\alpha} w D_{\beta} w dx = R^{-2} \int_{B_{2R}} w z dx$$

where $B_{2R}=B_{2R}(0)$, $\bar{A}^{\alpha\beta}=\bar{A}^{\alpha\beta}(x,\bar{u})$. It follows from (3.7) and the boundary condition $w|_{\partial B_{2R}}=0$, that w is a non-negative weak solution of $D_{\alpha}(\bar{A}^{\alpha\beta}D_{\beta}w)=-1/R^2<0$. By the maximum principle we have w>0 in the interior of B_{2R} and hence, by the weak Harnack inequality, we have $w\geq\alpha_1>0$ in B_R . Moreover we have $w\leq\alpha_2$ in B_{2R} . α_1 and α_2 are constants independent of R.

Now let $\eta = w^2$, from (3.8) and boundedness of w, we get

$$\int_{B_{2R}}ar{A}^{lphaeta}D_{lpha}\eta D_{eta}zdx\!\leq\!C_{\scriptscriptstyle{13}}R^{\scriptscriptstyle{-2}}\int_{B_{2R}}zdx$$
 ,

which, together with (3.5) and (3.6), implies

$$(\lambda - \lambda^{*}) \int_{B_{R}(0) \cap \Omega} |Du|^{2} dx \leq -C_{14} \int_{B_{2R}(0) \cap \Omega} A^{\alpha\beta} D_{\alpha} |u|^{2} D_{\beta} \eta dx$$

$$\leq C_{15} \int_{B_{2R}(0)} \overline{A}^{\alpha\beta} D_{\alpha} z D_{\beta} \eta dx$$

$$\leq C_{16} R^{-2} \int_{B_{2R}(0)} z dx$$

$$\leq C_{17} R^{n-2} \inf_{B_{R}(0)} z$$

$$\leq C_{17} R^{n-2} [M^{2}(2R) - M^{2}(R)].$$

On the other hand we have

$$(3.10) \qquad \sum_{k=0}^{\infty} \left[M^2(2^{1-k}R) - M^2(2^{-k}R) \right] \leq M^2(2R) \leq \sup_{\Omega} |u|^2,$$

and inequalities (3.9) and (3.10) imply (3.4) with $\rho=2^{-k}R$ for some k>0. This completes the proof.

Combining Theorem 3.1. with the results of [4] and [8], we get regularity for minima of the solution of (**) for any point of $\bar{\Omega}$ — $(\Gamma_0 \cap \bar{\Gamma}_1)$:

THEOREM 3.2. Let Ω be a bounded domain in \mathbb{R}^n , $n \geq 2$ with boundary $\partial \Omega$ of class C^2 , Γ_1 a relatively open subset of $\partial \Omega$, and $\Gamma_0 = \partial \Omega - \Gamma_1$. Let

$$F(u)\!:=\!\int_{arOmega}\sum_{i=1}^{N}A^{lphaeta}(x,\,u)D_{lpha}u^{i}D_{eta}u^{i}dx$$
 , $A^{lphaeta}\!=\!A^{etalpha}$,

be a quadratic functional, where $A^{\alpha\beta}(x, u)$ are differentiable and satisfy (3.2) and (3.3). Assume that Dirichlet boundary condition ϕ of (**) is in class $H^{1,p}(\Omega, \mathbb{R}^N)$, p>n. Then any bounded solution of (**) is in class $C^{0,\alpha}(\bar{\Omega}-(\Gamma_0\cap\bar{\Gamma}_1))$ for some $\alpha\in(0,1)$.

References

- [1] A. BALDES, Harmonic mappings with partially free boundary, Manuscripta Math., 40 (1982), 255-275.
- [2] S. CAMPANATO, Equazioni ellisse del secondo ordine e spazi $L^{2,\lambda}$, Ann. Mat. Pura Appl., **69** (1965), 321-382.
- [3] M. GIAQUINTA, Remarks on the regularity of weak solutions to some variational inequalities, Math. Z., 177 (1981), 15-31.
- [4] M. GIAQUINTA and E. GIUSTI, On the regularity of minima of variational integrals, Acta Math., 148 (1982), 31-46.
- [5] M. GIAQUINTA and E. GIUSTI, The singular set of the minima of certain quadratic functionals, Preprint 435 SBF 72, Bonn, 1981.
- [6] M. GIAQUINTA and G. MODICA, Regularity results for some class of higher order nonlinear elliptic systems, J. Reine Angew. Math., 311/312 (1979), 145-169.
- [7] S. HILDEBRANDT and K.-O. WIDMAN, Some regularity results for quasilinear elliptic systems of second order, Math. Z., 142 (1975), 67-86.
- [8] J. Jost and M. Meier, Boundary regularity for minima of certain quadratic functionals, Math. Ann., 262 (1983), 549-561.

Present Address:
DEPARTMENT OF MATHEMATICS
KEIO UNIVERSITY
HIYOSHI, KOHOKU-KU, YOKOHAMA
223