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Introduction.

Let $A$ be a function space on a compact Hausdorff space $X$. In this
paper, we show that some theorems on function algebras can be generalized
to the case of function spaces $A$ having certain conditions. E. Briem [2]
proved the following: Let $\cdot$ $A$ be a function algebra. If any peak set
for the real part ${\rm Re} A$ of $A$ is a peak set for $A$ , then $A=C(X)$ , where
$C(X)$ denotes the Banach algebra of complex-valued continuous functions
on $X$ with the supremum norm. In association with the theorem of Briem,
we consider the class of function spaces having the condition (A) (see \S 1).
It is a wider class containing the class of function algebras. We here
discuss whether theorems on function algebras can be generalized to the
case of the class.

$Y$

In \S 1, the Bishop antisymmetric decomposition theorem for function
spaces is given. This is a generalization of Bishop’s theorem [1] on
function algebras. In \S 2 we give some examples of function spaces having
(A). In \S 3 we consider the class $\mathscr{A}$ of function spaces having (A) and
give characterizations to assert that $A=C(X)$ for $A\in\ovalbox{\tt\small REJECT}$ These results
are generalizations of theorems on function algebras.

\S 1. Bishop antisymmetric decomposition for function spaces.

Throughout this parer, $X$ will denote a compact Hausdorff space. $A$

is said to be a function space (resp. function algebra) on $X$ if $A$ is a
closed $\backslash subspace$ (resp. subalgebra) in $C(X)$ containing constant functions
and separating points in $X$.

Let $A$ be a function space on $X$. For a subset $E$ in $X$, we denote

$A(E)=$ {$f\in C(E)$ : $fg\in A|_{E}$ for any $g\in A|_{E}$} ,
$A_{R}(E)=$ {$f\in C_{R}(E);fg\in A|_{E}$ for any $geA|_{E}$}
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where $A|_{E}$ denotes the restriction of $A$ to $E$ and $C_{R}(E)$ is the set of all
real-valued continuous functions on $E$.

We here see that $1\in A_{R}(E)\subset A(E)\subset A|_{E},$ $A_{R}(E)=A(E)\cap C_{R}(E)$ and that
$A(E)$ and $A_{R}(E)$ are both algebras.

Let $E$ be a subset in $X$. Then we call $E$ an antisymmetric set for
$A$ if any function in $A_{R}(E)$ is constant. We easily see that (i) if $\bigcap_{\lambda}E_{\lambda}\neq\emptyset$

for a family $\{E_{\lambda}\}_{\lambda eA}$ of antisymmetric sets for $A$ then $\bigcup_{\lambda}E_{\lambda}$ is an anti-
symmetric set for $A$ and (ii) the closure $\overline{E}$ of an antisymmetric set $E$

for $A$ is an antisymmetric set for $A$ . Hence the sum of all antisymmetric
sets for $A$ containing a point $x$ in $X$ is a maximal antisymmetric set for
$A$ which is closed in $X$. Thus $X$ is decomposed by a family of maximal
antisymmetric sets for $A$ . We write $\ovalbox{\tt\small REJECT}(A)$ the family of maximal anti-
symmetric sets for $A$ .

Let $A$ be a uniformly closed subspace in $C(X)$ or $C_{R}(X)$ . Then a
closed subset $F$ in $X$ is called a peak set for $A$ if $f(x)=1(x\in F)$ and
$|f(x)|<1(x\in X\backslash F)$ for an $f\in A$ . A p-set for $A$ is an intersection of peak
sets for $A$ . A closed subset $F$ is called a BEP-set for $A$ if for any $f\in A|_{p}$

and for any closed subset $G$ in $X$ with $ G\cap F=\emptyset$ and any $\epsilon>0$ , there is
a geA such that $g=f$ on $F,$ $|g(x)|<\epsilon$ on $G$ and lgll $=||f\Vert_{p}$ , where lgll $=$

$\sup_{xeX}|g(x)|$ and $\Vert f||_{p}=\sup_{xep}|f(x)|$ . For a uniformly closed subspace $A$ in
$C(X)$ , Fis a BEP-set for $A$ if and only if $\mu_{P}\in A^{\perp}$ for any $\mu\in A^{\perp}$ , where
$A^{\perp}$ denotes the set of measures $\mu$ on $X$ such that $\int fd\mu=0$ for any $f\in A$

(cf. [7]).
Now we here consider the Bishop antisymmetric decomposition theo-

rem for function spaces. This is a generalization of Bishop’s theorem
on function algebras ([1], [3], [9]).

THEOREM 1.1. Let $A$ be a function space on a compact HausdorJ
space X. Then $X$ is decomposed by the family $\ovalbox{\tt\small REJECT}^{\nearrow}(A)$ of maximal anti-
symmetric sets for $A$ and the fouowing is satisfied.

(i) Any $K\in\ovalbox{\tt\small REJECT}^{\prime}(A)$ is a BEP-set for $A$ :
(ii) Iffe C(X) and if $f|_{K}eA|_{K}$ for any $K\in\ovalbox{\tt\small REJECT}^{\prime}(A)$ , then $f\in A$ .
PROOF. (i) For $Ke\ovalbox{\tt\small REJECT}^{\prime}(A)$ , let $F$ be the intersection of all BEP-sets

for $A$ containing $K$. Then $F$ is the smallest BEP-set for $A$ containing
$K$. We here need only to show that $F=K$. If $K\subsetneqq F$, then there is an
$feA_{R}(F)$ which is not constant since $K$ is a maximal antisymmetric set
for $A$ . As $f|_{K}eA_{R}(K),$ $f$ is a constant $c$ on $K$. Hence if we put $E=$

$\{x\in F:f(x)=c\}$ , then $K\subset E\subsetneqq F$.
For $\epsilon>0$ , we put

$g=-\epsilon(f-c)^{2}+1$ .
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Since $A_{R}(F)$ is a real algebra containing 1, $g\in A_{R}(F)$ . For a suffi-
ciently small $\epsilon>0$ , we see that $g|_{E}=1$ and $|g|<1$ on $F\backslash E$. So $E$ is a
peak set for $A|_{F}$ and $g^{n}\in A_{R}(F)(n=1,2,3, \cdots)$ . Since $F$ is a BEP-set,
$\mu_{F}\in A^{\perp}$ for any $\mu\in A^{\perp}$ . Here for any $h\in A,$ $g^{n}h|_{F}\in A|_{F}$ and $ 0=\mu_{F}(g^{n}h)\rightarrow$

$\mu_{F}(\chi_{E}h)=\mu_{E}(h)$ , where $\chi_{E}$ is the characteristic function for $E$. This shows
that $\mu_{E}\in A^{\perp}$ for any $\mu\in A^{\perp}$ , that is, $E$ is a BEP-set for $A$ . This is a
contradiction since $F$ is the smallest BEP-set for $A$ containing $K$.

(ii) It is proved by a similar method to the proof due to Glicksberg
[9]. We first show that the support $F$ of $\mu$ is an antisymmetric set for
$A$ for $\mu\in ext(ballA^{\perp})$ , where ext(ball $A^{\perp}$ ) is the set of all extreme points
of closed unit ball in $A^{\perp}$ . To do this we prove that $f$ is constant for
any $f\in A_{R}(F)$ . We here can assume that $0<f<1$ on $F$ and $f$ is considered
as a function in $A$ by extending on $X$ for convenience. From the defi-
nition of $A_{R}(F),$ $f\mu/\Vert f\mu\Vert,$

$(1-f)\mu/\Vert(1-f)\mu\Vert\backslash \in$
ball $A^{\perp}$ .

Moreover we have

$\Vert f\mu\Vert+\Vert(1-f)\mu\Vert=\int|f|d|\mu|+\int|1-f|d|\mu|$

$=\int_{F}fd|\mu|+\int_{F}(1-f)d|\mu|=\int_{F}d|\mu|=\Vert\mu\Vert=1$ ,

and

$\mu=\Vert f\mu\Vert\cdot\frac{f\mu}{\Vert f\mu\Vert}+\Vert(1-f)\mu\Vert\cdot\frac{(1-f)\mu}{\Vert(1-f)\mu\Vert}$ .

Since $\mu$ is an extreme point of ball $A^{\perp}$ , we have $\mu=f\mu/\Vert f\mu\Vert$ and $f=$
$||f\mu\Vert$ (a.e. $|\mu|$ ). So $U=\{xeX:f(x)\neq||f\mu\Vert\}$ is open in $X$ and $|\mu|(U)=0$ . It
implies that $\emptyset=U\cap F$ and $ f(x)=\Vert f\mu\Vert$ on $F$. This shows that $F$ is an
antisymmetric set for $A$ . Hence there is a $K_{0}e\ovalbox{\tt\small REJECT}^{\nearrow}(A)$ such that $F\subset K_{0}$ .

Now let feC(X) and $f|_{K}eA|_{K}$ for any $Ke\mathscr{L}^{\rightarrow}(A)$ . Then there is a
$ge$ $A$ with $g|_{K_{0}}=f|_{K_{0}}$ , and for any $\mu\in ext(ballA^{\perp})$

$\int fd\mu=\int_{K_{0}}fd\mu=\int_{K_{0}}gd\mu=\int gd\mu=0$ .

By the Krein-Milman theorem, $\int fd\mu=0$ for any $\mu\in A^{\perp}$ . It follows
that $feA$ .

REMARK. In [6], Ellis discussed the Bishop antisymmetric decompo-
sition for a function space on its Shilov boundary.

We here describe $A(X)$ for some function spaces $A$ on $X$. Let $\Gamma,$ $D$

and $\overline{D}$ be $\{z\in C:|z|=1\},$ $\{zeC:|z|<1\}$ and $\{zeC:z|\leqq 1\}$ respectively.
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EXAMPLES. (1) Let $A$ be the function space on $\overline{D}$ con8isting of con-
tinuous functions on $\overline{D}$ which are complex harmonic on $D$. Then $A(\overline{D})$ is
the set of constant functions.

(2) Let $B$ be the disc algebra on $\Gamma$ and $\varphi eB,$ $\varphi\neq 0$ on $\Gamma$ . Then
$A=\varphi^{-1}B$ is a function space on $\Gamma$ and $A(\Gamma)=B$ .

(3) Let $B$ be the disc algebra on $\Gamma$ . We put $A=\{f\in B:f=x+g$ ,
$\lambda\in C,$ $g(O)=0$ and $g(1/2)+g(-1/2)=0$}, where $g(\lambda)$ is the value at $\lambda$ of $g$

which is considered as a function in the disc algebra on $\overline{D}$ . Then $A$ is
a function spaoe on $\Gamma$ and $A(\Gamma)=\{f\in B:f=x+g,$ $x\in C$ and $g(O)=g(1/2)=$

$g(-1/2)=0\}$ .
Next we consider the following three conditions for a function space

$A$ on $X$.
(A) Any peak set for $A$ is a peak set for $A(X)$ .
(B) For each $K\in\ovalbox{\tt\small REJECT}^{\prime}(A)$ , any peak set for $A|_{K}$ is a peak set for $A(K)$ .
(C) For each $Ke\mathscr{L}(A)$ , any peak set for $A|_{K}$ is a peak set for $A_{R}(K)$ .
Here that $(C)\rightarrow(B)$ is clear and furthermore we have

THEOREM 1.2. Let $A$ be a function space on X. Then the following
are satisfied:

(i) If $A$ has (A), then it has (B).
(ii) If $A$ satisfies (C), then $A=C(X)$ .
(iii) If $A$ has (B) and it is self-adjoint, then $A=C(X)$ .
PROOF. (i) Let $K\in\ovalbox{\tt\small REJECT}(A)$ and $F$ be a peak set for $A|_{K}$ . Then $F$

is a p-set for $A$ since $K$ is a BEP-set for $A$ . So $F$ is a p-set for $A(K)$

by the hypothesis. But 8ince $F$ is a peak set for $A|_{K}$ , it is a $G_{\delta}$-set in
$K$. It implies that $F$ is a peak set for $A(K)$ .

(ii) By Theorem 1.1 it suffices to show that any $Ke\ovalbox{\tt\small REJECT}^{\prime}(A)$ is a
singleton. If some $K_{0}\in\ovalbox{\tt\small REJECT}^{\prime}(A)$ has at least two points, there is a subset
$F$ in $K_{0}$ such that $F$ is a peak set for $A|_{K_{0}}$ and $F\subsetneqq K_{0}$ . By the hypothesis,
$F$ is a peak set for $A_{R}(K_{0})$ . This is a contradiction since $K_{0}$ is an anti-
symmetric set for $A$ .

(iii) Since $A$ is self-adjoint, for any $K\in\ovalbox{\tt\small REJECT}(A),$ $A|_{K}$ is self-adjoint
and so is $A(K)$ . It implies $A_{R}(K)={\rm Re} A(K)$ . By the hypothesis, any
peak set for $A^{\dagger}|_{K}$ is a peak set for $A(K)$ and it is a peak set for $A_{R}(K)$ .
By (ii), the proof is complete.

Theorem 1.2 (ii) implies a theorem of Ellis [6] as follows.

COROLLARY 1.3 (Ellis). Let $A$ be a function space on X. If any
peak set for $A$ is a peak set for $A_{R}(X)$ , then $A=C(X)$ .
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PROOF. For any $K\in\ovalbox{\tt\small REJECT}^{\prime}(A),$ $A_{R}(X)|_{K}\subset A_{R}(K)$ . Any peak set $F$ for
$A|_{K}$ is a p-set for $A$ and it will follow by the hypothesis that $F$ is a p-set
for $A_{R}(X)$ . Hence $F$ is a p-set for $A_{R}(K)$ , and $F$ is a peak set for $A_{R}(K)$

since it is a $G_{\delta}$-set in $K$. From Theorem 1.2 (ii), we have $A=C(X)$ .
\S 2. Condition (A).

We here consider function spaces $A$ which satisfy the condition (A),
i.e., if any peak set for $A$ is a peak set for $A(X)$ .

We first give examples of such function spaces.

EXAMPLES. (1) Any function algebra has (A).
(2) In \S 1, Examples (2), $A$ has (A). For, if $F$ is a peak set for

$A$ , then there is an feB such that $\varphi^{-1}f=1$ on $F$ and $|\varphi^{-1}f|<1$ on $\Gamma\backslash F$.
So $ f=\varphi$ on $F$ and $ f\neq\varphi$ on $\Gamma\backslash F$. Hence $F=\{x\in\Gamma:f-\varphi=0\}$ is a zero-
set for $B$ . We easily see that $F$ is a peak set for $B=A(\Gamma)$ .

(3) In general, if $B$ is a function algebra on $X$ satisfying that any
zero-set forB is apeak set for $B$ and if $\varphi\in B,$ $\varphi\neq 0$ on $X$, then $A=\varphi^{-1}B$

has (A). Examples of $B$ which satisfy the condition above are the disc
algebra on $\Gamma$ and the algebra of generalized analytic functions ([5]).

(4) Let $B$ be the disc algebra on $\Gamma$ . Then $A=(z-a)^{-1}B+(z-b)^{-1}B$
$(|a|<1, |b|<1)$ is a function space and satisfies (A) (a special case of (2)).

(5) In \S 1, Examples (3), $A$ satisfies (A). For, let $x+f_{0}\in A$ be a
peaking function of a peak set $F$ for $A$ . Then $F=\{ze\Gamma:x+f_{0}(z)-1=0\}$ .
Hence $F$ is $\Gamma$ or a set of zero Lebesgue measure on $\Gamma$ . It is not hard
to see that $F$ is a peak set for $A(\Gamma)$ .

(6) If $\{A_{\lambda}\}$ is a family of function spaces having (A), then the direct
sum $\oplus A_{\lambda}$ has (A). It is proved in the following proposition.

PROPOSITION 2.1. Let $A_{\lambda}$ be a function space on $X_{\lambda}$ having (A)
$(xe\Lambda)$ . Then the direct sum $\oplus A_{\lambda}$ of $\{A_{\lambda}\}_{\lambda eA}$ has (A).

PROOF. The direct sum $A=\oplus A_{\lambda}$ is regarded as a function space on
the one-point compactification $X=\cup X_{\lambda}\cup\{p\}$ of $\cup X_{\lambda}$ . Let $E$ be a peak
set for $A$ . Then there is an feA such that $f(x)=1$ on $E$ and $|f(x)|<1$
on $X\backslash E$. If $E\cap X_{\lambda}\neq\emptyset,$ $E\cap X_{\lambda}$ is a peak set for $A_{\lambda}$ . Since $A_{\lambda}$ has (A),
it is also a peak set for $A_{\lambda}(X_{\lambda})$ . So there is an $f_{\lambda}\in A_{\lambda}(X_{\lambda})$ such that
$f_{\lambda}(x)=1$ on $E\cap X_{\lambda}$ and $|f_{\lambda}(x)|<1$ on $X_{\lambda}\backslash E$. We here put $f_{\lambda}\equiv 0$ when $E\cap X_{\lambda}=$

$\emptyset$ . If $P\not\in E$, there is a finite subset $\Lambda_{0}\subset\Lambda$ with $E\subset\bigcup_{\lambda eA_{0}}X_{\lambda}$ . So by putting
$g(x)=f_{\lambda}(x)(x\in X_{\lambda}, xe\Lambda_{0}),$ $g(x)=0(x\in X_{\lambda}, \lambda\not\in\Lambda_{0})$ and $g(p)=0,$ $E=\{x\in X$:
$g(x)=1\}$ becomes a peak set for $A(X)$ . If $p\in E$, we put $g_{\lambda^{\prime}}(x)=f_{\lambda},(x)$

$(x\in X_{\lambda},),$ $g_{\lambda^{\prime}}(x)=1(x\in X_{\lambda}, \lambda\neq\lambda^{r})$ and $g_{\lambda^{\prime}}(p)=1$ for any fixed $\lambda\in\Lambda$ . Then
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$E_{\lambda^{\prime}}=\{x\in X:g_{\lambda^{\prime}}(x)=1\}$ is a peak set for $A(X)$ . Hence $E=\cap\{E_{\lambda^{\prime}}$ : $x^{\prime}$ is any
element in $\Lambda$ } is a p-set for $A(X)$ . Since $E$ is a $G_{\delta}$-set in $X$, it is a peak

set for $A(X)$ .
\S 3. Characterizations assert that $A=C(X)$ .
Let $A$ be a function space on $X$ satisfying (A). We consider $con$.

ditions under which $A$ is identical with $C(X)$ .
The following is the Stone-Weierstrass theorem for function spaces

satisfying (A).

THEOREM 3.1. Let $A$ have (A). If $A$ is self-adjoint, then $A=C(X)$ ,

PROOF. By Theorem 1.2 (i), if $A$ has (A), then it has (B). By Theorem
1.2 (iii) we have $A=C(X)$ .

A Briem’s theorem [2] is generalized as follows:

THEOREM 3.2. Let $A$ satisfy (A). If any peak set for $Re$ $A$ is $c$

peak set for $A$ , then $A=C(X)$ .
PROOF. Let $F$ be any peak set for $ReA$ . Then if it can be proved

that $F$ is a BEP-set for $A$ , we have $A=C(X)$ by ([121, Theorem 2.2) an $($

this proves the theorem. To do this suppose that $F$ is a peak set $foJ$

$ReA$ . By the hypothesis $F$ is a peak set for $A$ . Since $A$ has (A), it il
a peak set for $A(X)$ . Let $g$ be a peaking function in $A(X)$ for $F$. Thel
for any feA and for any $\mu\in A^{\perp},$ $0=\mu(g^{n}f)\rightarrow\mu(\chi_{F}f)=\mu_{F}(f)(n\rightarrow\infty)an($

so $\mu_{F}(f)=0$ . This shows that $F$ is a BEP-set for $A$ .
The following is a generalization of a Glicksberg’s theorem ([10], [13]

on function algebras.

THEOREM 3.3. Let $A$ have (A). If $A|_{F}$ is closed in $C(F)$ for am.
closed subset $F$ in $X$, then $A=C(X)$ .

We need the following lemma in order to prove the theorem.

LEMMA 3.4. Let $A$ satisfy the hypothesis in Theorem 3.3. Then an!
peak set for $ReA(X)$ is a peak set for $A(X)$ .

PROOF. We use a similar argument to Briem ([2], Prop. 2). Let 1
be a peak set for Re A(X). Then there is an aeA(X) such that $a=$

$u+iv,$ $u$ and $v$ are real functions, $u=0$ on $F$ and $u<0$ on $X\backslash F$. Sinc
$A(X)$ is a closed subalgebra containing 1, $a_{1}=\exp a\in A(X)\subset A$ . Her
$|a_{1}|=\exp u=1$ on $F$ and $|a_{1}|=\exp u<1$ on $X\backslash F$. By the hypothesis, $A|$
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is closed in $C(F)$ . So the open mapping theorem implies the existence
of a constant $c_{F}$ such that each $f\in A|_{F}$ has an extension $g\in A$ with $\Vert g\Vert\leqq$

$c_{F}||f\Vert_{F}$ . Since $exp(-na)\in A(X)\subset A$ , there is a $b_{n}\in A$ such that $b_{n}=\exp(-na)$

on $F$ and $\Vert b_{n}\Vert\leqq c_{F}\Vert\exp(-na)\Vert_{F}=c_{F}$ . From that $a_{1}^{n}eA(X)$ , it follows $a_{1}^{n}b_{n}\in A$ ,
$\Vert a_{1}^{n}b_{n}\Vert\leqq c_{F}$ and $a_{1}^{n}b_{n}=1$ on $F$. Moreover for any compact set $G$ in $X$ with
$ G\cap F=\emptyset$ , we have $a_{1}^{n}b_{n}\Rightarrow 0$ on $G$ . So given $\epsilon>0$ , by taking a sufficiently
large $n,$ $f=a_{1}^{n}b_{n}\in A$ satisfies that $|f||\leqq c_{F},$ $f|_{F}=1$ and $|f|\leqq\epsilon$ on $G$ . Since
$F$ is a $G_{\delta}$-set, there is an $f\in A$ such that $\Vert f\Vert=1,$ $f|_{F}=1$ and $|f(x)|<1$

$(x\not\in F)$ ([4], Lemma 13), that is, $F$ is a peak set for $A$ . By the hypothe-
sis, $F$ is a peak set for $A(X)$ .

PROOF OF THEOREM 3.3. We introduce a relation $\sim$ in $X$ as follows:

$x\sim y$ $\Leftrightarrow$ $f(x)=f(y)$ for any $feA(X)$ .
Then $\sim$ is an equivalence relation in $X$.

We put $x\sim=\{yeX:y\sim x\}$ for $xeX$ and $\tilde{X}=\{\tilde{x}:xeX\}$ . By defining the
topology in $\tilde{X}$ such that the mapping $ x\rightarrow x\sim$ from $X$ to $\tilde{X}$ is continuous,
$\tilde{X}$ becomes a compact Hausdorff space. By putting $\tilde{f}(x\sim)=f(x)$ for $f\in A(X)$ ,
$A(X)^{\sim}=\{\tilde{f}:f\in A(X)\}$ becomes a function algebra on $\tilde{X}$. Now if $\tilde{F}$ is a
peak set for $ReA(X)^{\sim}$ then there is an $\tilde{f}\in A(X)^{\sim}$ such that ${\rm Re}\tilde{f}(\tilde{x})=1$

$(x\sim e\tilde{F})$ and $|{\rm Re}\tilde{f}(\tilde{x})|<1(x\sim\not\in\tilde{F})$ . If we put $F=\{xeX:\tilde{x}\in\tilde{F}\}$ , Fis a closed
set in $X,$ ${\rm Re} f(x)=1(xeF)$ and $|{\rm Re} f(x)|<1(x\not\in F)$ . From this $F$ is a peak
set for Re A(X), and Lemma 3.4 implies that $F$ is a peak set for $A(X)$ .
So $\tilde{F}$ is a peak set for $A(X)^{\sim}$ . By a theorem of Briem [2] we have that
$A(X)^{\sim}=C(\tilde{X})$ . Hence $A(X)$ is self-adjoint. By the hypothesis any peak
set $F$ for $A$ is a peak set for $A(X)$ and a peak set for Re A(X). Since
$A(X)$ is self-adjoint, $F$ is a peak set for $A_{R}(X)={\rm Re} A(X)$ and so $A=C(X)$
from Corollary 1.3.

We next generalize a wellknown theorem on function algebras to the
case of function spaces having (A) (cf. [8], [11], [3]).

Let $A$ be a function space. Then a closed subset $F$ in $X$ is called
an interpolation set for $A$ if $A|_{F}=C(F)$ .

THEOREM 3.5. Let $A$ be a function space on $X$ having (A). If $X$

is the sum of a sequence $\{F_{n}\}_{n=1}^{\infty}$ of interpolation sets for $A$ , then $A=C(X)$ .
We need some lemmas to prove the theorem.
Let $A$ be a function space and $Ke\ovalbox{\tt\small REJECT}^{\nearrow}(A)$ . Then we denote by

$\partial(A|_{K})$ the Shilov boundary for $A|_{K}$ . Since $A(K)\subset A|_{K},$ $\partial(A|_{K})$ is a boundary
for $A(K)$ . So $A(K)|_{\partial(A|_{K})}$ is a uniformly closed subalgebra in $C(\partial(A|_{K}))$ .
A function space $A$ is called to be essential if for any proper closed subset
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$F$ in $X$ there is an $f\in C(X)$ such that $f(x)=0(xeF)$ and $f\not\in A$ . We begin
with the following

LEMMA 3.6. If $A$ has (A), for any $K\in\ovalbox{\tt\small REJECT}^{\prime}(A)$ a peak set for $A|_{\partial(41_{K})}$

is a peak set for $A(K)|_{\partial t_{z}11_{K})}$ . And $A(K)|_{\partial(A1_{K})}$ is an essential algebra and
so $A|_{\partial(11_{K})}4$ is essential.

PROOF. Let $F$ be a peak set for $A|_{\partial(A1_{K})}$ . Then there is an $f\in A|_{\partial(A1_{K})}$

such that $f=1$ on $F$ and $|f|<1$ on $\partial(A|_{K})\backslash F$. That $\partial(A|_{K})$ is a boundary
for $A|_{K}$ implies the existence of $g\in A|_{K}$ such that $g|_{F}=f|_{F}=1,$ $|g|<1$ on
$\partial(A|_{K})\backslash F$ and $||g||_{K}=1$ . So $E=\{xeK:g(x)=||g||=1\}$ is a peak set for $A|_{B}$

and $F=\partial(A|_{K})\cap E$. By (A) $E$ is a peak set for $A(K)$ and so $F$ is a peak
set for $A(K)|_{\partial t_{r}11_{K})}$ . Since any $feA_{R}(K)$ is constant, if $ g\in A(K)|_{\partial(11_{K})}Ai\not\in$

real on $\partial(A|_{K})$ , then it is constant. It follows that $A(K)|_{\partial(A1_{K})}$ is an es $\cdot$

sential algebra. We here show that $A|_{a(A1)}$ is essential. Suppose other
wise. Then there is a closed subset $E\subsetneqq\partial(A|_{K})$ such that if $feC(\partial(A|_{K}))_{1}$

$f|_{E}=0$ then $f\in A|_{\partial(A1_{K})}$ . For a fixed closed subset $F$ in $\partial(A|_{K})$ with $F\cap E=\emptyset_{1}$

there is an $f\in C_{R}(\partial(A|_{K}))$ such that $f|_{F}=1,$ $f|_{E}=0$ and $0\leqq f\leqq 1$ . So $ f\in$

$A|_{\partial(A1_{K})}$ . From this $F$ is a p-set for $A|_{\partial(A1_{K})}$ and a p-set for $A(K)|_{\partial(A1_{K})^{}}$

Since $A(K)|_{\partial(A\mathfrak{l}_{K})}$ is a uniformly closed algebra, $F$ is a BEP-set for $A(K)|_{\partial(41_{K})^{}}$

Similarly, any closed subset which is contained in $F$ is a BEP-set $fol$

$A(K)|_{\partial(A1_{K})}$ . It implies $A(K)|_{F}=C(F)$ 8ince $1\in A(K)|_{F}$ . Now for any $\mu\in$

$(A(K)|_{\partial(A1_{K})})^{\perp}$ and any $\epsilon>0$ , there is an open subset $U$ in $\partial(A|_{K})$ such thal
$U\supset E$ and $|\mu|(U\backslash E)<\epsilon$ . If $F=\partial(A|_{K})\backslash U$, it is a closed subset in $\partial(A|_{K}$

and $ F\cap E=\emptyset$ . By the fact stated above, $A(K)|_{F}=C(F)$ . Suppose that
$g\in C(\partial(A|_{K}))$ and $g|_{E}=0$ . Then $g|_{F}\in A(K)|_{F}$ and there is an $h\in A(K)|_{\partial\{11_{K}}4$

such that $h|_{F}=g|_{F},$ $||h\Vert=||g||_{F}$ and $|h|<\epsilon$ on $E$. Hence

$|\mu(g)|=|\mu(g)-\mu(h)|=|\mu(g-h)|$

$\leqq|\int_{E}(g-h)d\mu|+|\int_{U\backslash E}(g-h)d\mu|+|\int_{\partial(A1_{K})\backslash U}(g-h)d\mu|$

$\leqq\int_{E}|h|d|\mu|+\int_{U\backslash E}|g-h|d|\mu|$

$\leqq\epsilon||\mu||+\Vert g-h\Vert|\mu|(U\backslash E)\leqq\epsilon(||\mu\Vert+2||g||)$ .
Since $\epsilon$ is arbitrary, $\mu(g)=0$ . So $geA(K)|_{\partial(41_{K})}$ . It follows $tha$ .

$A(K)|_{\partial(A1_{K})}$ is not essential. This contradiction proves that $A|_{\partial(41_{K})}i|$

essential.

LEMMA 3.7. For each $Ke$ %’(A), any p-set for $A(K)$ is a BEP-se
for $A|_{K}$ .

PROOF. Let $F$ be a p-set for $A(K)$ . For any $\mu\in(A|_{K})^{\perp}$ and $an\rceil$
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$\epsilon>0,$ $|\mu|(U\backslash F)<\epsilon$ for some open subset $U$ in $K$ containing $F$. Here take
a peak set $E$ for $A(K)$ with $F\subset E\subset U$, and choose $f\in A(K)$ such that
$f|_{E}=1$ and $|f|<1$ on $K\backslash E$. Then since $f^{n}\in A(K)$ for any $n,$ $f^{n}geA|_{K}$

for $g\in A|_{K}$ . Hence

$0=\mu(f^{n}g)\rightarrow\mu(\chi_{E}.g)=\mu_{E}(g)$ $(n\rightarrow\infty)$

and so $\mu_{E}(g)=0$ . Furthermore we have

$|\mu_{F}(g)|=|\mu_{F}(g)-\mu_{E}(g)|\leqq||g|||\mu|(E\backslash F)$

$\leqq||g\Vert|\mu|(U\backslash F)\leqq\Vert g\Vert\cdot\epsilon$ .
Since $\epsilon>0$ is arbitrary, $\mu_{F}(g)=0$ . This implies $\mu_{F}\in(^{\prime}A|_{K})^{\perp}$ . This shows ,

that $F$ is a BEP-set for $A|_{K}$ .
LEMMA 8.8. Let $A$ has (A). Then for any $K\in\ovalbox{\tt\small REJECT}^{\nearrow}(A),$ $\partial(A|_{K})$ is equal

to the closure $\overline{P}_{A(K)}$ of $P_{A(K)}$ , where $P_{A(K)}=$ {$x\in K:\{x\}$ is a BEP-set for $A(K)$}.

PROOF. A BEP-set for $A|_{K}$ is a p-set for $A|_{K}$ . By (A) it is a p-set
for $A(K)$ . Since $A(K)$ is an algebra, it is a BEP-set for $A(K)$ . Con-
versely, a BEP-set for $A(K)$ is a p-set for $A(K)$ and it is a BEP-set for
$A|_{K}$ from Lemma 3.7. Hence

$P_{A(K)}=$ {$xeK:\{x\}$ is a BEP-set for $A|_{K}$}.

We first show that if $F$ is a peak set for $A|_{K}$ , then $ F\cap P_{A(K)}\neq\emptyset$ .
If $F$ is a peak set for $A|_{K}$ , then it is a peak set for $A(K)$ by (A). From
Lemma 3.7 it is a BEP-set for $A|_{K}$ . Now we put $\ovalbox{\tt\small REJECT}=\{E:E$ is a BEP-
set for $A|_{K}$ and $E\subset F$ }. Then $\mathscr{F}$ becomes a partially ordered set by the
inclusion. For any chain $\{F_{\alpha}\}$ in $\mathscr{F}\bigcap_{\alpha}F_{\alpha}$ is a BEP-set for $A|_{K}$ . By
Zorn’s lemma, there is a minimal element $F_{0}$ in $\backslash \pi$ It suffices to show
that $F_{0}$ is a singleton to prove that $ F\cap P_{A(K)}\neq\emptyset$ . If $F_{0}$ has at least two
points there is an $E\subsetneqq F_{0}$ such that $E$ is a peak set for $A|_{F_{0}}$ . Since $F_{0}$

is a BEP-set for $A|_{K},$ $E$ is a p-set for $A|_{K}$ . By (A) $E$ is a p-set for
$A(K)$ . By Lemma 3.7, it is a BEP-set for $A|_{K}$ . This is a contradiction
since $F_{0}$ is a minimal element in $\mathscr{G}^{-}$ We next show that $P_{A(K)}$ is a
boundary for $A|_{K}$ . Put $F=\{xeK:|f(x)|=\Vert f||_{K}\}$ for $f\in A|_{K}$ . Then $E=$

$\{xeK:\alpha f(x)=||\alpha f||_{K}=\Vert f\Vert_{K}\}$ (some $\alpha\in C,$ $|\alpha|=1$ ) is a non-void peak set for
$A|_{K}$ . Take an $x_{0}eP_{A(K)}\cap E$. Then

$|f(x_{0})|=\alpha f(x_{0})=||\alpha f\Vert_{K}=\Vert f\Vert_{K}$ ,

and
$ P_{(\cdot)}\cap F\neq\emptyset$ .
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This shows that $P_{A(K)}$ is a boundary for $A|_{K}$ . We denote by $Ch(A|_{K})$

the Choquet boundary for $A|_{K}$ . Then we show that $P_{A(K)}cCh(A|_{K})$ . In-
deed, for each $x\in P_{A(K)}$ , for any open set $U$ in $K$ containing $x$ and for
any $\epsilon>0$ , there is an $f\in A|_{K}$ such that $f(x)=||f||_{K}=1$ and $|f|<\epsilon$ on $K\backslash U$,
since $\{x\}$ is a BEP-set for $A|_{K}$ . If $\mu$ is a representing measure for $x$ ,

$1=|f(x)|=|\int_{\sigma}fd\mu+\int_{K\backslash U}fd\mu|$

$\leqq\mu(U)+\epsilon$ .
So $\mu(U)\geqq 1-\epsilon$ . Since $\epsilon>0$ is arbitrary, the support of $\mu=\{x\}$ . Hence

$xeCh(A|_{K})$ and so $P_{A(K)}\subset Ch(A|_{K})$ . $\overline{P}_{A(K)}\subset\overline{Ch(A|_{K})}=\partial(A|_{K})$ . So $\overline{P}_{A(K)}=\partial(A|_{K})$ .
LEMMA 3.9. Let $A$ has (A). Then if, for any $K\in\ovalbox{\tt\small REJECT}^{\prime}(A),$ $A|_{\overline{V}}=C(\overline{V})$

for some non-void open subset $V$ in $\partial(A|_{K})$ , then $A=C(X)$ .
PROOF. For any $K\in\ovalbox{\tt\small REJECT}^{\prime}(A),\overline{P}_{A(K)}=\partial(A|_{K})$ from Lemma 3.8. By the

hypothesis, $ V\cap P_{A(K)}\neq\emptyset$ . If $x_{0}eV\cap P_{A(K)}$ , we show that $\partial(A|_{K})=\{x_{0}\}$ . If
otherwise, there is a $y\in\partial(A|_{K}),$ $y\neq x_{0}$ . Then $x_{0}\in UcV,$ $y\not\in U$ for some
open subset $U$ in $\partial(A|_{K})$ . From that $\{x_{0}\}$ is a BEP-set for $A(K)$ , there is
a $geA(K)$ such that $g(x_{0})=||g||_{K}=1$ and $|g|<1/3$ on $\partial(A|_{K})\backslash U$. If we put
$U_{0}=\{x\in\partial(A|_{K}):|1-g(x)|<1/3\}$ , then $x_{0}eU_{0}cUcV$ and $y\not\in U_{0}$ .

Put $B=\{z\in C:|z|<1/3\}$ and $D=\{z\in C:|1-z|<1/3\}$ . Then there is a
sequence $\{p_{n}\}$ of polynomials of $z$ such that $p_{n}$ converges to $\chi_{D}$ uniformly
on $B\cup D$ by Runge’s theorem. We here show that if $f\in C(\partial(A|_{K}))$ and
$f|_{\partial(A|_{K})\backslash U_{0}}=0$ then $f\in A|_{\partial(A1_{K})}$ . If it should be proved, $A|_{\partial(A1_{K})}$ would be not
essential. This is a contradiction by Lemma 3.6 and this shows that
$\partial(A|_{K})=\{x_{0}\}$ . This means that for any $Ke\ovalbox{\tt\small REJECT}^{\prime}(A)K$ is a singleton. Thus
the lemma is proved. Hence to prove the lemma, it suffices to show that
if $f\in C(\partial(A|_{K})),$ $f|_{\partial(A|_{K})\backslash U_{0}}=0$ , then $f\in A|_{\partial(A1_{K})}$ . If $f\in C(\partial(A|_{K})),$ $f|_{\partial(A1_{K})\backslash U_{0}}=0$ ,
then there is an $heA|_{K}$ with $h=f$ on $\overline{V}$ since VcK and $A|_{\overline{V}}=C(\overline{V})$ .
Hence $h|_{(\overline{V}\backslash U_{0})}=0$ . Since $g(U_{0})cD,$ $g(\partial(A|_{K})\backslash V)cB,$ $p_{n}\circ g$ converges uni-
formly to $\chi_{U_{0}}$ on $U_{0}\cup(\partial(A|_{K})\backslash V)$ . Of course, $h\cdot(p_{n}\circ g)\Rightarrow h\cdot x_{\sigma_{0}}=f$ on $\partial(A|_{K})$ .
Since $A(K)$ is an algebra containing 1 and $heA|_{K},$ $h\cdot(p_{n}\circ g)eA|_{K}$ . So
$f\in A|_{\partial(A1_{K})}$ .

PROOF OF THEOREM 3.5. Let $X=\bigcup_{n=1}^{\infty}F_{n}$ for a sequence $\{F_{n}\}_{n=1}^{\infty}$ of
interpolation sets for $A$ . For any $K\in\ovalbox{\tt\small REJECT}^{\prime}(A)$ ,

$\partial(A|_{K})=\bigcup_{n=1}^{\infty}(\partial(A|_{K})\cap F_{n})$ .
By Baire’s theorem, for some $n_{0},\overline{V}c\partial(A|_{K})\cap F_{n_{0}}$ , where $V$ is a non-void
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open subset in $\partial(A|_{K})$ . Since $A|_{F_{n_{0}}}=C(F_{n_{0}}),$
$A|_{\overline{V}}=C(\overline{V})$ . By Lemma 3.9,

$A=C(X)$ .
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