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A Construction of the Fundamental Solution
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A construction of the fundamental solution for the Dirac equation
in an external electro-magnetic field is discussed. The fundamental
solution is obtained in the form of infinite product of some oscillatory
integral operators without using the classical mechanics.

Introduction

When R. P. Feynman gave his new formulation of the non-rela-
tivistic quantum mechanics [1], he appropriated the notion of Markov
process for a description of the dynamical structure. Since his discussions
involve integrations with respeet to a C-valued unbounded measure on
some path space (Feynman integral), it is extremely difficult to construct
regorously its mathematical theory. Among various approaches by many
authers (for example [2] [3] [4] [5] [6] [7]), Fujiwara [7] may be most faithful
to the Feynman’s original version. He constructed the fundamental
solution of the Schrodinger equation as an infinite product of operators.
Kitada, who discussed a generalization [8] of [7], treated some pseudo-
differential operators near to the Schrodinger’s one with the same method.

In this paper we pursue an analogy of [7] and [8] in the case of

Dirac equation:
(0.1) Dyp(%)=(@(D+ Ax)) +mB+ Ax))p(x)= H(D, x)p(x) ,
where

x="%2)e RXR®,

L2 (4=0,1,2 and 3),
i ox*

u
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m>0: the mass of an electron,
a.(k=1,2 and 3) and B3:4 x4 hermitian constant
matrices with the following relations:
{aka,-+a,-a,,=26,,,-
akB'I_Bak:O’ Bz=1 ’

and A.(#=0,1, 2 and 3) denote the electro-magnetic potentials which are
real valued functions on R*, and we chose a suitable system of units so
that the Planck constant A=1. In what follows we shall show, in accor-
dance with [7], the convergence of an infinite product of some oscillatory
integral operators, which are approximate solutions of (0.1). They are
obtained by the following observation and not through any -classical
mechanical consideration.

We may naturally expect that the following pseudo-differential operator
(0.2) @, Y)P@)= SdgSdget?(;—;)et(z“—v°)H('e',z)¢(,y)

gives an approximate evolution from 3° to x2° of the solution of (0.1)

for initial state ¢. Now note that the Dirac operator H(D, x) ecan be
written as

H(D, z)=Hy(D+ A(x))+ As)
with
H@)=aé+mpg ,
which satisfies the relation:
(0.3) H@Er=E* (B =VIEP+m?) .

Then we can rewrite (0.2), translating Z into §+z(m), as

'@, ¥°)P@E) = S dgg dy et(?+2m) (Z—9)+1(20—y0) 49 (e) et(ao—gomot'e')@)—l-(é’)q,@)
=(at{ar £ LuxHE@ e o)

where

6+ A@N@—1)= 3} Eut AN — ") ,
§o=4E -
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Making use of this expression for I'(x°, ¥°), we obtain the following
theorem which will be proved in §2.

THEOREM. Assume the following condition for A.:

(A) A,eC~(R') and each one of their first derivatives belongs to
(R

Then there exists a family of wunitary operators Ux’, y°)(x° and
Yy’ e R) on 57 =L*(R?% C*) defined by the equality:

(0.4) U@, y’)=lim I'(2’, @y_)- - - T'(@, o) '@, o°) -

Here d=(° a%_,, - -+, 23, 23, ¥°) 28 a subdivision of time interval [x°, y°]C
R with the norm
0

lA!= onlafv{ 1|$J-+1-—.’X;g- (wy=2°, 20=19") ,
1_—_ 1 —

and the limit in (0.4) is taken in the sense of operator convergence on 5.

Let us give some remarks on the theorem.

(1) Dirac operator H(ﬁ, xz) is of the symmetric hyperbolic type.
It is well known that the initial value problem for (0.1) has the unique
solution [9]. In fact U(t, s) in the theorem coincides with the funda-
mental solution of (0.1). At the same time we should notice that our
approximating sequence given by the theorem converges to the exact
solution U(2’, ¥°)® uniformly in the initial value ® as is the case in [T7].

(2) In order to obtain the solution of the initial value problem for
(0.1), one can also apply a general scheme for constructing the funda-
mental solution associated with evolution equation of hyperbolic type
using oscillatory integral [10]. With this method Yajima [11] discussed
under the same assumption (A) the quasi-classical limit for the funda-
mental solution of (0.1). In our case we have to abandon the argument
about the quasi-classical limit (h—0) because the limit in (0.4) is not
uniform in kA€ (0,1]. This would be a general feature of the product
integral.

(83) The amplitude functions (1/2)A+=H,(&){&>™") of I'(x’, ¥°) can be
interpreted as the projection matrices to positive and negative energy
states because of (0.3), while the phase function (¢+A®))(x—y) is
obtained by translating the free phase function &(x—y) on cotangent
space.

(4) Since the support of the distribution 4..2) defined by

A,o('é):Sdg Z*Gtzefo -

§o==<(&



102 HIROSHI WATANABE AND YUSUKE ITO

is contained in {Z e R% 2”°—|2°=0}, we find that I'(z°, %°) has the finite
propagation speed and so confirm the relativistic causality.

§1. Analysis of [' ° ¥°).

In this section we shall study properties of integral operators like
I'x’ 9°) in slightly more general context.

DEFINITION 1.1 For A(x)=(A,(x), A,(x), A,(x), Ay(x)) satisfying the
assumption (A) of the theorem stated in the introduction, we put

(1.1) #*(®, & ¥)=(E+A@)(x—y) ,
where

E———(GO) .g) ?
go=E =V E+m* (m>0).

Let Z(R‘xR*xR'; M,(C)) be the space of 4x4 matrix-valued
functions whose components are the elements of <Z(R‘XxX R*x R‘ and
S =S (R C*) be the space of rapidly decreasing C*-valued functions.

DEFINITION 1.2. For a(x, &, ¥) € Z(R*X R*X RY; M,(C)), we define the
operators J*(z° ) on S by

(L.2) =@, 1)@= a2 |dd a(s, & wer=ro@)

PROPOSITION 1.3. (i) For any x° and ¥°€ R, J*(2°, ¥°) maps & into
1tself.

(ii) For ®€.% each derivative of J*(°, ¥Y)P(X) as a function of
2%, & and Y° 18 given by the equality:

(1.3) D@, v)p@ =\dE|duD"(a(w, & e+ ")o@) ,

where

D*=D2g- - .D:sap;& (a’_=0’ 1L, --9)..
PROOF. Let @€ .5 and put
Tz, )= |d7 = T0() .

Let L and L* be the differential operators defined by
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(1.4) L=&m*—ED,), L*={&(m*+ED,)
respectively. Note that L satisfies
(1.4)’ LeiE(z—-v).___.efé(m—v) .

Then, for any integer =0, partial integration gives that
(1.5) W*(x, ‘é) — Sdﬂ(LleiE(”—”))eiA(”) ‘”"”’9’(?7)

— Sd?‘j eié(a—-y)L*l(eiA(z)(z—ﬂ)cp(g))
—_ Z Sd?—j( l )(a )mz(l—|a|)§a<g>—2l
i a B_’
X (—A@))’e"** Dy *p(g) .
By taking =4, we find ¥*(x, ) integrable with respect to . This makes
J*(@°, )P @) well-defined. Moreover, taking ! large enough, we can

easily show that J*(x°, ¥")@(Z) is a smooth function of z° %° and %, and
its derivatives are given by (1.3).

Next, applying Lemma 3.2 in the Appendix to the term Z(x)" appeared
in (1.5), we obtain the following expression:

(L.6) s, e@= 3 |@wBse v
1BI+irisleal

X @—P)e* = A, §) D;o(F) ,
where B!}, are smooth functions obeying the estimate:
|D3DtD; Bl (, &, 9)| SCN, 2, v; DE™

for all A, g, v, and I with a positive constant C(», Y v; ). Now, observing
that

(1.7) (55—’2])78“:': =D'£et(?+2(z))(§’—?) % gt €otAg(@) (20—y0) ,
we can rewrite (1.6) as

T@, ve@= 3 \a@|wBie g v
18lsial

xe"*. A, ) DiP(P)
where B, are smooth functions satisfying the estimate:

\DID{D;Bii(x, &, )| SC (N, g1, v; DE™
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for all A, p,v and | with a positive constant C(n, ¢, v; ). Therefore,
for any multi-indices ¥ and 4, we have

|37 DT *(a, Y)P@| = Cr -
LEMMA 14. (i) For €% and k=1, 2,3, it holds that
a2 (dge (@ —vatz, & w2@)
= (ae{ase{ ~ @—19%— D, Jo, &, wp@)

(ii) There exists a function &(x, &, y) € B (R*XR*XR'; M,(C)) such
that

(a2 {avevcata, & woa=|t| dve| a & v
+§fa<x, 5 D Dp— A, ) [p@) -

PROOF. (i) is clear by virtue of (1.7).
(ii) Let L be as in (1.4). Making use of (1.4)", we can easily show
by partial integration as in (1.5) that

{d2|ase e & we@
= (@[ ager [ WEEPs— £ A (o) Jata, & wp@) -
&o o
Moreover, since Lemma 8.1 in the Appendix implies
Aya, B) =3 By, &, D@ —y) + A7) (k=1,2 and 3)

for suitable B;(x, %) #(R*xX R(k, j=1,2 and 3), we may find that (i)
implies (ii), where

e, & 1) =[ 2~ By (o D@ -9 St 4 20 B} Lo, 3,

+l:—Bk.1'(x9 g)_&"Dek_l_—&'j'ka:]a(w! g’ y) .
&o o
PROPOSITION 1.5. There exists a positive constant K, (depending only

on |al,) with the following property:
If |-y |= K, J*(&°, ¥°) has a bounded extention on 2# =L*(R% C*).
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PROOF. We apply Theorem 3.3 of the Appendix to the right hand
side of (1.2). Since

Fe* __ A, It _ 5.
axiay" J,i(x) ’ astay’- ij 9
32925* —5.. az¢t (0 g Q' &85 -1 9 d 3
-y T Ty (x y)( s ) , (,7=1,2 and 3),
there exists a constant M such that
a2¢:|: a2¢:|:
oxoy  0&0Y .
dot| 0l g |[BLME—Y
0xoE  0£0&

because of the assumption (A). Therefore if |2°—9°|=1/(2M), ¢* satisfies
the assumption (ii) of Theorem 3.3.

PROPOSITION 1.6. For every @ € &, the mapping: (&°, ¥°)—J*(&’, ¥°)P
of {(x°, ¥°) € R |a°—y°| = K,} to 5F 1is strongly continuous.

PrROOF. Denote z’=(¢, %) and x=(¢, ). Then we have
1.8) J={, ¥)P@)—J*({, ¥")P@)
= Sdégdﬂ[a(w’, g, ¥)—a, E, y)le?* =" 0 p(F)

+Sd§gd@a(x, Z, y)erte W-E@ED _1]gi i p(g) |

Clearly, a(x’, §, y) tends to a(z, g, y) in the space Z(R'XR*X R*; M,(C))
as t' goes to t. Therefore, Theorem 3.3 implies that the first term in
the right hand side of (1.8) converges to zero in 52~ On the other hand,
Lemma 3.1 in the Appendix implies the existence of the functions
B, t, %) e F(RxRxR)(A=0,1,2 and 8) such that

A, B)— A&, ) =By, t, ©)(E' —1) .
So we have
¢=(@, &, ¥)—¢*@, & V)
=t'—0)6*E, &; t, ¥)+ ' — OB, t, (" —v") ,
where

0=E, %; t, ¥) =20+ Au@) +(t—¥)B(', t, T) .
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Thus we obtain the equalities
W@ by -5t iy _q
=em'-twt(é,;’;:,yo)[et(u—t)sk(u,t,'z')(zk—yk) _1]
+et(t'—t)oi(?.;:t,v°) —1
=et(t'—t)oi('e',?v'-.t,vo)Fl@, 7, @E—yH
+F*@E, & t, t, Y)(E + @) ,
where we put

— 't 2) (wk—ak
ettt t) B (t’,t,z) (zk—y L

&=

(e -00£E,36,99 _ 1

& +@E

Moreover, taking account of Lemma 3.1 again, we define h,(Z) € <Z(R®
(k=1, 2 and 3) by the following equality:

Fl(?i, g; t” t)=

F*E & t,t,y)=2

ZB>=h,(Z)z*+m .
Then, we obtain

(2’ Ey)—teE (2.2,
PRI R R T R |

=e! RSN F G, ; 1, )[h(E — )@ —y") +m]’
+FE, & 1, ¢, YD +m+ @)= — ") +h@E)y*] ,
(=12, --).

Noting that e**'~#0*@ses fy(E 3: ¢, 1) € &' (Ry x Re X RY) and F=@, %; ¢,
t, ¥°) € B#(R: X R X RY), and using Theorem 3.3 in the Appendix for !
large enough, we can conclude that the second term of (1.8) converges
to zero in 5% as t'—t. The strong continuity with respect to %° can be
shown similarly.

PROPOSITION 1.7. For every @ € & the mapping: (2°, ¥°)— J=(&°, ¥°)p
of {(x° ¥°) e R |2°—¥°|=< K.} to 57 1is strongly differentiable.

PROOF. Let €.~ The strong differentiability of J*(z° ¥°)p with
respect to 2° follows from the strong continuity of (3/62%)J*(x°, %) in
2°, since

@, PIe@ I, PIe@ =\ dt 2T, 1)e@) .
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Now Proposition 1.3 (ii) yields

L 9 g0 y0)9@)
1 0x°

=[az|ameet 2 ZLtet 4@ @ =) o, 2 0)2@) .
ox°
We can rewrite the right hand side of this by means of Lemma 1.4 as
R 9@ =[dE|dve e L L+ A, @)@~
1 o0x°
+ Ao @] @118 - Dy} o 3 vow)
+ §d§§dye a(, Y@
+{@E| der* Lo, & D (Du- 46, P@)
Here [(1/2)(9/0%°) + A,o(x)(®° — 9°) + A o@){—(@° — ¥)(&/&) — D¢, Ha(z, &, v),
az, & ¥) and (&/é)a(z, & y) belong to <&, and (D,,— A.(2’, ¥))P(¥) belongs
to & Applying Proposition 1.6, we can show that the mapping:
& —> -a—oJ (@', ¥)P(®)
ox

is strongly continuous. The strong continuity with respect to %° can be
shown similarly.

PROPOSITION 1.8. Let g*(z, & v, t) and J*@°, ¥°, t) be a function and
an operator defined by

(1.9) FE(x, &, ¥, 1) = E—1")&+ @ —¥) A (@) + @ — ) G+ Ax))
and
(1.10) JE@, ¥°, HP@) = SdéSdﬂa“(fﬁiv-”a(x, g, nP®@) ,

respectively, where

a(x, & y)e BPRXR*XRY) and e~ .

Then the following statements hold:
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(i) J*@, 9% t) maps & to S for any 2°, ¥° and tc R.

(i) If |="—9°|< K, and |t—y°"|= K, f*(x°, ¥° t) has a bounded extention
on S#. ‘

(iii) For every ® €.%, the mapping:

(xo’ y°9 t) — ji(xoy yOQ t)¢

of {(x° ¥°, t) e R |a°—t|= K, and |t—y°'|S K.} to 57 1is strongly differen-
tiable.

PROOF. We can prove (i) in the same way as shown in the pi'oof
of Proposition 1.3. If [x"—¢| and |y°—¢| are sufficiently small, we may
easily check that

o2 ‘3& o $j;
0xoy  ogoy

det g e =1—M|x*—9°
oxdE  0Lof

for some positive constant M.~ So all the arguments in Proposition 1.5,
1.6 and 1.7 remain valid for J*(x° ¥°, t).

§2. Construction of the fundamental solution.

We are in a position to prove the theorem stated in the introduction.
Let us begin with the following definition.

DEFINITION 2.1. For € .% and |x°—9°|< K,, we define as

=@, y)P@) = Sd'é Sdﬂai@)e“i(”g’")¢(§)
'@, y)p@)=I"(, ¥)P@) + I, ¥)P) ,

where

ProposiTION 2.2. (i) If |2°—9°|= K, I'(x, ¥°) maps & to & and has
a unique bounded extention on S¥.

(ii) I'(x° x°) coincides with the identity operator.

(iii) For every ® €.%, the mapping
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@’ Y°) —— I'=(a°, Y
of {(x° ¥°) e R |2°—y°|< K.} to 57 i3 strongly differentiable.

PROOF. (i) and (iii). Since a*(¢) € <#(R?), we can apply Proposition
1.3,1.5 and 1.7 in the previous section to I'(x°, %°. (ii) follows from the
fact that a*(@)+a @) =1.

PROPOSITION 2.3. For ®€.5” and [x°—y°|S K,, there exists a positive
constant K, such that

2.1) | DpoI"(a°, y¥°)p — H@)I'(°, ¥")p|| < Ky|2"— 9| || P]|
2.2) | Dyl @, ¥°)P+ T, ¥ ) Hy)P|| < Koo' — 9| | P]| ,
where

H(t)=a&-(D—A@, ) +mB+Ayt, &) .
PROOF. As a*(8)-a™(8)=0, we have
DI, ¥)p@) — H@I @, ¥")P@)
=3 (A1o(®) — s (o)) | €8 | dTe = 0 ('~ )0 @0 @) .
= (A1)~ s (@) ST 524(E)

where
T3 =B (a7 0w~ 0 @0 @) .
Since A; (x)—a,A; .(x) € &&, we have only to estimate the norm of T5he

to establish (2.1).
Let us rewrite ¥} (%) by Lemma 1.4 as

(2.3) V@ =3 || dgerein @ -y ~L)a* @r@
_%“ ngSd@’evﬁi(w,?,v)pekai(g)@(g) .

We know that the norm of the first term of the right hand side is
estimated by C,|x°—%°| ||@|| for some positive constant C,. In order to
estimate the second term, we put

U‘t(;};’) _— zzt‘ Sd‘s'Sd:T/e“‘*""?'”"’Deka*(é)so(z‘/’)
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for [t—¥°|<K,, where ¢= is defined by (1.9). Then we claim the follow-
ings:

(i) If t=9° then ¥, vanishes.

(ii) If t=2", then ¥, coincides with the second term of (2.3).

(iii) 7, is an element of 5 and strongly differentiable with the
following estimates:

Fez||sc.iel

dt
TN =Clt—v° ||e] .

In fact, (i) and (ii) is clear while (iii) follows from Lemma 1.8. Therefore
we can estimate the second term of (2.3) by C,J«°—%°| ||®|| and obtain
2.1).

On the other hand, we have

DI, ¥)P@E)+ I, y°) Hy")P(E)
=3 (az{aal- 4@)+ 4@) +3( @) - Al Tr 0 @) .

Applying Lemma 3.1 in the Appendix, we can find functions B.(x, y)¢c
Z(R'X R") such that

A(x)— Ay(y)=Bu(z*—y") , (»=0,1,2 and 3).
Therefore we can prove (2.2) in the same way as in the proof of (2.1).

The following propositions give the approximate evolution property
of I'(z°, ¥°) which will help our construction of the fundamental solution.

PROPOSITION 2.4. There exists a positive constant K, such that

(2.4) W\, o) (z, y°)—I'@, YOl < Ko — [+ |z — 9] ,
when |x*—y°|= K,.

PrOOF. Let e Cy. By Proposition 2.2, we have

(2.5) r@, Ore, ©IeE -6, 1)e@)
=| at2re, ore, ve@ ,

where the right hand side is taken as a Bochner integral in 5 The
direct computation shows that

L 9 pip oo @) =L 2 e ,
22 1@, oI, @ =]+ 21, O+I6, 0HO |
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X, )@+, 8 = 21, ) - HOT ¢, v) [p@)
Applying Proposition 2.8 and 2.2 (i) to right hand side of this, we obtain
|12 21, HI, 19| s Ko —tl+ e~ D] -

Then making use of (2.5), we may complete the proof of (2.4).
PROPOSITION 2.5. If |2°—y°|< K,, we have the following estimates.

(2.6) 17, ©)* (@, ¥°)—I(z, ¥)|| = K(l2"—z]*+ |t —9°]")

2.7 11" ¥°)|| <exp Kila°—y°| ,

where I'(x°, ¥°)* denotes the adjoint of I'(x°, ¥°).

PrROOF. Let @, e€Cy. By Proposition 2.2, we have
(I@, DT, )P~ 1P, 9= a-L@¢, ¥, I, )
Since H(t) is a symmetric operator,
L1, 9, It, D9 = (-1, ¥)p—iHOTG, )2, Tt 7))
di di |
+(I't, 12, LI, Wp—iHOTE, D) -

So, (2.6) is a direct consequence of Proposition 2.8. Putting z=¢° in
(2.6), we have (2.7). '

PROPOSITION 2.6. There exists a positive constant 6 depending on K,
such that I'(x°, y°) has the bounded inverse if |x°—y°|<d. Besides, there
exisls 8 positive constant K, depending om 0 such that the following
estimates hold:

(2.8) (@ ¥°) —I'(x°, ¥°)*|| < K, Ja*—y°)?
(2.9) L% ¥") — L@, )| S K-,
Jor |x°—y°| <.

PrRoOOF. Put z=9° in (2.6). Then we have

(2.10) 1P, y)* (@, ¥°) — 1| S Kylo*— )"
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Similarly (2.4) implies
(2.11) |, =) (2, ¥°) —I| = Kslx®—¥°° -

If |x°—y° is sufficiently small, (2.10) and (2.11) imply that the inverse
of I'(x’, ¥°) exists. (2.8) can be obtained by (2.4) and the fact that

L@, ¥ =, y)* '@, ) @, ¥)* .
We can prove (2.9) in the same manner.

Now we are ready to construct the fundamental solution of the Dirac
equation. Let

4: Y=< <7V =2°
be an arbitrary subdivision of the interval [3° «°], and let

|4|=max |t -7 .
1SisSN

Then we put
Ly )=, ¥ )LV 877 - I(7 ¥°)
Ty, £)=T@", (7, %)+ - T, o),
and discuss the convergence of I'4(x°, ¥°) and I'4(%° «°) when [4]—0.

THEOREM 1. Under the assumption (A), there exist bounded operators
U, ¥°) and U@, 2°) tn 5 such thal
| o, °)— U’ ¥)l| — 0 (|4 — 0)
T4 29— U@’ 29| — 0 (|4| —>0) .
Moreover, U(x®, ¥°) and U(¥°, x°) satisfy the following properties.
(i) U, ¥°) and UW’, °) are unitary on S#.
(ii) Ulz, 7)=1I om 5%, for e[y’ 2°].
dii) U@, 7)U(z, 9°)= U, ¥°).
(iv) U@, ¥°)'=U®, 2°).

The proof of this theorem is based on the estimates from (2.4) to
(2.9), and it can be obtained in the same way as shown in Fujiwara [1].

We define a subset W of 2
W={pes#|(@>p, Dpe s~} ,

which is a Hilbert space with the norm
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el =@ o@r+ 3 (d@De@E) .
PropPOSITION 2.7. U(2’, ¥°) maps the space W into itself, and the
Jollowing estimate holds:
(2.12) U@, ¥)Pllw=Pllwrexp Kz’ —9 .

Proor. Using (1.3) and applying Proposition 1.5, we obtain the
estimates:

[D;, I, Y)]P|lw=Kilz*—¥°| |2l
sy (@ ¥)]P||lw= Kil2*—9°] ||P||w

for e W. By means of (2.7), we also have the following:
(2.13) 4=, ¥)Pllw =|Pllwexp Kyla°—y°| .

Consequently, the set {I'4(x°, ¥")®} remains bounded in W when [4]|—0.
On the other hand, Theorem 1 proves that I',(x°, ¥°)® —U(x’, ¥°)® strongly
in 57, and so we find that U’ ¥y ) @€ W because W is continuously
embedded in 5# Taking |4|—0 in (2.13), we obtain (2.12).

Next, Theorem 2 shows that U(x’ %°) is the fundamental solution of
the Dirac equation.

THEOREM 2. For @€ W, we have
%0

(2.14) U@, y)p—p=i| drHO UG, ¥)9 ,
)

where the right hand side 1s taken as a Bochmer integral, and

(2.15) L 4y, yyp=Ha) U, )P
1 dx

(2.16) 1 4y, yyp=— U, ¥)VHG)® -
1 dy

ProOF. Let o€ W. Using (iii) of Theorem 1, we have

2.17) Ui+rz, ¥)p—UG, ¥ )p=T({t+7, ) -1 UG, ¥)P
+(U+7z, t)—Tt+7, ) UE, )P .

By Proposition 2.3 and Theorem 1, the mapping: t—U(t, ¥°)p is
strongly continuous. Hence for € Cy, we have
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(2.18) (U, )2, ¥ —@, 9=\ dr-LUe, )9, ¥ -
Let
4: Y=<t < - - <t"=1
be a subdivition of [¢°, t] into subintervals of equal length, and we put
4: Y=<t < - - <t
G(, a)=[-1,_ i—H(—c)]r(r, 7).
1 0T
Then we have

L L e, vI=HOT A, 1) +6C 0 9

and by Proposition 2.3, we obtain the estimate

L 4 (10, 999, 99— (HOT A, v)2, )| SKldlexplt—1 o] 191
Letting [4]|—0, we have
(2.19) L LW, 12, N=HOUE )P, ¥)
by Theorem 1. Therefore, combining (2.18) and (2.19), we obtain
UG, ¥)P, W)~ (@, ¥)={ G HDUE, 1), ¥) -

Since CZ is dense in 5%, (2.14) is proved.

THEOREM 3. For e W, we have

(2.20) [D,, U, W= dr U, 2D, HOIUG, 12

(2.21) [e UG, o= dc U@, Ole;, HOWUG, 1),

and that Ux®, ¥°) is an isomorphism on .

PROOF. Let e Cy. Then we have the equality

(D, UG, ¥)1e, v)=| g (U, DD,UG, 12, 4) -
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Using (2.15), we obtain (2.20). We may derive (2.21) in the same manner
as in (2.20) from (2.16). If we take @ €. it is obvious from (2.20) and
(2.21) that D,;U(x’, ¥y )@ € 5 and x;U(x’, ¥°)® € 97 because [D;, H(r)] and
[x;, H(7)] are the operators from 57 into itself. Similar arguments will
give x2*D*U(x°, )P € 57, for any pair of multi-indices a« and 3. So,
Ui, ¥ )p € & by virtue of the Sobolev embedding theorem. Also we
can prove that U(x’, %°) is a continuous map from & into itself by the
closed graph theorem. Smce U, ¥ ) '=U®, 2%, U’ 9¥°) is an isomor-
phism on &~

§3. Appendix.

LEMMA 3.1. Let f(x) be smooth function on R* with all the first
derivatives in B (R*). Then there exists a family of functions f(x, y) €
B(R*XR*k=1,2, ---,d) such that

F@=F@)+ 3 file, Vet -1

Sfor x, ye R’. Moreover the following estimate holds:

’(’Q‘)a< ay) Ju(z, ’y)‘s sup ’(%)Tf(z)l @, yeR% .

ox lrl= la+P+1

LEMMA 3.2. Let n be a positive integer and f,(x)(k=1,2, ---, n) be
smooth functions on R* whose derivatives of the first order belong to
Z(R*. Then there exists a family of functions fs.,(x, y) € Z(R*x R%)
(Sc{y, 2, ---, n}, |v|=#S) such that

fi@)- - falw)=__ Z o Jou(@ W)@ —y)" 11 £uy)

Jor z, y € R%.

THEOREM 3.3. (Asada-Fujiwara [12]) Assume that (i), (ii), (iii) and
(iv) hold.

(i) ¢ 18 a real valued C* function of (x, & y) € R*X R™ X R".

(i) There exists a positive constant 6 such that

[det D(¢)(=, &, ¥)|=0 ,

where D(¢) is the (n+m) X (n+m)-matric of the form
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0* 0*
—(x, & Y) ——o(x, & Y)
0xoY 020
D)@, & D= .
*@‘ﬁ(ﬂ% & Y) W(x, & Y)

(iii) For any multi-indices a, B, ¥, there exists a positive constant

C.sr such that
I( aax )a( ;5 )p ( aay )T d(¢) (@, & Y) | =Cousr

where d(g)(x, & y) denotes each entries of D(¢)(x, &, ¥).
(iv) a(z, & y) belongs to the space SZ'(R" X R™ X R™), where l=1(n, m).
Then, for @ €Cy, the integral operator of the following type:

ap@=\| __ a@ ¢ veretrowdyds

18 L*-bounded, i.e. there exists a positive constant K depending on la|;
such that '

|AP| e =k|P|| .2 -
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