On Peak Sets for Certain Function Spaces

Shinya YAMAGUCHI and Junzo WADA

Waseda University

Introduction.

Let A be a function space on a compact Hausdorff space X. In this paper, we show that some theorems on function algebras can be generalized to the case of function spaces A having certain conditions. E. Briem [2] proved the following: Let A be a function algebra. If any peak set for the real part $\operatorname{Re} A$ of A is a peak set for A, then A = C(X), where C(X) denotes the Banach algebra of complex-valued continuous functions on X with the supremum norm. In association with the theorem of Briem, we consider the class of function spaces having the condition A (see § 1). It is a wider class containing the class of function algebras. We here discuss whether theorems on function algebras can be generalized to the case of the class.

In § 1, the Bishop antisymmetric decomposition theorem for function spaces is given. This is a generalization of Bishop's theorem [1] on function algebras. In § 2 we give some examples of function spaces having (A). In § 3 we consider the class $\mathscr A$ of function spaces having (A) and give characterizations to assert that A = C(X) for $A \in \mathscr A$. These results are generalizations of theorems on function algebras.

§ 1. Bishop antisymmetric decomposition for function spaces.

Throughout this parer, X will denote a compact Hausdorff space. A is said to be a function space (resp. function algebra) on X if A is a closed subspace (resp. subalgebra) in C(X) containing constant functions and separating points in X.

Let A be a function space on X. For a subset E in X, we denote

$$A(E) = \{f \in C(E): fg \in A|_E \text{ for any } g \in A|_E\}$$
 , $A_R(E) = \{f \in C_R(E): fg \in A|_E \text{ for any } g \in A|_E\}$

where $A|_E$ denotes the restriction of A to E and $C_R(E)$ is the set of all real-valued continuous functions on E.

We here see that $1 \in A_R(E) \subset A(E) \subset A|_E$, $A_R(E) = A(E) \cap C_R(E)$ and that A(E) and $A_R(E)$ are both algebras.

Let E be a subset in X. Then we call E an antisymmetric set for A if any function in $A_R(E)$ is constant. We easily see that (i) if $\bigcap_{\lambda} E_{\lambda} \neq \emptyset$ for a family $\{E_{\lambda}\}_{{\lambda} \in A}$ of antisymmetric sets for A then $\bigcup_{\lambda} E_{\lambda}$ is an antisymmetric set for A and (ii) the closure \overline{E} of an antisymmetric set E for A is an antisymmetric set for A. Hence the sum of all antisymmetric sets for A containing a point x in X is a maximal antisymmetric set for A which is closed in X. Thus X is decomposed by a family of maximal antisymmetric sets for A. We write $\mathcal{K}(A)$ the family of maximal antisymmetric sets for A.

Let A be a uniformly closed subspace in C(X) or $C_R(X)$. Then a closed subset F in X is called a peak set for A if f(x)=1 $(x \in F)$ and |f(x)|<1 $(x \in X \setminus F)$ for an $f \in A$. A p-set for A is an intersection of peak sets for A. A closed subset F is called a BEP-set for A if for any $f \in A|_F$ and for any closed subset G in X with $G \cap F = \emptyset$ and any $\varepsilon > 0$, there is a $g \in A$ such that g=f on F, $|g(x)|<\varepsilon$ on G and $||g||=||f||_F$, where $||g||=\sup_{x\in X}|g(x)|$ and $||f||_F=\sup_{x\in F}|f(x)|$. For a uniformly closed subspace A in C(X), F is a BEP-set for A if and only if $\mu_F \in A^\perp$ for any $\mu \in A^\perp$, where A^\perp denotes the set of measures μ on X such that $\int f d\mu = 0$ for any $f \in A$ (cf. [7]).

Now we here consider the Bishop antisymmetric decomposition theorem for function spaces. This is a generalization of Bishop's theorem on function algebras ([1], [3], [9]).

THEOREM 1.1. Let A be a function space on a compact Hausdorff space X. Then X is decomposed by the family $\mathcal{K}(A)$ of maximal antisymmetric sets for A and the following is satisfied.

- (i) Any $K \in \mathcal{K}(A)$ is a BEP-set for A:
- (ii) If $f \in C(X)$ and if $f|_K \in A|_K$ for any $K \in \mathcal{K}(A)$, then $f \in A$.

PROOF. (i) For $K \in \mathcal{K}(A)$, let F be the intersection of all BEP-sets for A containing K. Then F is the smallest BEP-set for A containing K. We here need only to show that F = K. If $K \subsetneq F$, then there is an $f \in A_R(F)$ which is not constant since K is a maximal antisymmetric set for A. As $f|_K \in A_R(K)$, f is a constant c on K. Hence if we put $E = \{x \in F: f(x) = c\}$, then $K \subset E \subsetneq F$.

For $\varepsilon > 0$, we put

$$g = -\varepsilon (f-c)^2 + 1.$$

Since $A_R(F)$ is a real algebra containing 1, $g \in A_R(F)$. For a sufficiently small $\varepsilon > 0$, we see that $g|_E = 1$ and |g| < 1 on $F \setminus E$. So E is a peak set for $A|_F$ and $g^n \in A_R(F)$ $(n=1, 2, 3, \cdots)$. Since F is a BEP-set, $\mu_F \in A^\perp$ for any $\mu \in A^\perp$. Here for any $h \in A$, $g^n h|_F \in A|_F$ and $0 = \mu_F(g^n h) \to \mu_F(\chi_E h) = \mu_E(h)$, where χ_E is the characteristic function for E. This shows that $\mu_E \in A^\perp$ for any $\mu \in A^\perp$, that is, E is a BEP-set for A. This is a contradiction since F is the smallest BEP-set for A containing K.

PEAK SETS

(ii) It is proved by a similar method to the proof due to Glicksberg [9]. We first show that the support F of μ is an antisymmetric set for A for $\mu \in \operatorname{ext}(\operatorname{ball} A^{\perp})$, where $\operatorname{ext}(\operatorname{ball} A^{\perp})$ is the set of all extreme points of closed unit ball in A^{\perp} . To do this we prove that f is constant for any $f \in A_R(F)$. We here can assume that 0 < f < 1 on F and f is considered as a function in A by extending on X for convenience. From the definition of $A_R(F)$, $f\mu/\|f\mu\|$, $(1-f)\mu/\|(1-f)\mu\| \in \operatorname{ball} A^{\perp}$.

Moreover we have

$$\|f\mu\|+\|(1-f)\mu\|=\int |f|d|\mu|+\int |1-f|d|\mu|$$

$$=\int_F f\,d|\mu|+\int_F (1-f)d|\mu|=\int_F d|\mu|=\|\mu\|=1\ ,$$

and

$$\mu = ||f\mu|| \cdot \frac{f\mu}{||f\mu||} + ||(1-f)\mu|| \cdot \frac{(1-f)\mu}{||(1-f)\mu||}.$$

Since μ is an extreme point of ball A^{\perp} , we have $\mu = f\mu/\|f\mu\|$ and $f = \|f\mu\|$ (a.e. $|\mu|$). So $U = \{x \in X : f(x) \neq \|f\mu\|\}$ is open in X and $|\mu|(U) = 0$. It implies that $\emptyset = U \cap F$ and $f(x) = \|f\mu\|$ on F. This shows that F is an antisymmetric set for A. Hence there is a $K_0 \in \mathcal{K}(A)$ such that $F \subset K_0$.

Now let $f \in C(X)$ and $f|_K \in A|_K$ for any $K \in \mathcal{K}(A)$. Then there is a $g \in A$ with $g|_{K_0} = f|_{K_0}$, and for any $\mu \in \text{ext}(\text{ball } A^{\perp})$

$$\int f \, d\mu = \int_{K_0} f \, d\mu = \int_{K_0} g \, d\mu = \int g \, d\mu = 0 .$$

By the Krein-Milman theorem, $\int f d\mu = 0$ for any $\mu \in A^{\perp}$. It follows that $f \in A$.

REMARK. In [6], Ellis discussed the Bishop antisymmetric decomposition for a function space on its Shilov boundary.

We here describe A(X) for some function spaces A on X. Let Γ , D and \bar{D} be $\{z \in C: |z| = 1\}$, $\{z \in C: |z| < 1\}$ and $\{z \in C: |z| \le 1\}$ respectively.

EXAMPLES. (1) Let A be the function space on \bar{D} consisting of continuous functions on \bar{D} which are complex harmonic on D. Then $A(\bar{D})$ is the set of constant functions.

- (2) Let B be the disc algebra on Γ and $\varphi \in B$, $\varphi \neq 0$ on Γ . Then $A = \varphi^{-1}B$ is a function space on Γ and $A(\Gamma) = B$.
- (3) Let B be the disc algebra on Γ . We put $A = \{f \in B : f = \lambda + g, \lambda \in C, g(0) = 0 \text{ and } g(1/2) + g(-1/2) = 0\}$, where $g(\lambda)$ is the value at λ of g which is considered as a function in the disc algebra on \overline{D} . Then A is a function space on Γ and $A(\Gamma) = \{f \in B : f = \lambda + g, \lambda \in C \text{ and } g(0) = g(1/2) = g(-1/2) = 0\}$.

Next we consider the following three conditions for a function space A on X.

- (A) Any peak set for A is a peak set for A(X).
- (B) For each $K \in \mathcal{K}(A)$, any peak set for $A|_K$ is a peak set for A(K).
- (C) For each $K \in \mathcal{K}(A)$, any peak set for $A|_K$ is a peak set for $A_R(K)$. Here that (C) \rightarrow (B) is clear and furthermore we have

THEOREM 1.2. Let A be a function space on X. Then the following are satisfied:

- (i) If A has (A), then it has (B).
- (ii) If A satisfies (C), then A = C(X).
- (iii) If A has (B) and it is self-adjoint, then A = C(X).
- PROOF. (i) Let $K \in \mathcal{K}(A)$ and F be a peak set for $A|_K$. Then F is a p-set for A since K is a BEP-set for A. So F is a p-set for A(K) by the hypothesis. But since F is a peak set for $A|_K$, it is a G_δ -set in K. It implies that F is a peak set for A(K).
- (ii) By Theorem 1.1 it suffices to show that any $K \in \mathcal{K}(A)$ is a singleton. If some $K_0 \in \mathcal{K}(A)$ has at least two points, there is a subset F in K_0 such that F is a peak set for $A|_{K_0}$ and $F \subsetneq K_0$. By the hypothesis, F is a peak set for $A_R(K_0)$. This is a contradiction since K_0 is an antisymmetric set for A.
- (iii) Since A is self-adjoint, for any $K \in \mathcal{K}(A)$, $A|_K$ is self-adjoint and so is A(K). It implies $A_R(K) = \operatorname{Re} A(K)$. By the hypothesis, any peak set for $A|_K$ is a peak set for A(K) and it is a peak set for $A_R(K)$. By (ii), the proof is complete.

Theorem 1.2 (ii) implies a theorem of Ellis [6] as follows.

COROLLARY 1.3 (Ellis). Let A be a function space on X. If any peak set for A is a peak set for $A_R(X)$, then A = C(X).

PROOF. For any $K \in \mathcal{K}(A)$, $A_R(X)|_K \subset A_R(K)$. Any peak set F for $A|_K$ is a p-set for A and it will follow by the hypothesis that F is a p-set for $A_R(X)$. Hence F is a p-set for $A_R(K)$, and F is a peak set for $A_R(K)$ since it is a G_δ -set in K. From Theorem 1.2 (ii), we have A = C(X).

§ 2. Condition (A).

We here consider function spaces A which satisfy the condition (A), i.e., if any peak set for A is a peak set for A(X).

We first give examples of such function spaces.

EXAMPLES. (1) Any function algebra has (A).

- (2) In § 1, Examples (2), A has (A). For, if F is a peak set for A, then there is an $f \in B$ such that $\varphi^{-1}f=1$ on F and $|\varphi^{-1}f|<1$ on $\Gamma \setminus F$. So $f=\varphi$ on F and $f\neq \varphi$ on $\Gamma \setminus F$. Hence $F=\{x\in \Gamma: f-\varphi=0\}$ is a zero-set for B. We easily see that F is a peak set for $B=A(\Gamma)$.
- (3) In general, if B is a function algebra on X satisfying that any zero-set for B is a peak set for B and if $\varphi \in B$, $\varphi \neq 0$ on X, then $A = \varphi^{-1}B$ has (A). Examples of B which satisfy the condition above are the disc algebra on Γ and the algebra of generalized analytic functions ([5]).
- (4) Let B be the disc algebra on Γ . Then $A = (z-a)^{-1}B + (z-b)^{-1}B$ (|a| < 1, |b| < 1) is a function space and satisfies (A) (a special case of (2)).
- (5) In § 1, Examples (3), A satisfies (A). For, let $\lambda + f_0 \in A$ be a peaking function of a peak set F for A. Then $F = \{z \in \Gamma: \lambda + f_0(z) 1 = 0\}$. Hence F is Γ or a set of zero Lebesgue measure on Γ . It is not hard to see that F is a peak set for $A(\Gamma)$.
- (6) If $\{A_{\lambda}\}$ is a family of function spaces having (A), then the direct sum $\bigoplus A_{\lambda}$ has (A). It is proved in the following proposition.

PROPOSITION 2.1. Let A_{λ} be a function space on X_{λ} having (A) $(\lambda \in \Lambda)$. Then the direct sum $\bigoplus A_{\lambda}$ of $\{A_{\lambda}\}_{{\lambda} \in \Lambda}$ has (A).

PROOF. The direct sum $A = \bigoplus A_{\lambda}$ is regarded as a function space on the one-point compactification $X = \bigcup X_{\lambda} \cup \{p\}$ of $\bigcup X_{\lambda}$. Let E be a peak set for A. Then there is an $f \in A$ such that f(x) = 1 on E and |f(x)| < 1 on $X \setminus E$. If $E \cap X_{\lambda} \neq \emptyset$, $E \cap X_{\lambda}$ is a peak set for A_{λ} . Since A_{λ} has (A), it is also a peak set for $A_{\lambda}(X_{\lambda})$. So there is an $f_{\lambda} \in A_{\lambda}(X_{\lambda})$ such that $f_{\lambda}(x) = 1$ on $E \cap X_{\lambda}$ and $|f_{\lambda}(x)| < 1$ on $X_{\lambda} \setminus E$. We here put $f_{\lambda} \equiv 0$ when $E \cap X_{\lambda} = \emptyset$. If $p \notin E$, there is a finite subset $A_{0} \subset A$ with $E \subset \bigcup_{\lambda \in A_{0}} X_{\lambda}$. So by putting $g(x) = f_{\lambda}(x)$ $(x \in X_{\lambda}, \lambda \in A_{0})$, g(x) = 0 $(x \in X_{\lambda}, \lambda \notin A_{0})$ and g(p) = 0, $E = \{x \in X: g(x) = 1\}$ becomes a peak set for A(X). If $p \in E$, we put $g_{\lambda'}(x) = f_{\lambda'}(x)$ $(x \in X_{\lambda'})$, $g_{\lambda'}(x) = 1$ $(x \in X_{\lambda}, \lambda \neq \lambda')$ and $g_{\lambda'}(p) = 1$ for any fixed $\lambda' \in A$. Then

 $E_{\lambda'} = \{x \in X : g_{\lambda'}(x) = 1\}$ is a peak set for A(X). Hence $E = \bigcap \{E_{\lambda'} : \lambda' \text{ is any element in } \Lambda\}$ is a p-set for A(X). Since E is a G_{δ} -set in X, it is a peak set for A(X).

§ 3. Characterizations assert that A = C(X).

Let A be a function space on X satisfying (A). We consider conditions under which A is identical with C(X).

The following is the Stone-Weierstrass theorem for function spaces satisfying (A).

THEOREM 3.1. Let A have (A). If A is self-adjoint, then A = C(X).

PROOF. By Theorem 1.2 (i), if A has (A), then it has (B). By Theorem 1.2 (iii) we have A = C(X).

A Briem's theorem [2] is generalized as follows:

THEOREM 3.2. Let A satisfy (A). If any peak set for Re A is a peak set for A, then A = C(X).

PROOF. Let F be any peak set for $\operatorname{Re} A$. Then if it can be proved that F is a BEP-set for A, we have A=C(X) by ([12], Theorem 2.2) and this proves the theorem. To do this suppose that F is a peak set for $\operatorname{Re} A$. By the hypothesis F is a peak set for A. Since A has (A), it is a peak set for A(X). Let g be a peaking function in A(X) for F. Then for any $f \in A$ and for any $\mu \in A^{\perp}$, $0 = \mu(g^n f) \to \mu(\chi_F f) = \mu_F(f) (n \to \infty)$ and so $\mu_F(f) = 0$. This shows that F is a BEP-set for A.

The following is a generalization of a Glicksberg's theorem ([10], [13]) on function algebras.

THEOREM 3.3. Let A have (A). If $A|_F$ is closed in C(F) for any closed subset F in X, then A = C(X).

We need the following lemma in order to prove the theorem.

LEMMA 3.4. Let A satisfy the hypothesis in Theorem 3.3. Then any peak set for $Re\ A(X)$ is a peak set for A(X).

PROOF. We use a similar argument to Briem ([2], Prop. 2). Let F be a peak set for Re A(X). Then there is an $a \in A(X)$ such that a = u + iv, u and v are real functions, u = 0 on F and u < 0 on $X \setminus F$. Since A(X) is a closed subalgebra containing 1, $a_1 = \exp a \in A(X) \subset A$. Here $|a_1| = \exp u = 1$ on F and $|a_1| = \exp u < 1$ on $X \setminus F$. By the hypothesis, $A|_F$

PEAK SETS 421

is closed in C(F). So the open mapping theorem implies the existence of a constant c_F such that each $f \in A|_F$ has an extension $g \in A$ with $||g|| \le c_F ||f||_F$. Since $\exp(-na) \in A(X) \subset A$, there is a $b_n \in A$ such that $b_n = \exp(-na)$ on F and $||b_n|| \le c_F ||\exp(-na)||_F = c_F$. From that $a_1^n \in A(X)$, it follows $a_1^n b_n \in A$, $||a_1^n b_n|| \le c_F$ and $a_1^n b_n = 1$ on F. Moreover for any compact set G in X with $G \cap F = \emptyset$, we have $a_1^n b_n = 0$ on G. So given $\varepsilon > 0$, by taking a sufficiently large n, $f = a_1^n b_n \in A$ satisfies that $||f|| \le c_F$, $f|_F = 1$ and $|f| \le \varepsilon$ on G. Since F is a G_δ -set, there is an $f \in A$ such that ||f|| = 1, $f|_F = 1$ and |f(x)| < 1 ($x \notin F$) ([4], Lemma 13), that is, F is a peak set for A. By the hypothesis, F is a peak set for A(X).

PROOF OF THEOREM 3.3. We introduce a relation \sim in X as follows:

$$x \sim y \iff f(x) = f(y) \text{ for any } f \in A(X)$$
.

Then \sim is an equivalence relation in X.

We put $\widetilde{x} = \{y \in X \colon y \sim x\}$ for $x \in X$ and $\widetilde{X} = \{\widetilde{x} \colon x \in X\}$. By defining the topology in \widetilde{X} such that the mapping $x \to \widetilde{x}$ from X to \widetilde{X} is continuous, \widetilde{X} becomes a compact Hausdorff space. By putting $\widetilde{f}(\widetilde{x}) = f(x)$ for $f \in A(X)$, $A(X)^{\sim} = \{\widetilde{f} \colon f \in A(X)\}$ becomes a function algebra on \widetilde{X} . Now if \widetilde{F} is a peak set for $\operatorname{Re} A(X)^{\sim}$ then there is an $\widetilde{f} \in A(X)^{\sim}$ such that $\operatorname{Re} \widetilde{f}(\widetilde{x}) = 1$ ($\widetilde{x} \in \widetilde{F}$) and $|\operatorname{Re} \widetilde{f}(\widetilde{x})| < 1$ ($\widetilde{x} \notin \widetilde{F}$). If we put $F = \{x \in X \colon \widetilde{x} \in \widetilde{F}\}$, F is a closed set in X, $\operatorname{Re} f(x) = 1$ ($x \in F$) and $|\operatorname{Re} f(x)| < 1$ ($x \notin F$). From this F is a peak set for $\operatorname{Re} A(X)$, and Lemma 3.4 implies that F is a peak set for A(X). So \widetilde{F} is a peak set for $A(X)^{\sim}$. By a theorem of Briem [2] we have that $A(X)^{\sim} = C(\widetilde{X})$. Hence A(X) is self-adjoint. By the hypothesis any peak set F for A is a peak set for A(X) and a peak set for $\operatorname{Re} A(X)$. Since A(X) is self-adjoint, F is a peak set for $A_R(X) = \operatorname{Re} A(X)$ and so A = C(X) from Corollary 1.3.

We next generalize a wellknown theorem on function algebras to the case of function spaces having (A) (cf. [8], [11], [3]).

Let A be a function space. Then a closed subset F in X is called an interpolation set for A if $A|_F = C(F)$.

THEOREM 3.5. Let A be a function space on X having (A). If X is the sum of a sequence $\{F_n\}_{n=1}^{\infty}$ of interpolation sets for A, then A = C(X).

We need some lemmas to prove the theorem.

Let A be a function space and $K \in \mathcal{K}(A)$. Then we denote by $\partial(A|_K)$ the Shilov boundary for $A|_K$. Since $A(K) \subset A|_K$, $\partial(A|_K)$ is a boundary for A(K). So $A(K)|_{\partial(A|_K)}$ is a uniformly closed subalgebra in $C(\partial(A|_K))$. A function space A is called to be essential if for any proper closed subset

F in X there is an $f \in C(X)$ such that f(x) = 0 $(x \in F)$ and $f \notin A$. We begin with the following

LEMMA 3.6. If A has (A), for any $K \in \mathcal{K}(A)$ a peak set for $A|_{\mathfrak{d}(A|_K)}$ is a peak set for $A(K)|_{\mathfrak{d}(A|_K)}$. And $A(K)|_{\mathfrak{d}(A|_K)}$ is an essential algebra and so $A|_{\mathfrak{d}(A|_K)}$ is essential.

PROOF. Let F be a peak set for $A|_{\partial(A|_K)}$. Then there is an $f \in A|_{\partial(A|_K)}$ such that f=1 on F and |f|<1 on $\partial(A|_K)\setminus \overline{F}$. That $\partial(A|_K)$ is a boundary for $A|_K$ implies the existence of $g \in A|_K$ such that $g|_F = f|_F = 1$, |g| < 1 on $\partial(A|_K)\setminus F$ and $||g||_K=1$. So $E=\{x\in K: g(x)=||g||=1\}$ is a peak set for $A|_K$ and $F = \partial(A|_K) \cap E$. By (A) E is a peak set for A(K) and so F is a peak set for $A(K)|_{\mathfrak{d}(A|_K)}$. Since any $f \in A_R(K)$ is constant, if $g \in A(K)|_{\mathfrak{d}(A|_K)}$ is real on $\partial(A|_K)$, then it is constant. It follows that $A(K)|_{\partial(A|_K)}$ is an essential algebra. We here show that $A|_{\partial(A|_K)}$ is essential. Suppose otherwise. Then there is a closed subset $E \subsetneq \partial(A|_{K})$ such that if $f \in C(\partial(A|_{K}))$, $f|_E=0$ then $f\in A|_{\partial(A|_K)}$. For a fixed closed subset F in $\partial(A|_K)$ with $F\cap E=\varnothing$, there is an $f \in C_R(\partial(A|_K))$ such that $f|_F = 1$, $f|_E = 0$ and $0 \le f \le 1$. So $f \in$ $A|_{\partial(A|_K)}$. From this F is a p-set for $A|_{\partial(A|_K)}$ and a p-set for $A(K)|_{\partial(A|_K)}$. Since $A(K)|_{\mathfrak{d}(A|_K)}$ is a uniformly closed algebra, F is a BEP-set for $A(K)|_{\mathfrak{d}(A|_K)}$. Similarly, any closed subset which is contained in F is a BEP-set for $A(K)|_{\mathfrak{d}(A|_K)}$. It implies $A(K)|_F = C(F)$ since $1 \in A(K)|_F$. Now for any $\mu \in$ $(A(K)|_{\partial(A|_K)})^{\perp}$ and any $\varepsilon > 0$, there is an open subset U in $\partial(A|_K)$ such that $U\supset E$ and $|\mu|(U\setminus E)<\varepsilon$. If $F=\partial(A|_{K})\setminus U$, it is a closed subset in $\partial(A|_{K})$ and $F \cap E = \emptyset$. By the fact stated above, $A(K)|_F = C(F)$. Suppose that $g \in C(\partial(A|_K))$ and $g|_E = 0$. Then $g|_F \in A(K)|_F$ and there is an $h \in A(K)|_{\partial(A|_K)}$ such that $h|_F = g|_F$, $||h|| = ||g||_F$ and $|h| < \varepsilon$ on E. Hence

$$\begin{aligned} |\mu(g)| &= |\mu(g) - \mu(h)| = |\mu(g - h)| \\ &\leq \left| \int_{E} (g - h) d\mu \right| + \left| \int_{U \setminus E} (g - h) d\mu \right| + \left| \int_{\partial (A \setminus_{K}) \setminus U} (g - h) d\mu \right| \\ &\leq \int_{E} |h| d|\mu| + \int_{U \setminus E} |g - h| d|\mu| \\ &\leq \varepsilon ||\mu|| + ||g - h|| |\mu| (U \setminus E) \leq \varepsilon (||\mu|| + 2||g||) . \end{aligned}$$

Since ε is arbitrary, $\mu(g) = 0$. So $g \in A(K)|_{\mathfrak{d}(A|_K)}$. It follows that $A(K)|_{\mathfrak{d}(A|_K)}$ is not essential. This contradiction proves that $A|_{\mathfrak{d}(A|_K)}$ is essential.

LEMMA 3.7. For each $K \in \mathcal{K}(A)$, any p-set for A(K) is a BEP-set for $A|_{K}$.

PROOF. Let F be a p-set for A(K). For any $\mu \in (A|_K)^{\perp}$ and any

 $\varepsilon>0$, $|\mu|(U\setminus F)<\varepsilon$ for some open subset U in K containing F. Here take a peak set E for A(K) with $F\subset E\subset U$, and choose $f\in A(K)$ such that $f|_E=1$ and |f|<1 on $K\setminus E$. Then since $f^n\in A(K)$ for any n, $f^ng\in A|_K$ for $g\in A|_K$. Hence

$$0 = \mu(f^n g) \to \mu(\chi_E \cdot g) = \mu_E(g) \qquad (n \to \infty)$$

and so $\mu_E(g) = 0$. Furthermore we have

$$|\mu_{F}(g)| = |\mu_{F}(g) - \mu_{E}(g)| \leq ||g|| |\mu|(E \setminus F)$$

$$\leq ||g|| |\mu|(U \setminus F) \leq ||g|| \cdot \varepsilon.$$

Since $\varepsilon > 0$ is arbitrary, $\mu_F(g) = 0$. This implies $\mu_F \in (A|_K)^{\perp}$. This shows that F is a BEP-set for $A|_K$.

LEMMA 3.8. Let A has (A). Then for any $K \in \mathcal{K}(A)$, $\partial(A|_K)$ is equal to the closure $\bar{P}_{A(K)}$ of $P_{A(K)}$, where $P_{A(K)} = \{x \in K : \{x\} \text{ is a } BEP\text{-set for } A(K)\}$.

PROOF. A BEP-set for $A|_K$ is a p-set for $A|_K$. By (A) it is a p-set for A(K). Since A(K) is an algebra, it is a BEP-set for A(K). Conversely, a BEP-set for A(K) is a p-set for A(K) and it is a BEP-set for $A|_K$ from Lemma 3.7. Hence

$$P_{A(K)} = \{x \in K : \{x\} \text{ is a BEP-set for } A|_K\}$$
.

We first show that if F is a peak set for $A|_K$, then $F \cap P_{A(K)} \neq \emptyset$. If F is a peak set for $A|_K$, then it is a peak set for A(K) by A. From Lemma 3.7 it is a BEP-set for $A|_K$. Now we put $\mathscr{F} = \{E: E \text{ is a BEP-set for } A|_K$ and $E \subset F\}$. Then \mathscr{F} becomes a partially ordered set by the inclusion. For any chain $\{F_\alpha\}$ in \mathscr{F} , $\bigcap_\alpha F_\alpha$ is a BEP-set for $A|_K$. By Zorn's lemma, there is a minimal element F_0 in \mathscr{F} . It suffices to show that F_0 is a singleton to prove that $F \cap P_{A(K)} \neq \emptyset$. If F_0 has at least two points there is an $E \subsetneq F_0$ such that E is a peak set for $A|_{F_0}$. Since F_0 is a BEP-set for $A|_K$, E is a p-set for $A|_K$. By A is a p-set for $A|_K$. By Lemma 3.7, it is a BEP-set for $A|_K$. This is a contradiction since F_0 is a minimal element in \mathscr{F} . We next show that $P_{A(K)}$ is a boundary for $A|_K$. Put $F = \{x \in K: |f(x)| = ||f||_K\}$ for $f \in A|_K$. Then $E = \{x \in K: \alpha f(x) = ||\alpha f||_K = ||f||_K\}$ (some $\alpha \in C$, $|\alpha| = 1$) is a non-void peak set for $A|_K$. Take an $x_0 \in P_{A(K)} \cap E$. Then

$$|f(x_0)| = \alpha f(x_0) = ||\alpha f||_K = ||f||_K$$
 ,

and

$$P_{A(K)} \cap F \neq \emptyset$$
 .

This shows that $P_{A(K)}$ is a boundary for $A|_K$. We denote by $\operatorname{Ch}(A|_K)$ the Choquet boundary for $A|_K$. Then we show that $P_{A(K)} \subset \operatorname{Ch}(A|_K)$. Indeed, for each $x \in P_{A(K)}$, for any open set U in K containing x and for any $\varepsilon > 0$, there is an $f \in A|_K$ such that $f(x) = ||f||_K = 1$ and $|f| < \varepsilon$ on $K \setminus U$, since $\{x\}$ is a BEP-set for $A|_K$. If μ is a representing measure for x,

$$1 = |f(x)| = \left| \int_{U} f \, d\mu + \int_{K \setminus U} f \, d\mu \right|$$

$$\leq \mu(U) + \varepsilon.$$

So $\mu(U) \ge 1 - \varepsilon$. Since $\varepsilon > 0$ is arbitrary, the support of $\mu = \{x\}$. Hence $x \in \operatorname{Ch}(A|_K)$ and so $P_{A(K)} \subset \operatorname{Ch}(A|_K)$. $\bar{P}_{A(K)} \subset \overline{\operatorname{Ch}(A|_K)} = \partial(A|_K)$. So $\bar{P}_{A(K)} = \partial(A|_K)$.

LEMMA 3.9. Let A has (A). Then if, for any $K \in \mathcal{K}(A)$, $A|_{\overline{v}} = C(\overline{V})$ for some non-void open subset V in $\partial(A|_K)$, then A = C(X).

PROOF. For any $K \in \mathcal{K}(A)$, $\overline{P}_{A(K)} = \partial(A|_K)$ from Lemma 3.8. By the hypothesis, $V \cap P_{A(K)} \neq \emptyset$. If $x_0 \in V \cap P_{A(K)}$, we show that $\partial(A|_K) = \{x_0\}$. If otherwise, there is a $y \in \partial(A|_K)$, $y \neq x_0$. Then $x_0 \in U \subset V$, $y \notin U$ for some open subset U in $\partial(A|_K)$. From that $\{x_0\}$ is a BEP-set for A(K), there is a $g \in A(K)$ such that $g(x_0) = ||g||_K = 1$ and |g| < 1/3 on $\partial(A|_K) \setminus U$. If we put $U_0 = \{x \in \partial(A|_K): |1-g(x)| < 1/3\}$, then $x_0 \in U_0 \subset U \subset V$ and $y \notin U_0$.

Put $B=\{z\in C\colon |z|<1/3\}$ and $D=\{z\in C\colon |1-z|<1/3\}$. Then there is a sequence $\{p_n\}$ of polynomials of z such that p_n converges to χ_D uniformly on $B\cup D$ by Runge's theorem. We here show that if $f\in C(\partial(A|_K))$ and $f|_{\partial(A|_K)\setminus U_0}=0$ then $f\in A|_{\partial(A|_K)}$. If it should be proved, $A|_{\partial(A|_K)}$ would be not essential. This is a contradiction by Lemma 3.6 and this shows that $\partial(A|_K)=\{x_0\}$. This means that for any $K\in \mathcal{K}(A)$ K is a singleton. Thus the lemma is proved. Hence to prove the lemma, it suffices to show that if $f\in C(\partial(A|_K))$, $f|_{\partial(A|_K)\setminus U_0}=0$, then $f\in A|_{\partial(A|_K)}$. If $f\in C(\partial(A|_K))$, $f|_{\partial(A|_K)\setminus U_0}=0$, then there is an $h\in A|_K$ with h=f on V since $V\subset K$ and $A|_V=C(V)$. Hence $h|_{(V\setminus U_0)}=0$. Since $g(U_0)\subset D$, $g(\partial(A|_K)\setminus V)\subset B$, $p_n\circ g$ converges uniformly to χ_{U_0} on $U_0\cup(\partial(A|_K)\setminus V)$. Of course, $h\cdot (p_n\circ g)\Rightarrow h\cdot \chi_{U_0}=f$ on $\partial(A|_K)$. Since A(K) is an algebra containing 1 and $h\in A|_K$, $h\cdot (p_n\circ g)\in A|_K$. So $f\in A|_{\partial(A|_K)}$.

PROOF OF THEOREM 3.5. Let $X = \bigcup_{n=1}^{\infty} F_n$ for a sequence $\{F_n\}_{n=1}^{\infty}$ of interpolation sets for A. For any $K \in \mathcal{K}(A)$,

$$\partial(A|_{\scriptscriptstyle{K}}) = \bigcup_{n=1}^{\infty} (\partial(A|_{\scriptscriptstyle{K}}) \cap F_{\scriptscriptstyle{n}})$$
.

By Baire's theorem, for some n_0 , $\overline{V} \subset \partial(A|_{\scriptscriptstyle K}) \cap F_{n_0}$, where V is a non-void

open subset in $\partial(A|_K)$. Since $A|_{F_{n_0}}=C(F_{n_0})$, $A|_{\overline{v}}=C(\overline{V})$. By Lemma 3.9, A=C(X).

References

- [1] E. Bishop, A generalization of the Stone-Weierstrass theorem, Pacific J. Math., 11 (1961), 777-783.
- [2] E. Briem, Peak sets for the real part of a function algebra, Proc. Amer. Math. Soc., 85 (1982), 77-78.
- [3] R. B. Burckel, Characterizations of C(X) among its Subalgebras, Marcel Dekker, 1972.
- [4] P.C. Curtis, Topics in Banach Spaces of Continuous Functions, Lecture Note, 25 (1970), Aarhus Univ.
- [5] K. DE LEEUW and I. GLICKSBERG, Interpolating sets and zero sets for generalized analytic functions, Function Algebras (Proc. Intern. Symp., Tulane Univ., 1965), Scott, Foresman, 1966, 12-14.
- [6] A. J. Ellis, Some approximation results for function spaces, Indag. Math., 42 (1980), 125-130.
- [7] T. W. GAMELIN, Restrictions of subspaces of C(X), Trans. Amer. Math. Soc., **112** (1964), 278-286.
- [8] T. W. GAMELIN and D. R. WILKEN, Closed partitions of maximal ideal spaces, Ill. J. Math., 13 (1969), 789-795.
- [9] I. GLICKSBERG, Measures orthogonal to algebras and sets of antisymmetry, Trans. Amer. Math. Soc., 105 (1962), 415-435.
- [10] I. GLICKSBERG, Function algebras with closed restrictions, Proc. Amer. Math. Soc., 14 (1963), 158-161.
- [11] H. ISHIKAWA, J. TOMIYAMA and J. WADA, On the local behavior of function algebras, Tôhoku Math. J., **22** (1970), 48-55.
- [12] S. Yamaguchi and J. Wada, On peak sets for the real part of a function space, Tokyo J. Math., 7 (1984), 141-146.
- [13] J. WADA, On the Šilov boundaries of function algebras, Proc. Japan Acad., 39 (1963), 425-428.

Present Adress:

DEPARTMENT OF MATHEMATICS, SCHOOL OF EDUCATION, WASEDA UNIVERSITY NISHIWASEDA, SHINJUKU-KU, TOKYO 160, JAPAN