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Abstract. We show that the classical Holder inequality between means of order $\alpha$ ,
$0<\alpha\leqq 1$ , can be improved on the assumption that the terms are not too often of comparable
size. A8 an application, we derive a general, optimal bound for the entropy of a probability
distribution.

\S 1. Introduction.

In two previous articles $[1, 2]$ concerned with the Rudin-Shapiro
sequence we stated and used a lemma without reproducing its proof.
We believe that this lemma is interesting in its own accord. The object
of this paper is to give an extended and generalized version of our
lemma–thereby promoted to the status of a theorem. As a consequence
we shall obtain an inequality sharpening in some cases the classical
$H\ddot{o}lder’ s$ inequality, and which leads to a new result concerning the
entropy of a probability distribution.

\S 2. An inequality.

THEOREM. Let $\lambda$ be a positive real number and let $\sum_{k=0}^{\infty}x_{k}$ be a
convergent series $wi$th non-negative terms. Suppose that

(1) $\lambda x_{n}\geqq\sum_{k=n+1}^{\infty}x_{k}$ , $(n=0,1,2, \cdots)$ .
Then, for all $\alpha,$ $0<\alpha\leqq 1$ , we have

(2) $\sum_{k=0}^{\infty}x_{k}^{\alpha}\leqq\{(\lambda+1)^{\alpha}-\lambda^{\alpha}\}^{-1}(\sum_{k=0}^{\infty}x_{k})^{\alpha}$

with equality in the case $x_{k}=\{\lambda/(\lambda+1)\}^{k},$ $k\geqq 0$ .
COROLLARY. Let $\{p_{k}:k\geqq 0\}$ be a probability distribution with entropy
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$H:=\sum_{k=0}^{\infty}p_{k}\log\frac{1}{p_{k}}$ .

Define the function $F(x)$ $:=(x+1)\log(x+1)-x\log x,$ $x>0$ . Then, on the
assumption that

$x:=\sup_{n\geq 0}p_{n}^{-1}\sum_{k=n+1}^{\infty}p_{k}<\infty$

we have

(3) $H\leqq F(x)$ .
Furthermore, equahty holds in the geometr$io$ case $p_{k}=(x+1)^{-1}\{\lambda/(\lambda+1)\}^{k}$ ,
$k\geqq 0$ .

Note that (1) is valid in particular for finite sums, that is,

(4) $\sum_{k=0}^{N}x_{k}^{\alpha}\leqq\{(x+1)^{\alpha}-x^{\alpha}\}^{-1}(\sum_{k=0}^{N}x_{k})^{\alpha}$ , $(0<\alpha\leqq 1)$ ,

where now

$x=x_{N}$ $:=\max_{0\leq n<N}x_{n}^{-1}\sum_{k=n+1}^{N}x_{k}$ .
But $H\ddot{o}lder’ s$ inequality states that (4) holds with a factor $(N+1)^{1-\alpha}$ instead
of $\{(x+1)^{\alpha}-\lambda^{\alpha}\}^{-1}$ . Thus (4) is certainly sharper when $x\leqq\alpha^{1/(1-\alpha)}(N+1)$ . In
this context it is worthwhile to bear in mind that we may always assume
that the $x_{n}$ are arranged in decreasing order, whence $x\leqq N$.

Finally, we show that the corollary is a straightforward consequence
of the theorem. Indeed, from (2) with $x_{k}=p_{k}$ , we obtain

$H_{\alpha}$ $:=(1-\alpha)^{-1}\log(\sum_{k=0}^{\infty}p_{k}^{\alpha})\leqq(1-\alpha)^{-1}\log\frac{1}{(x+1)^{\alpha}-x^{\alpha}}$ .

The quantity $H_{\alpha}$ is R\’enyi’s a-entropy [3]. We let $\alpha$ increase to 1 and
obtain the required inequality (3).

\S 3. Proof of the theorem.

We may plainly normalize the series such that

$\sum_{k=0}^{\infty}x_{k}=1$

and from now on we shall put $x_{k}=p_{k},$ $k=0,1,$ $\cdots$ . Our assumption (1)
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may be equivalently written as
(5) $1-s_{n}\leqq\beta(1-s_{n-1})$ , $(n=0,1,2, \cdots)$

where we have set $s_{n}$ $:=\sum_{0\leq j\leq n}p_{j},$ $\beta;=x/(\lambda+1)$ .
Let $a$ satisfy $0<a\leqq 1$ and define

$h=h(a):=\sum_{n-0}^{\infty}p_{n}^{\alpha}$ .
The series converges since by (5), $p_{n}\leqq 1-s_{n-1}\leqq\beta^{n}$ . Now we put

$w_{n}=\left\{\begin{array}{ll}\frac{1-s_{n}}{1-s_{n-1}} , & if s_{n-1}\neq 1\\0 , & if s_{n-1}=1\end{array}\right.$

and observe that

$h=\sum_{n=0}^{\infty}(s_{n}-s_{n-1})^{\alpha}=\sum_{n=0}^{\infty}(1-s_{n-1}-(1-s_{n}))^{\alpha}$

$=(1-w_{0})^{\alpha}+w_{0}^{\alpha}(1-w_{1})^{\alpha}+w_{0}^{\alpha}w_{1}^{\alpha}(1-w_{2}^{\alpha})+\cdots$ .
Let $t:=\max h$ , where the maximum is taken over the set of all sequences
$\{w_{0}, w_{1}, \cdots\}$ in $[0, \beta]^{N}$ . Since $h=h(w_{0}, w_{1}, \cdots)$ is a continuous function on
this compact space, the maximum is actually attained, at $\{w_{0}^{*}, w_{1}^{*}, \cdots\}$ ,
say. Then

$t=(1-w_{0}^{s})^{\alpha}+w_{0}^{*\alpha}h(w_{1}^{*}, w_{2}^{*}, \cdots)\leqq(1-w_{0}^{*})^{\alpha}+w_{0}^{*\alpha}t$

hence

$t\leqq\max_{0\leq w_{0}^{*}\leq\beta}\frac{(1-w_{0}^{*})^{\alpha}}{1-w_{0}^{*\alpha}}=\frac{(1-\beta)^{\alpha}}{1-\beta^{\alpha}}=\{(x+1)^{\alpha}-x^{a}\}^{-1}$ ,

as required.

REMARK. M. Balazard found an alternative proof of this result based
on the observation that the function $x\rightarrow(x+a)^{\alpha}-x^{\alpha}$ is strictly decreasing
for all $a>0$ and $a,$ $0<\alpha<1$ . Indeed, taking $a=x_{n}$ , we see that the hy $\neg$

pothesis (1) implies

$(xx_{n}+x_{n})^{\alpha}-(xx_{n})^{a}\leqq(\sum_{k=n+1}^{\infty}x_{k}+x_{n})^{\alpha}-(\sum_{k=n+1}^{\infty}x_{k})^{\alpha}$

or

$\{(x+1)^{\alpha}-x^{a}\}x_{n}^{\alpha}\leqq(\sum_{k=n}^{\infty}x_{k})^{a}-(\sum_{k=n+1}^{\infty}x_{k})^{\alpha}$ .
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Summing this inequality for all $n=0,1,2,$ $\cdots$ yields the required estimate
(2).

\S 4. Complements.

In this section we give some further precisions to our result. The
first is a complete description of the cases of equality in (2).

COMPLEMENT 1. Suppose that for some $a,$ $0<\alpha<1$ , we have

(6) $\sum_{k=0}^{\infty}p_{k}^{\alpha}=\{(x+1)^{\alpha}-x^{\alpha}\}^{-1}$ .
Then $\{p_{k}:k\geqq 0\}$ is geometric, up to a reordering of the terms. In $ othe\gamma$

words, if we further assume $ p_{0}\geqq p_{1}\geqq\cdots$ , we have

$p_{k}=(x+1)^{-\iota}\{\frac{\lambda}{x+1}\}^{k}$ , $(k=0,1, \cdots)$ .
This results easily from the proof in Section 3. Indeed (6) implies, in

the previous notation, that $h(w_{0}, w_{1}, \cdots)=t$ . Hence, as before, we get

(7) $t=h(w_{0}, w_{1}, \cdots)=(1-w_{0})^{\alpha}+w_{0}^{\alpha}h(w_{u}w_{2\prime}\cdots)$

$\leqq(1-w_{0})^{\alpha}+w_{0}^{\alpha}t$

which in turn yields

$t=\frac{(1-\beta)^{\alpha}}{1-\beta^{\alpha}}\leqq\frac{(1-w_{0})^{\alpha}}{1-w_{0}^{\alpha}}$ .
Together with the initial condition $ w_{0}\leqq\beta$ , this implies that $ w_{0}=\beta$ and we
infer from (7) that $h(w_{1}, w_{2}, \cdots)=t$ . The proof may hence be completed
by an obvious iteration.

We note that this result can also be derived from Balazard’s proof
of our theorem.

Next, we give a generalization of the corollary.

COMPLEMENT 2. Let $\{p_{k}:k\geqq 0\}$ be a probability distribution and $(A_{j})_{jel}$

be a partition of N. Put $P(A_{j})=\sum_{keA_{j}}p_{k},$ $jeJ$, and suppose that

$\Lambda:=\sup_{jeJ}\sup_{nez_{j}}p_{n}^{-1}\sum_{k>n_{i}}p_{k}<\infty$
.

The function $F$ being defined as in Section 2, we then have

$0\leqq\sum_{k=0}^{\infty}p_{k}\log\frac{1}{p_{k}}-\sum_{jeJ}P(A_{j})\log\frac{1}{P(A_{j})}\leqq F(\Lambda)$ .
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Notice that we always have $\Lambda\leqq\lambda$ . This result shows that the entropy
of a distribution cannot decrease too much by just grouping terms together:
“One cannot organize randomness”.

We now prove the complement. The left hand inequality simply
follows from the convexity of $x\log(1/x)$ . For the right hand one, we
introduce a parameter $\alpha,$ $0<a<1$ , and apply (2) to each series $\sum_{keA;}p_{k}$ ,
$jeJ$, noticing that the corresponding conditions of type (1) hold with $\Lambda$

in place of N. This yields

$\sum_{k=0}^{\infty}p_{k}^{\alpha}=\sum_{jeJ}\sum_{keA_{j}}p_{k}^{a}\leqq\{(\Lambda+1)^{\alpha}-\Lambda^{\alpha}\}^{-1}\sum_{jeJ}P(A_{j})^{\alpha}$ .
The required conclusion follows by letting $a$ tend to 1, as before.

Finally, we mention the continuous analogue of our theorem, which
turns out to be very easy.

COMPLEMENT 3. Let $y=y(x)$ be a function of class $C^{1}$ on $(0, +\infty)$ ,
with $y(O)=0,$ $y(+\infty)=1$ . Suppose that for some $x>0$

$xy^{\prime}\geqq 1-y\geqq 0$ .
Then for all $\alpha,$ $0<\alpha<1$ ,

$\int_{0}^{\infty}(y^{\prime}(x))^{\alpha}dx\leqq a^{-1}\lambda^{1-\alpha}$

and

$\int_{0}^{\infty}y^{\prime}(x)\log\frac{1}{y^{\prime}(x)}dx\leqq 1+\log x$ .
Furthermore, both inequalities become equalities when $y(x)=1-\exp(-x/x)$ .

PROOF. The hypothesis plainly implies

$(y^{\prime})^{\alpha-1}\leqq(\frac{\lambda}{1-y})^{1-\alpha}$

hence

$\int_{0}^{\infty}(y^{\prime})^{\alpha}dx=\int_{0}^{\infty}(y^{\prime})^{a-1}y^{\prime}dx\leqq x^{1-\alpha}\int_{0}^{\infty}(1-y)^{\alpha-1}y^{\prime}dx$

$=x^{1-\alpha}\int_{0}^{1}(1-y)^{\alpha-1}dy=\alpha^{-1}\lambda^{1-\alpha}$ .
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The same technique applies for the second case. The last remark is easy
to check and left to the reader.
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