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Introduction.

Let A be a function space on a compact Hausdorff space X. In this
paper, we show that some theorems on function algebras can be generalized
to the case of function spaces A having certain conditions. E. Briem [2]
proved the following: Let: A be a function algebra. If any peak set
for: the real part Re'A of A is a peak set for A, then A=C(X), where
C(X) denotes the Banach algebra of complex-valued continuous functions
on X with the supremum norm. In association with the theorem of Briem,
we consider the class of function spaces having the condition (A) (see §1).
It is a wider class containing the class of function algebras. We here
discuss whether theorems on function algebras can be generalized to the
case: of the class. I

In §1, the Bishop ant1symmetr1c decompos1t1on theorem for funct1on
spaces is given. This is a generahzatlon of Bishop’s theorem [1] on
function algebras In §2 we give some examples of functlon spaces having
(A). In § 3 we consider the class &7 of functmn spaces havmg (A) and
give characterizations to assert that A=C(X) for Ae S These results
are generahzatlons of theorems on functlon algebras

§1. Bishop antisymmetric. ~d_ecompos'ition for function spaces.

Throughout this parer, X will denote a compact Hausdorff space. A

is said to be a - function space (resp. function algebra) on X if A is a
closed subspace (resp. subalgebra) in C(X ) contammg constant functmns
and separating points in X, ~
Let A be a function space on X. For a subset F in X, We denote

A(E') {(feCE): fy € Al; for any ge Alg},
A(E)={fe€Cr(E): fgc Al; for any ge Az}
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where A|; denotes the restriction of A to E and Cx(E) is the set of all
real-valued continuous functions on E.

We here see that 1€ Ax(E)CA(E)CA|; Ax(E)=A(E)NCg(E) and that
A(E) and A (E) are both algebras.

Let E be a subset in X. Then we call E an antisymmetric set for
A if any function in A,(F) is constant. We easily see that (i) if N, E,+0
for a family {E,};., of antisymmetric sets for A then U, E, is an anti-
symmetric set for A and (ii) the closure E of an antisymmetric set F
for A is an antisymmetric set for A. Hence the sum of all antisymmetric
sets for A containing a point z in X is a maximal antisymmetric set for
A which is closed in X. Thus X is decomposed by a family of maximal
antisymmetric sets for A. We write .%2°(A) the family of maximal anti-
symmetric sets for A.

Let A be a uniformly closed subspace in C(X) or Cg(X). Then a
closed subset F in X is called a peak set for A if f(x)=1(xcF) and
If@)|<1l(@eX\F) for an fe A. A p-set for A is an intersection of peak
sets for A. A closed subset F'is called a BEP-set for A if for any fe Alr
and for any closed subset G in X with GNF=@ and any &>0, there is
a gec A such that g=f on F, |g(x)|<e on G and |g||=|/flls where ||g|=
Sup,.|9(x)| and ||fllr=sups.r|f(x). For a uniformly closed subspace A in
C(X), F is a BEP-set for A if and only if x#.€ A* for any g€ A*, where

A* denotes the set of measures # on X such that Sf dp=0 for any f€ A
(ef. [T]).

Now we here consider the Bishop antisymmetric decomposition theo-
rem for function spaces. This is a generalization of Bishop’s theorem
on function algebras ([1], [3], [9]).

THEOREM 1.1. Let A be a function space on a compact Hausdorff
space X. Then X is decomposed by the family 227 (A) of maximal anti-
symmetric sets for A and the following s satisfied.

(i) Any Ke 2% (A) 18 a BEP-set for A:

(i) If feC(X) and if flx€ Alx for any Ke ¢ (A), then feA.

ProoF. (i) For Ke .2 (A), let F be the intersection of all BEP-sets
for A containing K. Then F is the smallest BEP-set for A containing
K. We here need only to show that F’=K. If K&F, then there is an
fe A(F) which is not constant since K is a maximal antisymmetric set
for A. As flgx€ Ax(K), f is a constant ¢ on K. Hence if we put E=
{xe F: f(x)=c}, then KCEGF.

For ¢>0, we put

g=—¢e(f—e)+1.
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Since AL(F') is a real algebra containing 1, g€ Ax(F'). For a suffi-
ciently small ¢>0, we see that g|,=1 and |g|<1 on F\E. So E is a
peak set for Al and g"€c Ax(F)(n=1,2 3, ---). Since F is a BEP-set,
tr€ At for any e A+. Here for any heA g9°h|r € Al and 0=, (g"h) —
Yr(Xgh) = ttz(h), where X is the characteristic function for E£. This shows
that p#,e A+ for any pe A+, that is, E is a BEP-set for A. This is a
contradiction since F' is the smallest BEP-set for A containing K.

(ii) It is proved by a similar method to the proof due to Glicksberg
[9]. We first show that the support F of M is an antisymmetric set for
A for peext(ball A*), where ext(ball A+) is the set of all extreme points
of closed unit ball in At. To do this we prove that f is constant for
any fe€ Ax(F). We here can assume that 0<f<1 on F and f is considered
as a function in A by extending on X for convenience. From the defi-

nition of AR(F), fr/llfull, A—p/ll1— el eball A+,
‘ Moreover we have

172+ el = F1dlee + {1 — fidlpe
=| ra+§ a—naip={ dlp=)p1=1

and

A=1N)p

Ty Fla= Pl g =Re

Since £ is an extreme point of ball A+, we have p=rr/|fu| and f=
Ifell (a.e. o). 8o U={xe X: f(x)=|full} is open in X and |z/(U)=0. It
implies that @=UNF and f(x)=|fu|| on F. This shows that F is an
antisymmetric set for A. Hence there is a K,e.% (4) such that FcK,.

Now let feC(X) and fl|x€ A|x for any K€ .22 (A). Then there is a
g€ A with g|x,=flg, and for any pecext(ball A*)

p= |1y

\rap=\_rap=\ gan={gan=o.
Ky K,

By the Krein-Milman theorem, Sf dp=0 for any pe A*. It follows
that fe A.

REMARK. In [6], Ellis discussed the Bishop antisymmetric decompo-
sition for a function space on its Shilov boundary.

We here describe A(X) for some function spaces A on X. Let ', D
and D be {zeC: |z|=1}, {zeC: |z|<1} and {z € C: |2| <1} respectively.
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ExampPLES. (1) Let A be the function space on D consisting of con-
tinuous functions on D which are complex harmonic on D. Then A(D) is
the set of constant functions.

(2) Let B be the disc algebra on I" and @€ B, »+#0 on I'. Then
A=9¢™'B is a function space on I" and A(I")=

(8) Let B be the disc algebra on I'. We put A={feB: f=x+g,
»eC, g(0)=0 and g¢(1/2)+9(—1/2)=0}, where g(1) is the value at » of g
which is considered as a function in the disc algebra on D. Then A is
a function space on I' and A(N={feB: f=rn+g, ne€Cand g(0)=g(1/2)=
g9(—1/2)=0}.

Next we consider the following three conditions for a function space
A on X. ‘

(A) Any peak set for A is a peak set for A(X).

(B) For each Ke .9¢°(A), any peak set for A|x is a peak set for A(K).

(C) For each K e .22°(A), any peak set for A, is a peak set for Ax(K).

Here that (C)—(B) is clear and furthermore we have

THEOREM 1.2. Let A be a function space on X. Then the following
are satisfied:

(i) If A has (A), then it has (B)

(ii) If A satisfies (C), then A=C(X).

(ii) If A has (B) and it is self-adjoint, then A=C(X).

PrROOF. (i) Let Ke€.%#(A) and F be a peak set for A|x. Then F
is a p-set for A since K is a BEP-set for A. So F is a p-set for A(K)
by the hypothesis. But since F' is a peak set for Alg, it is a G,-set in
K. It implies that F' is a peak set for A(K). '

(ii) By Theorem 1.1 it suffices to show that any Ke. 92 (4) is a
singleton. If some K,€.%"(A) has at least two points, there is a subset
F in K, such that F is a peak set for A|x, and FF&K,. By the hypothesis,
F is a peak set for A,(K,). This is a c_ontradiction since K, is an anti-
symmetric set for A.

(iii) Since A is self-adjoint, for any Ke 97 (A), A|g is self-adjoint
and so is A(K). It implies Ax(K)=Re A(K). By the hypothesis, any
peak set for Ajr is a peak set for A(K) and it is a peak set for Ap(K).
By (i), the proof is complete.

Theorem 1.2 (ii) implies a theorem of Ellis [6] as follows.

COROLLARY 1.3 (Ellis). Let A be a function space on X. If any
peak set for A is a peak set for Ax(X), then A=C(X).
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PROOF. For any Ke .9 (A), Ax(X)|xC AnK). Any peak set F' for
Alx is-a p-set for A and it will follow by the hypothesis that F is a p-set
for Ax(X). Hence F is a p-set for Ar(K), and F is a peak set for A,(K)
since it is a G,set in K. From Theorem 1.2 (ii), we have A=C(X).

§2. Condition (A).

We here considér function spaces A which satisfy the condition (A),
i.e., if any peak set for A is a peak set for A(X).
We first give examples of such function spaces.

EXAMPLES. (1) Any function algebra has (A). :

(2) In §1, Examples (2), A has (A). For, if F is a peak set for
A, then there is an fe B such that ¢ 'f=1 on F and 7' fl<lon '\ F.
So f=¢ on F and f#¢ on I'\F. Hence F={xel: f—9p=0} is a zero-
set for B. We easily see that F is a peak set for B=A(I).

(3) In general, if B is a function algebra on X satisfying that any
zero-set for B is a peak set for B and if e B, »+#0 on X, then A=¢p™'B
has (A). Examples of B which satisfy the condition above are the disc
algebra on I" and the algebra of generalized analytic functions ([5]).

(4) Let B be the disc algebra on I'. Then A=(z—a)'B+(z—b)"B
(lal<1, |b]<1) is a function space and satisfies (A) (a special case of (2)).

(5) In §1, Examples (8), A satisfies (A). For, let n+f,cA be a
peaking function of a peak set F' for A. Then F={ze I M+ Fo(2) —1=0}.
Hence F' is I' or a set of zero Lebesgue measure on I". It is not hard
to see that F' is a peak set for A(I). _

(6) If {A;} is a family of funection spaces having (A), then the direct
sum €PA, has (A). It is proved in the following proposition.

PROPOSITION 2.1. Let A, be a function space on X; having (A)
(L€ A). Then the direct sum DA, of {A:}ieq has (A).

PROOF. The direct sum A=@A, is regarded as a function space on
the one-point compactification X= U X, U {p} of UX,. Let E be a peak
set for A. Then there is an fe A such that S@)=1 on E and |f(x)<1
on X\E. If EnX,# @, ENX, is a peak set for A;. Since A; has (A),
it is also a peak set for A,(X,). So there is an Sf1€ A (X,) such that
fi®)=1on EN X, and |f(x)|<1 on X:\ E. We here put f;=0 when EN X,=
@. If p¢ E, there is a finite subset 4,C A with EC Uie, Xz» So by putting
g@)=fi(x) (xeX;, red), g@)=0 (xeX;, r¢4,) and g(p)=0, E={recX:
g(x)=1} becomes a peak set for A(X). If peE, we put g2 (@) =f1(x)
(xe X;), gv@)=1 (xeX, AM#=N) and g.(p)=1 for any fixed '€ 4. Then
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E.={xe X:g.(x)=1} is a peak set for A(X). Hence E= N{E;: A\ is any
element in A} is a p-set for A(X). Since E is a G,set in X, it is a peak
set for A(X).

§3. Characterizations assert that A=C(X).

Let A be a function space on X satisfying (A). We consider con-
ditions under which A is identical with C(X).

The following is the Stone-Weierstrass theorem for function spaces
satisfying (A).

THEOREM 3.1. Let A have (A). If A is self-adjoint, then A=C(X).

PrROOF. By Theorem 1.2 (i), if A has (A), then it has (B). By Theorem
1.2 (iii) we have A=C(X).

A Briem’s theorem [2] is generalized as follows:

THEOREM 3.2. Let A satisfy (A). If any peak set for Re A is a
peak set for A, then A=C(X).

ProOF. Let F be any peak set for Re A. Then if it can be proved
that F is a BEP-set for A, we have A=C(X) by ([12], Theorem 2.2) and
this proves the theorem. To do this suppose that F' is a peak set for
Re A. By the hypothesis F' is a peak set for A. Since A has (A), it is
a peak set for A(X). Let g be a peaking funection in A(X) for F. Then
for any f€ A and for any pe A, 0=p(g"f)— p(Xpf)=ps(f) (R —> o) and
so po(f)=0. This shows that F is a BEP-set for A.

The following is a generalization of a Glicksberg’s theorem ([10], [13])
on function algebras.

THEOREM 3.3. Let A have (A). If Aly is closed in C(F') for any
closed subset F in X, then A=C(X).

We need the following lemma in order to prove the theorem.

LEMMA 3.4. Let A satisfy the hypothesis in Theorem 3.3. Then any
peak set for Re A(X) is a peak set for A(X).

PrROOF. We use a similar argument to Briem ([2], Prop. 2). Let F
be a peak set for Re A(X). Then there is an ac€ A(X) such that a=
w+iv, w and v are real functions, =0 on F and #<0 on X\F. Since
A(X) is a closed subalgebra containing 1, a,=expa cA(X)cA. Here
la,/=expu=1 on F and |a,/=expu<l on X\F. By the hypothesis, Az
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is closed in C(F'). So the open mapping theorem implies the existence
of a constant ¢, such that each fe€ A|; has an extension g € A with ||g||=<
¢r|| fllz. Since exp(—na) € A(X)C A, thereis a b, € A such that b,=exp(—na)
on F and ||b,||=cz|lexp(—na)||;=cr. From that a? € A(X), it follows a?b, € A,
llarh,||<cr and alb,=1 on F. Moreover for any compact set G in X with
GNF=g, we have a’h,=0 on G. So given ¢>0, by taking a sufficiently
large n, f=a?b, € A satisfies that ||f]|<c¢s, flr=1 and |f|<e¢ on G. Since
F is a G;,-set, there is an fe A such that | f||=1, fl,=1 and |f(z)|<1
(x ¢ F') ([4], Lemma 13), that is, F' is a peak set for A. By the hypothe-
sis, F' is a peak set for A(X).

ProoOF OoF THEOREM 3.3. We introduce a relation ~ in X as follows:
x~y < flx)=f(y) for any fe A(X).

Then ~ is an equivalence relation in X.

We put ¥={ye X: y~=a} for xc X and X={%: x € X}. By defining the
topology in X such that the mapping z—% from X to X is continuous,
X becomes a compact Hausdorff space. By putting f(x) =f(x) for fe A(X ),
AX)~={f: fe A(X)} becomes a function algebra on X. Now if F is a
peak set for Re A(X)~ then there is an fe A(X)~ such that Re f(&)=1
(@ e F) and |Re f®@)|<1 @ ¢ F). If we put F={xc X:Zc F}, F is a closed
set in X, Re f(x)=1 (x € F') and |Re f(*)|<1 (x ¢ F'). From this F is a peak
set for Re A(X), and Lemma 3.4 implies that F' is a peak set for A(X).
So F'is a peak set for A(X)~. By a theorem of Briem [2] we have that
AX)~=C(X). Hence A(X) is self-adjoint. By the hypothesis any peak
set F for A is a peak set for A(X) and a peak set for Re A(X). Since
A(X) is self-adjoint, F' is a peak set for A (X)=Re A(X) and so A=C(X)
from Corollary 1.8.

We next generalize a wellknown theorem on funection algebras to the

case of function spaces having (A) (cf. [8], [11], [3]).
Let A be a function space. Then a closed subset F in X is called

an interpolation set for A if A|,=C(F).

THEOREM 3.5. Let A be a function space on X having (A). If X
18 the sum of a sequence {F .}, of interpolation sets for A, then A=C(X).

We need some lemmas to prove the theorem.

Let A be a function space and Ke.%%(4). Then we denote by
d(A|x) the Shilov boundary for A|;. Since A(K)C Alx, 0(Alx) is a boundary
for A(K). So A(K)|su, is a uniformly closed subalgebra in C(9(Alx)).
A function space A is called to be essential if for any proper closed subset
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F in X there is an fe C(X) such that f(#)=0(xc F') and f¢ A. We begin
with the following

LEMMA 8.6. If A has (A), for any Ke 52 (A) a peak set for Alsu
18 a peak set for A(K)|suig- And A(K)|sug 8 an essential algebra and
80 Alsaiy 18 essential.

ProOOF. Let F be a peak set for Al;,,- Then there is an fe Al;u,,
such that f=1 on F and |f|<1 on 9(A|¢x) \ F. That 9(A|x) is a boundary
for Alx implies the existence of g€ A|x such that g|,=f|r=1, |g|<1l on
0(Alg)\ F and ||gllx=1. So E={xec K: g(x)=||g||=1} is a peak set for Alg
and F’=0(A|x)NE. By (A) E is a peak set for A(K) and so F is a peak
set for A(K)lsu,. Since any fe Ax(K) is constant, if g€ A(K)|su, i8
real on d(Alg), then it is constant. It follows that A(K)|s.,, is an es-
sential algebra. We here show that Al;,,, is essential. Suppose other-
wise. Then there is a closed subset E&0(A|x) such that if fe C(o(Alx),
Sflz=0 then fe Aly4 . For a fixed closed subset F" in 9(4A[x) with FNE=Q,
there is an fe Cr(3(Alk)) such that f|,=1, f|z=0 and 0=f=<1. So fe
Alsuip- From this F is a p-set for Al and a p-set for A(K)|suig-
Since A(K)|s iy is a uniformly closed algebra, F' is a BEP-set for A(K)|sg)-
Similarly, any closed subset which is contained in F' is a BEP-set for
A(K)|s41 - It implies A(K)|=C(F) since 1€ A(K)|;. Now for any pe
(A(K)laai)* and any ¢>0, there is an open subset U in d(A|x) such that
UDE and |p¢(U\E)<e. If F=0(Al|x)\U, it is a closed subset in d(A|x)
and FNE=@. By the fact stated above, A(K)|=C(F'). Suppose that
g€ C(0(Alx)) and g|;=0. Then g|r € A(K)|, and there is an h € A(K)|suip
such that k|-=g|s ||k||=|/g9]lr and |h|<e on E. Hence

1(9)| = | p(g) — p(h)| = | (g — )
§1§E<gfh>dp|+}§ (g—myp|+

(g—h)dp

U\ SG(AIK)\U

=\ midip+ | 1g—hidis

\E

=ellgll+llg—nll U\ E)=e(lledl +2llg1D) -

Since ¢ is arbitrary, (9)=0. So ge A(K)|suip. It follows that
A(K)lsu1 is not essential. This contradiction proves that Alsu,, is
essential.

LEMMA 3.7. For each Ke 2¢(A), any p-set for A(K) is a BEP-set
for Al,. :

PrOOF. Let F be a p-set for A(K). For any pe(Alg)* and any
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e>0, |p¢|(U\ F)<e for some open subset U in K containing F. Here take
a peak set E for A(K) with FcEcU, and choose fe A(K) such that
flz=1 and |f|<1 on K\ E. Then since f"c A(K) for any =, f"ge Alx
for ge Alx. Hence

0=p(f"9) = Xz 9)=1:(g9)  (m—c0)

and so pz(g)=0. Furthermore we have

|tx() = 24x(9) — (@) = 91| |l(E\ F')
=gl ll(U\ F)=ligll-¢ -

Since £>0 is arbitrary, p¢-(9)=0. This implies ¢, € (A|x)*. This shows
that F' is a BEP-set for Alg.

LEMMA 3.8. Let A has (A). Then for any K .5 (A), 3(Aly) is equal
to the closure P, x, of P, x,, where P,y ={x e K: {x} is a BEP-set for A(K)}.

PrROOF. A BEP-set for A|; is a p-set for A|,. By (A) it is a p-set
for A(K). Since A(K) is an algebra, it is a BEP-set for A(K). Con-
versely, a BEP-set for A(K) is a p-set for A(K) and it is a BEP-set for
Al from Lemma 3.7. Hence ' ’

Puw,={x e K: {x} is a BEP-set for Als} .

We first show that if F is a peak set for Alg, then FNP,x# Q.
If F is a peak set for Al., then it is a peak set for A(K) by (A). From
Lemma 8.7 it is a BEP-set for A|;. Now we put & ={E: E is a BEP-
set for A|x and ECF}. Then & becomes a partially ordered set by the
inclusion. For any chain {F,} in &, N, F, is a BEP-set for A|,. By
Zorn’s lemma, there is a minimal element F, in .&#. It suffices to show
that F, is a singleton to prove that FNP,x+*@. If F,has at least two
points there is an E&F, such that E is a peak set for Alr. Since F,
is a BEP-set for Al., E is a p-set for Alx. By (A) E is a p-set for
A(K). By Lemma 8.7, it is a BEP-set for A|;. This is a contradiction
since F, is a minimal element in .&. We next show that P,y is a
boundary for A|x. Put F={xreK:|f(x)|=||fllx} for fe Alx. Then E=
{xe K: af@)=|lafllc=|fllx} (some a € C, |a]=1) is a non-void peak set for
Alx. Take an x,€ Pyx,NE. Then

If(wo)l=af(wo)=||afl|x=||fllx ,

and

PA(K)ﬂF#@ .
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This shows that P,, is a boundary for A|.. We denote by Ch(A|x)
the Choquet boundary for A|r. Then we show that P, CCh(A|c). In-
deed, for each x € P,,, for any open set U in K containing z and for
any >0, there is an fe Al such that f(x)=|f|llx=1 and |f|<e on K\ U,
since {x} is a BEP-set for A|;. If ¢ is a representing measure for =z,

1=1f@i=|| rap+|_ranl
suU)+e.

So (U)=1—e. Since ¢>0is a_rbitrary, the support of x f{x}. Hence
2 € Ch(Alg) and s0 P, CCh(Alg). Pax) CCh(Alr)=0(Alx). So Pyx =0(Alx).

LEMMA 8.9. Let A has (A). Then if, for any Kec 5 (A), Aly=C(V)
Jor some non-void open subset V im 0(A|x), then A=C(X).

PrROOF. For any Ke. % (A), P,z =0(Alr) from Lemma 3.8. By the
hypothesis, VNP, x#@. If x,€ VNP,x%,, we show that 0(4|g)={x,}. If
otherwise, there is a ye€od(Alx), ¥y#2,. Then z,e UcCV, y¢ U for some
open subset U in d(A|g). From that {x,} is a BEP-set for A(K), there is
a g€ A(K) such that g(x,)=|lgllz=1 and |g|<1/3 on 8(Alx)\U. If we put
U,={x€o(Alx): |1—g(x)|<1/8}, then z,€ U,cUCV and y¢ U,.

Put B={z¢cC: |2|<1/3} and D={z€C:|]1—2|<1/3}. Then there is a
sequence {p,} of polynomials of z such that p, converges to X, uniformly
on BUD by Runge’s theorem. We here show that if feC(3(A|z)) and
Slaaignw,=0 then fe Alyu,. If it should be proved, Alsy,, would be not
essential. This is a contradiction by Lemma 8.6 and this shows that
0(Algx)={x,}. This means that for any Ke .99 (A) K is a singleton. Thus
the lemma is proved. Hence to prove the lemma, it suffices to show that
if fe C(e(Alx), fIB(A]K)\U(,:O’ then fe Ala(.u,_g_)- If fe_C(a(Alx))’ fla(AIK)\Uo':;()’
then there is an he€ A|x with Ah=f on V since VCK and Alr=C(V).
Hence k|7, =0. Since g(U)cD, g(Alx)\ V)CB, p,og converges uni-
formly to Xy, on U,U(0(Alg)\ V). Of course, k- (p,°g)=h Xy,=f on d(Alg).
Since A(K) is an algebra containing 1 and he€ Alg, h-(p,09) € Alx. So
J€Alsugp-

PrROOF OF THEOREM 38.5. Let X=U,F, for a sequence {F}>, of
interpolation sets for A. For any Ke 2% (A),

aAl)=UGAINF,) .

By Baire’s theorem, for some n,, VCd(Alc)NF,, where V is a non-void
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open subset in d(Alz). Since Alp, =C(F,), Alz;=C(V). By Lemma 3.9,
A=C(X).
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