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Introduction.

A Sullivan’s vanishing cycle is a cycle in a leaf of a foliation which
ls in a sense essential in the leaf and inessential if it is dis laced tonearby leaves. This notion is first introduced by Novikov in his celebrated
work [N] in order to prove his closed leaf theorem. In [Su] Sullivandefined a notion of higher dimensional vanishing cycles in foliations ofarbitrary codimensions which includes Novikov’s one as l-dimensionalcase. Sullivan showed that a Sullivan’s vanishing cycle yields a non-trivial foliation cycle and gave an alternative proof of Novikov’s closedleaf theorem for $S^{3}$ . In the previous paper [Miy] we gave a sufficientcondition for the existence of Sullivan’s vanishing cycles in codimension-one foliations and also showed a closed leaf theorem which in a sense
generalizes Novikov’s closed leaf theorem to the higher dimensional case.

In the present paper we will study topological aspects of codimension-one foliations which the existence of Sullivan’s vanishing cycles yields.
Our main theorem (Theorem B) gives some necessary and sufficient con-ditions for the existence of a Sullivan’s vanishing cycle in case that thereis no Novikov’s vanishing cycle. Although Theorem A is the main theoremof [Miy], the proof in [Miy] is rather sketchy and it plays a key role inthe proof of Theorem B. Therefore for the completeness we will give acomplete proof of Theorem A which is also improved compared with theone given in [Miy]. Theorem $C$ asserts that a Novikov’s vanishing cycle
yields a higher dimensional singular manifold chain bounded by a tangential
cycle, which is the partial converse of Theorem A.

Contents are as follows: In Section 1 we state the results. Westudy a pull back of a foliation without Sullivan’s vanishing cycles inSection 2 and by applying the results in part we study a foliation without
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Novikov’s vanishing cycles in Section 3. In Section 4 we consider the
case that a foliation has a Novikov’s vanishing cycle. Theorems $A,$ $E$

and $C$ are proved in Sections 2, 3 and 4 respectively.
The author wishes to thank Science and Engineering Research Labora $\cdot$

tory of Waseda University which partially supports him as a post-doctora
fellow during the preparation of the paper.

\S 1. Statement of results.

Let $M$ be an n-dimensional smooth manifold and $\mathscr{G}^{-}$ a codimension
one $C^{2}$ foliation on $M$. We will say that $(C, f_{c})$ (or simply $f_{C}$) is a k-chain
in $M$ if $C$ is a finite oriented homogeneously k-dimensional simplicia

complex and $f_{c}:C\rightarrow M$ is a continuous map from the space of $C$ to $J$

(see for example Spanier [Spl). Here, by abuse of notation, we denott
a simplicial complex and its space by a same letter. In addition, we cal
a k-chain $(C, f_{c})$ in $M$ with $\partial C=0$ a k-cycle in $M$, where $\partial C$ denotes th $($

boundary of $C$ in the homological sense. A k-chain in $M$ is tangentia
to $\mathscr{F}$ if there exists a leaf of $\mathscr{G}^{-}$ which contains $f_{c}(C)$ . For a tangentia

chain $(C, f_{c})$ the leaf which contains $f_{c}(C)$ is called the support leaf. 1
k-cycle $(C, f_{c})$ in $M$ is said to be $\leftrightarrow \mathscr{F}^{-}$-homologous to zero if it is tangentia

and there exists a simply-connected tangential $(k+1)$-chain bounded $b_{t}\backslash $

$(C, f_{c})$ , i.e., if $f_{c}(C)$ is contained in a leaf $L$ of $\backslash \mathscr{F}$ and there exists a $(k+1)$

chain $(W, f_{W})$ in $L$ such that $W$ is simply-connected with $\partial W=C$ and $f_{W}i$

an extension of $f_{c}$ . Note that if a k-cycle $(C, f_{c})$ in $M$ is $\mathscr{G}^{-}$-homologou

to zero by a $(k+1)$-chain $(W, f_{W})$ , the induced germ of foliation around $\eta$

is trivial. For a k-chain $f_{W}$ we denote by $\partial f_{W}$ a $(k-1)$-cycle $f_{W}|_{\partial W}$ .
DEFINITION. A tangential cycle $(C, f_{c})$ to $\mathscr{G}^{-}$ is said to be a Sullivan’

vanishing cycle if $C$ is connected and there exists a homotopy of cycle
$f:C\times[0,1]\rightarrow M$ such that

1) for each $t\in[0,1],$ $f_{t}=f|_{C\times\{t\}}$ is tangential, i.e. $f(C\times\{t\})$ is containe
in a leaf $L_{t}$ of $\ovalbox{\tt\small REJECT}$

2) for each $x\in C,$ $f|_{\{x\}\times[0,1]}$ is a transverse arc,
3) $f_{0}=f_{c}$ ,
4) $(C_{0}, f_{0})$ is not $\mathscr{G}^{-}$-homologous to zero, and
5) $(C_{t}, f_{t})$ is $\sim \mathscr{F}$-homologous to zero for $t>0$ .
REMARK. Throughout this paper we suppose that a homotopy $($

tangential chains satisfies the condition 2) of this definition unless othe:
wise stated.

For a l-cycle, to bound a simply-connected 2-chain and to be nul



SULLIVAN $S$ VANISHING CYCLES 389

homotopic are equivalent. Therefore a Novikov’s vanishing cycle [N] is
just a l-dimensional Sullivan’s vanishing cycle. The following theorem is
one of the conditions for the existence of a Novikov’s vanishing cycle:

THEOREM 1 (Novikov [N]). Let $M$ be an n-dimensional smooth mani-
fold and $\ovalbox{\tt\small REJECT}$ a codimension-one $C^{0}$ foliation on M. Then the following
conditions are equivalent:

1) There exists a leaf $L$ of $\ovalbox{\tt\small REJECT}$ such that the homomorphism
$\pi_{1}(L)\rightarrow\pi_{1}(M)$ induced by the inclusion is not injective.

2) There exists a Novikov’s vanishing cycle in $\ovalbox{\tt\small REJECT}$

Novikov also gives some other (sufficient) conditions in [N] and proves
the following closed leaf theorem in dimension three:

THEOREM 2 (Novikov [N]). Assume the dimension of $M$ is three and
$M$ is compact. If there exists a Novikov’s vanishing cycle in $\ovalbox{\tt\small REJECT}$ then
$\ovalbox{\tt\small REJECT}$ has a compact leaf.

In fact, the compact leaf in Theorem 2 is the border leaf of a Reeb
component in ;7; For the details, the reader is referred to Novikov [N],
also Haefliger [H1] and Camacho and Neto [C-N].

Now we state our key theorem which is given in [Miy].

THEOREM A. Let $M$ be an n-dimensional smooth manifold and $\mathscr{F}$

a codimension-one $C^{2}$ foliation on M. Suppose there exists a tangential
m-cycle $f_{Z}:Z\rightarrow M(1\leqq m\leqq n-2)$ which satisfies the following conditions;

1) $Z$ is connected,
2) $f_{Z}$ is not $\mathscr{F}$-homologous to zero, and
3) there exists an $(m+1)$-chain $f_{X}:X\rightarrow M$ such that $X$ is a simply-

connected manifold and $f_{X}$ is bounded by $f_{Z}$ , i.e. $\partial X=Z$ and $\partial f_{X}=f_{Z}$ .
Then there exists a Novikov’s vanishing cycle or an m-dimensional

Sullivan’s vanishing cycle in $\mathscr{F}$

As a corollary we have the following closed leaf theorem:

COROLLARY A. Assume $M$ is compact and there is no Novikov’s
vanishing cycle in $\mathscr{F}$ If there exists a leaf $L$ of $\mathscr{F}$ such that the
homomorphism $\pi_{n-2}(L)\rightarrow\pi_{n-2}(M)$ induced by the inclusion is not injective
and the kernel has an element which is not $\mathscr{F}^{\sim}$-homologous to zero, then
$\mathscr{G}^{-}$ has a compact leaf.

REMARK. In Corollary A if we replace the assumption on a leaf $L$

with the assumption of Theorem A with $m=n-2$ then we have also the
same conclusion.



390 SHIGEAKI MIYOSHI

A codimension-one foliation without Novikov’s vanishing cycles is
characterized by Theorem 1. Next we state results about foliations
without Sullivan’s vanishing cycles. For a pair of topological spaces
(X, $A$) we denote by $\Omega_{n}(X, A)$ the m-th bordism homology group of (X, $A$)
and by $\mu:\Omega_{n}(X, A)\rightarrow H_{n}(X, A:Z)$ the natural homomorphism defined by
$\mu([V, f])=f_{*}([V, \partial V])$ , where [V, $f$] is a bordism class of an m-dimensional
singular manifold $f:(V, \partial V)\rightarrow(X, A)$ and [V, $\partial V$] denotes the fundamental
class of $V$ (cf. Conner and Floyd [C-F]). The following theorem gives
characterizations of a codimension-one foliation without Sullivan’s vanish-
ing cycles.

THEOREM B. Suppose that $M$ is an n-dimensional smooth man’ifold
and $\mathscr{F}$ is a codimension-one $C^{2}$ foliation on $M$ which has no Novikov’g

vanishing cycle. Let $\tilde{M}$ be the universal covering of $M$ and $\mathscr{G}^{\tilde{-}}the$ lifted
foliation on $\tilde{M}$. Suppose that $m$ is an integer such that $2\leqq m\leqq n-2$ .
Then the following conditions are equivalent:

1) there exists an m-dimensional Sullivan’s vanishing cycle $ in\swarrow\approx$

2) there exist a leaf $\tilde{L}$ of $\mathscr{G}^{\simeq}and$ a homology class of infinite order
in the kernel of the homomorphism $H_{*}(\tilde{L};Z)\rightarrow H_{n}(\tilde{M}:Z)$ induced by tht
inclusion,

3) there exist $\cdot$ a leaf $\tilde{L}$ of $\tilde{\mathscr{G}}^{-}$ and a homology class of infinite order
in the image of the homomorphism $\mu\cdot\partial:\Omega_{n+1}(\tilde{M},\tilde{L})\rightarrow H_{m}(\tilde{L}:Z)$ where $\acute{\iota}$

denotes the boundary homomorphism,
4) there exists a leaf $\tilde{L}$ of $\mathscr{G}^{\tilde{-}}$ such that ${\rm Im}(\mu\cdot\partial:\Omega_{*+1}(\tilde{M},\tilde{L})-$

$H.(L:Z))\neq 0$ .
We have some consequences of Theorem $B$ as follows:

COROLLARY B. Suppose that $H_{*}(\tilde{M}:Z)$ is a torsion group for $anq$

$m\in Z$ such that $2\leqq m\leqq n-2$ , and that $Z$ has no Sullivan’s vanishin!
cycle. Then for any leaf $\tilde{L}\in\tilde{\mathscr{G}}^{-}H_{n}(\tilde{L}:Z)$ is also a torsion grouy
$(2\leqq m\leqq n-2)$ .

COROLLARY C. Suppose that $M$ is a closed 4-manifold with the con
tractible universal covering and that $\mathscr{G}^{-}$ has no Novikov’s vanishin!
cycle. Then every leaf $L\in \mathscr{L}^{-}$ has the contractible universal covering $0^{4}$

there exists a compact leaf in $\mathscr{G}^{-}$

COROLLARY D. The following conditions are equivalent:
1) $\mathscr{G}^{-}$ has $r\iota 0$ m-dimensional Sullivan’s vanishing cycle for $m$ les

than three,
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2) for any leaf $L\in\ovalbox{\tt\small REJECT}$ the homomorphisms $\pi_{m}(L)\rightarrow\pi_{m}(M)$ induced
by the inclusion are injective for $m$ less than three.

In case there exists a Novikov’s vanishing cycle we have the follow-
ing result which is the partial converse of Theorem A.

THEOREM C. Let $M$ be an n-dimensional smooth manifold and $\iota \mathscr{F}a$

codimension-one $C^{0}$ foliation on M. Suppose that there exists a Novikov’s
vanishing cycle in .9: Then for any $m\in Z$ with $3\leqq m\leqq n-2$ there exists
an $(m+1)$-dimensional chain $f_{X}:X\rightarrow M$ such that $X$ is a l-connected
$(m+1)$-manifold and $\partial f_{X}$ is tangential and not $\mathscr{F}$-homologous to zero.
In fact, we can choose $D^{2}\times S^{m-1}$ as $X$.

In case $m=2$ the following simple example shows that the assertion
corresponding to Theorem $C$ does not hold.

EXAMPLE. There exists a codimension-one $C^{\infty}$ foliation on $S^{1}\times S^{2}\times S^{1}$

which has a Novikov’s vanishing cycle and admits no 3-chain $ f_{X}:X\rightarrow$

$S^{1}\times S^{2}\times S^{1}$ such that $X$ is a l-connected 3-manifold and $\partial f_{X}$ is tangential
but not $\mathscr{G}^{-}$-homologous to zero.

\S 2. Proof of Theorem A.

First, we may assume $n>3$ and $m>1$ since in case $n=3$ or $m=1$

Theorem A holds by Theorem 1. Also, without loss of generality, we
may assume $M$ is orientable and $\mathscr{G}^{-}$ is transversely orientable by passing
to a (at most) four-fold orientable covering if necessary (cf. Lemma 3.1).

We will give some lemmas and then apply them to prove Theorem
A.

2. $a$ . A pull back of a foliation without Novikov’s vanishing cycles.
First by applying Thom’s jet transversality theorem ([T]) repeatedly

we have the following approximation lemma:

LEMMA 2.1. Suppose $V$ is a smooth manifold and $g:V\rightarrow M$ is a
continuous map such that for each component $\partial_{i}V$ of $\partial V$, the image
$g(\partial_{i}V)$ is contained in a leaf $L\in \mathscr{F}$ Then we can perturb $g$ to obtain
a smooth map $f:V\rightarrow M$ such that

1) $f$ is an approximation of $g$ ,
2) $f(\partial V)\subset L_{i}$ for each $i$ ,
3) $f$ is in general position with respect to $\mathscr{G}^{-}$ i.e. $f$ is transverse

to $\mathscr{G}^{-}$ except finitely many points where $f$ is in contact with leaves of
$\mathscr{G}^{-}$ generically.
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REMARK. We need the smoothness of class $C^{2}$ for the foliation only
in this part of the proof.

Now suppose $V$ is an $(m+1)$-dimensional compact oriented manifold
$(m>1)$ and $f:V\rightarrow M$ is an approximated smooth map by Lemma 2.1.
Then the pull back of $t\mathscr{F}$ by $f$, denoted by $f^{*}\mathscr{F}$ is a codimension-one
Haefliger structure on $V$ whose singular points are of Morse type and
lie in the interior of $V$. From now on we will analyze the structure of
(V, $f^{*}\mathscr{G}^{-}$). We denote by $\Sigma(f^{*}\mathscr{G}^{-})$ the set of all singular points of
$f^{*}\mathscr{G}^{-}$ and by $\mathcal{G}$ the restriction of $f_{L}^{*}\mathscr{F}$ to $V-\Sigma(f^{*}\mathscr{G}^{-})$ . Then $\mathcal{G}$ is
a codimension-one non-singular foliation on $V-\Sigma(f^{*}\mathscr{G}^{-})$ . Recall that
$\Sigma(f^{*}\ovalbox{\tt\small REJECT})$ consists of finitely many points in the interior of $V$. We define
a leaf of $f^{*}\mathscr{G}^{-}$ to be a path-connected component of the preimage of a
leaf of $\sim \mathscr{F}$ by $f$. Then a leaf of $f^{*}\mathscr{G}^{-}$ with singularity is a pinched
codimension-one submanifold (i.e. a submanifold with Morse type singu-
lar points) of $V$ or a singular point of index $0$ or $m+1$ , i.e. a local
maximum or a local minimum. For a leaf $F$ of $f^{*}\mathscr{G}^{-}$ we denote by $L_{F}$

the leaf of $\mathscr{G}^{-}$ which contains $f(F)$ .
LEMMA 2.2. If $\mathscr{G}^{-}$ has no Novikov’s vanishing cycle and $V$ is 1-

connected then the pull back Haefliger structure $f^{*}\mathscr{G}^{-}$ on $V$ is without
holonomy. Precisely, for any map $h:S^{1}\times[0,1[\rightarrow V$ with the property
that (1) $h^{-1}(\Sigma(f^{*}\mathscr{G}^{-}))$ is contained in $S^{1}\times\{0\},$ (2) $h$ restricted to the com-
plement of $h^{-1}(\Sigma(f^{*}\mathscr{G}^{-}))$ is a smooth immersion transverse to $\mathcal{G}$, and
(3) $h$ restricted to $S^{1}\times\{0\}$ is a loop in a leaf of $f^{*}\mathscr{G}^{-}$ there exists a small
collar $N$ of $S^{1}\times\{0\}$ in $S^{1}\times[0,1$ [ such that $h^{*}(f^{*}\backslash \pi)|_{N}$ is a foliation by
circles of class $C^{2}$ except at $h^{-1}(\Sigma(f^{*}\mathscr{G}^{-}))$ .

PROOF. Otherwise the map $f\cdot(h|_{s^{1}\times\{0\}}):S^{1}\rightarrow M$ is a loop in a leaf $L$

of $\ovalbox{\tt\small REJECT}$ with non-trivial $(C^{0})$ holonomy in $\mathscr{G}^{-}$ In particular $f\cdot(h|_{S^{1}\times\{0\}})$ is
essential in $L$ . On the other hand, since $f\cdot(h|_{S^{1}\times\{0\}})$ is a map via 1-
connected manifold $V$, it is inessential in $M$. Therefore the loop represents
a non-trivial element in the kernel of the homomorphism $\pi_{1}(L)\rightarrow\pi_{1}(M)$

induced by the inclusion. By Theorem 1 this contradicts the assumption
that $\mathscr{G}^{-}$ has no Novikov’s vanishing cycle.

LEMMA 2.3. If $c\mathscr{F}$ has no Novikov’s vanishing cycle and $V$ is 1-
connected, then each leaf of $f^{*}\mathscr{G}^{-}$ is compaet.

PROOF. If there is a non-compact leaf $F$ in $f^{*}\mathscr{G}^{-}$ then there is a
loop $\gamma$ in $V$ such that $\gamma=\gamma_{F}*\gamma_{tr}$ where $\gamma_{F}$ is a path in $F$ and $\gamma_{tr}$ is an
arc transverse to $\mathcal{G}$ . Passing to $(M, \mathscr{G}^{-})$ we have a loop with the same
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property. Precisely, we have $f\cdot\gamma=(f\cdot\gamma_{F})*(f\cdot\gamma_{tr})$ where $f\cdot\gamma_{F}$ is a path

in a leaf $L_{F}$ of $\mathscr{F}$ and $f\cdot\gamma_{tr}$ is an arc transverse to $\mathscr{F}$ As is well
known, we can perturb $ f\cdot\gamma$ in order to obtain a closed transversal curve.
Since it is homotopic to $ f\cdot\gamma$ and $ f\cdot\gamma$ is null homotopic in $M$, the closed
transversal curve is also null homotopic in $M$. Therefore we can find a
Novikov’s vanishing cycle by a result of Novikov [N] and this is a con-
tradiction.

In the sequel we assume that 9 has no Novikov’s vanishing cycle and
$V$ is l-connected. By Lemmas 2.2 and 2.3 we may consider that a leaf of
$f^{*}\mathscr{F}$ is a (connected component of) level surface of a Morse function on
$V$ and a leaf with singularity is a (component of) critical level surface.

Now we describe the global structure of $f^{*}\mathscr{F}$ For that purpose
we need some definitions. A leaf $F$ of $f^{*}\mathscr{F}$ is said to be a separatrix
if $F-\Sigma(f^{*}\mathscr{F})$ is non-compact or empty. A separatrix is a leaf with
singularity (a pinched leaf) or a singular point of index $0$ or $m+1$ . For a
separatrix $F$ we call the closure of a component of $F-\Sigma(f^{*}\mathscr{F})$ a com-
ponent of $F$. Note that for our purpose it is sufficient to consider the case
that dim $F=m$ is greater than one. We define a subseparatrix to be a union
of components of a separatrix which is connected. We denote by $\Omega$ the
complement of the union of all separatrices of $f^{*}\mathscr{F}$ Then $\Omega$ is connected
if and only if $f$ is transverse to $\mathscr{G}^{-}$ except at most two points. In this
case $\Omega$ is diffeomorphic to $F\times I$ and $f^{*}\ovalbox{\tt\small REJECT}|_{\Omega}$ is the product foliation
$\{F\times\{t\}\}_{teI}$ , where $I=[0,1]$ or ]$0,1$ [ and $F$ is a component of $\partial V$ or a
spherical leaf. Hence we assume that $\Omega$ is not connected in the sequel.

The following lemma is easily seen by Lemma 2.2 and Lemma 2.3, and
therefore we omit the proof.

LEMMA 2.4. Suppose $\Lambda$ is any component of $\Omega$ . Then we have the
following:

1) If a boundary compoent $\partial_{i}V$ is contained in $\Lambda$ then $(\Lambda, \partial_{i}V)$ is
diffeomorphic to $(\partial_{i}V\times[0,1[, \partial_{i}V\times\{0\})$ .

2) If $\partial V\cap\Lambda=\emptyset$ then there is a non-singular leaf $F$ of $f^{*}\ovalbox{\tt\small REJECT}$ in $\Lambda$

such that $\Lambda$ is diffeomorphic to $ F\times$ ]$0,1[$ .
3) $\Lambda$ is a $\mathcal{G}$-saturated set and $f^{*}\mathscr{F}|_{A}$ is the product foliation $\{F\times\{t\}\}_{tel}$

by identifying $\Lambda$ with $F\times I$ by means of the above diffeomorphism, where
$F$ is the leaf in $\Lambda$ and $I=[0,1$ [ or ]$0,1[$ .

4) Let $\partial\Lambda$ denote $C1_{V}(\Lambda)-\Lambda$ , where $C1_{V}$ denotes the closure in V. Then
a component of $\partial\Lambda$ is a subseparatrix.

We fix a transversal orientation of $\mathscr{F}$ We associate a linear graph
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$\Gamma$ (i.e. one-dimensional complex) with $f^{*}\mathscr{G}^{-}$ as follows: We assign an
edge, a white vertex and a black vertex to a component of $\Omega,$ $\partial V$ and
a separatrix, respectively. Also we assign to each edge the orientation
determined by the transverse orientation of the corresponding component
of $\Omega$ . The incident relation is defined by 4) of Lemma 2.4. Precisely,
suppose that an edge $e$ is assigned to a component $\Lambda$ of $\Omega$ . Then each
vertex of $\partial e$ corresponds to the separatrix which contains a connected
component of $\partial\Lambda$ in case of 2). In case of 1) one of the vertices $\partial e$

corresponds to a boundary component $\partial_{i}V$ and the other to the separatrix
containing $\partial\Lambda$ . It is not hard to prove the following.

LEMMA 2.5. The graph $\Gamma$ satisfies the following:
1) $\Gamma$ is a finite oriented tree,
2) $\Gamma$ is homeomorphic to the leaf space $V/f^{*}\mathscr{G}^{-}$

3) an initial (resp. terminal) black vertex corresponds to a singular
point of index $0$ (resp. $m+1$),

4) the valency (i.e. the number of edges which are incident with the
vertex) of a black vertex is the number of components of the corresponding
separatrix plus one.

By abuse of language we will identify a point in $\Gamma$ with a leaf of
$f^{*}\mathscr{F}^{-}$

For two points $x$ and $y$ of an edge $e$ of $\Gamma$ we denote by $[x, y]$ the
closure of the connected component of $e-\dagger x,$ $y$ } which contains $x$ and $y$ .
We choose an appropriate orientation and will identify it to the interval
$[0,1]$ if necessary. Intervals $[x, y[, ]x, y]$ and ] $x,$ $y$[ in $e$ can be defined
naturally. Let $\pi:V\rightarrow\Gamma$ denote the natural projection. The following
lemma describes the correspondence between $\Gamma$ and $f^{*}\mathscr{G}^{-}$ more precisely:

LEMMA 2.6. Let $v$ be a black vertex of $\Gamma$ and $S$ the separatrix of
$f^{*}\mathscr{G}^{-}$ which corresponds to $v$ . Suppose that an edge $e$ of $\Gamma$ is incident
with $v$ and $x$ is an interior point of $e$ . Then the following hold:

1) the edge $e$ determines a subseparatrix $S_{\iota}$ of $S$ in such a way
that a non-singular leaf $F$ corresponding to $x$ approximates $S_{*}$ , that is,
there is an identification map $p:F\rightarrow S$. such that $p|_{F-p}-1_{(\Sigma(fJ^{-}))}$ is a smooth
embedding onto $S.-\Sigma(f^{*}\mathscr{G}^{-})$ and for any $y\in S_{*}\cap\Sigma(f_{-}^{*}\mathscr{F}^{-})$ the preimage
$p^{-1}(y)$ is a sphere in $F$ or a point,

2) the frontier of $\pi^{-1}([x, v[)$ in $V$ is $F\perp S_{l}$ , where IL denotes the
disjoint union,

3) $(C1_{V}(\pi^{-1}([x, v[));F, S.)$ is homeomorphic to a mapping cylinder
$(M_{p};F, S.)$ of $p:F\rightarrow S_{\iota}$ , where $M_{p}=F\times[0,1]\bigcup_{p\times 1}$ S. and $p\times 1:F\times\{1\}\rightarrow S$,
is the identification map,
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4) $f|_{s_{e}}:S_{e}\rightarrow L_{s}$ is $\mathscr{F}$-homologous to zero if and only if $(f|_{s_{e}})\cdot p:F\rightarrow$

$L_{S}$ is so.

PROOF. By Lemma 2.4 $(\pi^{-1}([x, v[), \pi^{-1}(x))$ is diffeomorphic to $(F\times[0,1[$ ,
$F\times\{0\})$ . Note that $F=\pi^{-1}(x)$ . By definition the frontier $Fr_{V}(\pi^{-1}([x, v[))=$

$C1_{V}(\pi^{-1}([x, v[))-Int(\pi^{-1}([x, v[))$ , therefore $Fr_{V}(\pi^{-1}([x, v[))-F\subset\pi^{-1}(v)=S$. As
noted before, $F$ and $S$ are considered to be components of level surfaces
of a Morse function on $V$. Since we may consider that $F$ is sufficiently
near $S$ , there are a subseparatrix $S_{e}$ of $S$ and a map $p:F\rightarrow S_{e}$ as desired
in 1), 2) and 3) (cf. [Mil]).

To prove 4) assume that $(f|_{s_{e}})\cdot p:F\rightarrow L_{s}$ is $\mathscr{F}$-homologous to zero.
Suppose $g:W\rightarrow L_{s}$ is a chain such that $\partial g=(f|_{s_{e}})\cdot p$ and $W$ is l-connected.
Let $M_{p}$ be the (abstract) mapping cylinder of $p:F\rightarrow S_{e}$ . Then we may
define a map $h:M_{p}\rightarrow L_{s}$ by $h|_{F\times\{t\}}=(f|_{s_{e}})\cdot p$ and $h|_{s_{e}}=f|_{s_{e}}$ . We set $W^{\prime}=$

$W\bigcup_{F}M_{p}$ and $g’=g\bigcup_{F}h:W’\rightarrow L_{s}$ . Then we have $\partial W^{\prime}=S_{\iota}$ and $\partial g^{\prime}=f|_{s_{e}}$ . It
can be seen as in the proof of Lemma 2.2 that $(f|_{s_{e}})_{*}:$ $\pi_{1}(S_{\epsilon})\rightarrow\pi_{1}(L_{S})$ is
trivial. Since $S_{e}$ is a deformation retract of $M_{p},$ $h_{*}:$ $\pi_{1}(M_{p})\rightarrow\pi_{1}(L_{S})$ is also
trivial. Therefore by applying Van Kampen’s theorem the homomophism
$g_{*}^{\prime}:$ $\pi_{1}(W^{\prime})\rightarrow\pi_{1}(L_{S})$ is seen to be trivial. Then by the following Sublemma
we can modify $g^{\prime}$ to obtain a tangential $(m+1)$-chain $\hat{g}:\hat{W}\rightarrow L_{s}$ such that
$\partial\hat{g}=\partial g^{\prime}$ and $\hat{W}$ is l-connected, which implies that $f|_{s_{e}}$ is $\ovalbox{\tt\small REJECT}$-homologous
to zero. Now the converse is clear by the same construction with turning
upside down. In fact, the complex obtained by attaching the mapping
cylinder is l-connected in this case. This proves the lemma.

SUBLEMMA. Let $g:W\rightarrow L$ be a connected $(m+1)$-chain. If the induced
homomorphism $g_{*}:$ $\pi_{1}(W)\rightarrow\pi_{1}(L)$ is trivial, then there is an $(m+1)- cha\dot{j}n$

$\hat{g}:\hat{W}\rightarrow L$ such that $\partial\hat{g}=\partial g$ and $\hat{W}$ is l-connected.

PROOF. Since $W$ is compact we can choose a finite set of generators
of $\pi_{1}(W)$ . Represent each generator by a simplicial loop $l_{i}:S^{1}\rightarrow W$

$(i=1,2, \cdot\cdot,, k)$ . By the assumption, each loop $g\cdot l_{i}$ in $L$ bounds a disk
$d_{i}:D^{2}\rightarrow L$ . Let $S^{m+1}=S^{1}\times D^{m}\cup D^{2}\times S^{m-1}$ be the standard decomposition
and $C$ the core circle $S^{1}\times\{0\}\subset S^{m+1}$ . By identifying $C$ with $S^{1}$ we choose
a (degree 1) map $\rho_{i}:C\rightarrow l_{i}(S^{1})$ and attach $S^{m+1}$ to Wby $\rho_{i}$ for each $i$ . We
denote the resulting complex by $\hat{W}$. Then $\hat{W}$ is a finite oriented 1-
connected homogeneously $(m+1)$-dimensional complex and $\partial\hat{W}=\partial W$. Next
we define a map $\hat{g}:\hat{W}\rightarrow L$ . We only have to define a map on each
$S^{m+1}=S^{1}\times D^{m}\cup D^{2}\times S^{m-1}$ . Set $\hat{g}(x, y)=g(\rho_{l}(x))$ for $(x, y)\in S^{1}\times D^{m}\subset S^{n*+1}$ and
$\hat{g}(z, u)=d_{i}(z)$ for $(z, u)\in D^{2}\times S^{m-1}$ . Then we have an $(m+1)$-chain $\hat{g}:\hat{W}\rightarrow L$

as desired.
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2. $b$ . The graph of a pull back of a foliation without Sullivan’s
vanishing cycles.

Suppose now that $\mathscr{G}^{-}$ has no Novikov’s vanishing cycle nor m-
dimensional Sullivan’s vanishing cycle. Recall that $V$ is an $(m+1)-$

dimensional l-connected compact oriented manifold and $f:V\rightarrow M$ is a
smooth generic map as in Lemma 2.1. Also let $\Gamma$ be the graph of
(V, $f^{*}\mathscr{G}^{-}$) defined as in the part 2. $a$ .

Suppose $c_{1},$ $\cdots,$ $c_{k}$ are all singular points of index $0$ or $m+1$ , which
may be identified with all black end vertices in $\Gamma$ . Let $D$ be the union of
non-singular leaves or subseparatrices $F$ such that $f|_{F}$ are $\mathscr{G}^{-}$-homologous
to zero. Although the singular points $c_{1},$ $\cdots,$ $c_{k}$ may not be $\mathscr{G}^{-}$-homologous
to zero, we define that $D$ contains $c_{1},$ $\cdots,$ $c_{k}$ .

LEMMA 2.7. The union $D-\{c_{1}, \cdots, c_{k}\}$ is non-empty and if a non-
singular leaf is contained in $D$ then it is contained in $IntD$.

PROOF. Let $U$ be a coordinate neighbourhood of a foliation chart of
$f^{*}\mathscr{G}^{-}$ arround $c_{i}$ and $F$ a non-singular leaf of $f^{*}.Z$ in $U$. Then $F$ is
diffeomorphic to $S^{m}$ and bounds an $(m+1)$-ball $B$ in $U$, that is, $\partial B=F$.
If $F$ is sufficiently near $c$ then one can push $B$ in $M$ into the leaf of $\mathscr{F}^{-}$

which contains $F$. Precisely, it is clear to see that there is a homotopy
$f_{t}:B\rightarrow M$ such that $f_{0}=f|_{B},$ $f_{t}|_{\partial B}=f|_{\partial B}$ for any $t$ , and $f_{1}(B)\subset L_{F}$ . In par-
ticular $f|_{F}$ is $\llcorner \mathscr{F}$-homologous to zero, therefore $F\subset D$.

Let $F$ be a non-singular leaf such that $F\subset D$. Then there is an
$(m+1)$-chain $f_{W}:W\rightarrow L_{F}$ such that $W$ is simply-connected and $\partial f_{W}=f|_{F}$ . By
Lemma 2.4 there is a neighbourhood $N$ of $F$ in $V$ which is diffeomorphic
to $ F\times$ ] $-\epsilon,$ $\epsilon$ [. Moreover $f^{*}\mathscr{G}^{-}|_{N}=\{F\times\{t\}\}$ and $F=F\times\{0\}$ by the diffeomor-
phism. On the other hand since $W$ is compact there are finitely many
foliation charts for $\iota \mathscr{F}$ whose union covers $f_{W}(W)$ and each of which
intersects $f_{W}(W)$ in a unique plaque. Now since $W$ is simply-connected
it is easy to see that there is a map $(f_{w})_{t}:W\rightarrow L_{F\times\{t\}}$ such that $\partial(f_{W})_{t}=$

$f|_{F\times\{t\}}$ for $ t\in$ ] $-\delta,$ $\delta[and(f_{W})_{0}=f_{W}$ , where $\delta$ is a positive number such that
$\delta\leqq\epsilon$ . This means $F\times\{t\}\subset D$ for $ t\in$ ] $-\delta,$ $\delta$ [, which proves the lemma.

We denote by $\partial D$ the frontier of $D$ , i.e. $\partial D=C1_{V}(D)-IntD$ . It is
easy to see that each connected component of $\partial D$ must be a non-singular
leaf or a subseparatrix. Let $\Delta$ and $\partial\Delta$ denote the subsets of $\Gamma$ which
correspond to $D$ and $\partial D$ respectively. The set $\Delta$ is identified with the
subset $D/f^{*}\mathscr{G}^{-}$ of the leaf space $V/f^{*}\mathscr{G}^{-}$

LEMMA 2.8. Let $e$ be an edge of $\Gamma$ . If the interior of $e$ intersects
$\Delta$ then $e$ is contained in $\Delta$ . In fact, the subseparatrices determined by
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$e$ are contained in $D$ .
PROOF. Let $d=\Delta\cap Inte$ . Then $d$ is non-empty and open in $e$ by

Lemma 2.7. We claim that $d=Inte$ . Otherwise choose a point $x$ in the
frontier of $d$ in Int $e$ and a point $y$ in $d$ which is sufficiently near $x$ so
that the interval $[x, y]$ in $e$ satisfies $[x, y]\cap d=]x,$ $y$]. We have a homotopy
of tangential m-cycles $f|_{[x,y]}:F\times[x, y]\rightarrow M$, where $F$ denotes the leaf
corresponding to $y$ (and to $x$). Since there is no Sullivan’s vanishing
cycle in $\mathscr{F}$ and ] $x,$ $y$] $\subset\Delta,$ $f|_{x}$ must be $\mathscr{F}$-homologous to zero. Therefore
$x$ lies in $d$ , which contradicts the assumption.

Next, let $v$ be a black vertex of $e$ and $S$ the subseparatrix determined
by $e$ and $v$ . Choose $x\in e$ sufficiently near $v$ and suppose a non-singular
leaf $F\in f^{*}\ovalbox{\tt\small REJECT}$ corresponds to $x$ . Then by Lemma 2.6 there is a homotopy
of tangential m-cycles $g:F\times[x, v]\rightarrow M$ such that $g|_{F\times\{v\}}=(f|_{s})\cdot p$ and
$g|_{F\times \mathfrak{c}x,v\zeta}=f|_{F\times lx,v\mathfrak{c}}$ . Since there is no Sullivan’s vanishing cycle in $\ovalbox{\tt\small REJECT} g|_{F\times\{v\}}$

must be $\mathscr{F}$-homologous to zero and therefore $f|_{s}$ is also $\mathscr{F}$-homologous
to zero (cf. Lemma 2.6). This implies $ v\in\Delta$ . Now we have $ e\subset\Delta$ and
moreover $S\subset D$ , which shows the lemma.

Now we analyze a global structure of $\Delta$ . By Lemma 2.8 it follows
that $\Delta$ is closed and $\partial\Delta$ consists of vertices. Recall each black vertex
of $\Gamma$ corresponds to a whole separatrix. Therefore although a vertex in
$\partial\Delta$ is contained in $\Delta$ the whole separatrix corresponding to the vertex
may not be contained in $D$ . However, we have the following:

LEMMA 2.9. Suppose that there is only one white vertex in $\Gamma$ and
the white vertex does not lie in $\Delta$ . Let $E$ denote the connected component
of $\Gamma$ -Int $\Delta$ which contains the white vertex. Then there exists a vertex
$v$ in $\partial\Delta\cap E$ whose valency in the tree $E$ is equal to one.

PROOF. Assume for any vertex $v$ of $\partial\Delta\cap E$ there exist at least two
edges each of which is incident with $v$ and does not intersect Int $\Delta$ . Then
removing Int $\Delta$ from $\Gamma$ yields no new end vertex in $E$. All black end
vertices in $\Gamma$ , however, are contained in Int $\Delta$ . Therefore $E$ has no end
vertex except the white vertex. This contradicts the fact that $\Gamma$ is a
finite tree. This proves Lemma 2.9.

2. $c$ . Proofs of Theorem A and Corollary A.

PROOF OF THEOREM A. Assuming that $\ovalbox{\tt\small REJECT}$ has no Novikov’s vanish-
ing cycle nor m-dimensional Sullivan’s vanishing cycle, we will prove it
yields a contradiction. By Lemma 2.1 we may assume that $f_{X}$ is a generic
smooth map. Set $\ovalbox{\tt\small REJECT}=(f_{X})^{*}\ovalbox{\tt\small REJECT}$ and define the graph $\Gamma$ of (X, $\ovalbox{\tt\small REJECT}$ ) as in
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the part 2. $a$ . Also the subset $D$ of $X$ and the subgraph $\Delta$ of $\Gamma$ can be
defined as in the part 2. $b$ . Now since $Z=\partial X$ is connected there is only
one white vertex in $\Gamma$ . Moreover $f_{Z}=\partial f_{X}$ is not $\mathscr{G}^{-}$-homologous to zero
by the hypothesis of the theorem, which implies that the white vertex
does not lie in $\Delta$ . Therefore we can apply Lemma 2.9 to the graph $\Gamma$

so as to find a vertex $v$ in $\partial\Delta\cap E$ whose valency in the tree $E$ is equal
to one. Recall that $E$ is the connected component of $\Gamma$ -Int $\Delta$ which
contains the white vertex. Let $S=\pi^{-1}(v)$ the separatrix which corresponds
to $v$ . Suppose $e_{0},$ $e_{1},$ $\cdots,$ $e_{l}$ are all the edges which are incident with $v$

in $\Gamma$ where $e_{0}\subset E$ and $ e_{i}\subset\Delta$ for $i=1,$ $\cdots,$
$l$ . Then by Lemma 2.8 each

subseparatrix $S_{i}$ of $S$ which is determined by each edge $e_{i}$ is contained
in $D$ for $i>0$ . Therefore there is a tangential $(m+1)$-chain $g_{i}:W_{i}\rightarrow L_{s}$

such that $\partial g_{t}=f|_{s_{i}}$ . Then by attaching each $W_{l}$ to $\partial W_{l}=S_{i}\subset S$ we define
$g=\bigcup_{i=1}^{l}g_{i}:W=\bigcup_{i=}^{l}W\rightarrow L_{s}$ and it follows $\partial g=f|_{s_{0}}$ since the vertex $v$ is
connected with the white vertex by the edge path starting from the
edge $e_{0}$ . Now we show the following claims.

CLAIM 1. The induced homomorphism $g_{*}:$ $\pi_{1}(W)\rightarrow\pi_{1}(L_{S})$ is trival.
PROOF OF CLAIM 1. Since $\partial g=f|_{s_{0}}$ induces the trivial homomorphism

on $\pi_{1}$ (cf. the proof of Lemma 2.2) and $IntW_{i}\cap IntW_{j}=\emptyset$ , it is easy to
see that by repeated application of Van Kampen’s theorem the homo-
morphism $g_{*}:$ $\pi_{1}(W)\rightarrow\pi_{1}(L_{S})$ is trivial.

CLAIM 2. The cycle $f|_{s_{0}}$ is $\mathscr{G}^{-}$-homologous to zero. In fact we may
modify $g$ to obtain a tangential $(m+1)$-chain $\hat{g}:\hat{W}\rightarrow L_{s}$ such that $\partial\hat{g}=\partial g$

and $\hat{W}$ is simply-connected.
PROOF OF CLAIM 2. By Claim 1 and Sublemma in the part 2.a the

claim is clear.
Then we can displace the chain $\hat{g}$ along the remaining edge $e_{0}$ .

Precisely, choose $ x\in$ Int $e_{0}$ sufficiently near $v$ . Denote by $F=\pi^{-1}(x)$ a
non-singular leaf corresponding to $x$ and by $p:F\rightarrow S_{0}$ the natural projection.
Then by Lemma 2.6 we have a leaf-preserving map $\phi:F\times[v, x]\rightarrow\pi^{-1}([v, x])$

such that $\phi|_{F\times lv,xJ}$ is an embedding and $\phi|_{F\times\{v\}}=p$ . By setting $ h=f\cdot\phi$ we
have a homotopy of tangential m-cycles $h:F\times[v, x]\rightarrow M$ such that $h_{v}=$

$(f|_{s_{0}})\cdot p$ , where $h_{v}=h|_{F\times\{v\}}$ . By Claim 2 and Lemma 2.6 the cycle $h_{v}$ is
$\mathscr{F}$-homologous to zero. Now, as in the proof of Lemma 2.7, we can
displace the chain bounded by $h_{v}$ along the homotopy $h_{t}=h|_{F\times\{t\}}$ . This
contradicts the definition of $D$. The proof of Theorem A is now com-
pleted.

PROOF OF COROLLARY A. In case $n=3$ the assumption of Corollary
A is empty by Theorem 1. As8ume $n>3$ . By Theorem A there is an
$(n-2)$-dimensional Sullivan’s vanishing cycle in $LZ$ Then since $M$ is
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compact it yields a non-trivial foliation cycle by a result of Sullivan
(Theorem II.15 in [Su]). It is known by a work of Plante ([P1], [P2])

that a non-trivial foliation cycle in a codimension-one $C^{2}$ foliation on a
compact manifold is supported on compact leaves or on the whole mani-
fold. In the latter case $\mathscr{G}^{-}$ is without holonomy and then there is no
leaf such that the homomorphism induced on $(n-2)nd$ homotopy groups
by the inclusion is not injective. Therefore the foliation cycle must be
supported on compact leaves. This proves Corollary A.

\S 3. Foliations without Novikov’s vanishing cycles.

In this section we prove Theorem $B$ and give some consequences.
Suppose $M$ is an n-dimensional smooth manifold and $\mathscr{F}$ is a codimension-
one $C^{2}$ foliation on $M$.

LEMMA 3.1. Let $p:\tilde{M}\rightarrow M$ be a covering and set $\mathscr{G}^{\simeq}=p^{*}\mathscr{G}^{-}$ Then
we have the following:

1) If $\tilde{f}_{Z}:Z\rightarrow\tilde{M}$ is a Sullivan’s vanishing cycle in $\mathscr{F}^{\simeq}then$ $ p\cdot\tilde{f}_{Z}:Z\rightarrow$

$M$ is a Sullivan’s vanishing cycle in $\mathscr{G}^{-}$

2) If $f_{Z}:Z\rightarrow M$ is a Sullivan’s vanishing cycle in $\mathscr{F}^{-}$ then there is
a lift $\tilde{f}_{Z}:Z\rightarrow\tilde{M}$ of $f_{Z}$ , which is also a Sullivan’s vanishing cycle in $\mathscr{G}^{\tilde{-}}$

PROOF. Suppose $\tilde{f}_{Z}:Z\rightarrow\tilde{M}$ is a connected tangential cycle. Then it
is clear by definition that $\tilde{f}_{Z}$ is $\mathscr{G}^{-}$-homologous to zero iff $p\cdot\tilde{f}_{Z}:Z\rightarrow M$ is
$\mathscr{F}$-homologous to zero. Moreover if $f_{Z}:Z\rightarrow M$ is a Sullivan’s vanishing
cycle in $\mathscr{G}^{-}$ then, since the induced homomorphism $(f_{Z})_{*}:$ $\pi_{1}(Z)\rightarrow\pi_{1}(M)$ is
trivial, there is a lift $\tilde{f}_{Z}:Z\rightarrow\tilde{M}$ of $f_{Z}$ , i.e. $f_{Z}=p\cdot\tilde{f}_{Z}$ . Since $f_{Z}$ is tangential

to $\mathscr{F}$ the lift $\tilde{f}_{Z}$ must be tangential to $\sim\tilde{\mathscr{F}}$ This shows the lemma.

LEMMA 3.2. Let (X, $A$) be a pair of CW-complexes and let $i:A\rightarrow X$

denote the inclusion. Suppose $X$ and $A$ are l-connected. Then for any
positive integer $q$ and any element $\alpha\in Ker(i_{*}: \Omega_{q}(A)\rightarrow\Omega_{q}(X))$ there $ex$ists
a singular $(q+1)$-manifold $f:(V, \partial V)\rightarrow(X, A)$ such that $\alpha=\partial([V, f])$ and
that $V$ is l-connected and $\partial V$ is connected, where $\partial:\Omega_{q+1}(X, A)\rightarrow\Omega_{q}(A)$ is
the boundary homomorphism.

PROOF. In case $q=1$ the assertion is trivial. In case $q=2$ by the
assumption and Hurewicz theorem we have Hurewicz isomorphism
$h:\pi_{2}(A)\rightarrow H_{2}(A:Z)$ and $h:\pi_{2}(X)\rightarrow H_{2}(X:Z)$ . It is known that for any
CW-complex $Y,$ $\mu:\Omega_{k}(Y)\rightarrow H_{k}(Y:Z)$ is an isomorphism if $0\leqq k\leqq 3$ . There-
fore we have isomorphisms $(\mu^{-1})\cdot h:\pi_{2}(A)\rightarrow\Omega_{2}(A)$ and $(\mu^{-1})\cdot h:\pi_{2}(X)\rightarrow\Omega_{2}(X)$ ,
which commute $i_{*}:$ $\pi_{2}(A)\rightarrow\pi_{2}(X)$ and $i_{*}:$ $\Omega_{2}(A)\rightarrow\Omega_{2}(X)$ . Then we can take
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a continuous map $f:(D^{3}, \partial D^{3})\rightarrow(X, A)$ as desired.
Now we assume $q\geqq 3$ . By exactness of the bordism homology sequence

of a pair we may choose a singular $(q+1)$-manifold $g:(W, \partial W)\rightarrow(X, A)$

such that $\alpha=\partial([W, g])$ . We can assume $\partial W$ is connected by connecting
boundary components with tubes if necessary. Since the dimension of 1V
is greater than three we can perform surgeries on $g:W\rightarrow X$ in order to
kill the generators of $\pi_{1}(W)$ . This proves the lemma.

By Theorem 1 the following lemma is clear.

LEMMA 3.3. Let $p:\tilde{M}\rightarrow M$ be the universal covering and set $\mathscr{G}^{\simeq}=$

$p^{*}\mathscr{G}^{-}$ Then the following are equivalent:
1) $\mathscr{G}^{-}$ has no Novikov’s vanishing cycle,
2) for any leaf $L\in \mathscr{G}^{-}$ and any component $\tilde{L}$ of $p^{-1}(L)$ , the restric-

tion map $p:\tilde{L}\rightarrow L$ is the universal covering.

A foliation $\mathscr{G}^{-}$ on a manifold $M$ is called simple if the leaf space
$M/\mathscr{G}^{-}$ is a manifold (possibly non-Hausdorff).

LEMMA 3.4 (Haefliger [H2], Hector and Bouma [H-B]). Let $\mathscr{G}^{-}$ be a
codimension-one foliation on a simply-connected manifold M. Then the
following conditions are equivalent:

1) $\mathscr{L}^{-}$ is simple.
2) $\mathscr{F}^{-}$ is without holonomy.
3) $\mathscr{G}^{-}$ does not admit a closed transversal.
4) All leaves of $\mathscr{G}^{-}$ are closed.

We note that if $\mathscr{G}^{-}$ has no Novikov’s vanishing cycle then each leaf
$\tilde{L}$ of the universal $\infty vering(\tilde{M}, \mathscr{G}^{\simeq})$ is closed.

LEMMA 3.5. Suppose $M$ is l-connected and $\mathscr{G}^{-}$ has no Novikov’s
vanishing cycle. Then for (non-trivial) m-dimensional Sullivan’s vanish-
ing cycle $f_{Z}:Z\rightarrow M$ in $\mathscr{F}^{-}$ the homology class $[f_{z}]eH.(L:Z)$ is of infinite
order, where $L$ denotes the support leaf of $f_{Z}$ .

PROOF. Otherwise there is a positive integer $k\in Z$ such that
$k\cdot[f_{Z}]=0$ . That is, there is a $(m+1)$-chain $g:W\rightarrow L$ such that $\partial g=k\cdot f_{Z}$ .
Note that $k>1$ since $f_{Z}$ is not $\mathscr{G}^{-}$-homologous to zero and $L$ is l-connected
(cf. Sublemma in Section 2, part 2. $a$). Since $g(W)$ is compact there is a
codimension-zero compact connected submanifold $V$ of $L$ which contains
$g(W)$ . Then we may consider $f_{Z}$ and $g$ as chains in $V$. Set $\zeta=$

$[f_{z}]eH.(V:Z)$ . Since $\zeta\neq 0$ and $k\cdot\zeta=0$ in $H.(V:Z)$ there is a homology
class $\xi\in Tor(H_{n-n-2}(V, \partial V:Z))$ such that $1k(\zeta, \xi)\neq 0$ , where Tor denotes
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the torsion subgroup and lk denotes the linking form of (V, $\partial V$). Suppose
that a cycle $h:(C, \partial C)\rightarrow(V, \partial V)$ represents $\xi$ By definition $1k(\xi, \zeta)=$

$(1/k)\cdot I(g, h)(mod Z)$ , where $I$ denotes the intersection of chains. Since
$\mathscr{F}$ is without holonomy and $V$ is compact, we can displace $V$ to nearby
leaves. Let $V_{t}\subset L_{t}\in \mathscr{G}^{-}g_{t}:W\rightarrow V_{t}$ and $h_{t}:(C, \partial C)\rightarrow(V_{t}, \partial V_{t})$ be the dis-
placements of $V,$ $g$ and $h$ respectively. Also we denote by $\zeta_{t}\in H_{m}(V_{t}:Z)$

the displacement of $\zeta$ . Then since $\zeta$ is a vanishing cycle we have $i_{*}\zeta_{t}=0$

in $H.(L_{t}:Z)$ where $i:V_{t}\rightarrow L_{t}$ is the inclusion. Therefore it follows that
there is a codimension-zero compact connected submanifold $V_{t}$ containing
$V_{t}$ such that $h_{t}:(C, \partial C)\rightarrow(V_{t}^{\prime}, \partial V_{t}^{\prime})$ is a cycle and $j_{*}\zeta_{t}=0$ in $H.(V:Z)$ ,
where $j:V_{t}\rightarrow V_{t}^{\prime}$ is the inclusion. Now we have $1k(j_{*}\zeta_{t}, j_{*}\xi_{t})=0$ in
(V;, $\partial V_{t}^{\prime}$). However, sinoe linking form is well defined under changing
the bounded chain, it follows that $1k(j_{*}\zeta_{t}, j_{*}\xi_{t})=1k(\zeta_{t}, \xi_{t})$ . This is a con-
tradiction by the following formulae;

$0\neq 1k(\zeta, \xi)=(1/k)\cdot I(g, h)$ $(mod Z)$

$=(1/k)\cdot I(g_{t}, h_{t})$

$=1k(\zeta_{t}, \xi_{t})$ $(mod Z)$

$=1k(j_{*}\zeta_{t}, j_{*}\xi_{t})$

$=0$ .
This proves the lemma.

PROOF OF THEOREM B. We will proceed in numerical order of the
conditions. First, we assume the condition 1). Let $f_{Z}:Z\rightarrow L$ be an m-
dimensional Sullivan’s vanishing cycle, where $L\in \mathscr{F}$ Then by Lemma
3.1 there is a lifted Sullivan’s vanishing cycle $\tilde{f}_{Z}:Z\rightarrow\tilde{L}$ . By Lemma 3.5
the homology class $[\tilde{f}_{Z}]$ is of infinite order in $H_{m}(\tilde{L}:Z)$ and Iince $\tilde{f}_{Z}$ is a
Sullivan’s vanishing cycle it lies in the kernel of the homomorphism
$H_{m}(\tilde{L}:Z)\rightarrow H_{n}(\tilde{M}:Z)$ . Now the condition 2) is satisfied.

Next, we assume the condition 2). We denote by $\alpha$ a homology
class of infinite order in $Ker(H_{m}(\tilde{L}:Z)\rightarrow H_{n}(\tilde{M}:Z))$ for a leaf $\tilde{L}\in \mathscr{G}^{\simeq}$ We
consider the following commutative diagram;

$\Omega_{n+1}(\tilde{M}\downarrow\mu\tilde{L})$
$\rightarrow^{\partial}\Omega_{n}(\tilde{L})\downarrow\mu$

$\leftrightarrow^{i_{*}}$

$\Omega_{n}(\tilde{M})\downarrow\mu$

$H_{n+1}(\tilde{M},\tilde{L}:Z)\rightarrow^{\partial}H_{n}(\tilde{L}:Z)\rightarrow^{i_{*}}H_{n}(\tilde{M}, Z)$ ,

where the rows are exact. Then there is $\beta eH_{n+1}(\tilde{M},\tilde{L}:Z)$ such that
$\alpha=\partial(\beta)$ . By a theorem of Conner and Floyd (Theorem 15.3 in [C-F])
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there is an odd integer $q\in Z$ such that $ q\cdot\beta$ is Steenrod representable,
i.e., there is $\gamma\in\Omega,,.+1(\tilde{M},\tilde{L})$ such that $q\cdot\beta=\mu(\gamma)$ . By the commutativity
$\mu\cdot\partial(\gamma)=\partial\cdot\mu(\gamma)=\partial(q\cdot\beta)=q\cdot\alpha$ . Since $\alpha$ is of infinite order, $ q\cdot\alpha$ is also of
infinite order as desired in the condition 3).

Since the condition 3) is included in the condition 4), now we only
have to show that the condition 4) implies the condition 1) in order to
complete the proof. Let $\alpha\in\Omega_{n+1}(\tilde{M},\tilde{L})$ such that $\mu\cdot\partial(\alpha)\neq 0$ in $H_{n}(\tilde{L}:Z)$ .
By Lemma 3.3 and Lemma 3.4 each leaf of $c\tilde{\mathscr{F}}$ is l-connected and closed,
hence we can apply Lemma 3.2 to $(\tilde{M},\tilde{L})$ to obtain a singular $(m+1)-$

manifold chain $f_{X}:(X, \partial X)\rightarrow(\tilde{M},\tilde{L})$ which represents $\alpha$ such that $X$ is
l-connected and $\partial X$ is connected. Now we may apply Theorem A to $f_{X}$

to obtain an m-dimensional Sullivan’s vanishing cycle in $\mathscr{G}^{\simeq}$ and by
Lemma 3.1 the m-cycle in $M$ induced by the covering projection is also
a Sullivan’s vanishing cycle in $L\mathscr{F}$ This completes the proof.

PROOF OF COROLLARY B. Otherwise the condition 2) of Theorem $B$

is $8atisfied$ and it yields a Sullivan’s vanishing cycle by Theorem B.

PROOF OF $CoROLLAR\grave{Y}$ C. 1 Let $p:(\tilde{M}, \mathscr{G}^{\tilde{-}})\rightarrow(M, \mathscr{G}^{-})$ be the universal
covering. We assume that there is a $1\dot{e}afL\in \mathscr{G}^{-}$ such that $H_{2}(\tilde{L}:Z)\neq 0$

or $H_{s}(\tilde{L}:Z)\neq 0$ , where $\tilde{L}$ is a component of $p^{-1}(L)$ . In case that $ H_{\theta}(\tilde{L}:Z)\neq$

$0,\tilde{L}$ must be compact. Hence $L=p(\tilde{L})$ is compact. Next we consider
the case that $H_{2}(\tilde{L}:Z)\neq 0$ . Since $\tilde{M}$ is contractible ther6 is a non-zero
homology class $\zeta\in H_{2}(\tilde{L}:Z)$ which vanishes in $H_{2}(\tilde{M}:Z)$ . Since $\tilde{M}$ (resp.
$\tilde{L})$ is the universal covering of $M$ (resp. $L$), $\pi_{2}(M)$ (resp. $\pi_{2}(L)$ ) is iso-
morphic to $H_{2}(\tilde{M}:Z)$ (resp. H..$2(\tilde{L}:Z)$). Therefore $\zeta$ is mapped to a non-
zero class $z\in\pi_{2}(L)$ which vanishes in $\pi_{2}(M)$ . We claim that $z$ is not
$c\mathscr{F}$-homologous to zpro. For otherwise the simply-connected bounded chain
$c\dot{a}n$ be lifted to $\tilde{L}$ , which contradicts the assumption that $\zeta$ is non-zero
in $H_{2}(\tilde{L}:Z)$ . Now we can apply Corollary A to $z\in\pi_{2}(L)$ to obtain a
compact leaf in $\mathscr{F}^{-}$ This completes the proof.

PROOF OF COROLLARY D. By Theorem 1 we only have to show that
$\mathscr{G}^{-}$ has no 2-dimensional Sullivan’8 vani8hing cycle iff for any leaf $L\in_{L}\mathscr{F}$

the homomorphism $\pi_{2}(L)\rightarrow\pi_{2}(M)$ induced by the inclusion is injective. Let
$p:(\tilde{M}, \mathscr{G}^{\simeq})\rightarrow(M, \mathscr{F}^{-})$ be.the universal cover-ing. For any leaf $\tilde{L}\in \mathscr{G}^{\simeq}$ we
have the following comnmutative diagram;

$\Omega_{2}(\tilde{L}\rangle^{\prime}\rightarrow^{\mu}H_{2}\not\in\tilde{L}^{:}*- Z)\leftarrow\pi_{2}(\tilde{L})\leftrightarrow^{p_{*}}\pi_{2}(L)$

$\Omega_{2}(\tilde{M})\downarrow\leftrightarrow^{\mu}H_{\dot{2}}(\tilde{M}.\cdot Z\rangle\downarrow\leftrightarrow\pi_{2}(\tilde{M})\downarrow\leftrightarrow^{p_{*}}\pi_{2}(M\}\downarrow$
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where the rows are all isomorphisms since $\tilde{L}$ and $\tilde{M}$ are l-connected.
Therefore the assertion holds by Theorem A and Lemma 3.2. This proves
the corollary.

\S 4. Proof of Theorem C.

In this section we consider the case that there is a Novikov’s vanish-
ing cycle. First we $\cdot$ prove Theorem C.

PROOF OF THEOREM C. Let $f:S^{1}\rightarrow L$ be a Novikov’s vanishing cycle,
where $L\in \mathscr{G}^{-}$ We may assume $f$ is a smooth immersion. Moreover, in
view of Lemma 3.1, we may assume $M$ is orientable and $\mathscr{G}^{-}$ is trans-
versely $orientable\backslash $ without loss of generality; Therefore we may choose
a tubular neighbourhood $F:S^{1}\times D^{n-2}\rightarrow Lc$ of $f$. Note that since $f$ is essential
in $L$ the cycle $F|_{\partial(S^{1}\times D^{n-2})}$ is not $\mathscr{F}$-homologous to zero. Since $f$ is a
Novikov’s vanishing cycle, there is a continuous map $g:D^{2}\rightarrow M$ such that
$g|_{\partial D^{2}}=f$. Choose a tubular neighbourhood $G:D^{2}\times D^{n-2}\rightarrow M$ of $g$ by approx-
imating $g$ by a smooth immersion. Here we can choose $G$ such that
$G|_{\partial D^{2}\times D^{n-2}}=F$. Now we consider the standard embedding $ D^{2}\times S^{m-1}\subset$

$D^{2}\times\partial D^{n-2}\subset D^{2}\times D^{n-2}$ . Then $G|_{\partial D^{2}\times s^{m-1}}=F|_{\partial D^{2}\times s^{m-1}}$

’

iriduces a non-trivial
homomorphism $\pi_{1}(\partial D^{2}\times S^{m-1})\rightarrow\pi_{1}(L)$ since $G|_{\partial D^{2}\times\{’\}}\simeq f$ where $*\in S^{m-1}$ .
Therefore $G|_{\partial D^{2}\times S^{m-1}}$ is not $\mathscr{G}^{-}$-homologous to zero. Set $X=D^{2}\times S^{m-1}$ and
$f_{X}=G|_{D^{2}\times S^{m-1}}$ . Then we have the desired chain. This proves the theorem.

Now we construct an example. Let $(S^{1}\times D^{2}, \mathscr{F}_{R})$ be a Reeb com-
ponent. We set $(M, \mathscr{G}^{-})=D(S^{1}\times D^{2}, \mathscr{F}_{R})\times S^{1}$ where $D$ denotes the double.
Then $\ovalbox{\tt\small REJECT}$ has a Novikov’s vanishing cycle. We claim that $\mathscr{G}^{-}$ admits
no singular 3-manifold chain such as in the assertion of Theorem C. It
is enough to show the claim for the universal covering $(\tilde{M}, \llcorner\tilde{\mathscr{F}})$ . Since
the boundary of a compact orientable l-connected 3-manifold is a union
of 2-spheres, we only have to show that there is no tangential 2-cycle
which is spherical and not $\mathscr{G}^{\sim}$-homologous to zero. It is easy to see that
all leaves of $\mathscr{G}^{\simeq}$ are diffeomorphic to $R^{3}$ except only one leaf which is
diffeomorphic to $S^{1}\times R^{2}$ . Therefore any spherical tangential 2-cycle must
be inessential in the support leaf. This shows the claim.

References

[C-F] P. E. CONNER and E. E. FLOYD, Diferentiable Periodic Maps, Ergeb. Math. Grenzgeb.,
33 (1964), Springer-Verlag.

[C-N1 C. CAMACHO and A. L. NETO, Geometric Theory of Foliations, Birkh\"auser, 1985.
[H1] A. HAEFLIGER, Travaux de Novikov sur les feuilletages, Seminaire Bourbaki 1967/68,

no. 339.



404 SHIGEAKI MIYOSHI

[H2] A. HAEFLIGER, Vari\’et\’es feuillet\’ees, Ann. Scuola Norm. Sup. Pisa (Ser. 3), 16 (1962),

367-397.
[H-B1 G. HECTOR and W. BOUMA, All open surfaces are leaves of simple foliations of $R^{3}$ ,

Indag. Math., 45 (19ae), 443-452.
[Miy] S. MIYOSHI, Existence of Sullivan’s vanishing cycles in codimension-one foliations,

Topology and Computer Science (Proc. Symposium in honor of H. Noguchi, T.
Homma and S. Kinoshita), ed. S. Suzuki, 395-4oe, Kinokuniya, Tokyo, 1987.

[Mill J. W. MILNOR, Morse Theory, Ann. of Math. Studies, 51 (1963), Princeton Univ. Press.
[Nl S. P. NOVIKOV, Topology of foliations, Trudy Moskov. Mat. Obshch., 14 (1965), 248-278
[p1] J. PLANTE, Foliations with measure preserving holonomy, Ann. of Math., 1O2 $(1975)_{1}$

$3\mathfrak{R}-361$ .
[P2] J. PLANTE, Measure preserving pseudogroups and a theorem of Sacksteder, Ann. Inst

Fourier, 25 (1975), $\mathfrak{B}7-249$ .
[Spl E. H. SPANIER, Algebraic Topology, McGraw-Hill, lae6.
[Su] D. SULLIVAN, Cycles for the dynamical study of foliated manifolds and complex mani $\cdot$

folds, Invent. Math., 36 (1976), $2\mathfrak{B}-255$ .
[T] R. THOM, Un lemme sur les application8 diff\’erentiables, Bol. Soc. Mat. Mexicana (2)

1 (1956), 59-71.

Present Address:
DEPARTMENT OF MATHEMATICS
$SCH\infty L$ OF SCIENCE AND ENGINEERING, WASEDA UNIVEB81TY
OKUBO, SHINJUKU-KU, TOKYO 160, JAPAN


